NOTES ON BERNOULLI NUMBERS AND EULER'S
 SUMMATION FORMULA

MARK WILDON

1. Bernoulli numbers

1.1. Definition. We define the Bernoulli numbers B_{m} for $m \geq 0$ by

$$
\begin{equation*}
\sum_{r=0}^{m}\binom{m+1}{r} B_{r}=[m=0] \tag{1}
\end{equation*}
$$

Bernoulli numbers are named after Johann Bernoulli (the most prolific Bernoulli, and the discoverer of the Bernoulli effect).
1.2. Exponential generating function. If $f(z)=\sum a_{n} z^{n} / n!$ and $g(z)=$ $\sum b_{n} z^{n} / n$! then $f(z) g(z)=\sum c_{n} z^{n} / n$! where the coefficients c_{n} are given by $c_{n}=\sum\binom{n}{r} a_{r} b_{n-r}$. Thus if we put $\beta(z)=\sum B_{n} z^{n} / n$! then

$$
\begin{aligned}
{\left[z^{n}\right] \beta(z) \exp z } & =\frac{1}{n!} \sum B_{r}\binom{n}{n-r} \\
& =\frac{1}{n!} \sum_{r=0}^{n-1}\binom{n}{r} B_{r}+\frac{B_{n}}{n!} \\
& =[n=1]+\frac{B_{n}}{n!}
\end{aligned}
$$

from which it follows that $\beta(z) \exp z=z+\beta(z)$. Therefore

$$
\begin{equation*}
\beta(z)=\sum B_{n} \frac{z^{n}}{n!}=\frac{z}{\exp z-1} . \tag{2}
\end{equation*}
$$

This shows that the radius of convergence of $\beta(z)$ is π. So although it is tempting to make a substitution in

$$
\log P\left(\mathrm{e}^{-t}\right)=-\sum_{n} \log \left(1-\mathrm{e}^{-t n}\right)=\sum_{n} \sum_{m} \frac{\mathrm{e}^{-t m n}}{m}=\sum_{m} \frac{1}{t m^{2}} \frac{t m}{\mathrm{e}^{t m}-1}
$$

this will not work, as $t m$ is eventually more than π.
1.3. Some values. If we add $z / 2$ to both sides of (2) we obtain

$$
\begin{equation*}
\beta(z)+\frac{z}{2}=\frac{z}{2} \frac{\exp z+1}{\exp z-1}=z / 2 \operatorname{coth} z / 2, \tag{3}
\end{equation*}
$$

which is an even function of z. So $B_{0}=1, B_{1}=-1 / 2$ and $B_{n}=0$ if $n \geq 3$ is odd. Some further values are given below.

$$
\begin{array}{cccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
B_{n} & 1 & -1 / 2 & 1 / 6 & 0 & -1 / 30 & 0 & 1 / 42 & 0 & -1 / 30
\end{array}
$$

Note that the numerators need not be ± 1. For instance $B_{10}=5 / 66$.
1.4. Connection with FLT. Kummer proved that there are no positive integral solutions of $x^{p}+y^{p}=z^{p}$ whenever p is an odd prime not dividing the numerators of any of the Bernoulli numbers $B_{2}, B_{4}, \ldots, B_{p-3}$. Such primes are said to be regular. For instance as $B_{12}=691 / 2730$, the prime 691 is not regular.
1.5. Estimate for B_{n}. In [1] it is noted that $B_{22}=\frac{854513}{138}>6192$; indeed the Bernoulli numbers are unbounded. The authors explain that using Euler's formula for $\cot z$ (which has a nice elementary proof via the so-called Herglotz trick),

$$
z \cot z=1-2 \sum_{k \geq 1} \frac{z^{2}}{k^{2} \pi^{2}-z^{2}}
$$

one gets

$$
\begin{aligned}
\beta(2 z)+z & =z \operatorname{coth} z \\
& =1+2 \sum_{k=1}^{\infty} \frac{z^{2}}{k^{2} \pi^{2}+z^{2}} \\
& =1-2 \sum_{k=1}^{\infty} \sum_{m=1}^{\infty}\left(\frac{-z^{2}}{k^{2} \pi^{2}}\right)^{m}
\end{aligned}
$$

for $|z|<\pi$. Hence, comparing coefficients of $z^{2 n}$,

$$
B_{2 n}=(-1)^{n-1} \frac{2(2 n)!}{(2 \pi)^{2 n}} \zeta(2 n)
$$

Thus

$$
\frac{2}{(2 \pi)^{2 n}} \leq \frac{\left|B_{2 n}\right|}{(2 n)!} \leq \frac{4}{(2 \pi)^{2 n}}
$$

Note this shows that $\left|B_{2 n}\right| /(2 n)$! is a decreasing sequence. As these are coefficients in the convergent generating function $\beta(z),\left|B_{2 n}\right| /(2 n)$! tends to 0 as n tends to ∞.
1.6. Connection with uniform distribution. Let X be distributed uniformly on $[0,1]$. Then the moment generating function for X is

$$
E \mathrm{e}^{z X}=\int_{0}^{1} \mathrm{e}^{z t} \mathrm{~d} t=\frac{1}{x}\left(\mathrm{e}^{x}-1\right)=\frac{1}{\beta(z)}
$$

The coefficients of $1 / \beta(z)$ give us a recurrence satisfied by the Bernoulli numbers - but as

$$
1 / \beta(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+1)!}
$$

this is just the defining recurrence (1).
1.7. Sums of powers. We derive from first principles a special case of the Euler summation formula. Let

$$
S_{m}(n)=0^{m}+1^{m}+\ldots+(n-1)^{m}=\sum_{k=0}^{n-1} k^{m} .
$$

Consider the following generating function where m varies and n is fixed: $\hat{S}(z)=\sum_{m=0}^{\infty} S_{m}(n) \frac{z^{m}}{m!}$. We have

$$
\begin{aligned}
\hat{S}(z)= & \sum_{m=0}^{\infty}\left(\sum_{k=0}^{n-1} k^{m}\right) \frac{z^{m}}{m!}=\sum_{k=0}^{n-1} \sum_{m=0}^{\infty} \frac{(k z)^{m}}{m!}=\frac{\exp n z-1}{\exp z-1} \\
& =\beta(z) \frac{\exp n z-1}{z}=\left(\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}\right)\left(\sum_{m=0}^{\infty} \frac{n^{m+1}}{(m+1)!} z^{m}\right) .
\end{aligned}
$$

Comparing coefficients of z^{m} / m ! gives

$$
\begin{equation*}
S_{m}(n)=m!\sum_{r=0}^{m} \frac{B_{r}}{r!} \frac{n^{m-r+1}}{(m-r+1)!}=\sum_{r=0}^{m} \frac{B_{r}}{m+1}\binom{m+1}{r} n^{m+1-r} . \tag{4}
\end{equation*}
$$

1.8. Bernoulli polynomials. Define

$$
B_{m}(z)=\sum_{k}\binom{m}{k} B_{k} z^{m-k} .
$$

The first few Bernoulli polynomials are $B_{0}(z)=1, B_{1}(z)=z-\frac{1}{2}, B_{2}(z)=$ $z^{2}-z+\frac{1}{6}, B_{3}(z)=z^{3}-\frac{3}{2} z+\frac{1}{2}$, on so on. Note that $B_{m}(0)=B_{m}$ and that

$$
B_{m+1}(n)=\sum_{k}\binom{m+1}{k} B_{k} n^{m+1-k}=(m+1) S_{m}(n)+B_{m+1}
$$

so

$$
S_{m}(n)=\frac{B_{m+1}(n)-B_{m+1}(0)}{m+1}
$$

which is the obvious definition for $S_{m}(z)$.
Some useful properties:

$$
B_{m}(1)=\sum_{k}\binom{m}{k} B_{k}=\sum_{k=1}^{m-1}\binom{m}{k} B_{k}+B_{m}=[m=1]+B_{m}
$$

so $B_{m}(1)=B_{m}(0)=B_{m}$ unless $m=1$ in which case $B_{1}(1)=-\frac{1}{2}=-B_{1}$. For $m \geq 1$ we have

$$
\begin{array}{r}
B_{m}(z)^{\prime}=\sum_{k}\binom{m}{k} B_{k}(m-k) z^{m-k-1}=m \sum_{k}\binom{m-1}{k} B_{k} z^{m-k-1} \\
=m B_{m-1}(z) .
\end{array}
$$

2. The Euler summation formula

From now on let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function with as many derivatives as needed. Euler's summation formula is:

Theorem 2.1 (Euler). Let $m \geq 1$ and let $a<b$ be integers. Then

$$
\begin{equation*}
\sum_{a \leq k<b} f(k)=\int_{a}^{b} f(x) \mathrm{d} x+\left.\sum_{k=1}^{m} \frac{B_{k}}{k!} f^{(k-1)}(x)\right|_{a} ^{b}+R_{m} \tag{5}
\end{equation*}
$$

where the remainder R_{m} is given by

$$
R_{m}=(-1)^{m+1} \int_{a}^{b} \frac{B_{m}(\{x\})}{m!} f^{(m)}(x) \mathrm{d} x
$$

2.1. Application to sums of powers. Set $f(x)=x^{r}$ and take $m>r$. Then $f^{(m)}=0$ so the remainder term vanishes. Putting $a=0$ and $b=n$ we obtain

$$
\sum_{k=1}^{n-1} k^{r}=\frac{n^{r+1}}{r+1}+\sum_{k=1}^{r+1} \frac{B_{k}}{k!} r \frac{k-1}{} n^{r+1-k}=\sum_{k=0}^{r+1} \frac{B_{k}}{r+1}\binom{r+1}{k} n^{r+1-k}
$$

which agrees with (4).
2.2. First proof. As all the terms telescope nicely it is sufficient to prove the formula when $a=0$ and $b=1$. This has the advantage that we can use $B_{m}(x)$ rather than $B_{m}(\{x\})$. We proceed by induction on m. The case $m=1$ states that

$$
f(0)=\int_{0}^{1} f(x) \mathrm{d} x-\frac{1}{2}(f(1)-f(0))+\int_{0}^{1}\left(x-\frac{1}{2}\right) f^{\prime}(x) \mathrm{d} x
$$

This follows from a simple integration by parts:

$$
\int_{0}^{1}\left(x-\frac{1}{2}\right) f^{\prime}(x) \mathrm{d} x=f(1)-\int_{0}^{1} f(x) \mathrm{d} x-\frac{1}{2}(f(1)-f(0))
$$

For $m>1$ we can write the right-hand-side as

$$
\begin{aligned}
& \int_{0}^{1} f(x) \mathrm{d} x+\sum_{k=1}^{m-1} \frac{B_{k}}{k!}\left(f^{(k-1)}(1)-f^{(k-1)}(0)\right) \\
& \quad+\frac{B_{m}}{m!}\left(f^{(m-1)}(1)-f^{m-1}(0)\right)+(-1)^{m+1} \int_{0}^{1} \frac{B_{m}(x)}{m!} f^{(m)}(x) \mathrm{d} x
\end{aligned}
$$

Applying the inductive hypothesis gives:

$$
\begin{aligned}
f(0)+ & (-1)^{m+1} \int_{0}^{1} \frac{B_{m-1}(x)}{(m-1)!} f^{(m-1)}(x) \\
& +\frac{B_{m}}{m!}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right)+(-1)^{m+1} \int_{0}^{1} \frac{B_{m}(x)}{m!} f^{(m)}(x) \mathrm{d} x
\end{aligned}
$$

Integrating the final term by parts using the results in $\S 1.8$ gives

$$
\begin{aligned}
& f(0)+(-1)^{m+1} \int_{0}^{1} \frac{B_{m-1}(x)}{(m-1)!} f^{(m-1)}(x)+\frac{B_{m}}{m!}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right) \\
& +\left.(-1)^{m+1} \frac{B_{m}(x)}{m!} f^{(m-1)}(x)\right|_{0} ^{1}+(-1)^{m} \int_{0}^{1} \frac{B_{m-1}(x)}{(m-1)!} f^{(m-1)}(x) \mathrm{d} x
\end{aligned}
$$

The outermost two terms obviously cancel. And so do the inner two, as if m is odd, then as $m>1, B_{m}=0$.
2.3. An alternative proof. There used to be a section here claiming an alternating proof by taking a sequence of polynomials converging uniformly to f on the interval $[a, b]$ and using uniform convergence to interchange the integral with the limit of the polynomials: this reduces to the case where $f(x)=x^{r}$. However it is no longer possible to reduce to the case where $a=0$ and $b=1$, and the main inductive step in the proof is not substantially simplified from the previous section.

It is however worth noting that if $m>r$ and we take $a=0$ and $b=N$ then the result comes out very easily. In this case Euler's formula says that

$$
\sum_{0 \leq k<N} k^{r}=\frac{N^{r+1}}{r+1}+\sum_{k=1}^{r} \frac{B_{k}}{k!} r \frac{k-1}{} N^{r-(k-1)}
$$

Using the identity $\frac{1}{k}\binom{r}{k-1}=\frac{1}{r+1}\binom{r+1}{k}$, the right-hand side can be rewritten as

$$
\frac{N^{r+1}}{r+1}+\sum_{k=1}^{r} \frac{B_{k}}{r+1}\binom{r+1}{k} N^{r+1-k}
$$

which is equal to $\sum_{0 \leq k<N} k^{r}$ by (4).
2.4. Estimates for error term. We can state Euler's summation formula in the following form
(6) $\sum_{a \leq k<b} f(k)=\int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{2}(f(b)-f(a))+\left.\sum_{k=1}^{m} \frac{B_{2 k}}{(2 k)!} f^{(2 k-1)}(x)\right|_{a} ^{b}+R_{2 m}$.

It can be shown that $\left|B_{2 m}(\{x\})\right| \leq B_{2 m}$ so a rough estimate for the error term is given by $\S 1.5$:

$$
\left|R_{2 m}\right| \leq \frac{B_{2 m}}{(2 m)!} \int_{a}^{b}\left|f^{(2 m)}(x)\right| \mathrm{d} x
$$

If $f^{(2 m)}$ is positive then this shows that the magnitude of the error term is at most the magnitude of the final term in the sum.

Note that very often the remainder term $R_{2 m}$ will not tend to 0 as the upper limit in the summation, b tends to ∞. However it will often have some non-zero limit. In this case we have

$$
R_{2 m}=R_{2 m}(\infty)-\int_{b}^{\infty} \frac{B_{2 m}(\{x\})}{(2 m)!} f^{(2 m)}(x) \mathrm{d} x
$$

where the right-hand-side tends to $R_{2 m}(\infty)$ as $b \rightarrow \infty$.
It is proved in [1] p475 that if $f^{(2 m+2)}$ and $f^{(2 m+4)}$ are positive for $x \in[a, b]$ then

$$
R_{2 m}=\left.\theta_{m} \frac{B_{2 m+2}}{(2 m+2)!} f^{2 m+1}(x)\right|_{a} ^{b}
$$

where $0 \leq \theta_{m} \leq 1$. So the remainder term lies somewhere between 0 and what would have been the next term in the sum.

3. Examples of Euler summation

3.1. First example. We shall attempt to use Euler summation to find

$$
S_{n}=\sum_{k=0}^{n-1} t^{k}
$$

where $0 \leq t<1$. Of course we already know the answer, $S_{n}=\left(1-t^{n}\right) /(1-t)$, and in fact Euler summation turns out to be a very ineffective way of finding it! Still there are some points of interest.

If $f(x)=t^{x}$ then $f^{(r)}(x)=(\log t)^{r} t^{x}$ so by equation (6) we have

$$
\begin{aligned}
\sum_{k=0}^{n-1} t^{k} & =\int_{0}^{n} t^{x} \mathrm{~d} x-\frac{1}{2}\left(t^{n}-1\right)+\left.\sum_{k=1}^{m} \frac{B_{2 k}}{(2 k)!}(\log t)^{2 k-1} t^{x}\right|_{0} ^{n}+R_{2 m} \\
& =\left(1-t^{n}\right)\left(\frac{1}{2}-\frac{1}{\log t}-\sum_{k=1}^{m} \frac{B_{2 k}}{(2 k)!}(\log t)^{2 k-1}\right)+R_{2 m}
\end{aligned}
$$

for $n \geq 1$ and $m \geq 1$. Now something a little suprising happens: if $t>\mathrm{e}^{-\pi}$ then $|\log t|<\pi$ and so we can use the exponential generating function for the Bernoulli numbers to obtain

$$
\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!}(\log t)^{2 k-1}=\frac{1}{t-1}-\frac{1}{\log t}+\frac{1}{2}
$$

and so

$$
\sum_{k=0}^{n-1} t^{k}=\frac{1-t^{n}}{1-t}+\left(1-t^{n}\right) \sum_{k=m+1}^{\infty} \frac{B_{2 k}}{(2 k)!}(\log t)^{2 k-1}+R_{2 m}
$$

As we know the answer, the last equation implies that $R_{2 m} \rightarrow 0$ as $m \rightarrow \infty$. Less artificially, we can attempt to prove this directly. We find

$$
\begin{aligned}
R_{2 m} & =(\log t)^{2 m-1} \int_{0}^{n} \frac{B_{2 m}(\{x\})}{(2 m)!} t^{x} \mathrm{~d} x \\
& \leq|(\log t)|^{2 m-2} \frac{B_{2 m}}{(2 m)!}\left(1-t^{n}\right) \\
& \leq|(\log t)|^{2 m-2} \frac{4}{(2 \pi)^{2 m}}\left(1-t^{n}\right)
\end{aligned}
$$

So the error term $R_{2 m} \rightarrow 0$ as $m \rightarrow \infty$, provided $\mathrm{e}^{-2 \pi}<t<\mathrm{e}^{2 \pi}$, which holds as we have already assumed that $\mathrm{e}^{-\pi}<t<1$.

The limiting behaviour with respect to n is also of interest. Knowing the limit of S_{n} allows us to see that

$$
\lim _{n \rightarrow \infty} R_{2 m}=-\sum_{k=m+1}^{\infty} \frac{B_{2 k}}{(2 k)!}(\log t)^{2 k-1}
$$

This is an example of the point made earlier, that while the remainder term will not usually tend to 0 as n tends to ∞, it may well have some limiting value.
3.2. Summing square roots. Let $f(x)=\sqrt{x}$. Note that $\int_{0}^{n} f(x) \mathrm{d} x=$ $\frac{2}{3}\left(n^{\frac{3}{2}}-1\right)$ and that

$$
f^{(r)}(x)=\binom{\frac{1}{2}}{r} r!x^{\frac{1}{2}-r}
$$

Euler's summation formula gives

$$
\sum_{k=1}^{n} \sqrt{k}=\frac{2}{3}\left(n^{\frac{3}{2}}-1\right)+\frac{1}{2} \sqrt{n}+\frac{1}{2}+\sum_{k=1}^{m} \frac{B_{2 k}}{2 k}\binom{\frac{1}{2}}{2 k-1}\left(n^{\frac{3}{2}-2 k}-1\right)+R_{2 m}
$$

Setting $m=1$ we get

$$
\sum_{k=1}^{n} \sqrt{k}=\frac{2}{3}\left(n^{\frac{3}{2}}-1\right)+\frac{1}{2} \sqrt{n}+\frac{1}{2}+\frac{1}{12}\left(n^{-\frac{1}{2}}-1\right)+R_{2}
$$

We can estimate R_{2} by using the bound $\left|B_{2}(\{x\})\right|<B_{2}=\frac{1}{6}$:

$$
\left|R_{2}\right| \leq \int_{1}^{n} \frac{1}{6.8} x^{-\frac{3}{2}}=\frac{1}{24}\left(1-n^{-\frac{1}{2}}\right)
$$

So we have

$$
\sum_{k=1}^{n} \sqrt{k}=\frac{2}{3}\left(n^{\frac{3}{2}}-1\right)+\frac{1}{2} \sqrt{n}+C+\mathrm{O}\left(n^{-\frac{1}{2}}\right)
$$

for some constant C. In general the remark on the previous page shows that the error is given by

$$
R_{2 m}=\theta_{m} \frac{B_{2 m+2}}{2 m+2}\binom{\frac{1}{2}}{2 m-1}\left(n^{\frac{1}{2}-2 m}-1\right)=C(m)+\mathrm{O}\left(n^{\frac{1}{2}-2 m}\right)
$$

where $\theta_{m} \in[0,1]$ and $C(m)$ does not depend on n, This gives
$\sum_{k=1}^{n} \sqrt{k}=\frac{2}{3}\left(n^{\frac{3}{2}}-1\right)+\frac{1}{2} \sqrt{n}+C(m)+\sum_{k=1}^{m} \frac{B_{2 k}}{2 k}\binom{\frac{1}{2}}{2 k-1} n^{\frac{3}{2}-2 k}+\mathrm{O}\left(n^{\frac{1}{2}-2 m}\right)$.
There is a small simplification: $C(m)$ can be determined by taking a limit with respect to n, so

$$
C=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \sqrt{k}-\frac{2}{3}\left(n^{\frac{3}{2}}-1\right)-\frac{1}{2} \sqrt{n}\right)
$$

and so does not depend on m. (Exercise 9.27 in [1] reveals that $C=\zeta\left(-\frac{1}{2}\right)$; in fact the definition of $\zeta(\alpha)$ for $\alpha>-1$.)
3.3. An estimate for $P(x)$.

$$
\begin{aligned}
\log P\left(\mathrm{e}^{-t}\right) & =\sum_{k=1}^{\infty}-\log \left(1-\mathrm{e}^{-k t}\right) \\
& =\sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \frac{\mathrm{e}^{-t m k}}{m} \\
& =\sum_{m=1}^{\infty} \frac{1}{e^{m t}-1}
\end{aligned}
$$

This suggests 2 ways we might apply Euler summation. (But they turn out to be equivalent.)

3.3.1. Taken from Knuth fascicle Exercise 25. Let

$$
f(x)=-\log \left(1-\mathrm{e}^{-t x}\right)=\sum_{m=1}^{\infty} \frac{e^{-m t x}}{m}
$$

Then we have $\log P\left(\mathrm{e}^{-t}\right)=\sum_{k=1}^{\infty} f(k)$. The integral of f is given by the Li_{2} function:
$\int_{1}^{x} f(u) \mathrm{d} u=\left.\sum_{m=1}^{\infty} \frac{e^{-m t u}}{t m^{2}}\right|_{x} ^{1}=\sum_{m=1}^{\infty} \frac{\mathrm{e}^{-m t}}{t m^{2}}-\sum_{m=1}^{\infty} \frac{\mathrm{e}^{-m t x}}{t m^{2}}=\frac{\operatorname{Li}_{2}\left(\mathrm{e}^{-t}\right)}{t}-\frac{\operatorname{Li}_{2}\left(\mathrm{e}^{-t x}\right)}{t}$.
The derivatives of f are connected with the Eulerian numbers: let $\left\langle\begin{array}{l}n \\ m\end{array}\right\rangle$ denote the number of permutations in S_{n} with exactly m ascents (or descents). Then we claim

Lemma 3.1. For $n \geq 1$ we have

$$
f^{(n)}(x)=\frac{\mathrm{e}^{-t x}(-t)^{n}}{\left(1-\mathrm{e}^{-t x}\right)^{n}} \sum_{k}\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle \mathrm{e}^{-k t x}
$$

Proof. By induction on m. If $m=1$ then the formula is readily verified. Suppose true for m. Then

$$
\begin{aligned}
f^{(m+1)}(x)= & \frac{-m \mathrm{e}^{-2 t x}(-t)^{m} t}{\left(1-\mathrm{e}^{-t x}\right)^{m+1}} \sum_{k}\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle \mathrm{e}^{-k t x} \\
& +\frac{\mathrm{e}^{-t x}(-t)^{n}(-t)}{\left(1-\mathrm{e}^{-t x}\right)^{n}} \sum_{k} k\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle \mathrm{e}^{-k t x} \\
= & \frac{\mathrm{e}^{-t x}(-t)^{n+1}}{\left(1-\mathrm{e}^{-t x}\right)^{n+1}}\left(\sum_{k} n\left\langle\begin{array}{c}
n-1 \\
k-1
\end{array}\right\rangle+\left(1-\mathrm{e}^{-t x}\right) \sum_{k} k\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle \mathrm{e}^{-k t x}\right) \\
= & \frac{\mathrm{e}^{-t x}(-t)^{n+1}}{\left(1-\mathrm{e}^{-t x}\right)^{n+1}}\left((n-k)\left\langle\begin{array}{c}
n-1 \\
k-1
\end{array}\right\rangle+k\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle\right) \mathrm{e}^{-k t x}
\end{aligned}
$$

To finish we apply the identity ${ }^{1}(n-m)\left\langle\begin{array}{c}n-1 \\ m-1\end{array}\right\rangle+(m+1)\left\langle\begin{array}{c}n-1 \\ m\end{array}\right\rangle=\left\langle\begin{array}{c}n \\ m\end{array}\right\rangle$.
We are now ready to apply Euler summation. Taking $m=1$ in (6) we get

$$
\begin{aligned}
& \sum_{k=1}^{n} f(k)=\frac{\operatorname{Li}_{2}\left(\mathrm{e}^{-t}\right)}{t}-\frac{\operatorname{Li}_{2}\left(\mathrm{e}^{-n t}\right)}{t}-\frac{1}{2}\left(\log \left(1-\mathrm{e}^{-n t}\right)+\log \left(1-\mathrm{e}^{-t}\right)\right) \\
&+\left.\frac{1}{12} \frac{\mathrm{e}^{-t x}(-t)}{1-\mathrm{e}^{-t x}}\right|_{1} ^{n}+R_{2}
\end{aligned}
$$

[^0]where as the even derivatives are positive
$$
R_{2} \leq\left.\frac{1}{12} \frac{\mathrm{e}^{-t x}(-t)}{1-\mathrm{e}^{-t x}}\right|_{1} ^{n} \leq \frac{t \mathrm{e}^{-t}}{1-\mathrm{e}^{-t}}=\frac{t}{\mathrm{e}^{t}-1} \leq 1 .
$$

So letting $n \rightarrow \infty$ we get

$$
\log P\left(\mathrm{e}^{-t}\right)=\frac{\mathrm{Li}_{2}\left(\mathrm{e}^{-t}\right)}{t}-\frac{1}{2} \log \left(1-\mathrm{e}^{-t}\right)+\mathrm{O}(1)
$$

where $O(1)$ stands for a quantity always lying in $[0,1]$. If we use the identity suggested by Knuth, namely

$$
\mathrm{Li}_{2}(x)+\mathrm{Li}_{2}(1-x)=\zeta(2)-\log x \log (1-x)
$$

or, equivalently,

$$
\frac{\operatorname{Li}_{2}\left(\mathrm{e}^{-t}\right)}{t}=-\frac{\operatorname{Li}_{2}\left(1-\mathrm{e}^{-t}\right)}{t}+\frac{\zeta(2)}{t}+t \log \left(1-\mathrm{e}^{-t}\right.
$$

we get

$$
\begin{aligned}
\log P\left(\mathrm{e}^{-t}\right) & =\frac{\zeta(2)}{t}-\frac{\operatorname{Li}_{2}\left(1-\mathrm{e}^{-t}\right)}{t}-\frac{3}{2} \log \left(1-\mathrm{e}^{-t}\right)+\mathrm{O}(1) \\
& =\frac{\zeta(2)}{t}-\frac{1}{2} \log \left(1-\mathrm{e}^{-t}\right)+O(1) \quad ; \text { where } O(1) \in[-1,1] \\
& =\frac{\zeta(2)}{t}-\frac{\log t}{2}+\mathrm{O}(1) \quad ; \text { where } O(1) \in[-1-\log 2,1-\log 2]
\end{aligned}
$$

As $\operatorname{Li}_{2}(y) \leq-\log (1-y)$ gives $\operatorname{Li}_{2}\left(1-\mathrm{e}^{-t}\right) \leq t$ and $\log \left(1-\mathrm{e}^{-t}\right)=\log t+$ $\log (1-t / 2+\ldots)=\log t+\mathrm{O}(1)$. In particular by being a little more careful with the $\mathrm{O}(1)$ errors we can get a lower bound for $\log P\left(\mathrm{e}^{-t}\right)$:

$$
\frac{\pi^{2}}{6 t}+\frac{\log t}{2}-1-\log 2 \leq \log P\left(\mathrm{e}^{-t}\right) \leq \frac{\pi^{2}}{6 t}+\frac{\log t}{2}+1-\log 2
$$

In fact the 'right' constant is $-\log (\sqrt{2 \pi}) \approx-0.9189$; this follows from

$$
\log P\left(e^{-t}\right)=\frac{\pi^{2}}{6 t}+\frac{\log t}{2}-\log \sqrt{2 \pi}+O(t)
$$

where the $O(t)$ term is (by the functional equation), $-\frac{t}{24}+\log P\left(e^{-4 \pi^{2} / t}\right)$. Note that

$$
-1.6931<-0.9189<.6931
$$

3.3.2. Alternative. We might also try to use Euler summation to sum

$$
\sum_{k=1}^{\infty}-\log \left(1-\mathrm{e}^{-k t}\right)
$$

Perhaps surprisingly this turns out to be equivalent to the previous approach, since

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \log \left(1-\mathrm{e}^{-x t}\right)=\frac{t \mathrm{e}^{-x t}}{1-\mathrm{e}^{-x t}}=\frac{t}{e^{x t}-1}
$$

which is essentially the function we summed earlier.

References

[1] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics. Addison Wesley, 1994.

[^0]: ${ }^{1}$ This identity can be proved as follows. Let $g \in S_{n}$ have exactly m ascents. If n appears in a position $\ldots b n a \ldots$ or $\ldots n$ then removing n gives a permutation in S_{n-1} with $m-1$ ascents. Conversely, given such a permutation, there are $n-m-1$ descents, and putting n between any 2 numbers involved in a descent, or at the end, gives a permutation in S_{n} with m ascents. Otherwise we have \ldots anb \ldots or $n \ldots$ in which case removing n does not change the number of ascents. Conversely given a permutation in S_{n-1} with m ascents, putting n between the two 2 numbers involved in an ascent, or at the start, does not change the number of ascents.

