
MT362/462/5462 Cipher Systems
Mark Wildon, mark.wildon@rhul.ac.uk

Administration:
I Sign-in sheet. Please return to the lecturer after each

lecture.
I Make sure you get the Part A Notes and preliminary problem

sheet. Please pass everything left and right, and then to
the back, even if you the person you are passing to
already has a copy.

I Please form a four-person cell following instructions on form.
One form per cell please.

I All handouts will be put on Moodle. The first marked problem
sheet will be on Moodle by Wednesday.

I Lectures: Monday 4pm (MFLEC), Friday 11am (MC219),
Friday 4pm (MC219).

I Extra lecture for MT5462: Thursday 1pm (MC336).
I Drop-in times in McCrea 240: Tuesday 3.30pm,

Wednesday 10am, Thursday noon



Part A: Introduction: alphabetic ciphers and the language of
cryptography

§1 Introduction: Security and Kerckhoff’s Principle

I Confidentiality: Eve cannot read the message.
I Data integrity: any change made by Malcolm to the

ciphertext is detectable
I Authentication: Alice and/or Bob are who they claim to be
I Non-repudiation: Alice cannot plausibly deny she sent the

message

Quiz. True or false: When you log in to gmail, Google is sent your
password (through an encrypted channel) and their computer
checks it matches their record.

(A) False (B) True

In fact they are sent a ‘hash’ of your password: see Part D of the
course. For instance, the SHA-256 hash of my password is

10240091319433958220940827083398838418293955470930775768

5269621393941480523360.
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Cryptography Matters!

What do the following have in common?

I Mary, Queen of Scots (1542 – 1587)

I The Equifax share price in September 2017

I Satoshi Nakamoto

I Edward Snowden?



Administration

I Sign-in sheet. Please return to the lecturer after each
lecture.

I Please take the first marked problem sheet and the next
installment of the Part A notes. Pass everything left and
right, and then to the back, even if the person you are
passing to has a copy.

I Everyone ticked on the sign-in sheet (almost everyone) has
been sent an email from me with
I the identities of the four people in your cell
I two cryptographic keys.

Use the substitution cipher key to do Question 3 on Sheet 1.
I I used College email addresses only, as many external email

addresses were written illegibly.
I Please check your email! See me this afternoon if any

problems.

I Spare copies of Monday’s handouts at the front.



§2 Alphabetic Ciphers

Example 2.1

The Caesar cipher with key s ∈ {0, 1, . . . , 25} encrypts a word by
shifting each letter s positions forward in the alphabet, wrapping
round at the end. For example if the key is 3 then ’hello’ becomes
KHOOR and ’zany’ becomes CDQB. The table in the printed notes
shows all 26 possible shifts.

Exercise 2.2

(a) Mark (the mole) knows that the plaintext ’apple’ was
encrypted as CRRNG. What is the key?

(b) Eve has intercepted the ciphertext ACCB. What is the key and
what is the plaintext?

(c) Repeat (a) supposing the intercepted ciphertext is GVTJPO.
Suppose Eve later intercepts BUPN. What can she conclude?



Substitution Ciphers

Example 2.3

Let π : {a, . . . , z} → {A, . . . ,Z} be a bijection. The substitution
cipher eπ applies π to each letter of a plaintext in turn. For
example, if

π(a) = Z, π(b) = Y, . . . , π(z) = A

then eπ(hello there) = SVOOL GSVIV. (In practice spaces were
deleted before encryption, but we will keep them to simplify the
cryptanalysis.) The Caesar cipher with key s is the special case
where π shifts each letter forward s times.

Exercise 2.4
How many substitution ciphers are there?



Frequency Analysis

Example′ 2.5

(Here ′ means this is similar, but not the same, as the example in
the printed notes.) Eve intercepts the ciphertext

IFJAJ DAJ BNXKBWM UADLIKLDE AJDMBTM PBA MIWOCKTQ

LACUIBQADUFC IFJ MWNRJLI KM DEMB PWEE BP HDIFJHDIKLDE

KTIJAJMI IFJAJ DAJ LBTTJLIKBTM IB EKTJDA DEQJNAD TWHNJA

IFJBAC MIDIKMIKLM DTO UABNDNKEKIC IFJBAC DM GJEE DM

IFJBAJIKLDE LBHUWIJA MLKJTLJ

We will decrypt this using the Mathematica notebook
AlphabeticCiphers on Moodle to do the donkey work.
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Frequency distribution of English, probability as percentages.

e t a o i n s h r d

12.7 9.1 8.2 7.5 7.0 6.7 6.3 6.1 6.0 4.3
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Frequencies of ciphertext letters as percentages.

J I D A M B K L E T F W N

11.2 10.7 9.2 8.8 7.3 7.3 6.8 5.8 5.3 4.9 3.9 3.0 3.0

C U H Q P O X R G Z Y V S

3.0 2.4 2.0 1.5 1.5 1.0 0.5 0.5 0.5 0 0 0 0



Frequency Analysis

Example′ 2.5

(Here ′ means this is similar, but not the same, as the example in
the printed notes.) Eve intercepts the ciphertext
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We will decrypt this using the Mathematica notebook
AlphabeticCiphers on Moodle to do the donkey work.

Exercise′ 2.6
(a) After deciphering, we know that π(a) = D, π(b) = N, and so

on. Do we know the key π?

(b) Will we have any difficulty in decrypting further messages
encrypted using the same substitution cipher?

(c) Suppose Mark can encrypt a plaintext of his choice using eπ.
What is the simplest way for him to learn π?



In Praise of Programming

You can get Mathematica for free from the College: see the top
hit for Google on ‘RHUL Mathematica’.

This is a chance to develop some useful transferable programming
skills!

“What I mean is that if you really want to understand something,

the best way is to try and explain it to someone else. That forces

you to sort it out in your own mind. And the more slow and

dim-witted your pupil, the more you have to break things down

into more and more simple ideas. And that’s really the essence

of programming. By the time you’ve sorted out a complicated

idea into little steps that even a stupid machine can deal with,

you’ve certainly learned something about it yourself.”
Douglas Adams, Dirk Gently’s Holistic Detective Agency (1987)



Colossus at Bletchley Park and Cyber Attacks Now



The Guardian
4th October 2018



Hill Climbing

We saw this morning that the substitution cipher is weak because
it is possible to start with a guess for the key, say τ , that is
partially correct, and then improve it step-by-step by looking at the
decrypt e−1τ (y) implied by this key.

Example′ 2.7

To automate this process we need a way to measure the
‘Englishy-ness’ of a decrypt . . . [see printed notes for full details]

Exercise 2.8
The strategy in Example 2.7 is called ‘hill-climbing’. Why this
name?



Vigenère Cipher
Define a bijection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b ←→ 1, . . . , z ←→ 25.

Using this bijection we identify a word of length ` with an element
of {0, 1, . . . , 25}`. For example,

‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.
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After converting letters to numbers, the Caesar cipher with shift s
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Quiz. Reminder of notation for tuples: one of these statements is
false. Which one?

(A) {1, 2, 2} = {2, 1, 1} is a set of size 2,
(B) (0, 1, 0, 1, 0, 1) ∈ {0, 1}6 is the binary form of 21,
(C) (1, 2, 2) = (2, 1, 1),
(D) If u = (0, 1, 2, . . . , 25) then ui = i − 1 for i ∈ {1, . . . , 26}.

(A) (B) (C) (D)



Vigenère Cipher
Define a bijection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b ←→ 1, . . . , z ←→ 25.

Using this bijection we identify a word of length ` with an element
of {0, 1, . . . , 25}`. For example,

‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.

Quiz. Reminder of notation for tuples: one of these statements is
false. Which one?

(A) {1, 2, 2} = {2, 1, 1} is a set of size 2,
(B) (0, 1, 0, 1, 0, 1) ∈ {0, 1}6 is the binary form of 21,
(C) (1, 2, 2) = (2, 1, 1),
(D) If u = (0, 1, 2, . . . , 25) then ui = i − 1 for i ∈ {1, . . . , 26}.

(A) (B) (C) (D)



Vigenère Cipher
Define a bijection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b ←→ 1, . . . , z ←→ 25.

Using this bijection we identify a word of length ` with an element
of {0, 1, . . . , 25}`. For example,

‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.

Definition 2.9
The key k for the Vigenère cipher is a word. Suppose that k has
length `. Given a plaintext x with its spaces deleted, we define its
encryption by

ek(x) = (x1 + k1, x2 + k2, . . . , x` + k`, x`+1 + k1, . . .)

where xi + ki is computed by converting xi and ki to numbers and
adding them mod 26.



Vigenère Example

Example 2.10

Take k = emu, so k has length 3. Under the bijection between
letters and numbers, emu←→ (4, 12, 20). The table below shows
that

eemu(meetatmidnightnear) = QQYXMNQUXRUALFHIML.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

xi
m e e t a t m i d n i g h t n e a r
12 4 4 19 0 19 12 8 3 13 8 6 7 19 13 4 0 17

ki 4 12 20 4 12 20 4 12 20 4 12 20 4 12 20 4 12 20

xi + ki
16 16 24 23 12 13 16 20 23 17 20 0 11 5 7 8 12 11
Q Q Y X M N Q U X R U A L F H I M L



A Weakness in the Vigenère Cipher

Exercise 2.11

(i) If you had to guess, which of the following would you say was
more likely to be the ciphertext from a substitution cipher?

(A) KDDLVFUDLNELUHLYJAWLWGLWUJDULF

(B) KYBDRDDFCLVCVEDFLDUVYDKKLZCNPO

(C) KYEYAXBICDMBRFXDLCDPKFXLCILLMO

These come from taking every 9th, every 3rd and every
position in a ciphertext in Example 2.16 below; it is encrypted
using a Vigenère cipher with key length 9.

(ii) Why should we expect the split ciphertext from a Vigènere
cipher to have the most ‘spiky’ frequency distribution at the
length of the keyword?
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Index of Coincidence

Definition 2.12
The index of coincidence of a ciphertext y , denoted I (y), is the
probability that two entries of y , chosen at random from different
positions, are equal.

Exercise 2.13
Explain why I (QXNURA) = I (QNRFLX) = 0 and check that
I (QMUUFM) = 2

15 . What is I (AAABBC)?

(A) 1
5 (B) 4

15 (C) 3
10 (D) 11

30

There is a simple formula for I (y). (An examinable proof.)

Lemma 2.14
If the ciphertext y of length n has exactly fi letters corresponding
to i , for each i ∈ {0, 1, . . . , 25} then

I (y) =
25∑

i=0

fi (fi − 1)

n(n − 1)
.
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Attack on the Vigère Cipher

We now have a strategy for decrypting a Vigenère ciphertext.

Attack 2.15
Given a Vigenère ciphertext, split it into groups by taking every
`-th letter for all small `, as in Exercise 2.11. If the ciphertext is
long enough, the Index of Coincidence will be greatest at the key
length. Each split ciphertext is the output of a Caesar cipher;
assuming the most common letter is the encryption of ‘e’
determines the shift.

Example 2.16

The following ciphertext is the output of a Vigènre cipher:
KYEYAXBICDMBRFXDLCDPKFXLCILLMOVRMCE ...

(The full ciphertext is in the printed notes, and in the
Mathematica notebook.) We wil decrypt this in the lecture
using the Index of Coincidence to get started.



Problem Sheet 1, Question 3

I You should already have emailed a ciphertext encrypted using
your substitution cipher key to the three other people in your
cell.

I If you have no message to attack in (c), send the other pair
an (unencrypted!) reminder. If that fails, email me and I will
send you a message using their key.



§3 Cryptosystems, Attack Models and
Perfect Secrecy

The three different encryption functions for the Caesar cipher on
the ‘alphabet’ {0, 1, 2} are shown in the diagram below.

0

1

2

0

1

2

key 0
0

1

2

0

1

2

key 1
0

1

2

0

1

2

key 2



Definition of Cryptosystems

Definition 3.1
Let K,P, C be finite sets. A cryptosystem is a family of encryption
functions ek : P → C and decryption functions dk : C → P, one for
each k ∈ K, such that for each k ∈ K ,

dk
(
ek(x)

)
= x (?)

for all x ∈ P. We call K the keyspace, P the set of plaintexts, and
C the set of ciphertexts.



Exercise 3.2
Each diagram (i)–(vi) below each show two functions. Which
illustrate the encryption functions in a cryptosystem with two keys
(one black, one red)? In each case P is on the left-hand side and
C = {0, 1, 2} is on the right-hand side.
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Cryptosystems

Recall that a function f : P → C is injective if, for all x , x ′ ∈ P,
f (x) = f (x ′) implies x = x ′ and surjective if for all y ∈ C there
exists x ∈ P such that f (x) = y .

Exercise 3.3
(i) Show that ek is injective for each k ∈ K.

(ii) Show that if |P| = |C| then the encryption functions are
bijections and dk = e−1k for each k ∈ K.

Quiz: True or false? In any cryptosystem . . .

I the encryption functions determine the decryption functions.
(A) False (B) True

I the decryption functions are surjective
(A) False (B) True

I if k ∈ K and x , x ′ are distinct plaintexts then ek(x) 6= ek(x ′).
(A) False (B) True

I if x ∈ P and k , k ′ are distinct keys then ek(x) 6= ek ′(x).
(A) False (B) True



Cryptosystems

Recall that a function f : P → C is injective if, for all x , x ′ ∈ P,
f (x) = f (x ′) implies x = x ′ and surjective if for all y ∈ C there
exists x ∈ P such that f (x) = y .

Exercise 3.3
(i) Show that ek is injective for each k ∈ K.

(ii) Show that if |P| = |C| then the encryption functions are
bijections and dk = e−1k for each k ∈ K.

Quiz: True or false? In any cryptosystem . . .

I the encryption functions determine the decryption functions.
(A) False (B) True

I the decryption functions are surjective
(A) False (B) True

I if k ∈ K and x , x ′ are distinct plaintexts then ek(x) 6= ek(x ′).
(A) False (B) True

I if x ∈ P and k , k ′ are distinct keys then ek(x) 6= ek ′(x).
(A) False (B) True



Cryptosystems

Recall that a function f : P → C is injective if, for all x , x ′ ∈ P,
f (x) = f (x ′) implies x = x ′ and surjective if for all y ∈ C there
exists x ∈ P such that f (x) = y .

Exercise 3.3
(i) Show that ek is injective for each k ∈ K.

(ii) Show that if |P| = |C| then the encryption functions are
bijections and dk = e−1k for each k ∈ K.

Quiz: True or false? In any cryptosystem . . .

I the encryption functions determine the decryption functions.
(A) False (B) True

I the decryption functions are surjective
(A) False (B) True

I if k ∈ K and x , x ′ are distinct plaintexts then ek(x) 6= ek(x ′).
(A) False (B) True

I if x ∈ P and k , k ′ are distinct keys then ek(x) 6= ek ′(x).
(A) False (B) True
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Affine cipher

Example 3.4

Let p be prime. The affine cipher on Zp has P = C = Zp and

K = {(a, c) : a ∈ Zp, c ∈ Zp, a 6= 0}.

The encryption maps are defined by e(a,c)(x) = ax + c mod p. The
decryption maps are defined by d(a,c)(x) = b(x − c) mod p, where
b ∈ Zp is the unique element such that ab = 1 mod p. With these
definitions, the affine cipher is a cryptosystem.

Exercise 3.5
Consider the affine cipher on Z5.

(i) Suppose that Eve observes the ciphertext 2. Does she learn
anything about the plaintext?

(iii) Suppose that Mark knows that e(e,c)(1) = 2. What does he
learn about the key?



Attack Models

In each of the attack models below, we suppose that Alice is
sending ciphertexts to Bob encrypted using the key k ∈ K. The
aim of the adversary (Eve or Mark) is to determine all or part of k .

I Known ciphertext. Eve knows ek(x) ∈ C.

I Known plaintext and ciphertext. Mark knows x ∈ P and
ek(x) ∈ C.

I Chosen plaintext. Mark may choose any x ∈ P and is given
the encryption y = ek(x).

I Chosen ciphertext. Mark may choose any y ∈ C and is given
the decryption x = dk(y).

Each attack model has a generalization where the adversary
observes multiple plaintexts and/or ciphertexts.



Attack Models: Remarks

Remark 3.6

(1) In Example 2.5 we saw that (almost all) of the key in a
substitution cipher can be deduced from a sufficiently long
ciphertext. So the substitution cipher is broken by a known
ciphertext attack. Similarly we have broken the Vigenère
cipher using a known ciphertext attack (a longer cipher text
was needed).

(2) All the cryptosystems so far are broken by a chosen plaintext
attack. By the general version of Example 3.5, the affine
cipher requires two choices of plaintext, and by Question 4 on
Sheet 1, the substitution cipher and the Vigenère cipher just
one.

(3) Later in the course we will see modern block ciphers where it
is believed to be computationally hard to find the key even
allowing unlimited choices of plaintexts in a chosen plaintext
attack.



Probability model

Fix a cryptosystem in our usual notation. To define a probability
space on K × P × C we assume that the plaintext x ∈ P is chosen
independently of the key k ∈ K; the ciphertext is then ek(x). Thus
if px is the probability the message is x ∈ P and rk is the
probability the key is k then the probability measure is defined by

p(k,x ,y) =

{
rkpx if y = ek(x)

0 otherwise.
.

Let K ,X ,Y be the random variables standing for the plaintext,
ciphertext and key, respectively.

Exercise 3.7
Is the assumption that the key and plaintext are independent
reasonable?



Conditional Probability

We will need the formula for conditional probability:

P[A|B] =
P[A and B]

P[B]
.

Quiz. Is this formula intuitive to you?

(A) Yes (B) No

Quiz. Let Ω = {HH,HT ,TH,TT} be the probability space for
two flips of a fair coin. What is the probability of two heads, given
that at least one flip was a head?

(A) 2/3 (B) 1/3 (C) 1/2 (D) 1/6
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Probability Model: Example 3.8

(a) The cryptosystem below uses three keys from the affine cipher
on Z3. It is used again in Question 1 on Sheet 2.
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Let P[K = black] = rblack, P[K = red] = rred, P[K = blue] = rblue.

(1) What is P[Y = 1|X = 2]?
(A) rred (B) rblue (C) rred + rblue (D) rblack + rred

(2) Suppose that the three keys are used with equal probability 1
3 ,

and that p1 = 1− q, p2 = q so p0 = 0.

What is P[X = 2|Y = 1]?

(A)
2

3
(B)

2

3
q (C)

2q

1 + q
(D)

q

1 + q
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Administration

I Please take pages 17 to 20 of the printed notes.

I Please take Problem Sheet 2.

I Please hand in answers to Problem Sheet 1 at the end of this
lecture.



Probability Model: Example 3.8 [continued]
(b) In the Caesar cipher on {0, 1, 2}, shown before Definition 3.1,

there are three keys. Suppose keys are chosen with equal
probability 1

3 and, as usual the probability distribution on
plaintexts is p0, p1, p2 [omitted!].

Will check that P[X = x |Y = y ] = px for all x , y ∈ {0, 1, 2}.
Knowing the ciphertext tells Eve nothing new about the
plaintext. Follow up: break (b) by a chosen plaintext attack.

(c) In Exercise 3.2(i), P = C = {0, 1, 2}. Suppose the two keys
are used with equal probability 1

2 . We have P[Y = 1] = p0+p1
2

and
P[X = 0|Y = 1] =

p0
p0 + p1

,

P[X = 1|Y = 1] =
p1

p0 + p1

P[X = 2|Y = 1] = 0.

These probabilities are usually not the same as p0, p1, p2. So
(c) is broken by a known ciphertext attack.



Perfect secrecy

Definition 3.9

(i) Let px for x ∈ X be a probability distribution on the
plaintexts. A cryptosystem has perfect secrecy for px if
P[X = x |Y = y ] = px for all plaintexts x ∈ P and all
ciphertexts y ∈ C such that P[Y = y ] > 0.

(ii) A cryptosystem has perfect secrecy if it has perfect secrecy for
every probability distribution on the plaintexts.

By Example 3.8(a), the Caesar cipher on {0, 1, 2} has perfect
secrecy when keys are used with equal probability. If instead
P[K = 0] = P[K = 1] = 1

2 and P[K = 2] = 0 we get the
cryptosystem in Exercise 3.2(i), which we saw in Example 3.8(c)
does not have perfect secrecy.



Shannon’s Theorem
Quiz: let P(k , x , y) be a mathematical statement depending on
quantities k, x and y . Which are logically equivalent?

(Q) ∀y∃x∃k P(k , x , y)

(R) ∀y∀x∃k P(k , x , y)

(S) ∀x∀y∃k P(k , x , y)
(A) Q and R (B) R and S (C) Q and S (D) none

Theorem 3.10 (Shannon 1949)

Suppose a cryptosystem (in our usual notation) has perfect secrecy,
that P[K = k] > 0 for each k ∈ K [correction!], and that for all
y ∈ C there exists x ∈ P and k ∈ K such that ek(x) = y.

(a) For all x ∈ P and all y ∈ C there exists a key k such that
ek(x) = y.

(b) |K| ≥ |C|.
(c) Suppose |P| = |C| = |K|. For all x ∈ P and all y ∈ C there

exists a unique key k ∈ K such that ek(x) = y. Moreover
each key is used with equal probability.
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Theorem 3.10 (Shannon 1949)

Suppose a cryptosystem (in our usual notation) has perfect secrecy,
that P[K = k] > 0 for each k ∈ K [correction!], and that for all
y ∈ C there exists x ∈ P and k ∈ K such that ek(x) = y.

(a) For all x ∈ P and all y ∈ C there exists a key k such that
ek(x) = y.

(b) |K| ≥ |C|.
(c) Suppose |P| = |C| = |K|. For all x ∈ P and all y ∈ C there

exists a unique key k ∈ K such that ek(x) = y. Moreover
each key is used with equal probability.

For x ∈ P and y ∈ C we defined

Kxy = {k ∈ K : ek(x) = y}.
In Monday we proved (a), that each Kxy is non-empty and also
that P[k ∈ Kxy ] = P[Y = y ] > 0. Then (b) followed from

|K| =
∑

y∈C
|Kxy | ≥

∑

y∈C
1 = |C |.



Latin Squares
Consider a cryptosystem with perfect secrecy in which
P = |C| = |K| = {0, 1, . . . , n − 1}. By (c) in Theorem 3.10, for
each x , y ∈ {0, 1, . . . , n − 1}, there exists a unique
k ∈ {0, 1, . . . , n − 1} such that ek(x) = y . Therefore the
cryptosystem is determined by the n × n matrix M where

Mxy = k ⇐⇒ ek(x) = y .

3

2

1

0

3

2

1

0

key 0
3

2

1

0

3

2

1

0

key 1
3

2

1

0

3

2

1

0

key 2
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key 3
has matrix 



0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0



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§4 Entropy and Key Uncertainty

Suppose Bob picks x ∈ {0, 1, . . . , 15}. How many yes/no questions
does Alice need to guess x? Question 2 on the Preliminary
Problem Sheet gives one simple strategy: ask Bob to write x in
binary as x3x2x1x0; then Alice asks about each bit in turn: ‘Is
x0 = 1?’, ‘Is x1 = 1?’, ‘Is x2 = 1?’, ‘Is x3 = 1?’.

Exercise 4.1
Explain why no questioning strategy can guarantee to use fewer
than four questions.



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?

YES
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4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?

YES

Q2
Is x1 = 1?

YES

Q3
Is x2 = 1?

NO

Q4
Is x3 = 1?

NO



4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111

NO
0

YES
1

YES

YES

NO

NO



Guessing games

Example 4.2

We consider the simpler game where Bob’s number is in
{0, 1, 2, 3}. Let px be the probability that Bob chooses x . (Alice
knows Bob very well, so she knows these probabilities.) For each
case below, how many questions does Alice need on average, if she
chooses the best possible strategy?

(a) p0 = p1 = p2 = p3 = 1
4 .

(b) p0 = 1
2 , p1 = 1

4 , p2 = 1
4 , p3 = 0.

(c) p0 = 1
2 , p1 = 1

4 , p2 = 1
8 , p3 = 1

8 .

(d) p0 = 1, p1 = p2 = p3 = 0.
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Definition of Entropy

Definition 4.3
Let X be a finite set.

(i) The entropy of a probability distribution px on X is

H(p) = −
∑

x∈X
px log2 px .

(ii) The entropy of a random variable X taking values in X is the
entropy of the probability distribution px = P[X = x ].

Note that log2 means logarithm to the base 2, so
log2

1
2 = −1, log2 1 = 0, log2 2 = 1, log2 4 = 2, and generally,

log2 2n = n for each n ∈ Z. If px = 0 then −0 log2 0 should be
interpreted as limp→0−p log2 p = 0.



Claude Shannon (1916 — 2001)

Communication theory of secrecy systems, Bell System Technical
Journal (1949) 28, 656–715.



Entropy and Guessing Games

Exercise 4.4

(i) Show that H(p) =
∑

x∈X px log2
1
px

, where if px = 0 then

0 log2
1
0 is interpreted as 0.

(ii) Show that if p is the probability distribution in Exercise 4.2(b)
then

H(p) = 1
2 log2 2 + 1

4 log2 4 + 1
4 log2 4 + 0 = 3

2 .

Show that in all three cases, H(p) is the average number of
questions, using the strategy found in this exercise.



Example 4.5
(1) Suppose the random variable X takes two different values,

with probabilities p and 1− p. Then
H(X ) = p log2

1
p + (1− p) log2

1
1−p , as shown in the graph

below.

p

p log2
1
p + (1− p) log2

1
1−p

0

1
2

1
2

1

1

Thus the entropy of a single ‘yes/no’ random variable takes
values between 0 and 1, with a maximum at 1 when the
outcomes are equally probable.



Example 4.5 [continued]

(2) Suppose a cryptographic key K is equally likely to be any
element of the keyspace K. If |K| = n then
H(K ) = 1

n log2 n + · · ·+ 1
n log2 n = log2 n. This is often

useful.

(3) Consider the cryptosystem in Exercise 3.2(iii). Suppose that
P[X = 0] = p, and so P[X = 1] = 1− p, and that
P[K = red] = r , and so P[K = black] = 1− r . [Correction:
in lecture I wrote P[K = black] = r and P[K = red] = 1− r .
Please swap. The rest is then correct.] As in (1) we have

H(X ) = p log2
1

p
+ (1− p) log2

1

1− p
.

Exercise: show that P[Y = 1] = pr + (1− p)(1− r) and
hence find H(Y ) when r = 0, 14 ,

1
2 . Is it surprising that usually

H(Y ) > H(X )?



Entropy Quiz

(a) Bob chooses a random number K in {0, 1, 2, 3, 4}. If
P[K = k] = 1/5 for each k , what is H(K )?

(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

(b) Now Bob chooses X in the same set, but with probabilities
1
2 ,

1
8 ,

1
8 ,

1
8 ,

1
8 . What is H(X )?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

How many questions on average do you need to guess X?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

Would your answer change if Bob’s probabilities change to
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
2?

(A) No (B) Yes

No, since the entropy of a random variable depends only on
the probability it takes each value, not the values themselves.

A random variable has entropy h if and only if you can learn its
value by asking about h well-chosen yes/no questions.
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the probability it takes each value, not the values themselves.

A random variable has entropy h if and only if you can learn its
value by asking about h well-chosen yes/no questions.



Entropy Quiz

(a) Bob chooses a random number K in {0, 1, 2, 3, 4}. If
P[K = k] = 1/5 for each k , what is H(K )?
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1
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1
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1
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1
8 ,

1
8 ,

1
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(A) No (B) Yes

No, since the entropy of a random variable depends only on
the probability it takes each value, not the values themselves.

A random variable has entropy h if and only if you can learn its
value by asking about h well-chosen yes/no questions.



Definition 4.6
Let K and Y be random variables each taking values in finite sets
K and C, respectively. The joint entropy of K and Y is defined by

H(K ,Y ) = −
∑

k∈K

∑

y∈C
P[K = k and Y = y ] log2P[K = k and Y = y ].

The conditional entropy of K given that Y = y is defined by

H(K |Y = y) = −
∑

k∈K
P[K = k |Y = y ] log2P[X = k |Y = y ].

The conditional entropy of K given Y is defined by

H(K |Y ) =
∑

y∈C
P[Y = y ]H(K |Y = y).
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Example 4.7

Consider the Caesar cryptosystem in which all 26 keys are equally
likely. What is H(K )? What are H(K |Y = ACCB) and
H(K |Y = NCYP)?



Definition 4.6
Let K and Y be random variables each taking values in finite sets
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Lemma 4.8 (Chaining Rule)

Let K and Y be random variables. Then

H(K ,Y ) = H(K |Y ) + H(Y ).



Sigma Notation Quiz
(1) True or false?

∑

x∈{1,2,3}
x =

3∑

x=1

x .

(A) False (B) True

(2) Calculate the following sums expressed in Sigma notation:

∑

x∈{1,2,3}
x

(A) 5 (B) 6 (C) 7 (D) x + 6∑

x∈{1,2,3}

∑

y∈{1,2}
xy

(A) 12 (B) 14 (C) 18 (D) 24∑

x∈{1,2,3}

∑

y∈{1,2}
x

(A) 12 (B) 14 (C) 18 (D) 24
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Question 1 on Problem Sheet 2
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(a) Recall that e(a,c)(x) = ax + c . Which keys (a, c) are used in
this cryptosystem?

(b) Express P[Y = 1|X = 1], P[Y = 1], P[X = 1|Y = 1] in terms
of p.

(c) When does the cryptosystem have perfect secrecy with
respect to the probability distribution p0 = 0, p1 = p,
p2 = 1− p on plaintexts?

True or false: the cryptosystem has perfect secrecy with respect to
the probability distribution p0 = 1, p1 = p2 = 0?

(A) False (B) True
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Shannon’s Theorem on Key Uncertainty

Lemma 4.9
Let K and X be random variables. If K and X are independent
then H(K ,X ) = H(K ) + H(X ).

Lemma 4.10
Let Z be a random variable taking values in a set Z. Let
f : Z → W be a function. If f is injective then H

(
f (Z )

)
= H(Z ).

Theorem 4.11
Take a cryptosystem in our usual notation. Then

H(K |Y ) = H(K ) + H(X )− H(Y ).



Per-Character Information/Redundancy of English

Let A = {a, b, . . . , z} be the alphabet. We take P = C = An: you
can think of this as the set of all strings of length n. To indicate
that plaintexts and ciphertexts have length n, we write Xn and Yn

rather than X and Y .

We suppose only those strings that make good sense in English
have non-zero probability. So if n = 8 then
‘abcdefgh′, ‘goodwork′ ∈ P but P[X8 = ‘abcdefgh′] = 0 whereas
P[X8 = ‘goodwork′] > 0.

Shannon estimated that the per-character redundancy of English
plaintexts, with spaces, is about 3.200. (See the optional extras for
this part.) We shall suppose his estimate is also good for plaintexts
in An.



The One-Time Pad

Example 4.12 (One-time pad)

Fix n ∈ N. The one-time pad is a cryptosystem with plaintexts,
ciphertexts and keyspace An. The encryption functions are defined
by

ek(x) = (x1 + k1, x2 + k2, . . . , xn + kn)

where, as in the Vigenère cipher (see Example 2.10), xi + ki is
computed by converting xi and ki to numbers and adding modulo
26. For example, when n = 8, ezyxwvuts(goodwork) = fmlzrikc.

Suppose that all keys in An are equally likely. Then all ciphertexts
are equally likely, and by Example 4.5(2)

H(K ) = (log2 26)n

H(Yn) = (log2 26)n.

By Shannon’s formula,

H(K |Yn) = H(K ) + H(Xn)− H(Yn) = (log2 26− R)n = H(Xn).



One-Time-Pad Quiz

In the one-time pad of length n, H(K |(Xn,Yn)), H(Xn|Yn) are

(A) 0 (B) 1 (C) n(log2 26− R) (D) n log2 26

(A) 0 (B) 1 (C) n(log2 26− R) (D) n log2 26
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Re-use of One-Time-Pad Considered Harmful

Example 4.13

The spy-master Alice and her agent Bob have agreed to use the
one-time pad, with a randomly chosen key, for emergency
messages. Following Kerckhoff’s assumption, all this is known to
Eve. Eve does not know that their key is k = atcldqezyomuua.

I Alice sends ek(leaveinstantly) = lxcghyrrroznfy to Bob.

Bob calculates

lxcghyrrroznfy− atcldqezyomuua = leaveinstantly.

So far Eve has learned nothing, except that Alice has sent Bob the
ciphertext y = lxcghyrrroznfy. Eve cannot guess Alice’s
message x : for example

x = gototheairport ⇐⇒ k = y − gototheairport

= fjjsornrjxkzof

x = meetmeonbridge ⇐⇒ k = y − meetmeonbridge

= ztynvudeqxrkzu



Example 4.13 [continued]

Bob now makes a fatal mistake, and re-uses the key k in his reply.

I Bob sends ek(goingeasttrain) = ghkyjuerrhducn to Alice.

Eve now has ciphertexts

k + leaveinstantly = lxcghyrrroznfy

k + goingeasttrain = ghkyjuerrhducn.

She subtracts them to obtain ∆ = fqsiyenaahwtdl. Note that ∆
does not depend on k .

The string ∆ has the unusual property that there is an English
message x ′ (Bob’s reply) such that ∆ + x ′ is another English
message (Alice’s message). This property is so rare that Eve and
her computer can fairly easily deduce x ′ and ∆ + x ′, and, from
either of these, the key k .



Venona decrypts
The Venona project collected Soviet messages encrypted using
one-time pads. Between 1942 and 1945 many pads were produced
using duplicated keys. This re-use was detected by NSA
cryptographers.

Venona decrypts were important evidence (although not usable in
court) against Klaus Fuchs and Ethel and Julius Rosenberg.



Unicity Distance

In Example 4.12 [Correction: not 4.13] we proved that for the
one-time-pad H(K |Yn) = (log2 26− R)n and that
H(K ) = (log2 26)n. Therefore

H(K |Yn) = H(K )− Rn. (??)

In the non-examinable extras for this part we give Shannon’s
argument that (??) should be a good approximation for H(K |Yn)
in any cryptosystem where P = C = An and the messages are
English texts.

Exercise 4.14
What is the largest length of ciphertext n for which (??) could
hold with equality?



Expected behaviour of H(K |Yn)

The graph below shows the expected behaviour of H(K |Yn).

en
tr

op
y

H(K |Y )

H(K )− nR

n

Definition 4.15
The quantity H(K )/R is the unicity distance of the cryptosystem.



Unicity Distance for Substitution Cipher

Exercise 4.16
In the substitution cipher attack in Example 2.5 we saw that the
ciphertext y of length 280 determined the key π except for π(k),
π(q), π(z). By Exercise 2.6(a) π(k), π(q), π(z) are the three
letters, namely A, E, N, which never appear in the ciphertext.
Assuming equally likely keys, what is H(K |Y280 = y)? What is
H(K )?



Example 4.17

The first 28 characters of the ciphertext in Example 2.5 are KQX

WJZRUHXZKUY GTOXSKPIX GW. A computer search using a
dictionary of about 70000 words gives 6 possible decryptions of the
first 24 letters. These include ‘imo purgatorial hedonics’,
‘iwo purgatorial hedonism’ and ‘the fundamental

objectiv’. Taking 25 letters,

‘the fundamental objective’

is the only decryption consistent with the dictionary. This is in
excellent agreement with Shannon’s argument.

Since 10 characters do not appear in the first 28 letters of
ciphertext, the argument in Exercise 4.16 shows that
H(K |Y = y28) = log2 10! = 21.791. Nothing new about the key is
learned after letter 25, so this is the value of the final 4 points in
the graph of H(K |Yn) for 1 ≤ n ≤ 28.



H(K |Yn) for Ciphertext Y from Substitution Cipher
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Ciphertexts with High g(y) are More Likely: Intuition
Quiz:: Suppose I ask everyone here how many siblings you have
(not counting yourself). If the mean is s, then 1 + s is a good
estimate for the average number of children in a family.

(A) False (B) True

Sampling the school, the observed probabilities are 0 (no children),
1/4 (3 green only children), 1/2 (6 red children), 1/4 (3 black
children). So we observe the 1 + Bin(12 , 2) distribution.
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Part B: Stream ciphers

§5 Linear Feedback Shift Registers

Computers are deterministic: given the same inputs, you always
get the same answer. In this part we will see how to get sequences
that ‘look random’ out of deterministic algorithms.

Recall that F2 is the finite field of size 2 with elements the bits
(short for binary digits) 0, 1. Addition and multiplication are
defined modulo 2, so

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

By definition, Fn
2 is the set of n-tuples (x0, x1, . . . , xn−1) where

each xi is a bit 0 or 1. For brevity we may write this tuple as
x0x1 . . . xn−1. As seen here, we number positions from 0 up to
n − 1. It is usual to refer to elements of Fn

2 as binary words of
length n.



Definition of LFSRs

Definition 5.1

(i) Let ` ∈ N. A linear feedback shift register of width ` with taps
T ⊆ {0, 1, . . . , `− 1} is a function F : F`

2 → F`
2 of the form

F
(
(x0, x1, . . . , x`−2, x`−1)

)
= (x1, . . . , x`−1,

∑

t∈T
xt).

(ii) The function f : F`
2 → F2 defined by f (x) =

∑
t∈T xt is called

the feedback function.

(iii) The keystream for k ∈ F`
2 is the sequence

k0, k1, . . . , k`−1, k`, k`+1, . . . , where for each s ≥ ` we define

ks = f
(
(ks−`, ks−`+1, . . . , ks−1)

)
.



The Very Useful Property

Equivalently, ks =
∑

t∈T ks−`+t . Thus an LFSR shifts the bits in
positions 1 to `− 1 left, and puts a new bit, defined by its
feedback function, into the rightmost position `− 1. Taking all
these rightmost positions gives the keystream. This very useful
property is expressed by

F s
(
(k0, k1, . . . , k`−1)

)
= (ks , ks+1, . . . , ks+`−1). (?)

Here F s is the function defined by applying F a total of s times.



Example 5.2

The LFSR F of width 4 with taps {0, 1} is defined by

F
(
(x0, x1, x2, x3)

)
= (x1, x2, x3, x0 + x1).

(i) Solving the equation F
(
(x0, x1, x2, x3)

)
= (y0, y1, y2, y3) shows

that F has inverse

F−1
(
(y0, y1, y2, y3)

)
= (y0 + y3, y0, y1, y2).

(ii) The keystream for the key k = 0111 is

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

repeating from position 15 onwards: ks = ks+15 for all s ∈ N0.

(iii) Exercise: observe that k ′ = 0001 appears in positions 5, 6, 7,
8 of the keystream above. Find the keystream for k ′.

(iv) Starting with k = 0111, the sequence k, F (k), F 2(k),
F 3(k), . . ., F 14(k), F 15(k) is 0111, 1111, 1110, . . . , 1011,
0111, with F 15(k) = k.

(v) Exercise: Is every keystream generated by F a cyclic shift of
the keystream for 0111?



Circuit Diagrams

In the cryptographic literature it is conventional to represent
LFSRs by circuit diagrams, such as the one below showing F . By
convention

⊕
denotes addition modulo 2, implemented in

electronics by the XOR gate.

⊕

The word ‘register’ in LFSR refers to the boxed memory units
storing the bits.



Circuit Diagrams and the Very Useful Property

Very Useful Property

F s
(
(k0, k1 . . . , k`−1)

)
= (ks , ks+1, . . . , ks+`−1).

The keystream for the LFSR F in Example 5.2 with key 0111 is
below

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

True or false?

(1) F 2(0111) = 1110 (A) False (B) True

(2) F 2(0111) = 1110 (A) False (B) True

(3) F 4(0111) = 1000 (A) False (B) True

(4) F 2(1110) = 1000 (A) False (B) True
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Cryptosystem defined by an LFSR

Definition 5.3
Let F be an LFSR of width ` and let n ∈ N. The cryptosystem
defined by F has P = C = Fn

2 and keyspace K = F`
2. The

encryption functions are defined by

ek(x) = (k0, k1, . . . , kn−1) + (x0, x1, . . . , xn−1)

for each k ∈ K and x ∈ P.

Thus, like the one-time pad, the ciphertext is obtained by addition
to the plaintext. But unlike the one-time pad, the key is usually
much shorter than the plaintext.

Exercise 5.4
Define the decryption function dk : Fn

2 → Fn
2.

Problem Sheet 5 shows how to encrypt an English message of
length n by using the ASCII encoding to convert it to a word
in F8n

2 .
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to the plaintext. But unlike the one-time pad, the key is usually
much shorter than the plaintext.

Quiz. Alice sends Bob (a hardworking student) his exam mark
using the LFSR F in Example 5.2, by writing the mark in binary
using 8 bits and encrypting using their key k0k1k2k3.

Eve observes the ciphertext 00100110. She can guess that
k0k1k2k3 is

(A) 00?? (B) 01?? (C) 10?? (D) 11??
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Invertible LFSRs and periods: motivation

Exercise 5.5
Let H be the LFSR of width 4 with taps {1, 2}. Show that H is
not invertible.

This exercise and Example 5.2(i) suggest the general result: an
LFSR is invertible if and only if 0 is one of the taps. The steps in a
proof are indicated in Question 3 of Sheet 4.

Exercise 5.6
Let G be the LFSR of width 4 with taps {0, 2}.
(a) Find the keystreams for the keys 0001 and 0011.

(b) Which words of length 4 do not appear in either keystream?

(c) Find all keystreams generated by this LFSR.

True or false: the keystream for key 0110 has period 6?
(A) False (B) True

True or false: G 6 = id, the identity function.
(A) False (B) True
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Invertible LFSRs and periods

Lemma 5.7
Let F be an invertible LFSR of width `.

(i) Let k ∈ F`
2. There exists m ≤ 2` − 1 such that Fm(k) = k.

(ii) There exists m ∈ N such that Fm = id, the identity function.

By this lemma the following definitions are well-defined.

Definition 5.8

(i) We define the period of a keystream k0, k1, . . . generated by
an invertible LFSR to be the least m such that ks+m = ks for
all s ∈ N0.

(ii) We define the period of an invertible LFSR F to be the least
m such that Fm = id, the identity function.

For example, the LFSRs F and G in Example 5.2 and Exercise 5.6
have periods 15 and 6, respectively. By Lemma 5.7, the period of a
keystream of an LFSR of width ` is at most 2` − 1.
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(ii) We define the period of an invertible LFSR F to be the least
m such that Fm = id, the identity function.

Quiz. The minimum period an LFSR with keystreams of lengths 4
and 30 could have is

(A) 30 (B) 60 (C) 120 (D) 360
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Matrix representation of an LFSR
LFSRs are linear functions: if F is an LFSR of width ` then
F (x + x ′) = F (x) + F (x ′) for all x , x ′ ∈ F`

2. We can therefore
represent an LFSR by a matrix.

Proposition 5.9

Let F be an LFSR of width ` and taps T ⊆ {0, 1, . . . , `− 1}. The
matrix (acting on row vectors) representing F is




0 0 0 . . . 0 [0 ∈ T ]
1 0 0 . . . 0 [1 ∈ T ]
0 1 0 . . . 0 [2 ∈ T ]
...

...
. . .

...
...

0 0 0 . . . 0 [`− 2 ∈ T ]
0 0 0 . . . 1 [`− 1 ∈ T ]




where

[t ∈ T ] =

{
1 if t ∈ T

0 otherwise.

As a guide to the structure of this important matrix, some zero
entries are printed in grey: this is just notation, and not of any
mathematical significance.



Matrix representation of an LFSR
LFSRs are linear functions: if F is an LFSR of width ` then
F (x + x ′) = F (x) + F (x ′) for all x , x ′ ∈ F`

2. We can therefore
represent an LFSR by a matrix.

Quiz. The matrix representing the LFSR in Example 5.2 is

M =




0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0


 .

v(0) =




1
0
0
0


 , v(1) =




0
1
0
0


 , v(2) =




0
0
1
0


 , v(3) =




0
0
0
1




What is Mv(0)?

(A) v(1) (B) v(2) (C) v(3) (D) v(0) + v(1)

What is Mv(3)?

(A) v(1) (B) v(2) (C) v(3) (D) v(0) + v(1)
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Linear Algebra for LFSR

Lemma 5.10
Let F be an LFSR of width ` with taps T representing by the
matrix M. Define g(X ) = X ` +

∑
t∈T X t .

(a) If t < ` then Mtv(0) = v(t);

(b)
∑

t∈T Mtv(0) = M`v(0),

(c) g(M)v = 0 for all column vectors v,

(d) g(X ) is the minimal polynomial of M.

Motivated by the lemma we define the minimal polynomial of an
LFSR F of width ` with taps T to be gF (X ) = X ` +

∑
t∈T X t .

Corollary 5.11

The period of an invertible LFSR F is the least m such that gF (X )
divides Xm + 1.
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LFSRs of Maximum Possible Period

Lemma 5.12
If a polynomial g(X ) divides X d + 1 and X e + 1 then it divides
X hcf(d ,e) + 1.

Example 5.13

The number 213 − 1 = 8191 is a prime. The Mathematica
command Factor[X^8191 + 1, Modulus -> 2] returns

(1 + X )(1 + X + X 3 + X 4 + X 13)(1 + X + X 2 + X 5 + X 13) . . . .

Hence will show that the LFSR of width 13 with taps {0, 1, 3, 4}
has period 8191.



§6 Pseudo-random Number Generation

By Lemma 5.7(i) the maximum possible period of a keystream of
an LFSR of width ` is 2` − 1. Such an LFSR has period 2` − 1.
Given any non-zero k ∈ F`

2, the first 2` − 1 positions of the
keystream for k are the generating cycle for k. (The term
‘m-sequence’ is also used.)



Generating Cycles of Maximum Period LFSRs

Exercise 6.1
Let F be the LFSR of width 4 with taps {0, 1} and period
15 = 24 − 1 seen in Example 5.1. It has the maximum possible
period for its width. The keystream for k = (1, 1, 0, 0) is

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0 . . .).

Correspondingly, by the Very Useful Property,

F (1, 1, 0, 0) = (1, 0, 0, 0), . . .F 14(1, 1, 0, 0) = (1, 1, 1, 0)

and F 15(1, 1, 0, 0) = (1, 1, 0, 0). By taking the first 15 positions we
get the generating cycle

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14



Exercise 6.1 [continued]
By taking the first 15 positions we get the generating cycle

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14

(a) Find all the positions t such that

(kt , kt+1, kt+2, kt+3) = (0, 1, 1, 1).

(b) What is the only element of F4
2 not appearing in the keystream

for (1, 1, 0, 0)? [Printed notes have (0, 0, 0, 1): same answer.]

(c) Why is the generating cycle for (0, 1, 1, 1) a cyclic shift of the
generating cycle for (1, 1, 0, 0)?

(d) Find all the positions t such that (kt , kt+1, kt+2) = (0, 1, 1).
How many are there?

(e) Repeat (d) changing (0, 1, 1) to (0, 0, 1), (0, 0, 0), (0, 1),
(1, 1), (1, 0) and (0, 0). What is the pattern?



Quiz
The keystream for the LFSR with taps {0, 2, 3, 4} and width 5 for
the key 00001 has period 31. The first 31 positions are

(0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14k15k16k17k18k19k20k21k22k23k24k25k26k27k28k29k30k31

I How many times does 11110 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 1111 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times 111 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times 010 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times 100 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times 000 appear?
(A) 1 (B) 2 (C) 3 (D) 4
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Generalizing Example 6.1

Proposition 6.2

Let F be an invertible LFSR of width ` and period 2` − 1. Let
k ∈ F`

2 be non-zero and let (k0, k1, . . . , k2`−2) be its generating
cycle. We consider positions t within this cycle, so 0 ≤ t < 2`− 1.

(a) For each non-zero x ∈ F`
2 there exists a unique t such that

(kt , . . . , kt+`−1) = x .

(b) Given any non-zero y ∈ Fm
2 where m ≤ `, there are precisely

2`−m positions t such that (kt , . . . , tt+m−1) = y.

(c) There are precisely 2`−m − 1 positions t such that
(kt , . . . , kt+m−1) = (0, 0, . . . , 0) ∈ Fm

2 .



Testing for Randomness

Exercise 6.3
Write down a sequence of 33 bits, fairly quickly, but trying to make
it seem random. Count the number of zeros and the number of
ones. (Do not wrap around.) Now count the number of adjacent
pairs 00, 01, 10, 11. Does your sequence still seem random?

Exercise 6.4
Let M0 be the number of zeros and let M1 be the number of ones
in a binary sequence B0,B1, . . . ,Bn−1 of length n.

(a) Explain why if the bits are random we would expect that M0

and M1 both have the Bin(n, 12) distribution.

(b) Show that the χ2 statistic with (a) as null hypothesis is
(M0 −M1)2/n.

(c) A sequence with n = 100 has 60 zeros. Does this suggest it is
not truly random? [Hint: if Z ∼ N(0, 1) then
P[Z 2 ≥ 3.841] ≈ 0.05 and P[Z 2 ≥ 6.635] ≈ 0.01.]



Sample Bias
Quiz: Suppose I ask you how many siblings you have (not counting
yourself). If the mean is s, then 1 + s is a good estimate for the
average number of children in a family.

(A) False (B) True

Sampling the school, the observed probabilities are 0 (no children),
1/4 (3 green only children), 1/2 (6 red children), 1/4 (3 black
children). So we observe the 1 + Bin(2, 12) distribution.
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Correlation

Definition 6.5
Given (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) ∈ Fn

2 define

csame =
∣∣{i : xi = yi}

∣∣
cdiff =

∣∣{i : xi 6= yi}
∣∣.

The correlation between x and y is (csame − cdiff)/n.

Exercise 6.6
Find the correlation between a generating cycle for the LFSR of
width 3 with taps {0, 1} and each cyclic shift of itself. Would your
answer change if a different key was used in the generating cycle?

More generally we shall prove the following proposition.

Proposition 6.7

Let (k0, k1, . . . , k2`−2) be a generating cycle of a maximal period
LFSR of width `. The correlation between (k0, k1, . . . , k2`−2) and
any proper cyclic shift of (k0, k1, . . . , k2`−2) is −1/(2` − 1).

Again this shows that the keystream of a full-period LFSR has a
strong randomness property.



§7 Non-Linear Stream Ciphers

A general stream cipher takes a key k ∈ F`
2, for some fixed `, and

outputs a sequence u0, u1, u2, . . . of bits. For each n ∈ N there is a
corresponding cryptosystem where, as in Definition 5.3, the
encryption functions ek : Fn

2 → Fn
2 are defined by

ek(x) = (u0, u1, . . . , un−1) + (x0, x1, . . . , xn−1).

Exercise 7.1
In the LFSR cryptosystem of Definition 5.3, the sequence
u0, u1, u2, . . . is simply the keystream k0, k1, k2, . . .. Show how to
find the key (k0, . . . , k`−1) using a chosen plaintext attack.



Sum of LFSRs

Example 7.2
I Let F be the LFSR of width 4 with taps {0, 3} of period 15.

The first 20 bits in the keystreams for F with keys k = (1, 0, 0, 0)
and k? = (0, 0, 0, 1) sum to the sequence (u0, u1, . . . , u19) below:

ki 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1

k?i 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1
ui 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Unfortunately, (u0, u1, u2, . . .) is also generated by F : it is the
keystream for (1, 0, 0, 1). Exercise:

(a) Explain why this should have been expected. [Hint: the same
linearity was used to prove Proposition 6.7.]

(b) Exercise: can the keys k and k? be recovered from
(u0, u1, . . . , u19)?

(A) No (B) Yes
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(b) The attacker knows (u0, u1, . . . , u19) but cannot learn k and
k?. Can he or she decrypt further ciphertexts?

(A) No (A) Yes



Sum of LFSRs

Example 7.2
I Let F be the LFSR of width 4 with taps {0, 3} of period 15.

The first 20 bits in the keystreams for F with keys k = (1, 0, 0, 0)
and k? = (0, 0, 0, 1) sum to the sequence (u0, u1, . . . , u19) below:

ki 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1

k?i 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1
ui 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Unfortunately, (u0, u1, u2, . . .) is also generated by F : it is the
keystream for (1, 0, 0, 1). Exercise:

(a) Explain why this should have been expected. [Hint: the same
linearity was used to prove Proposition 6.7.]

(b) The attacker knows (u0, u1, . . . , u19) but cannot learn k and
k?. Can he or she decrypt further ciphertexts?

(A) No (A) Yes



Example 7.2 [continued]
I Let F ′ be the LFSR of width 3 with taps {0, 1} of period 7.

The first 20 bits in the keystreams for F and F ′ with keys
k = (1, 0, 0, 0) and k ′ = (0, 0, 1) and their sum (u0, u1, . . . , u19)
are:

ki 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
k ′i 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1

ui 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Quiz: what is the period of (u0, u1, u2, . . .)?
(A) 7 (B) 15 (C) 105 (D) need more info

This is encouraging: combining the LFSRs creates a keystream
with a much longer period than either individually.

The bad news is that the linear algebra method from Question 3
on Sheet 5 shows that the first 10 bits of (u0, u1, u2, . . .) are
generated by the LFSR of width 7 with taps {0, 1, 5, 6}.
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Geffe Generator

Example 7.3

A Geffe generator is constructed using three LFSRs F , F ′ and G of
widths `, `′ and m, all with maximum possible period. Following
Kerckhoff’s Principle, the widths and taps of these LFSRs are
public knowledge.

I Let (k0, k1, k2, . . .) and (k ′0, k
′
1, k
′
2, . . .) be keystreams for F

and F ′

I Let (c0, c1, c2, . . .) be a keystream for G .

The Geffe keystream (u0, u1, u2, . . .) is defined by

ui =

{
ki if ci = 0

k ′i if ci = 1.



Example 7.3 [continued]
For example, if F is the LFSR of width 3 with taps {0, 1}, F ′ is the
LFSR of width 4 with taps {0, 3}, and G is the LFSR of width 4
with taps {0, 1} and (g0, g1, g2, g3) = (0, 0, 0, 1) then [corrected
after lecture: F and F ′ got swapped by mistake]

ki 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1
k ′i 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1

gi 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0

ui 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Quiz: the period of u0u1u2 . . . is
(A) 15 (B) 35 (C) 105 (D) 1575

Quiz: What (up to a very small error) is P[ki = ui ]?

(A) 1/4 (B) 1/2 (C) 3/4 (D) 1

Quiz: For n large, what is the expected correlation between
(k0, . . . , kn−1) and (u0, . . . , un−1)?

(A) 0 (B) 1/4 (C) 1/2 (D) 3/4
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What is the correlation in this case between (k0, . . . , k19) and
(u0, . . . , u19)?

(A) 3
10 (B) 1

2 (C) 3
5 (D) 7

10
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So when we guess correctly, we see a correlation of 7
10 . The sample

is small, and by chance this is more than the predicted 1
2 .
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Suppose we guess (wrongly) that

(k0, k1, k2) = (1, 1, 0).

The correlation between the implied keystream (v0, v1, v2, . . . , v19)
and (u0, u1, . . . , u19) is (7− 13)/20 = − 3

10 .

vi 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0
ui 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1



Correlation Attack on Geffe Generator

Attack 7.4
Suppose that n bits of the Geffe keystream are known. The
attacker computes, for each candidate key (v0, v1, . . . , v`−1) ∈ F`

2,
the correlation between (v0, v1, . . . , vn−1) and (u0, u1, . . . , un−1). If
the correlation is not nearly 1

2 then the candidate key is rejected.
Otherwise it is likely that (k0, . . . , k`−1) = (v0, . . . , v`−1).

Quiz: suppose that ` < `′. Is it better to guess the key for F or the
key for F ′?

(A) Guess F (B) Guess F ′

One can repeat Attack 7.4 to learn (k ′0, k
′
1, . . . , k

′
`′−1). Overall this

requires at most 2` + 2`
′

guesses. This is a huge improvement on
the 2`+`′ guesses required by trying every possible pair of keys.
(There are also faster ways to finish: see Question 1(b) on
Sheet 6.)

An attack such as Attack 7.4 is said to be sub-exhaustive because
it finds the key using fewer guesses than brute-force exhaustive
search through the keyspace.
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Quadratic Stream Cipher

Example 7.5

Let F be the LFSR of width 5 with taps {0, 2} and let F ′ be the
LFSR of width 6 with taps {0, 1, 3, 4}. These have the maximum
possible periods for their widths, namely 25 − 1 = 31 and
26 − 1 = 63. Fix m ∈ N and for each i ≥ m, define

us = ksk
′
s + ks−1k ′s−1 + · · ·+ ks−(m−1)k

′
s−(m−1).

Note that there are m products in the sum. Define us = 0 if
0 ≤ s < m. The m-quadratic stream cipher is the cryptosystem
defined using the sequence u0, u1,. . . , u1023.

Taking m = 1 gives a cipher like the Geffe generator: since
us = ksk

′
s we have P[us = ks ] = 3

4 , giving a correlation of 1
2 .

Attack 7.4 is effective.



Quadratic Stream Cipher

For general m, the expected correlation between keystream of the
m-quadratic stream cipher u0u1u2 . . . u1023 and the keystream
k0k1k2 . . . k1023 of the LFSR of width 5 is about 1

2m . (If time
permits this will be proved in the M.Sc. course.) Taking m = 5,
this makes the correlation attack ineffective because the difference
between 0 correlation and the correlation of ± 1

25
from a correct

key guess cannot be detected with 210 samples.

The 5-quadratic stream cipher is therefore somewhat resistant to
the chosen plaintext attack in Exercise 7.1.

Exercise 7.6
Unfortunately the m-quadratic cipher is still vulnerable because
taking the sum of two adjacent bits ui and ui−1 in the keystream
cancels out many of the quadratic terms. Use this to find a
subexhaustive attack.



Trivium

Example 7.7 (Trivium)

Take three LFSRs of widths 93, 84 and 101, tapping positions
{0, 27}, {0, 15} and {0, 45}, with internal states x ∈ F93

2 , x ′ ∈ F84
2 ,

x ′′ ∈ F101
2 . The keystream is defined by

ks = x0 + x27 + x ′0 + x ′15 + x ′′0 + x ′′45.

The feedback functions are

f
(
(x0, . . . , x92)

)
= x0 + x27 + x1x2 + x ′6

f ′
(
(x ′0, . . . , x

′
84)
)

= x ′0 + x15 + x ′1x
′
2 + x ′′24

f ′′
(
(x ′′0 , . . . , x

′′
101

)
= x ′′0 + x ′′14 + x ′′1 x

′′
2 + x24

In each case the final summand introduces a bit from a different
shift register.



Trivium



Sheet 5 Question 2

Encrypt using the LFSR cryptosystem (take key, make keystream,
add to plaintext) using the LFSR F of width 5 and taps {0, 2}.
(a) Let k0k1k2 . . . be the keystream for your key. Show that

k32m = km for each m ∈ N0.

(d) Decrypt either of the messages from the other two people in
your cell. [Hint: start by looking at bits 0 and 32 in the
ciphertext. If you do not have a ciphertext to decrypt, use the
one in the Mathematica notebook.]

(e) What is the smallest number of ciphertext bits needed to
determine the key?



Part C: Block ciphers

§8 Introduction to Block Ciphers and
Feistel Networks

In a block cipher of block size n and key length `, P = C = Fn
2,

and K = F`
2. Since P = C, by Exercise 3.3(ii), each encryption

function ek for k ∈ K is bijective, and the cryptoscheme is
determined by the encryption functions.

In a typical modern block cipher, n = 128 and ` = 128. Since most
messages have more than n bits, they have to be split into multiple
blocks, each of n bits, before encryption.

Example 8.1

The binary one-time pad of length n is the block cipher of block
size n and key length n in which ek(x) = x + k for all k ∈ Fn

2.

Modern block ciphers aim to be secure even against a chosen
plaintext attack allowing arbitrarily many plaintexts. That is, even
given all pairs (x , ek(x)) for x ∈ Fn

2, there should be no faster way
to find the key k then exhausting over all possible keys in F`

2.
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Finding a Key in a Haystack: Example 8.2

Take n = 3 so P = C = F3
2. The toy block cipher has K = F8

2. The
encryption functions are 256 of the permutations ek : F3

2 → F3
2 for

k ∈ K, chosen according to a fairly arbitrary rule (details omitted).
For example, since 11111100 ∈ F8

2 is the binary form of 252, and
000, 010, 011, 110 ∈ F3

2 are the binary form of 0, 2, 3, 6, diagram
252 shows that e11111100(010) = 000 and e11111100(011) = 110.

240240240240240240240240
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

241241241241241241241241
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

242242242242242242242242
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4 4

5 5
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7 7

243243243243243243243243
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7 7
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4 4

5 5
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7 7

The other 240 permutations are posted on Moodle and will be
available in the lecture.



Example 8.2 [continued]

Suppose Alice and Bob used the toy block cipher with their shared
secret key k .

(i) By a chosen plaintext attack Mark learns that ek(000) = 101
and ek(001) = 111. One possible key is 254. There are six
others: find at least one of them.

(ii) By choosing two further plaintexts Mark learns that
ek(011) = 001 and ek(110) = 011. Determine k .

(iii) Later Mark’s boss Eve observes the ciphertext 100. What is
dk(100)?

In this case since |F3
2| = 8, there are 8! = 40320 permutations of

F3
2, of which 256 were used.



Feistel Networks

Definition 8.3
Let m ∈ N and let f : Fm

2 → Fm
2 be a function. Given v , w ∈ Fm

2 ,
let (v ,w) denote (v0, . . . , vm−1,w0, . . . ,wm−1) ∈ F2m

2 . The Feistel
function for f is the function F : F2m

2 → F2m
2 defined by

F
(
(v ,w)

)
= (w , v + f (w)).

This can be compared with an LFSR: we shift left by m bits to
move w to the first position. The feedback function is
(v ,w) 7→ v + f (w). It is linear in v , like an LFSR, but typically
non-linear in w .

Exercise 8.4
Show that, for any function f : Fm

2 → Fm
2 , the Feistel function F

for f is invertible. Give a formula for its inverse in terms of f .



Example 8.5 (Q-Block Cipher)

Take m = 4 and let

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

We define a block cipher with block size 8 and key length 12
composed of three Feistel functions. If the key is k ∈ F16

2 then

k(1) = (k0, k1, k2, k3), k(2) = (k4, k5, k6, k7), k(3) = (k8, k9, k10, k11).

The Feistel function in round i is x 7→ S(x + k(i)). Since in each
round the contents of the right register shift to the left, we can
consistently denote the output of round i by (v (i), v (i+1)). Thus
the plaintext (v ,w) ∈ F16

2 is encrypted to the cipher text
ek
(
(v ,w)

)
= (v (3), v (4)) in three rounds:

(v ,w) = (v (0), v (1)) 7→
(
v (1), v (0) + S(v (1) + k(1))

)
= (v (1), v (2))

7→
(
v (2), v (1) + S(v (2) + k(2))

)
= (v (2), v (3))

7→
(
v (3), v (2) + S(v (3) + k(3))

)
= (v (3), v (4)).



Correction for M.Sc. students

In the initialization step for Berlekamp–Massey (page 15 printed
notes), please change `c+1 = c to `c+1 = c + 1.

Explanation (for all). The Berlekamp–Massey Algorithm finds an
LFSR generating a given keystream k0k1k2 . . .. By definition c is
the least numbered position such that kc = 1, so

k0 = . . . = kc−1 = 0, kc = 1.

Any LFSR generating

(0, 0, . . . , 0, 1)
0 1 . . . (c−1) c

must have width at least c + 1, since otherwise the key that fills
the LFSR is all-zeros, so all positions in the keystream are 0.



Q-Block Cipher

Exercise 8.6
(a) Suppose that k = 0001 0011 0000, shown split into the three

round keys. Show that

ek
(
(0, 0, 0, 0, 0, 0, 0, 0)

)
= (1, 1, 1, 0, 1, 1, 0, 1)

(b) Find dk
(
(0, 0, 0, 0, 0, 0, 0, 1)

)
if the key is as in (a).

(c) Suppose Eve observes the ciphertext (v (3), v (4)) from the
Q-block cipher. What does she need to know to determine
v (2)?

Exercise 8.7
Suppose we change the Feistel function in round i to
x 7→ S(x) + k(i). What is (v (1), v (2)) in terms of v , w and k(1)?
Which cipher is likely to be stronger?



DES (Data Encryption Standard 1975)
DES is a Feistel block cipher of block size 64. The key length is
56, so the keyspace is F56

2 . Each round key is in F48
2 . There are 16

rounds. (Details of how the 16 round keys are derived from the key
are omitted.)

Each Feistel Network is defined using a function F32
2 → F32

2 :

(a) Expand w ∈ F32
2 by a linear function (details omitted) to

w ′ ∈ F48
2 .

(b) Add the 48-bit round key to get w ′ + k(i).

(c) Let w ′ + k(i) = (y (1), . . . , y (8)) where y (i) ∈ F6
2. Let

z =
(
S1(y (1)), . . . ,S8(y (8))

)
∈ F32

2 . Confusion: obscure
relationship between plaintext and ciphertext on nearby bits.

(d) Apply a permutation (details omitted) of the positions of z .
Diffusion: turn short range confusion into long range
confusion.

Note that (a) and (d) are linear, and (b) is a conventional key
addition in F48

2 . So the S-boxes in (c) are the only source of
non-linearity.



DES has no Sub-exhaustive Attacks (43 Years . . . )
But the small keyspace F56

2 makes it insecure.

I 1997: 140 days, distributed search on internet
I 1998: 9 days ‘DES cracker’ (special purpose) $250000
I 2017: 6 days ‘COPACOBANA’ [Typo: COPACOBONA in

printed notes] (35 FPGA’s) $10000

Roughly how many keys does COPACOBANA test in each second?

(A) 232 (B) 236 (C) 237 (D) 240

Exercise 8.8
Suppose we apply DES twice, first with key k ∈ F56

2 then with
k ′ ∈ F56

2 . So the keyspace is F56
2 × F56

2 and for (k, k ′) ∈ F56
2 × F56

2 ,

e(k,k ′)(x) = e ′k
(
ek(x)

)
∈ F64

2 .

(a) Roughly how long would a brute force exhaustive search over
F56

2 × F56
2 take? (Assume you own a COPACOBANA.)

(A) 12 days (B) 36 days (C) 106 years (D) 1015 years

(b) Does this mean 2DES is secure?

(A) False (B) True

See Question 5 on Problem Sheet 7 for 3DES: it has keyspace
F56

2 × F56
2 × F56

2 .
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Meet-in-the-Middle Attack on 2DES
In a chosen plaintext attack on 2DES we may choose any plaintext
x ∈ F64

2 and get its encryption y ∈ F64
2 , by some unknown key

(k , k ′) ∈ F56
2 × F56

2 .

We defined

E = {ek(x) : k ∈ F56
2 }

D = {dk ′(y) : k ′ ∈ F56
2 }

Assume that k and k ′ are chosen independently. Given a random
w ∈ F64

2 , what, approximately, is P[w ∈ E ]?
(A) 1

256 (B) 1
128 (C) 1

8 (D) 1

What is a good approximation to P[w ∈ E ∩ D]?
(A) 1

232 (B) 1
216 (C) 1

28 (D) 1
24

How many encryptions / decryptions does it take to find the key?
[Hint: check the possible keys by encrypting another plaintext.]

(A) 257 (B) 257 + 248 (C) 257 + 249 (D) 2112
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AES (Advanced Encryption Standard)

AES is the winner of an open competition to design a successor to
DES. Belgian cryptographers Vincent Rijmen and Joan Daemen.

I Block size 128 bits

I Keyspace F128
2 (also versions for F192

2 and F256
2 )

I Not Feistel, but still multiple rounds like DES.

I Confusion comes from pseudo-inversion in the finite field F28 .

I Diffusion comes from an affine transformation of F8
2.



AES Ingredients: Example 8.9
The affine block cipher of block size n has keyspace all pairs
(A, b), where A is an invertible n × n matrix with entries in F2 and
b ∈ Fn

2. The encryption functions e(A,b) : Fn
2 → Fn

2 are defined by

e(A,b)(x) = xA + b.

(a) d(A,b)(y) is

(A) xA−1 + b (B) yA−1 + b (C) (y + b)A−1 (D) y + bA−1

(b) When n = 2, how many plaintexts are required to find the key
in a chosen plaintext attack?

(A) 2 (B) 3 (C) 4 (D) many

(c) Does repeating the cipher (as in 2DES, so using two different
keys) make this cipher any more secure?

(A) No (B) Yes

(d) Does this cipher have the ‘confusion’ property?
(A) No (B) Yes

(e) Does this cipher have the ‘diffusion’ property?
(A) No (B) Yes
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AES Ingredients: The Finite Field F28

Example 8.10

Let α be an indeterminate. Define

F28 = {x0 + x1α + · · ·+ x7α
7 : x0, x1, . . . , x7 ∈ F2}.

Elements of F8
2 are added and multiplied like polynomials in α with

coefficients in F2, but whenever you see a power αd where d ≥ 8,
eliminate it using the rule

1 + α + α3 + α4 + α8 = 0.

For example (1 + α) + (α + α5) = 1 + α5 and

α9 = α× α8 = α(1 + α + α3 + α4) = α2 + α3 + α4 + α5.

Multiplying the defining rule for α by α−1, we get
α−1 + 1 + α2 + α3 + α7 = 0 so α−1 = 1 + α2 + α3 + α7.



Quiz on F28

Recall that F28 is the set of polynomials in α of degree at most 7
with coefficients in F2. Higher powers of α must be eliminated
using the rule

1 + α + α3 + α4 + α8 = 0.

Note that 28 = 256. Let Z28 = {0, 1, . . . , 255} be the integers
modulo 256. (i) True or false? F28

∼= Z28?

(A) False (B) True

(ii) What is (1 + α + α3) + (α + α3 + α7)?

(A) 1 + α + α7 (B) 1 + α7 (C) 1 + α3 + α7 (D) α + α7

(iii) What is (α + α2 + α3)2?

(A) α2 + α3 + α4 + α5 + α6 (B) α2 (C) α2 + α4 + α6 (D) 0

(iv) What is α10?

(A) α2 (B) α + α2 + α5 + α6

(C) 1 + α + α3 + α4 + α8 (D) α2 + α3 + α5 + α6
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Pseudo-Inversion

Definition 8.11
Let F28 be the finite field of size 28 as in Example 8.10. Define
p : F28 → F28 by

p(β) =

{
β−1 if β 6= 0

0 if β = 0.
.

Let P : F8
2 → F8

2 be the corresponding function defined by
identifying F8

2 with F2(α) by

(x0, x1, . . . , x7)←→ x0 + x1α + x2α
2 + · · ·+ x7α

7.

For example, writing elements of F8
2 as words of length 8,

(1) 1000 0000←→ 1 ∈ F28 so P(1000 0000) = 10000000

(2) 0100 0000←→ α ∈ F28 and α−1 = 1 + α2 + α3 + α7 was
found in Example 8.10, so P(0100 0000) = 10110001.

Quiz: What is P(0010 0000)?

(A) 1100 0011 (B) 1101 0011 (C) 1100 0001 (D) 1100 0011
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Definition of AES
There are 10 rounds in AES. In each round, the input x ∈ F128

2 is
split into 16 subblocks each in F8

2.

I The pseudo inverse function P : F8
2 → F8

2 is applied to each
subblock, followed by an affine transformation F8

2 → F8
2, as in

the affine block cipher. This gives confusion and diffusion
within each subblock.

I Diffusion comes from a row permutation of the 16 subblocks,
organized into a 4× 4 grid:

q(0) q(4) q(8) q(12)
q(1) q(5) q(9) q(13)
q(2) q(6) q(10) q(14)
q(3) q(7) q(11) q(15)

−→
q(0) q(4) q(8) q(12)
q(13) q(1) q(5) q(9)
q(10) q(14) q(2) q(6)
q(7) q(11) q(15) q(3)

Each column is then mixed by an invertible linear map, giving
further diffusion.

I The round key in F128
2 is added after these two steps.

There are no known sub-exhaustive attacks on AES. It is the most
commonly used block cipher.



Modes of Operation
A block cipher with block size n encrypts plaintexts x ∈ Fn

2. If x is
longer it has to be split into blocks x (1), . . . , x (m) ∈ Fn

2:

x = (x (1), . . . , x (m)).

Fix a key k ∈ K: this is only key used.

I Electronic Codebook Mode:

x (1) 7→ ek(x (1))

x (2) 7→ ek(x (2))
...

x (m) 7→ ek(x (m))

I Cipher Block Chaining:

x (1) 7→ ek(x (1)) = y (1)

x (2) 7→ ek(y (1) + x (2)) = y (2)

...

x (m) 7→ ek(y (m−1) + x (m)) = y (m)



Same In Implies Same Out

If x (i) = x (j) then, in Electronic Codebook Mode, the ciphertext
blocks ek(x (i) and ek(x (j)) are equal. This is a weakness of the
mode of operation, not of the underlying block cipher.

Cipher Block Chaining (and the many other modes of operation
you are not expected to know about) avoid this problem.



§9 Differential Cryptanalysis

Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.

Thus if x and x ′ differ by ∆ then so do their encryptions x + kotp

and x ′ + kotp. In symbols:

x + x ′ = ∆ =⇒ (x + kotp) + (x ′ + kotp) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?
It should be x − x ′ = ∆ and (x + kotp)− (x ′ + kotp) = ∆
It’s the same: we’re working in F2



§9 Differential Cryptanalysis

Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.

Thus if x and x ′ differ by ∆ then so do their encryptions x + kotp

and x ′ + kotp. In symbols:

x + x ′ = ∆ =⇒ (x + kotp) + (x ′ + kotp) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?
It should be x − x ′ = ∆ and (x + kotp)− (x ′ + kotp) = ∆
It’s the same: we’re working in F2



§9 Differential Cryptanalysis

Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.

Thus if x and x ′ differ by ∆ then so do their encryptions x + kotp

and x ′ + kotp. In symbols:

x + x ′ = ∆ =⇒ (x + kotp) + (x ′ + kotp) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?

It should be x − x ′ = ∆ and (x + kotp)− (x ′ + kotp) = ∆
It’s the same: we’re working in F2



§9 Differential Cryptanalysis

Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.

Thus if x and x ′ differ by ∆ then so do their encryptions x + kotp

and x ′ + kotp. In symbols:

x + x ′ = ∆ =⇒ (x + kotp) + (x ′ + kotp) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?
(A) It should be x − x ′ = ∆ and (x + kotp)− (x ′ + kotp) = ∆
(B) It’s the same: we’re working in F2



§9 Differential Cryptanalysis

Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 2 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key kotp ∈ Fn
2, and known

ciphertexts x + kotp and x ′ + kotp. Adding the known ciphertexts
gives x + x ′, independent of kotp.

Thus if x and x ′ differ by ∆ then so do their encryptions x + kotp

and x ′ + kotp. In symbols:

x + x ′ = ∆ =⇒ (x + kotp) + (x ′ + kotp) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?
(A) It should be x − x ′ = ∆ and (x + kotp)− (x ′ + kotp) = ∆
(B) It’s the same: we’re working in F2



The DES S-boxes and the pseudo-inverse function P : F8
2 → F8

2 in
AES are chosen to avoid this weakness. By the exercise below an
output difference of 1 to P can come from many different input
differences.

Exercise 9.1
Let Γ ∈ F8

2 be non-zero. Show that

{
w ∈ F8

2 : P(w) + P(w + Γ) = 1000 0000
}

has size 0 or 2, except when Γ = 1000 0000, when it has size 4.
[Hint: quadratic equations over any field have at most two roots.]

Exercise 9.2
Fix Γ = F8

2. Let w ∈ F8
2 be chosen uniformly at random. What are

the possible values for P[P(w) + P(w + Γ) = 1000 0000] as Γ
varies in F8

2?

(A) {0, 1} (B) {0, 1
256 ,

1
128} (C) {0, 1

128 ,
1

64} (D) { 1
128 ,

1
64}
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Feedback on Sheet 7 / Other Question
I Always + denotes vector space addition. E.g. in F4

2

0011 + 1010 = 1001.

(In cryptography it is usual to use � for addition of integers:
0011� 1010 = 1101 is 3 + 10 = 13.)

I Question 4. Working with DES, so the key length is 56, how
many operations are needed to compute all the triples(
k, k ′, dk ′(ek(x))

)
for all k , k ′ ∈ F56

2 ?

(A) 256 (B) 257 (C) 2112 (D) other

I Question: how are block ciphers actually implemented?
Answer: the operations are chosen to be efficient on modern
computers that store everything in binary. For instance

I int x = 341

tells the C compiler to put 341 in a new memory location, and
label it x. Since 341 = 1 + 4 + 16 + 64 + 256, this represents
x = . . . 01010101 ∈ F32

2 . To add a key, we use binary XOR:
I int y = 341 ^ 15

makes . . . 01010101 + . . . 00001111 = . . . 01011010.
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Attack 9.3
Let ek : Fn

2 → Fn
2 for k ∈ F`

2 be the encryption functions for a
block cipher of block size n and key length `. For
(kotp, k) ∈ Fn

2 × F`
2 define E(kotp,k) : Fn

2 → Fn
2 by

E(kotp,k)(x) = ek(x + kotp).

Let ∆ ∈ Fn
2. In a chosen plaintext attack on this ‘composed’

cipher, we choose x ∈ Fn
2 and obtain the ciphertexts

z = E(kotp,k)(x)

z∆ = E(kotp,k)(x + ∆)

Set Γ = z + z∆. Then e−1
k (z) + e−1

k (z∆) = ∆. Moreover, for
kguess ∈ F`

2, either

e−1
kguess

(z) + e−1
kguess

(z∆) 6= ∆

and we deduce kguess 6= k , or

e−1
kguess

(z) + e−1
kguess

(z∆) = ∆

and kguess ∈ Kz =
{
kguess ∈ Fn

2 : e−1
kguess

(z) + e−1
kguess

(z + Γ) = ∆
}

.



Attack 9.3

Intuitively: for the correct key k , undoing the second cipher we get
back the difference ∆; for wrong keys, we get ∆ only if kguess has
the special property that kguess ∈ Kz , where z = E(kotp,k)(x).

If the block cipher is good then Kz is small. Therefore false keys,
where we do not immediately see that our guess is wrong, are rare.
Note that we do not guess kotp, only k.

Correction: in the printed notes there is a suggested exercise after
Attack 9.3. It is incorrect as stated and should be deleted.
(Exercise 9.5 is what was meant.)



Example 9.4

Let n = 8, ` = 8 and let P : F8
2 → F8

2 be the pseudo-inverse
function. For k ∈ F8

2, define ek(y) = P(y) + k . Note that
e−1
k (z) = P(z + k) and so

e−1
kguess

(z) + e−1
kguess

(z∆) = P(z + kguess) + P(z∆ + kguess).

By definition z∆ = z + Γ. Hence the set Kz in Attack 9.3 is

Kz = {kguess ∈ F8
2 : P(z + kguess) + P(z + kguess + Γ) = ∆}.

Running the attack: Take ∆ = 1000 0000; this corresponds to
1 ∈ F28 . For each kguess ∈ F8

2, we compute

P(z + kguess) + P(z∆ + kguess).

If the answer is ∆ then kguess ∈ Kz and kguess is either k or a false
key. Otherwise we reject kguess.

By Exercise 9.1, there are usually exactly two different kguess ∈ F8
2

such that P(z + kguess) + P(z + kguess + Γ) = ∆. One must be k.



Example 9.4 [continued]
In the following examples we take kotp = 0000 0000.

(1) If k = 0000 0000 and x = 0100 0000 then, since
P(0100 0000) = 1011 0001 and P(1100 0000) = 0110 1111,
Γ = z + z∆ = 1101 1110. There are exactly 2 keys kguess such
that k ∈ Kz , namely

0000 0000, 1101 1110.

For instance, suppose we make the incorrect guess
kguess = 0000 0001. Given that P(1011 0000) = 1000 0111
and P(0110 1110) = 0101 1101, what difference do we
observe when we run the attack?

(A) 1000 0111 (B) 0101 1101

(C) 1101 1010 (D) 1101 1000

Is this consistent with the input difference of ∆ = 1000 0000?

(A) No (B) Yes
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Example 9.4 [continued]
In the following examples we take kotp = 0000 0000.

(1) If k = 0000 0000 and x = 0100 0000 then, since
P(0100 0000) = 1011 0001 and P(1100 0000) = 0110 1111,
Γ = z + z∆ = 1101 1110. There are exactly 2 keys kguess such
that k ∈ Kz , namely

0000 0000, 1101 1110.

(2) If k = 0000 0000 and x = 0000 0000 then
Γ = z + z∆ = 1000 0000 and there are exactly 4 keys kguess

such that k ∈ Kz , namely

0000 0000, 1000 0000, 0011 1101, 1011 1101.

(To check this you need P(0011 1101) = 1011 1101 and so,
since P(P(x)) = x for all x ∈ F8

2, P(1011 1101) = 0011 1101.)
This is the exceptional case when ∆−1 = Γ.

(3) Exercise: let k = 1111 1111. What are the possible keys kguess

if x = 0100 0000? What if x = 0000 0000? [Hint: these can
be deduced from (1) and (2) since the difference Γ is same.]



Cost of the Attack

Exercise 9.6

(a) Show that the attack typically finds k and the false key k + Γ
using at most 2× 28 decryptions to calculate e−1

kguess
(z) and

e−1
kguess

(z∆).

(b) How many encryptions are needed to test all the pairs
(kotp, k) and (kotp, k + Γ) for kotp ∈ F8

2?

(c) Deduce that the attack finds the key (kotp, k) using at most
210 decryptions/encryptions. Why is this sub-exhaustive?



Attack on the Q-Block Cipher: Weak First Round
Recall from Example 8.4 that round i of the Q-block cipher is

(v ,w) 7→
(
w ,w + S(v + k(i))

)

where k(i) ∈ F4
2 is the round key. There are three rounds:

(v ,w) = (v (0), v (1)) 7→
(
v (1), v (0) + S(v (1) + k(1))

)
= (v (1), v (2))

7→
(
v (2), v (1) + S(v (2) + k(2))

)
= (v (2), v (3))

7→
(
v (3), v (2) + S(v (3) + k(3))

)
= (v ′,w ′).

Lemma 9.7

(i) For any x ∈ F4
2 we have S(x + 1000) = S(x) + 0010.

(ii) For any (v ,w) ∈ F8
2 and any round key k(1) ∈ F4

2 we have

(
w , v + S(w + k(1))

)
+
(
w + 1000, v + S(w + 1000 + k(1))

)

= (1000, 0010).



Why Difference Attacks beat Exhaustion

Suppose Alice and Bob have secret numbers a, b ∈ {0, 1, . . . , 15}.
(1) You can ask Alice and Bob together: ‘is the pair of your

numbers (c , d)’? The two confer (in secret) and you get a
single yes/no answer. In the worst case, how many guesses do
you need to learn both numbers?

(A) 31 (B) 32 (C) 255 (D) 256

(2) Now you can ask either Alice or Bob ‘is your number e’? How
many guesses do you need in the worst case to learn both
numbers?

(A) 30 (B) 31 (C) 255 (D) 256
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Attack on the Q-Block Cipher

Example′ 9.8

We run Attack 9.3 on the Q-block cipher by taking
∆ = (0000, 1000) and guessing the final 8 bits of the key k to
undo the final two rounds. Take k = 0001 0011 0111.

0000 0000
00017−→ 0000 0100

0011,01117−→ 1110 0010

∆ = 0000 1000 ∆′ = 1000 0010 Γ = 0011 1110

0000 1000
00017−→ 1000 0110

0011,01117−→ 1101 1100
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We run Attack 9.3 on the Q-block cipher by taking
∆ = (0000, 1000) and guessing the final 8 bits of the key k to
undo the final two rounds. Take k = 0001 0011 0111.

0000 0000
00017−→ 0000 0100

0011,01117−→ 1110 0010

∆ = 0000 1000 ∆′ = 1000 0010 Γ = 0011 1110

0000 1000
00017−→ 1000 0110

0011,01117−→ 1101 1100

(1) For the guess k
(2)
guess = 0011, k

(3)
guess = 0011,

w = 0101 0101, w∆ = 0110 0101.

What is the observed difference between w and w∆?

(A) 0101 0101 (B) 0110 0101

(C) 0111 0000 (D) 0011 0000

Does the attack rule out this guess?
(A) No (B) Yes
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0000 1000
00017−→ 1000 0110

0011,01117−→ 1101 1100

(2) For the guess k
(2)
guess = 0011, k

(3)
guess = 1111,

w = 1011 0110, w∆ = 0011 0100.

Does the attack rule out this guess?
(A) No (B) Yes
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Attack on the Q-Block Cipher

Example′ 9.8

We run Attack 9.3 on the Q-block cipher by taking
∆ = (0000, 1000) and guessing the final 8 bits of the key k to
undo the final two rounds. Take k = 0001 0011 0111.

0000 0000
00017−→ 0000 0100

0011,01117−→ 1110 0010

∆ = 0000 1000 ∆′ = 1000 0010 Γ = 0011 1110

0000 1000
00017−→ 1000 0110

0011,01117−→ 1101 1100

The 16 keys k
(2)
guessk

(3)
guess ∈ F8

2 in Kz are all binary words of the form
? ? ?1 ? 1bb. Trying each guess together with all 16 possibilities for

k
(1)
guess ∈ F 4

2 shows that

k ∈
{0001 0011 0111, 0010 1111 0100

1001 0001 1111, 1010 1101 1100

}
.

All these keys encrypt 0000 0000 to 11100010, so cannot be
distinguished without choosing another plaintext.



Attack on a 5-round Q-block cipher
By definition, round i of the Q-block cipher is

(v ,w) 7→
(
w , v + S(v + k(i))

)

By taking a key of length 4r we can define the Q-block cipher for
any number of rounds. With 5 rounds there is a 20 bit key

k = (k(1), k(2), k(3), k(4), k(5))

After 1 round the difference ∆ = 0000 1000 always goes to
∆′ = 0001 0010. By Question 1 on Problem Sheet 8, after 2
rounds there are four possibilities:

0010 0000, 0010 0001, 0010 0010, 0010 0011.

Guessing the 12 bit key (k(3), k(4), k(5)) we rule out kguess if

e−1
kguess

(z)+e−1
kguess

(z∆) 6∈ {0010 0000, 0010 0001, 0010 0010, 0010 001}.
After 212 guesses there are 64 = 26 possible keys kguess. Trying
each of these with the 256 = 28 possibilities for (k(1), k(2)) gives
64 possibilities for k. The total work is 212 + 26 × 28 = 212 + 214.
This is about 64 = 26 times faster than guessing all of k in one go.

qAttackBothKeys 2 5 (zeros 20) [0,0,0,0,0,0,0,1]

qAttackNaive 2 5 (zeros 20) [0,0,0,0,0,0,0,1]



Correction to Problem Sheet 8: Q1(d)

I Let Γ = 0000 0010. [Not 0000 1000]. Let (v ,w) ∈ F8
2 be

chosen uniformly at random. Let (v ′,w ′) and (v ′Γ,w
′
Γ) be the

encryptions of (v ,w) and (v ,w) + Γ, respectively. Show that
no matter what the key is, (v ′,w ′) + (v ′Γ,w

′
Γ) is equally likely

to be each of the four differences

{0010 1000, 0010 1001, 0010 1010, 0010 1011}.

[Corrected: first bit in second block was wrongly 0.]



Part D: Public Key Cryptography and Digital Signatures

§10 Introduction to Public Key Cryptography

We begin with a way that Alice and Bob can establish a shared
secret key, communicating only over the insecure channel on
page 4.

Everything in red is private. Everything not in red is known to the
whole world— this includes the eavesdropper Eve.

Example 10.1

Alice and Bob need a 128-bit key for use in AES. They agree a
prime p such that p > 2128. Then

(1) Alice chooses a secret a ∈ N with 1 ≤ a < p. Bob chooses a
secret b ∈ N with 1 ≤ b < p.

(2) Alice sends Bob 2a mod p. Bob sends Alice 2b mod p.

(3) Alice computes (2b)a mod p and Bob computes (2a)b mod p.

(4) Now Alice and Bob both know 2ab mod p. They each write
2ab mod p in binary and take the final 128 bits to get an AES
key.



Example 10.1 [continued]

After (2), the eavesdropper Eve knows p, 2a mod p and 2b mod p.
It is believed that it is hard for her to use this information to find
2ab mod p. The difficulty can be seen even in small examples.

Exercise 10.2
Let p = 11. As Eve you know that Alice has sent Bob 6. Do you
have any better way to find a such that 2a = 6 than trying each
possibility?

m 0 1 2 3 4 5 6 7 8 9

2m mod 11 1 2

m 10 11 12 13 14 15 16 17 18 19

2m mod 11

After (4) Alice and Bob can communicate using the AES
cryptosystems, which has no known sub-exhaustive attacks.
So remarkably, Alice and Bob can communicate securely without
exchanging any private key material.
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Integers Modulo a Prime

I By Fermat’s Little Theorem, cp−1 ≡ 1 mod c for any c not
divisible by p.

I If cm 6≡ 1 mod p for m < p − 1 then c is said to be a
primitive root modulo p and, working modulo p,

{1, c , c2, . . . , cp−2} = {1, 2, . . . , p − 1}

Primitive roots always exist: often one can take 2.

I Equivalently: Z×p is cyclic of order p − 1.

I For instance 2 is a primitive root modulo 11 but 5 is not,
because 5 ≡ 24 mod 11, so 55 ≡ 210 ≡ 1 mod 11.



Diffie–Hellman Key Exchange
This is nothing more than Example 10.1, modified to avoid some
potential weaknesses, and implemented efficiently.

I The prime p is chosen so that p − 1 has at least one large
prime factor. (This is true of most primes. There are fast
ways to decide if a number is prime.)

I Rather than use 2, Alice and Bob use a primitive root modulo
p, so every element of {1, . . . , p − 1} is congruent to a power
of g . (The base is public.)

I Alice and Bob compute ga mod p and gb mod p by repeated
squaring. See Question 3 on Sheet 8 for the idea. For
example 221 mod 177 is computed as follows:

I 22 ≡ 4 mod 199
I 24 ≡ 42 = 16 mod 199
I 28 ≡ 162 = 256 ≡ 57 mod 199
I 216 ≡ 572 = 3249 ≡ 65 mod 199

Now use 221 = 216+4+1 ≡ 65× 16× 2 = 2080 ≡ 90 mod 199.

I The shared key is now gab mod p.



Exponentiation as a one-way function
A primitive root modulo 131 is g = 2.

m 0 1 2 3 4 5 6 7 8 9 . . .

2m mod 131 1 2 4 8 16 32 64 128 125 119 . . .

If 2m = y mod 131 where 0 ≤ m ≤ 129 then we say that m is the
discrete log of y (with respect to 2), working modulo 131. For
example 246 ≡ 5 mod 131 so the discrete log of 5 is 46.

(a) What is the discrete log of 16?
(A) 1 (B) 2 (C) 4 (D) 130

(b) What is the discrete log of 125?
(A) 8 (B) 48 (C) 92 (D) 138

(c) What is the discrete log of 80?
(A) 46 (B) 50 (C) 54 (D) 184

(d) What is the discrete log of 130? [Hint: 1302 ≡ (−1)2 ≡ 1.]
(A) 1 (B) 65 (C) 66 (D) 130

(e) The discrete log of 49 is 62. So the discrete log of 7 is 31?

(A) False (B) True
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(d) What is the discrete log of 130? [Hint: 1302 ≡ (−1)2 ≡ 1.]
(A) 1 (B) 65 (C) 66 (D) 130

(e) The discrete log of 49 is 62. So the discrete log of 7 is 31?

(A) False (B) True



Exponentiation as a one-way function
A primitive root modulo 131 is g = 2.

m 0 1 2 3 4 5 6 7 8 9 . . .

2m mod 131 1 2 4 8 16 32 64 128 125 119 . . .

If 2m = y mod 131 where 0 ≤ m ≤ 129 then we say that m is the
discrete log of y (with respect to 2), working modulo 131. For
example 246 ≡ 5 mod 131 so the discrete log of 5 is 46.

(e) The discrete log of 49 is 62. So the discrete log of 7 is 31?

(A) False (B) True

Explanation: there are two square roots of 49, namely 7 and
−7 ≡ 124 mod 131. Calculating shows that 231 ≡ 124 ≡ −7 mod
131. To get 7 we use (d), that 265 ≡ 1 mod 131: so adding
discrete logs,

dlog 7 = dlog(−7×−1) = dlog(−7) + dlog(−1) = 31 + 65 = 96.



Please complete the online course questionnaire. You should have
been emailed a link. The response rate is 9% for 362 at the
moment.



One-way Functions

A one-way function is a bijective function that is fast to compute,
but whose inverse is hard to compute. It is beyond the scope of
this course to make this more precise.

It is not known whether one-way functions exist. Their existence
implies P 6= NP: very roughly, if P = NP then any problem whose
solution is quick to check, such as Sudoku, is also quick to solve.

Diffie–Hellman key exchange is secure only if, given g and g x it is
hard to find x . (This is called the Discrete Log Problem.)
Equivalently, the function

f : {0, . . . , p − 2} → {1, . . . , p − 1}

defined by f (x) = g x mod p, is one-way.

Exercise 10.3
Why do we exclude p − 1 from the domain of f ?



ElGamal Cryptosystem and Further Comments

Diffie–Hellman can be turned into the ElGamal cryptosystem: see
Question 2 on Sheet 9.

I ElGamal avoids the drawback of Diffie–Hellman that either
Alice and Bob both have to be online at the same time, or
one must wait for the other to respond before they can
exchange messages.

I It is faster to use Diffie–Hellmann to agree a secret key, and
then switch to a a block cipher such as DES or AES using this
key.

I Diffie–Hellman is secure only if the Discrete Log Problem is
hard. This is widely believed to be true. But it is more likely
that the Discrete Log Problem is easy than that AES has a
sub-exhaustive attack.

For these reasons block ciphers and stream ciphers are still widely
used.



Inverting exponentiation mod p

In the RSA cryptosystem, we use modular exponentiation as the
encryption map. We therefore need to know when it is invertible.

Lemma 10.4
If p is prime and hcf(a, p − 1) = 1 then the inverse of x 7→ xa mod
p is y 7→ y r mod p, where ar ≡ 1 mod p − 1.

For example, if p = 29 then x 7→ x7 is not invertible, and x 7→ x3

is invertible, with inverse y 7→ y19. This works, since after doing
both maps, in either order, we send x to x57; by Fermat’s Little
Theorem, x57 = x28×2+1 = (x28)2x ≡ x mod 29.

Given p and a, one can use Euclid’s algorithm to find s, t ∈ Z such
that as + (p − 1)t = 1. Then as = 1− pt so as ≡ 1 mod p − 1,
and we take r ≡ s mod p − 1.

This proves Lemma 10.4, and shows that it is fast to find r . Thus
we cannot use x 7→ xa mod p as a secure encryption function.



Inverting exponentiation mod n

Fact 10.5
Let p and q be distinct primes. Let n = pq. If

hcf
(
a, (p − 1)(q − 1)

)
= 1

then x 7→ xa mod n is invertible with inverse y 7→ y r mod n, where
ar ≡ 1 mod (p − 1)(q − 1).

Example 10.6

Let p = 11, q = 17, so n = pq = 187 and (p − 1)(q − 1) = 160.
Let a = 9. Adapting the proof for Lemma 10.4, we use Euclid’s
Algorithm to solve 9s + 160t = 1, getting s = −71 and t = 4.
Since −71 ≡ 89 mod 160, the inverse of x 7→ x9 mod 187 is
y 7→ y89 mod 187.

Thus given a, p and q it is easy to find r as in Fact 10.5. But it is
believed to be hard to find r given only a and n. This makes
x 7→ xa mod n suitable for use in a cryptosystem.



RSA Cryptosystem
Let n = pq be the product of distinct primes p and q. In the RSA
Cryptosystem, with RSA modulus n,

P = C = {0, 1, . . . , n − 1}
and

K =
{

(p, q, c) : c ∈ {1, . . . , n − 1}, hcf
(
c, (p − 1)(q − 1)

)
= 1

}
.

The public key corresponding to (p, q, c) is (n, c) and the private
key corresponding to (p, q, c) is (n, r), where cr ≡ 1 mod
(p − 1)(q − 1). The encryption function for (p, q, c) is

x 7→ xc mod n

and the decryption function is

y 7→ y r mod n.

Note that anyone knowing the public key can encrypt, but only
someone knowing the private key (or the entire key (p, q, c)) can
decrypt.



Quiz on RSA
True or false?

I Alice’s encryption exponent c is public knowledge.
(A) False (B) True

I Alice’s decryption exponent r is public knowledge.
(A) False (B) True

I If Malcolm can learn r then he decrypt.
(A) False (B) True

I If Malcolm can learn r then he can factor n.
(A) False (B) True

Suppose Alice’s RSA modulus n is 13× 17 = 221 and her
encryption exponent is 8.

I If Bob’s plaintext is 2, what number will he send to Alice?

(A) 2 (B) 35 (C) 223 (D) 256

I Suppose Bob mistakenly uses the (invalid) plaintext 223.
What will Alice decode his ciphertext 2238 mod 221 as?

(A) 2 (B) 35 (C) 223 (D) 256
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One problem with RSA is that Bob somehow has to learn Alice’s
public key. If Alice has no better way to email her public key to
Bob, there is a man-in-the-middle attack, in which Malcolm tricks
Bob into encrypting with his public key instead.

No-one has found a mathematical attack on RSA other than
factorizing n. The best known algorithm (the Number Field Sieve)
was used to factorize a 768 bit n in 2010. This took about 1500
computer years, in 2010 technology.

NIST (the US standard body) now recommend that n should have
2048 bits.



RSA in Practice

Example 10.7

(1) For a small example, take p and q as in Example 10.6. If
Alice’s public key is (9, 187) then her private key is (89, 187).
If Bob’s plaintext is 10 then he sends 109 to Alice, since
109 ≡ 109 mod 187. Alice decrypts to 10 by computing 10989

mod 187.

(2) The Mathematica notebook PKC.nb available from Moodle
can be used when p and q are large. It has some ‘helper
functions’ for encrypting and decrypting strings.

Please use it for Question 3 on Sheet 9. (If your cell has
broken down, you can instead email the lecturer your public
key and get a message to decrypt.)

(3) RSA is much slower than block ciphers such as AES. In
practice RSA is often used to encrypt a key for AES or
another block cipher. This is how HTTPS (padlock in your
address bar) and Pretty Good Privacy work.



Let p and q be primes of size about 21024. Let n = pq.

(a) Given g and a it is fast to compute ga mod p.

(A) False (B) True

(b) Given g and ga mod p, with a known to be in {1, . . . , p − 2},
it is fast to compute a.

(A) False (B) True

(c) The function {1, . . . , p − 1} → {1, . . . , p − 1} defined by
x 7→ x2 is invertible.

(A) False (B) True
(d) If hcf(a, p − 1) = 1 then the function
{1, . . . , p − 1} → {1, . . . , p − 1} defined by x 7→ xa mod p is
invertible, and it is fast to compute its inverse.

(A) False (B) True
(e) If hcf

(
a, (p − 1)(q − 1)

)
= 1 then the function

{1, . . . , n − 1} → {1, . . . , n − 1} defined by x 7→ xa mod n is
invertible.

(A) False (B) True

(f) Suppose x 7→ xa mod n is invertible. Given a and n it is fast
to compute its inverse.

(A) False (B) True
(f) Suppose x 7→ xa mod n is invertible. Given a, p and q it is

fast to compute its inverse.

(A) False (B) True
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RSA as an Illegal Munition



§11 Digital Signatures and Hash Functions

Suppose Alice and Bob have the RSA keys:

public private

Alice (m, a) (m, r)
Bob (n, b) (n, s)

Suppose Bob wants to tell Alice his bank details in a message x .
He looks up her public key (a,m) and sends her xa mod m.

Malcolm cannot decrypt xa mod m, because he does not know r .
But if he has control of the channel, he can replace xa mod m with
another x ′a mod m, of his choice.

This requires Malcolm to know Alice’s public key. So the attack is
specific to public key cryptosystems such as RSA. If the key k is
secret, only Alice and Bob know the encryption function ek .

How can Alice be confident that a message signed ‘Bob’ is from
Bob, and not from Malcolm pretending to Bob?
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Motivation for Hash Functions

RSA keys public private

Alice (m, a) (m, r)
Bob (n, b) (n, s)

Alice and Bob’s encryption and decryption functions are

ea(x) = xa mod m da(x) = x r mod m

eb(x) = xb mod n db(x) = x s mod n.
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Example 11.1

Alice is expecting a message from Bob. She receives z , and
computes da(z) = z r mod m, but gets garbage. Thinking that Bob
has somehow confused the keys, she computes zb mod n, and gets
the ASCII encoding of

‘Bob here, my account number is 40081234’.

(a) Should Alice believe z was sent by Bob?
(A) No (B) Yes

(b) How did Bob compute z?

(c) Can Malcolm read Bob’s message?
(A) No (B) Yes
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(a) Should Alice believe z was sent by Bob?
(A) No (B) Yes

(b) How did Bob compute z?

(c) Can Malcolm read Bob’s message?
(A) No (B) Yes
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Signed Messages using RSA

Recall that Bob’s RSA functions are

eb(x) = xb mod n db(x) = x s mod n.

Let x ∈ N0 be Bob’s message. If Bob’s RSA number n is about
22048 then the message x is a legitimate ciphertext only if
x < 22048. This may seem big, but, using the 8-bit ASCII coding,
it means only 2048/8 = 211−3 = 28 = 256 characters can be sent.

Bob can get round this by splitting the message into blocks, but
computing db(x (i)) for each block x (i) ∈ {1, . . . , n − 1} is slow. It
is better to send x , and then append db(h(x)) where
h(x) ∈ {0, . . . , n − 1} is a hash of x .



Hash Functions

Definition 11.2

(i) A hash function of length m is a function h : N0 → Fm
2 . The

value h(x) is the hash of the message x ∈ N0.

(ii) Let (n, b) be Bob’s public key in the RSA cryptosystem. The
pair

(
x , db(h(x))

)
is a signed message from Bob.

Alice verifies that a pair (x , s) is a valid signed message from Bob
by checking that h(x) = eb(s).

A cryptographically useful hash function satisfies:

(a) It is fast to compute h(x).

(b) Given a message x ∈ N0, and its hash h(x), it is hard to find
x ′ ∈ N such that x ′ 6= x and h(x ′) = h(x). (Preimage
resistance.)

(c) It is hard to find a pair (x , x ′) with x 6= x ′ such that
h(x) = h(x ′). (Collision resistance.)
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Birthday Paradox

Exercise 11.3
Let h : N→ Fm

2 be a good hash function. On average, how many
hashes does an attacker need to calculate to find a pair (x , x ′) with
h(x) = h(x ′)?

Assume hash values are distributed uniformly at random in Fm
2 .

I Given a pair (x , x ′) ∈ N0, what is the probability that
h(x) = h(x ′)?

(A) 0 (B)
1

2m
(C)

1

2m+1
(D)

1

22m

I Suppose we hash R distinct numbers, x (1), . . . , x (R). How
many (unordered) pairs {x , x ′} with x 6= x ′ can be made?

(A) R (B)
R(R − 1)

2
(C)

R(R + 1)

2
(D) R(R − 1)

Lemma 11.4
If there are B possible birthdays then in a room of

√
2 ln 2

√
B

people, the probability is about 1
2 that two people have the same

birthday.
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Hash Functions In Practice
A block cipher of length m can be used as a hash function. Chop
the message x (this might be already encrypted) into blocks
x (1), x (2), . . . , x (t), such that each x (i) < 2m. Let b(i) ∈ Fm

2 be the
binary form of x (i). Then apply the block cipher in cipher block
chaining mode (see page 41), to get

y (1) = ek(b(1))

y (2) = ek(y (1) + b(2)),

...

y (t) = ek(y (t−1) + b(t))

I Should the chosen key k be secret?
(A) No (B) Yes

If Alice receives (x , t), where t is the claimed hash, then Alice
needs to know k so that she can repeat the calculation above
and verify that the hash of x is t.
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SHA-256

Example 11.5 (SHA-256)

SHA-256 is the most commonly used hash function today. It has
length 256. There is an internal state of 256 bits, divided into 8
blocks of 32 bits.

The blocks are combined with each other by multiplying bits in the
same positions (this is ‘logical and’), addition in F32

2 , cyclic shifts
(like an LFSR), and addition modulo 232, over 64 rounds.

The best attack can break (b) when the number of rounds is
reduced to 57, and (c) when the number of rounds is reduced
to 46.



Wiring Diagram for SHA256



Hashing Passwords

When you create an account online, you typically choose a
username, let us say ‘Alice’ and a password, say ‘alicepassword’. A
well run website will not store your password. Instead,
oversimplifying slightly, your password is converted to a number x
and the SHA-256 hash h(x) is stored. By (b), it is hard for anyone
to find another word whose hash is also h(x).

Provided your password is hard to guess, your account is secure,
and you have avoided telling the webmaster your password.

Exercise 11.6
As described, it will be obvious to a hacker who has access to the
password database when two users have the same password.
Moreover, if you use the same password on two different sites, the
same hash will be stored on both. How can this be avoided?



Example 11.7 (Bitcoin blockchain)

The bitcoin blockchain is a distributed record of all transactions
involving bitcoins. When Alice transfers a bitcoin b to Bob, she
appends a message x to his bitcoin, saying ‘I Alice give Bob the
bitcoin b’, and signs this message, by appending da(h(x)).

Signing the message ensures that only Alice can transfer Alice’s
bitcoins. But as described so far, Alice can double-spend: a few
minutes later she can sign another message

(
x ′, da(h(x ′))

)
where

x ′ says ‘I Alice give Charlie the bitcoin b’.

To avoid this, transactions are validated. To validate a list of
transactions

(
b(1), x (1), da(1)(h(x (1)))

)
,
(
b(2), x (2), da(2)(h(x (2)))

)
, . . .

a miner searches for c ∈ N such that, when this list is converted to
a number, its hash, by two iterations of SHA-256, has a large
number of initial zeros.



Example 11.7 [continued]

When Bob receives
(
b, x ′, da(h(x ′))

)
, he looks to see if there is a

block already containing a transaction involving b. When Bob
finds (b, x , da(h(x))) as part of a block with the laboriously
computed c, Bob knows Alice has cheated.

Vast numbers of hashes must be computed to grow the blockchain.
Miners are incentivized to do this: the reward for growing the
blockchain is given in bitcoins.

Last night the bitcoin traded at $3245.00; last year in December it
was at a near record high of $15879.79. The reward for growing
the blockchain is 12.5 bitcoins. (This gradually decreases; there
will never be more than 21× 106 bitcoins in circulation.) Most
transactions therefore involve small fractions of a bitcoin. A typical
block verifies about 2500 separate transactions.

Miners are further incentivized by transaction fees, again paid in
bitcoins, attached to each transaction. These will become more
important as the per block reward gets smaller.


