ON BIDIGARE'S PROOF OF SOLOMON'S THEOREM

1. Introduction

This note gives a version of Bidigare's proof [1] of an important theorem of Solomon [3, Theorem 1] that emphasises certain combinatorial and algebraic features of the proof. There are no essentially new ideas.

To state Solomon's theorem we need the following definitions. A composition of $n \in \mathbf{N}_{0}$ is a sequence $\left(p_{1}, \ldots, p_{k}\right)$ of natural numbers such that $p_{1}+\cdots+p_{k}=n$. To indicate that p is a composition of n we write $p=n$. Let S_{n} denote the symmetric group of degree n and let $\mathbf{Z} S_{n}$ be the integral group ring of S_{n}. Given $p \vDash n$, let $\Xi^{p} \in \mathbf{Z} S_{n}$ be the sum of all minimal length coset representatives for the right cosets $S_{p} \backslash S_{n}$. Equivalently, if $p=\left(p_{1}, \ldots, p_{k}\right)$, then Ξ_{p} is the sum of all $g \in S_{n}$ such that

$$
\operatorname{Des}(g) \subseteq\left\{p_{1}, p_{1}+p_{2}, \ldots, p_{1}+p_{2}+\cdots+p_{k-1}\right\},
$$

where $\operatorname{Des}(g)=\{x \in\{1, \ldots, n-1\}: x g<(x+1) g\}$ is the descent set of g. Given compositions p, q and r of \mathbf{N} such that p has k parts and q has ℓ parts we define $m_{p q}^{r}$ to be the number of $k \times \ell$ matrices A with entries in \mathbf{N}_{0} such that
(i) the i th row sum is p_{i} for each i,
(ii) the j th column sum is q_{j} for each j,
(iii) the entries, read in the order $A_{11}, \ldots, A_{1 \ell}, \ldots, A_{k 1}, \ldots, A_{k \ell}$ with any zero entries ignored, form the composition r.
Theorem 1 (Solomon). If p, q and r are compositions of $n \in \mathbf{N}_{0}$ then

$$
\Xi^{p} \Xi^{q}=\sum_{r \equiv n} m_{p q}^{r} \Xi^{r} .
$$

2. The proof

Define a set composition of n to be a tuple $\left(P_{1}, \ldots, P_{k}\right)$ such that $P_{1} \cup$ $\cdots \cup P_{k}=\{1, \ldots, n\}$ and the sets P_{1}, \ldots, P_{n} are disjoint and non-empty. If $\left|P_{i}\right|=p_{i}$ for each i then we say that $\left(P_{1}, \ldots, P_{k}\right)$ has type $\left(p_{1}, \ldots, p_{k}\right)$. Let Π_{n} be the set of all set compositions of n. There is an action of S_{n} on Π_{n} defined by

$$
\left(P_{1}, \ldots, P_{k}\right) g=\left(P_{1} g \ldots, P_{k} g\right) \quad \text { for } g \in S_{n} .
$$

We define an associative product $\wedge: \Pi_{n} \times \Pi_{n} \rightarrow \Pi_{n}$ by

$$
\begin{aligned}
& \left(P_{1}, \ldots, P_{k}\right) \wedge\left(Q_{1}, \ldots, Q_{\ell}\right) \\
& \quad=\left(P_{1} \cap Q_{1}, \ldots, P_{1} \cap Q_{\ell}, \ldots, P_{k} \cap Q_{1}, \ldots, P_{k} \cap Q_{\ell}\right)^{\star}
\end{aligned}
$$

[^0]where the \star indicates that any empty sets in the tuple should be deleted. (Thus in forming $P \wedge Q$ we loop through the sets in Q faster than the sets in P, and reading $P \wedge Q$ in order, if $i<j$ then we see all the elements of P_{i} before any of the elements of P_{j}.) We record some further basic properties below.
(1) \wedge is idempotent, i.e. $P \wedge P=P$ for all $P \in \Pi_{n}$.
(2) $\{1, \ldots, n\}$ is the identity for \wedge.
(3) If P has type p and Q has type q then the type of $P \wedge Q$ is a common refinement of p and q.
(4) If P has type (1^{n}) then $P \wedge Q=P$, for any $Q \in \Pi_{n}$.
(5) The product \wedge is S_{n}-invariant. That is, if $g \in S_{n}$ and $P, Q \in \Pi_{n}$ then $(P \wedge Q) g=P g \wedge Q g$.

Thanks to (1) and (2), Π_{n} is an idempotent semigroup. Note that in (3) 'refinement' allows for some rearrangement of parts in the case of Q : for example $(\{1,2\},\{3\}) \wedge(\{3\},\{1,2\})=(\{1,2\},\{3\})$ has type $(2,1)$, and is the wedge product of set compositions of types $(2,1)$ and $(1,2)$.

The \mathbf{Z}-algebra $\mathbf{Z} \Pi_{n}$ is an associative unital algebra whose product is $S_{n^{-}}$ invariant. Here are some of its basic properties.
(A) $\mathbf{Z} \Pi_{n}$ is a right $\mathbf{Z} S_{n}$-module by linear extension of the action of S_{n} on Π_{n}.
(B) Let $\Pi_{\left(1^{n}\right)}$ be the collection of set compositions of type $\left(1^{n}\right)$. Given $P=\left(\left\{a_{1}\right\}, \ldots,\left\{a_{n}\right\}\right) \in \Pi_{\left(1^{n}\right)}$, let $\bar{P} \in S_{n}$ be the permutation sending i to a_{i} for each i. The map $P \mapsto \bar{P}$ is then a linear isomorphism $\mathbf{Z} \Pi_{\left(1^{n}\right)} \rightarrow \mathbf{Z} S_{n}$ of $\mathbf{Z} S_{n}$-modules.
(C) By (3) above, $\mathbf{Z} \Pi_{\left(1^{n}\right)}$ is an ideal of $\mathbf{Z} \Pi_{n}$. Moreover, by (4), each $Q \in \Pi_{n}$ acts trivially on $\mathbf{Z} \Pi_{\left(1^{n}\right)}$ on the right.
(D) By (5), the fixed point space $\left(\mathbf{Z} \Pi_{n}\right)^{S_{n}}$ is a subalgebra of $\mathbf{Z} \Pi_{n}$. Given $q \models n$, let X^{q} be the sum of all set compositions of type q. Then $\left\{X^{q}: q \vDash n\right\}$ is a basis of $\left(\mathbf{Z} \Pi_{n}\right)^{S_{n}}$. If q has ℓ parts then X^{q} is the orbit sum under the action of S_{n} for the set composition

$$
T^{q}=\left(\left\{1 \ldots q_{1}\right\}, \ldots,\left\{q_{1}+\cdots+q_{\ell-1}+1, \ldots, n\right\}\right)
$$

Let $\mathbf{I}=(\{1\}, \ldots,\{n\}) \in \Pi_{n}$. By (3) above $P \wedge \mathbf{I} \in \Pi_{\left(1^{n}\right)}$ for each $P \in \Pi_{n}$. The main step in Bidigare's proof is the following theorem.

Theorem 2. The map $f \mapsto \bar{f}$ from $\left(\mathbf{Z} \Pi_{n}\right)^{S_{n}}$ to $\mathbf{Z} S_{n}$ defined by linear extension of $P \mapsto \overline{P \wedge \mathbf{I}}$ is a Z-algebra homomorphism such that $\overline{X^{p} \wedge \mathbf{I}}=\Xi_{p}$.

The final claim concerning Ξ_{p} is clear. The first part is a corollary of the following stronger proposition.

Proposition 3. If $f \in\left(\mathbf{Z} \Pi_{n}\right)^{S_{n}}$ and $x \in \mathbf{Z} \Pi_{n}$ then $\overline{f \wedge \mathbf{I}} \overline{x \wedge \mathbf{I}}=\overline{f \wedge x \wedge \mathbf{I}}$.

Proof. Let p be a composition with k parts. It suffices to prove the proposition when $f=X^{p}$, the sum of all set compositions of type p, and $x=Q$, an arbitrary set composition.

Suppose that Q has type q where q has ℓ parts. Let $g=\overline{Q \wedge \mathbf{I}} \in S_{n}$; equivalently, g is the permutation of minimal length such that $T^{q} g=Q$. We have

$$
\overline{X^{p} \wedge \mathbf{I}} \overline{Q \wedge \mathbf{I}}=\sum_{P} \overline{P \wedge \mathbf{I}} g
$$

where the sum is over all $P \in \Pi_{n}$ of type p. Fix such a P. Set $d_{i}=$ $p_{1}+\cdots+p_{i-1}$ for $1 \leq i<k$. Claim: $(P \wedge \mathbf{I}) g=\left(P \wedge T_{q}\right) g \wedge \mathbf{I}$. Proof of claim: Since $T_{q} \wedge \mathbf{I}$ has increasing entries, the singleton sets in positions $d_{i}+1, \ldots, d_{i}+p_{i}$ on both sides are obtained by taking the entries of P_{i} in increasing order, and applying g to each. || Hence

$$
\begin{aligned}
\overline{X^{p} \wedge \mathbf{I}} \overline{Q \wedge \mathbf{I}} & =\sum_{P} \overline{P \wedge \mathbf{I}} g \\
& =\overline{\sum_{P}\left(P \wedge T_{q}\right) g \wedge \mathbf{I}} \\
& =\overline{\left(X^{p} \wedge T_{q}\right) g \wedge \mathbf{I}} \\
& =\overline{\left(X^{p} \wedge Q\right) \wedge \mathbf{I}}
\end{aligned}
$$

as required.
It follows from Theorem 2 that the span of the Ξ^{p} for $p=n$ is a subalgebra of $\mathbf{Z} S_{n}$ isomorphic to $\left(\mathbf{Z} \Pi_{n}\right)^{S_{n}}$. To complete the proof of Theorem 1 we compute the structure constants for this algebra. The following definition will be helpful: say that $T \in \Pi_{n}$ is increasing if whenever $1 \leq i<i^{\prime} \leq \ell$ and $x \in T_{i}, x^{\prime} \in T_{i^{\prime}}$, we have $x<x^{\prime}$. (Equivalently, T is increasing if and only if $T=T^{p}$ for some $p=n$.)

Proposition 4. Let p, q and r be compositions of n. Then the coefficient of X^{r} in $X^{p} \wedge X^{q}$ is $m_{p q}^{r}$.

Proof. It is equivalent to show that the coefficient of T^{r} in $X^{p} \wedge X^{q}$ is $m_{p q}^{r}$. If $T^{r}=P \wedge Q$ where P and Q are set compositions then, since T^{r} is increasing, P must also be increasing. Therefore it suffices to show that if

$$
\mathcal{Q}=\left\{Q \in \Pi_{n}: T^{p} \wedge Q=T^{r}, Q \text { has type } q\right\}
$$

then $|\mathcal{Q}|=m_{p q}^{r}$. Suppose that p has k parts, q has ℓ parts and that r has m parts. Given $Q \in \mathcal{Q}$ define $M(Q)$ to be the $k \times \ell$ matrix such that

$$
M(Q)_{i j}=\left|T_{i}^{p} \cap Q_{j}\right| \quad \text { for } 1 \leq i \leq k, 1 \leq j \leq \ell
$$

The i th row sum of $M(Q)$ is $\left|T_{i}^{p}\right|=p_{i}$ and the j th column sum of $M(Q)$ is $\left|Q_{j}\right|=q_{j}$. Moreover, reading the non-zero entries of $M(Q)$ in the order specified in (iii) gives the composition r. Claim: Conversely, given a ma$\operatorname{trix} M$ satisfying these conditions, there is a unique Q such that $M(Q)=M$
and $T^{p} \wedge Q=T^{r}$. Proof of claim: fix a row i and suppose inductively that we have allocated the elements of T_{i}^{p} up to and including a to the sets Q_{1}, \ldots, Q_{j-1}. (For the base case $j=1$, take $a=p_{1}+\cdots+p_{i-1}$.) Then we must put $a+1, \ldots, a+M_{i j}$ into the set Q_{j} to have $T^{p} \wedge Q$ increasing. \|

References

[1] Bidigare, T. P. Hyperplane Arrangement Face Algebras and their Associated Markov Chains. PhD thesis, University of Michigan, 1997.
[2] Schocker, M. The descent algebra of the symmetric group. In Representations of finite dimensional algebras and related topics in Lie theory and geometry, vol. 40 of Fields Inst. Commun. Amer. Math. Soc., Providence, RI, 2004, pp. 145-161.
[3] Solomon, L. A Mackey formula in the group ring of a Coxeter group. J. Algebra 41, 2 (1976), 255-264.

[^0]: Date: September 6, 2021.

