ON BIDIGARE’S PROOF OF SOLOMON’S THEOREM

1. INTRODUCTION

This note gives a version of Bidigare’s proof [1] of an important theorem of Solomon [3, Theorem 1] that emphasises certain combinatorial and algebraic features of the proof. There are no essentially new ideas.

To state Solomon’s theorem we need the following definitions. A composition of \(n \in \mathbb{N}_0 \) is a sequence \((p_1, \ldots, p_k)\) of natural numbers such that \(p_1 + \cdots + p_k = n \). To indicate that \(p \) is a composition of \(n \) we write \(p \models n \).

Let \(S_n \) denote the symmetric group of degree \(n \) and let \(\mathbb{Z}S_n \) be the integral group ring of \(S_n \). Given \(p \models n \), let \(\Xi_p \in \mathbb{Z}S_n \) be the sum of all minimal length coset representatives for the right cosets \(S_p \backslash S_n \). Equivalently, if \(p = (p_1, \ldots, p_k) \), then \(\Xi_p \) is the sum of all \(g \in S_n \) such that \(\text{Des}(g) \subseteq \{p_1, p_1 + p_2, \ldots, p_1 + p_2 + \cdots + p_{k-1}\} \), where \(\text{Des}(g) = \{x \in \{1, \ldots, n-1\} : xg < (x+1)g\} \) is the descent set of \(g \).

Given compositions \(p, q \) and \(r \) of \(n \in \mathbb{N}_0 \) we define \(m_{pq}^r \) to be the number of \(k \times \ell \) matrices \(A \) with entries in \(\mathbb{N}_0 \) such that

(i) the \(i \)th row sum is \(p_i \) for each \(i \),
(ii) the \(j \)th column sum is \(q_j \) for each \(j \),
(iii) the entries, read in the order \(A_{11}, \ldots, A_{1\ell}, \ldots, A_{k1}, \ldots, A_{k\ell} \) with any zero entries ignored, form the composition \(r \).

Theorem 1 (Solomon). If \(p, q \) and \(r \) are compositions of \(n \in \mathbb{N}_0 \) then

\[
\Xi^p \Xi^q = \sum_{r \models n} m_{pq}^r \Xi^r.
\]

2. THE PROOF

Define a set composition of \(n \) to be a tuple \((P_1, \ldots, P_k)\) such that \(P_1 \cup \cdots \cup P_k = \{1, \ldots, n\} \) and the sets \(P_1, \ldots, P_n \) are disjoint and non-empty. If \(|P_i| = p_i \) for each \(i \) then we say that \((P_1, \ldots, P_k)\) has type \((p_1, \ldots, p_k)\).

Let \(\Pi_n \) be the set of all set compositions of \(n \). There is an action of \(S_n \) on \(\Pi_n \) defined by

\[(P_1, \ldots, P_k)g = (P_1g, \ldots, P_kg) \text{ for } g \in S_n.\]

We define an associative product \(\wedge : \Pi_n \times \Pi_n \to \Pi_n \) by

\[(P_1, \ldots, P_k) \wedge (Q_1, \ldots, Q_\ell) = (P_1 \cap Q_1, \ldots, P_1 \cap Q_\ell, \ldots, P_k \cap Q_1, \ldots, P_k \cap Q_\ell)^*\]

Date: February 6, 2019.
where the \ast indicates that any empty sets in the tuple should be deleted. (Thus in forming $P \wedge Q$ we loop through the sets in Q faster than the sets in P, and reading $P \wedge Q$ in order, if $i < j$ then we see all the elements of P_i before any of the elements of P_j.) We record some further basic properties below.

(1) \wedge is idempotent, i.e. $P \wedge P = P$ for all $P \in \Pi_n$.

(2) $\{1, \ldots, n\}$ is the identity for \wedge.

(3) If P has type p and Q has type q then the type of $P \wedge Q$ is a common refinement of p and q.

(4) If P has type (1^n) then $P \wedge Q = P$, for any $Q \in \Pi_n$.

(5) The product \wedge is S_n-invariant. That is, if $g \in S_n$ and P, $Q \in \Pi_n$ then $(P \wedge Q)g = Pg \wedge Qg$.

Thanks to (1) and (2), Π_n is an idempotent semigroup. Note that in (3) ‘refinement’ allows for some rearrangement of parts in the case of Q: for example $(\{1,2\}, \{3\}) \wedge (\{3\}, \{1,2\}) = (\{1,2\}, \{3\})$ has type $(2,1)$, and is the wedge product of set compositions of types $(2,1)$ and $(1,2)$.

The \mathbb{Z}-algebra $\mathbb{Z} \Pi_n$ is an associative unital algebra whose product is S_n-invariant. Here are some of its basic properties.

(A) $\mathbb{Z} \Pi_n$ is a right $\mathbb{Z} S_n$-module by linear extension of the action of S_n on Π_n.

(B) Let $\Pi_{(1^n)}$ be the collection of set compositions of type (1^n). Given $P = (\{a_1\}, \ldots, \{a_n\}) \in \Pi_{(1^n)}$, let $\overline{P} \in S_n$ be the permutation sending i to a_i for each i. The map $P \mapsto \overline{P}$ is then a linear isomorphism $\mathbb{Z} \Pi_{(1^n)} \to \mathbb{Z} S_n$ of $\mathbb{Z} S_n$-modules.

(C) By (3) above, $\mathbb{Z} \Pi_{(1^n)}$ is an ideal of $\mathbb{Z} \Pi_n$. Moreover, by (4), each $Q \in \Pi_n$ acts trivially on $\mathbb{Z} \Pi_{(1^n)}$ on the right.

(D) By (5), the fixed point space $(\mathbb{Z} \Pi_n)^{S_n}$ is a subalgebra of $\mathbb{Z} \Pi_n$. Given $q \models n$, let X^q be the sum of all set compositions of type q. Then $\{X^q : q \models n\}$ is a basis of $(\mathbb{Z} \Pi_n)^{S_n}$. If q has ℓ parts then X^q is the orbit sum under the action of S_n for the set composition

$$T^q = (\{1 \ldots q_1\}, \ldots, \{q_1 + \cdots + q_{\ell-1} + 1, \ldots, n\}).$$

Let $I = (\{1\}, \ldots, \{n\}) \in \Pi_n$. By (3) above $P \wedge I \in \Pi_{(1^n)}$ for each $P \in \Pi_n$.

The main step in Bidigare’s proof is the following theorem.

Theorem 2. The map $f \mapsto \overline{f}$ from $(\mathbb{Z} \Pi_n)^{S_n}$ to $\mathbb{Z} S_n$ defined by linear extension of $P \mapsto P \wedge I$ is a \mathbb{Z}-algebra homomorphism such that $X^p \wedge I = \Xi_p$.

The final claim concerning Ξ_p is clear. The first part is a corollary of the following stronger proposition.

Proposition 3. If $f \in (\mathbb{Z} \Pi_n)^{S_n}$ and $x \in \mathbb{Z} \Pi_n$ then $\overline{f} \wedge I \overline{x} \wedge I = \overline{f} \wedge x \wedge I$.

Proof. Let \(p \) be a composition with \(k \) parts. It suffices to prove the proposition when \(f = X^p \), the sum of all set compositions of type \(p \), and \(x = Q \), an arbitrary set composition.

Suppose that \(Q \) has type \(q \) where \(q \) has \(\ell \) parts. Let \(g = Q \wedge I \in S_n \); equivalently, \(g \) is the permutation of minimal length such that \(T^q g = Q \). We have

\[
X^p \wedge I Q \wedge I = \sum_P P \wedge I g
\]

where the sum is over all \(P \in \Pi_n \) of type \(p \). Fix such a \(P \). Set \(d_i = p_1 + \cdots + p_{i-1} \) for \(1 \leq i < k \). Claim: \((P \wedge I)g = (P \wedge T_q)g \wedge I\). Proof of claim: The singleton sets in positions \(d_i + 1, \ldots, d_i + p_i \) on both sides are obtained by taking the entries of \(P \) in increasing order, and applying \(g \) to each. Hence

\[
X^p \wedge I Q \wedge I = \sum_P P \wedge I g
= \sum_P (P \wedge T_q)g \wedge I
= (X^p \wedge T_q)g \wedge I
= (X^p \wedge Q) \wedge I
\]

as required. \(\square \)

It follows from Theorem 2 that the span of the \(\Xi^p \) for \(p \vdash n \) is a subalgebra of \(\mathbb{Z}S_n \) isomorphic to \((\mathbb{Z}\Pi_n)^{S_n}\). To complete the proof of Theorem 1 we compute the structure constants for this algebra. The following definition will be helpful: say that \(T \in \Pi_n \) is increasing if whenever \(1 \leq i < i' \leq \ell \) and \(x \in T_i, x' \in T_{i'} \), we have \(x < x' \). (Equivalently, \(T \) is increasing if and only if \(T = T^p \) for some \(p \vdash n \).)

Proposition 4. Let \(p, q \) and \(r \) be compositions of \(n \). Then the coefficient of \(X^r \) in \(X^p \wedge X^q \) is \(m_{pq}^r \).

Proof. It is equivalent to show that the coefficient of \(T^r \) in \(X^p \wedge X^q \) is \(m_{pq}^r \). If \(T^r = P \wedge Q \) where \(P \) and \(Q \) are set compositions then, since \(T^r \) is increasing, \(P \) must also be increasing. Therefore it suffices to show that if

\[
Q = \{ Q \in \Pi_n : T^p \wedge Q = T^r, \ Q \ has \ type \ q \}
\]

then \(|Q| = m_{pq}^r \). Suppose that \(p \) has \(k \) parts, \(q \) has \(\ell \) parts and that \(r \) has \(m \) parts. Given \(Q \in Q \) define \(M(Q) \) to be the \(k \times \ell \) matrix such that

\[
M(Q)_{ij} = |T^p_i \cap Q_j| \quad \text{for } 1 \leq i \leq k, 1 \leq j \leq \ell.
\]

The \(i \)th row sum of \(M(Q) \) is \(|T^p_i| = p_i \) and the \(j \)th column sum of \(M(Q) \) is \(|Q_j| = q_j \). Moreover, reading the non-zero entries of \(M(Q) \) in the order specified in (iii) gives the composition \(r \). Claim: Conversely, given a matrix \(M \) satisfying these conditions, there is a unique \(Q \) such that \(M(Q) = M \) and \(T^p \wedge Q = T^r \). Proof of claim: fix a row \(i \) and suppose inductively that
we have allocated the elements of T_i^p up to and including a to the sets Q_1, \ldots, Q_{j-1}. (For the base case $j = 1$, take $a = p_1 + \cdots + p_{i-1}$.) Then we must put $a + 1, \ldots, a + M_{ij}$ into the set Q_j to have $T^p \land Q$ increasing. || □

References

