
MT5462 ADVANCED CIPHER SYSTEMS

MARK WILDON

These notes cover the part of the syllabus for MT5462 that is not part of
the undergraduate course. Further installments will be issued as they
are ready. All handouts and problem sheets will be put on the MT362
Moodle page, marked M.Sc.

I would very much appreciate being told of any corrections or possible
improvements.

You are warmly encouraged to ask questions in lectures, and to talk to
me after lectures and in my office hours. I am also happy to answer ques-
tions about the lectures or problem sheets by email. My email address is
mark.wildon@rhul.ac.uk.

Lectures: Monday 5pm (ALT3), Friday 11am (McCrea 2-01), Friday 4pm
(BLT2).

Extra lecture for MSc students doing MT5462: Thursday 1pm (MFoxSem).

Office hours in McCrea LGF 0-25: Tuesday 3.30pm, Wednesday 11am,
Thursday 11.30am (until 12.30pm) or by appointment.

Relevant seminar: The Information Security Group Seminar is at 11am
Thursdays. To subscribe to the mailing list go to: www.lists.rhul.ac.

uk/mailman/listinfo/isg-research-seminar.

Date: First term 2019/20.

2

OVERVIEW

We start with a secret sharing scheme related to Reed–Solomon codes.
We then look at boolean functions, the Berlekamp–Massey algorithm and
the Discrete Fourier Transform, and see how these mathematical ideas
have been applied to stream ciphers and block ciphers.

1. REVISION OF FIELDS AND POLYNOMIALS

Essentially every modern cipher makes use of the finite field F2. Many
use other finite fields as well: for example, a fundamental building block
in AES (Advanced Encryption Standard) is the inversion map x 7→ x−1

on the non-zero elements of the finite field F28 with 256 elements.

This section should give enough background for the course. It will also
be useful for MT5461 Theory of Error Correcting Codes, next term.

Fields. Informally, a field is a set in which one can add, subtract and mul-
tiply any two elements, and also divide by non-zero elements. Examples
of infinite fields are the rational numbers Q and the real numbers R. If p
is a prime, then the set Fp = {0, 1, . . . , p− 1}, with addition and multi-
plication defined modulo p is a finite field: see Theorem 1.2.

The formal definition is below. You do not need to memorise this.

Definition 1.1. A field is a set of elements F with two operations, + (ad-
dition) and × (multiplication), and two special elements 0, 1 ∈ F such
that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;
(2) 0 + a = a + 0 = a for all a ∈ F;
(3) for all a ∈ F there exists b ∈ F such that a + b = 0;
(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

(5) a× b = b× a for all a, b ∈ F;
(6) 1× a = a× 1 = a for all a ∈ F;
(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;
(8) a× (b× c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.

If F is finite, then we define its order to be its number of elements.

If you are familiar with basic group theory, it will be helpful to note
that (1)–(4) say that F is an abelian group under addition, and that (5)–(8)
say that (F\{0},×) is an abelian group under multiplication. The final
axiom (9) is the distributive law relating addition and multiplication.

3

It is usual to write −a for the element b in (4); we call −a the additive
inverse of a. We write a−1 for the element b in (8); we call a−1 the multi-
plicative inverse of a. We usually write ab rather than a× b.

Exercise: Show, from the field axioms, that if x ∈ F, then x has a unique
additive inverse, and that if x 6= 0 then x has a unique multiplicative
inverse. Show also that if F is a field then a× 0 = 0 for all a ∈ F.

Exercise: Show from the field axioms that if F is a field and a, b ∈ F are
such that ab = 0, then either a = 0 or b = 0.

We will use the second exercise above many times.

Theorem 1.2. Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition
and multiplication defined modulo p is a finite field of order p.

There is a unique (up to a suitable notion of isomorphism) finite field
of any given prime-power order. The smallest field not of prime order is
the finite field of order 4.

Example 1.3. The addition and multiplication tables for the finite field
F4 = {0, 1, α, 1 + α} of order 4 are shown below.

+ 0 1 α 1 + α

0 0 1 α 1 + α

1 1 0 1 + α α

α α 1 + α 0 1
1 + α 1 + α α 1 0

× 1 α 1 + α

1 1 α 1 + α

α α 1 + α 1
1 + α 1 + α 1 α

Probably the most important thing to realise is that F4 is not the integers
modulo 4. Indeed, in Z4 = {0, 1, 2, 3} we have 2× 2 = 0, but if a ∈ F4
and a 6= 0 then a× a 6= 0, as can be seen from the multiplication table.
(Alternatively this follows from the second exercise above.)

Polynomials. Let F be a field. Let F[x] denote the set of all polynomials

f (x) = a0 + a1x + a2x2 + · · ·+ amxm

where m ∈N0 and a0, a1, a2, . . . , am ∈ F.

Definition 1.4. If f (x) = a0 + a1x + a2 + · · ·+ amxm where am 6= 0, then
we say that m is the degree of the polynomial f , and write deg f = m. The
degree of the zero polynomial is, by convention, −1. We say that a0 is the
constant term and am is the leading term.

4

It is often useful that the constant term in a polynomial f is f (0).

A polynomial is a non-zero constant if and only if it has degree 0. The
degree of the zero polynomial is not entirely standardized: you might
also see it defined to be −∞, or left undefined.

Polynomials are added and multiplied in the natural way.

Lemma 1.5 (Division algorithm). Let F be a field, let g(x) ∈ F[x] be a non-
zero polynomial and let f (x) ∈ F[x]. There exist polynomials s(x), r(x) ∈ F[x]
such that

f (x) = s(x)g(x) + r(x)

and either r(x) = 0 or deg r(x) < deg g(x).

We say that s(x) is the quotient and r(x) is the remainder when f (x) is
divided by g(x). Lemma 1.5 will not be proved in lectures. The impor-
tant thing is that you can find the quotient and remainder in practice. In
MATHEMATICA use PolynomialQuotientRemainder, with Modulus -> p

for finite fields.

Exercise 1.6. Let g(x) = x3 + x + 1 ∈ F2[x], let f (x) = x5 + x2 + x ∈
F2[x]. Find the quotient and remainder when f (x) is divided by g(x).

For Shamir’s secret sharing scheme we shall need the following prop-
erties of polynomials.

Lemma 1.7. Let F be a field.
(i) If f (x) ∈ F[x] has a ∈ F as a root, i.e. f (a) = 0, then there is a

polynomial g(x) ∈ F[x] such that f (x) = (x− a)g(x).

(ii) If f (x) ∈ F[x] has degree m ∈ N0 then f (x) has at most m distinct
roots in F.

(iii) Suppose that f , g ∈ F[x] are non-zero polynomials such that deg f ,
deg g < t. If there exist distinct c1, . . . , ct ∈ F such that f (ci) = g(ci)
for each i ∈ {1, . . . , t} then f = g.

Part (iii) is the critical result. It says, for instance, that a linear poly-
nomial is determined by any two of its values. When F is the real num-
bers R this should be intuitive—there is a unique line through any two
distinct points. Similarly a quadratic is determined by any three of its
values, and so on.

Conversely, given t values, there is a polynomial of degree at most t
taking these values at any t distinct specified points. This has a nice con-
structive proof.

5

Lemma 1.8 (Polynomial interpolation). Let F be a field. Let

c1, c2, . . . , ct ∈ F

be distinct and let y1, y2, . . . , yt ∈ F. The unique polynomial f (x) ∈ F[x],
either zero or of degree < t, such that f (ci) = yi for all i is

f (x) =
t

∑
i=1

yi
∏j 6=i(x− cj)

∏j 6=i(ci − cj)
.

Later we shall use polynomials in multiple variables with coefficients
in F2 to describe cryptographic primitives.

2. SHAMIR’S SECRET SHARING SCHEME

Motivation. Some flavour of secret sharing is given by the following in-
formal example.

Example 2.1. Ten people want to know their mean salary. But none is
willing to reveal her salary si to the others, or to a ‘Trusted Third Party’.
Instead Person 1 chooses a large number M. She remembers M, and
whispers M + s1 to Person 2. Then Person 2 whispers M + s1 + s2 to
Person 3, and so on, until Person 10 whispers M + s1 + s2 + · · ·+ s10 to
Person 1. Person 1 then subtracts M and tells everyone the mean (s1 +
s2 + · · ·+ s10)/10.

Exercise 2.2. Show that if Person j hears N from Person j− 1 then s1 +
· · ·+ sj−1 can consistently be any number between 0 and N.

Provided M is chosen much larger than any conceivable salary, this ex-
ercise shows that the scheme does not leak any unintended information.

Exercise 2.3. In the two person version of the scheme, Person 1 can de-
duce Person 2’s salary from M + s1 + s2 by subtracting M + s1. Is this a
defect in the scheme?

Shamir’s secret sharing scheme. In Shamir’s scheme the secret is an element
of a finite field Fp. It will be shared across n people so that any t of them,
working together, can deduce the secret, but any t− 1 of them can learn
nothing. To set up the scheme requires a Trusted Third Party, who we
will call Trevor.

In a typical application, you are Trevor, and the n people are n un-
trusted cloud computers, labelled 1 up to n.

6

Definition 2.4. Let p be a prime and let s ∈ Fp. Let n ∈ N, t ∈ N be
such that t ≤ n < p. Let c1, . . . , cn ∈ Fp be distinct non-zero elements.
In the Shamir scheme with n people and threshold t, to share the secret
s ∈ Fp, Trevor chooses at random a1, . . . , at−1 ∈ Fp and constructs the
polynomial

f (x) = s + a1x + · · ·+ at−1xt−1

with constant term s. Trevor then issues the share f (ci) to Person i.

As often the case in cryptography and coding theory, it is important to
be clear about what is private and what is public information.

In the Shamir scheme the parameters n, t and p are public, as are the
evaluation points c1, . . . , cn and the identities of Persons 1 up to n. Only
Trevor knows f (x), and, at the time it is issued, the share f (ci) is known
only to Person i and Trevor.

Example 2.5. Suppose that n = 5 and t = 3. Take p = 7 and ci = i for
each i ∈ {1, 2, 3, 4, 5}. We suppose that s = 5. Trevor chooses a1, a2 ∈ F7
at random, getting a1 = 6 and a2 = 1. Therefore f (x) = 5 + 6x + x2 and
the share of Person i is f (ci), for each i ∈ {1, 2, 3, 4, 5}, so

(f (1), f (2), f (3), f (4), f (5)) = (5, 0, 4, 3, 4).

The following exercise shows the main idea needed to prove Theo-
rem 2.7 below.

Exercise 2.6. Suppose that Person 1, with share f (1) = 5, and Person 2,
with share f (2) = 0, cooperate in an attempt to discover s. Show that for
each z ∈ F7 there exists a unique polynomial fs′(x) such that deg f ≤ 2
and f (0) = z, fz(1) = 5 and fz(2) = 0. For example f2(x) = 3x2 + 2
and f3(x) = 2x + 3. Since Trevor chose the coefficients of f at random,
Persons 1 and 2 can learn nothing about s.

Theorem 2.7. In a Shamir scheme with n people, threshold t and secret s, any t
people can determine s but any t− 1 people can learn nothing about s.

The proof shows that any t people can determine the polynomial f .
So as well as learning s, they can also learn the shares of all the other
participants.

Exercise 2.8. Suppose Trevor shares s ∈ Fp across n computers using the
Shamir scheme with threshold t. He chooses the first t computers. They
are instructed to exchange their shares; then each computes s and sends
it to Trevor. Unfortunately Malcolm has compromised computer 1. Show
that Malcolm can both learn s and trick Trevor into thinking his secret is
an s′ ∈ Fp of his choice. (Assume that, thanks to a network delays, it is

7

plausible that computer 1 sends its share after receiving the shares from
the other t− 1 computers.)

The remainder of this section is non-examinable and included for in-
terest only.

Example 2.9. The root key for DNSSEC, part of web of trust that guaran-
tees an IP connection really is to the claimed end-point, and not to Mal-
colm doing a Man-in-the-Middle attack, is protected by a secret sharing
scheme with n = 7 and t = 5: search for ‘Schneier DNSSEC’.

The search above will take you to Bruce Schneier’s blog. It is highly
recommended for background on practical cryptography.

Exercise 2.10. Take the Shamir scheme with threshold t and evaluation
points 1, . . . , n ∈ Fp where p > n. Trevor has shared two large numbers
r and s across n cloud computers, using polynomials f and g so that the
shares are (f (1), . . . , f (n)) and (g(1), . . . , g(n)).

(a) How can Trevor secret share r + s mod p?
(b) Assuming that n ≥ 2t, how can Trevor secret share rs mod p?

Note that all the computation has to be done on the cloud!

Remark 2.11. The Reed–Solomon code associated to the parameters p, n,
t and the field elements c1, c2, . . . , cn is the length n code over Fp with
codewords all possible n-tuples

{(f (c1), f (c2), . . . , f (cn)) : f ∈ Fp[x], deg f ≤ t− 1}.
It will be studied in MT5461. By Theorem 2.7, each codeword is deter-
mined by any t of its positions. Thus two codewords agreeing in n− t+ 1
positions are equal: this shows the Reed–Solomon code has minimum
distance at least n− t + 1.

We have worked over a finite field of prime size in this section. Reed–
Solomon codes and the Shamir secret sharing scheme generalize in the
obvious way to arbitrary finite fields. For example, the Reed–Solomon
codes used on compact discs are defined using the finite field F28 .

3. INTRODUCTION TO BOOLEAN FUNCTIONS

Definition and first examples. Recall that F2 = {0, 1} is the finite field of
size 2 whose elements are the bits 0 and 1. As usual, + denotes addition
in F2 or in Fn

2 . We number positions in Fn
2 from 0, so a typical tuple is

(x0, x1, . . . , xn−1).

Definition 3.1. Let n ∈ N. An n-variable boolean function is a function
Fn

2 → F2.

8

For example, f (x, y, z) = xyz + x is a Boolean function of the three
variables x, y and z, such that f (1, 0, 0) = 0 + 1 = 1 and f (1, 1, 1) = 1 +
1 = 0. We shall see that Boolean functions are very useful for describing
the primitive building blocks of modern stream and block ciphers.

Exercise 3.2. What is a simpler form for x2y + xz + z + z2?

Exercise 3.3. Let maj(x, y, z) = xy + yz + zx where, as usual, the coeffi-
cients are in F2. Show that

maj(x, y, z) =

{
0 if at most one of x, y, z is 1
1 if at least two of x, y, z are 1.

We call maj : F3
2 → F2 the majority vote function. It is a 3-variable Boolean

function.

Motivation. A modern block cipher has plaintexts and ciphertexts Fn
2 for

some fixed n. The encryption functions are typically defined by compos-
ing carefully chosen cryptographic primitives over a number of rounds.
We give two motivating examples below.

Example 3.4.

(1) Each round of the widely used block cipher AES is of the form
(x, k) 7→ G(x) + k where + is addition in F128

2 , x ∈ F128
2 is the

input to the round (derived ultimately from the plaintext) and
k ∈ F128

2 is a ‘round key’ derived from the key. The most impor-
tant cryptographic primitive in the function G : F128

2 → F128
2 is

inversion in the finite field F28 . The inversion function is highly
non-linear and hard to attack. Just for fun, the 256 values of the
boolean function sending 0 to 0 and a non-zero x to the bit in po-
sition 0 of x−1 are shown below, for one natural order on F28 .

0110101101100111000111010110100000011101100100000100110001011111
1011111110110111101000110000101100111001011111111111010000001010
1010010010111010000100000010101010011010000001000011110110011001
1011000111101000010111000101100111010011001110011100001010101010.

It is highly unlikely that you will see any obvious pattern! As one
sign of the apparent randomness, there are 128 zeros, 128 ones,
and each pair 01, 10, 11 appears exactly 64 times. Later we shall
prove that the inversion function is secure against difference at-
tacks.

The function for bit number 1 in the key addition is

(y0, y1, . . . , y127, k0, k1, . . . , k127) 7→ y1 + k1.

We shall see that such linear functions are very weak cryptograph-
ically taken on their own, but are very useful when combined
with non-linear functions such as G and inversion.

9

(2) In the block cipher SPECK proposed by NSA in June 2013, the
non-linear primitive is modular addition in Z/2mZ. As a ’toy’
version we take m = 8; in practice m is at least 16 and usually 64.
Identify F8

2 with Z/28Z by writing numbers in their binary form,
as on the preliminary problem sheet. For instance, 13 ∈ Z/28Z

has binary form 0000 1101 (the space is just for readability) and

1010 1010 � 0000 1111 = 1011 1001

1000 0001 � 1000 0001 = 0000 0010

corresponding to 170+ 15 = 185 mod 256 and 129+ 129 = 2 mod
256. Modular addition is a convenient operation because it is very
fast on a computer, but it has some cryptographic weaknesses. In
SPECK it is combined with other functions in a way that appears
to give a very strong and fast cipher.

One sign that modular addition is weak is that the low numbered
bits are ’close to’ linear functions. We make this precise in §6 on
linear cryptanalysis. For example

(. . . , x2,x1, x0)� (. . . , y2, y1, y0)

= (. . . , x2 + y2 + c2, x1 + y1 + x0y0, x0 + y0)

where c2 is the carry into position 2, defined using the major-
ity vote function by c2 = maj(x1, y1, x0y0). Unless both x0 and
y0 are 1, bit 1 is x1 + y1, a linear function of (. . . , x2, x1, x0) and
(. . . , y2, y1, y0). By Exercise 4.4, output bit 2 is given by the more
complicated polynomial

x2 + y2 + x1y1 + x0x1y0 + x0y0y1.

This formula can be used for part of Question 5 on Problem Sheet 3:
it is the algebraic normal form of the boolean function for bit 2 in
modular addition.

Truth tables and disjunctive normal form. A boolean function f : Fn
2 →

F2 can be defined by its truth table, which records for each x ∈ Fn
2 its

image f (x). For example, the boolean functions F2
2 → F2 of addition and

multiplication are shown below:

x y x + y xy x ∧ y x ∨ y x =⇒ y

0 0 0 0 F F
0 1 1 0 F T
1 0 1 0 F T
1 1 0 1 T T

It is often useful to think of 0 as false and 1 as true. Then xy corre-
sponds to x ∧ y, the logical ‘and’ of x and y, as shown above. The logical
‘or’ of x and y is denoted x ∨ y.

10

Exercise 3.5. Use the true/false interpretation to complete the columns
for x =⇒ y. Could you convince a sceptical friend that false statement
imply true statements?

Example 3.6. The Toffoli function is a 3-variable boolean function impor-
tant in quantum computing. It can be defined by

toffoli(x0, x1, x2) =

{
x0 if x1x2 = 0
x0 if x1x2 = 1.

Here x denotes the bitflip of x, defined by 0 = 1 and 1 = 0. (You will have
seen this if you did the Preliminary Problem Sheet.) In the true/false in-
terpretation F = T and T = F. It is shown below. The two final columns
show the f J functions defined later.

x2 x1 x0 maj(x0, x1, x2) toffoli(x0, x1, x2) f{0} f{0,2}

∅ 0 0 0 0 0 0 0
{0} 0 0 1 0 1 1 0
{1} 0 1 0 0 0 0 0
{0, 1} 0 1 1 1 1 0 0
{2} 1 0 0 0 0 0 0
{0, 2} 1 0 1 1 1 0 1
{1, 2} 1 1 0 1 1 0 0
{0, 1, 2} 1 1 1 1 0 0 0

The sets on the left record which variables are true. For example, the
majority vote function is true on the rows labelled by the sets of sizes 2
and 3, namely, {0, 1}, {0, 2}, {1, 2}, {1, 2, 3}, and false on the other rows.

Given a subset J of {0, . . . , n− 1} we define f J : Fn
2 → F2 by

f J(x) =
∧
j∈J

xj ∧
∧
j 6∈J

xj.

In words, f J is the n-variable boolean function whose truth table has a
unique 1 (or true) in the row labelled J. For instance f{0}(x0, x1, x2) =

x0 ∧ x1 ∧ x2 and f{0,2}(x0, x1, x2) = x0 ∧ x1 ∧ x2 are shown above.

Exercise 3.7.
(i) For what set J do we have

toffoli = f{0} ∨ f{0,1} ∨ f{0,2} ∨ f J?

(ii) Express the majority vote function in the form above.
(iii) Find a way to complete the right-hand side in

maj(x) = (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2) ∨ (. . .).

11

Theorem 3.8 (Disjunctive Normal Form). Let f : Fn
2 → F2 be a boolean

function.
(i) Suppose that the truth table of f has 1 in the rows labelled by the sets J

for J ∈ T . Then
f =

∨
J∈T

f J .

(ii) If T 6= T ′ then
∨

J∈T f J 6=
∨

J∈T ′ f J .

This theorem says that every boolean function f has a unique disjunc-
tive normal form

∨
J∈T f J , for a suitable set T . (Disjunction means logical

or’, i.e.
∨

.) By convention, the empty disjunction is false:
∨

J∈∅(x) = 0
for all x ∈ Fn

2 .

Corollary 3.9. There are 22n
n-variable boolean functions.

Exercise 3.10. By Corollary 3.9, there are 16 truth tables of 2-variable
boolean functions. Using the true/false notation, the 8 for which f (F, F) =
F are shown below. What is a suitable label for the rightmost column?
What are the disjunctive normal forms of these 8 functions? What is a
concise way to specify the remaining 8 functions?

x1 x0 x0 ∨ x1 x0 x1 x0 + x1 x0 ∧ x1 x0 ∧ x1 x0 ∧ x1 ??

∅ F F F F F F F F F F
{0} F T T T F T F T F F
{1} T F T F T T F F T F
{0, 1} T T T T T F T F F F

Algebraic normal form. In F2 we have 02 = 0 and 12 = 1. Therefore the
Boolean functions f (x1) = x2

1 and f (x1) = x1 are equal. Hence, as seen
in Exercise 3.2, multivariable polynomials over F2 do not need squares
or higher powers of the variables. Similarly, since 2x1 = 0, the only coef-
ficients needed are the bits 0 and 1. For instance, x0 + x0x2

2x3
3 + x2

0 + x2x3
is the same Boolean function as x2x3 + x0x2x3.

Given I ⊆ {0, 1, . . . , n− 1}, [1 for 0 notation error, several later similar
corrections have also been made] let

xI = ∏
i∈I

xi.

We say the xI are boolean monomials. By definition (or convention if you
prefer), x∅ = 1. For example, x{1,2} = x1x2. It is one of the three boolean
monomial summands of maj(x0, x1, x2) = x0x1 + x1x2 + x2x0.

The functions f J so useful for proving Theorem 3.8 have a particularly
simple form as polynomials:

f J(x) = ∏
j∈J

xj ∏
j 6∈J

xj.

12

Exercise 3.11. Define the 3-variable Boolean function

g(x0, x1, x2) =

{
1 if x0 = x1 = x2

0 otherwise.

Express g as sum of boolean monomials. The negation of g is defined by
g = g(x). What is g as a sum of boolean monomials?

Similarly you can use the truth table on page 10 to express the Toffoli
function and its negation as a sum of boolean monomials. It is only a
small generalization of Exercise 3.11 to prove the following theorem.

Theorem 3.12. Let f : Fn
2 → F2 be an n-variable Boolean function.

(a) There exist unique coefficients bJ ∈ {0, 1}, one for each J ⊆ {1, . . . , n}
such that

f = ∑
I⊆{0,1,...,n−1}

bJ f J .

(b) There exist unique coefficients cI ∈ {0, 1}, one for each I ⊆ {1, . . . , n},
such that

f = ∑
I⊆{0,1,...,n−1}

cI xI .

The expression for f in (b) is called the algebraic normal form of f .

As shorthand, we write [xI] f for the coefficient of xI in the boolean
function f . Thus f = ∑I⊆{0,1,...,n−1}([xI] f)xI is the algebraic normal form
of f . It is possible to give an explicit formula for the coefficients [xI] f . As
motivation, consider the sums in the exercise below.

Exercise 3.13. Let f (x, y, z) = 1 + x + xz + yz + xyz. Let g(x, y, z) =
f (0, y, z) + f (1, y, z) and let

h(x, y, z) = g(x, 0, z) + g(x, 1, z)

= f (0, 0, z) + f (1, 0, z) + f (0, 1, z) + f (1, 1, z)

Find the algebraic normal form of g and h. What is the connection be-
tween g(0, 0, 0) and h(0, 0, 0) and [x] f , [xy] f ? How would you find [xz] f
and [xyz] f by this method?

Proposition 3.14. Let f : Fn
2 → F2 be an n-variable Boolean function. Then

[xI] f = ∑ f (z0, . . . , zn−1)

where the sum is over all z0, . . . , zn−1 ∈ {0, 1} such that {j : zj = 1} ⊆ I.

In outline, the proof given in lectures is as follows: we first prove the
formula when f = f J for some J. We then use Theorem 3.12(a), that f is
a sum of the f J , to get the general case.

13

4. THE DISCRETE FOURIER TRANSFORM

In this section it will be useful to change the range of Boolean functions
so that they take values in {−1, 1} rather than {0, 1}.

Given x ∈ F2 we define (−1)x by regarding x as an ordinary integer.
Thus (−1)0 = 1 and (−1)1 = −1. Given an n-variable boolean function
f : Fn

2 → F2 we define (−1) f : Fn
2 → {−1, 1} by (−1) f (x) = (−1) f (x).

Definition 4.1. Let f , g : Fn
2 → F be Boolean functions. We define the

correlation between f and g by

corr(f , g) =
1
2n ∑

x∈Fn
2

(−1) f (x)(−1)g(x).

The summand (−1) f (x)(−1)g(x) is 1 when f (x) = g(x) and −1 when
f (x) = −g(x). Hence

corr(f , g) =
csame − cdiff

2n

where

csame =
∣∣{x ∈ Fn

2 : f (x) = g(x)}
∣∣

cdiff =
∣∣{x ∈ Fn

2 : f (x) 6= g(x)}
∣∣.

Thus the correlation takes values between 1 (perfect agreement) and −1
(always different); as before, 0 can be interpreted as no correlation.

Linear functions such as f (x0, x1, x2) = x0 + x1 are weak cryptograph-
ically. So are functions such as f (x0, x1, x2) = x0 + x1x2 that are highly
correlated with linear functions. Given T ⊆ {0, 1, . . . , n − 1}, define
LT : Fn

2 → F2 by
LT(x) = ∑

t∈T
xt.

For example, L{i}(x0, x1, . . . , xn−1) = xi returns the entry in position i
and L∅(x) = 0 is the zero function.

Exercise 4.2. Find all the linear 3-variable boolean functions. Which 3-
variable boolean functions are uncorrelated with the zero function?

Lemma 4.3. The linear functions Fn
2 → F are precisely the LT : Fn

2 → F2 for
T ⊆ {0, 1, . . . , n− 1}. If S, T ⊆ {0, 1, . . . , n− 1} then

corr(LS, LT) =

{
1 if S = T
0 otherwise.

Example 4.4. Let maj : F3
2 → F2 be the majority vote function from Exer-

cise . We have [corrected off-by-one error]

corr(maj, LT) =


1
2 if T = {0}, {1}, {2}
− 1

2 if T = {0, 1, 2}
0 otherwise.

14

To generalize the previous example, we define an inner product on the
vector space W of functions Fn

2 → R by

〈θ, φ〉 = 1
2n ∑

x∈2n
θ(x)φ(x).

Exercise 4.5.
(i) Let θ ∈W. Check that, as required for an inner product, 〈θ, θ〉 ≥ 0

and that 〈θ, θ〉 = 0 if and only if θ(x) = 0 for all x ∈ Fn
2 .

(ii) Show that if n = 2 then W is 4-dimensional. What is dim W in
general?

It is immediate from the definition that if f and g are n-variable boolean
functions then

〈(−1) f , (−1)g〉 = corr(f , g).

Theorem 4.6 (Discrete Fourier Transform).
(a) The functions (−1)LT for T ⊆ {0, 1, . . . , n − 1} are an orthonormal

basis for the vector space W of functions Fn
2 → R.

(b) Let θ : Fn
2 → R. Then

θ = ∑
T⊆{0,1,...,n−1}

〈θ, (−1)LT 〉(−1)LT .

(c) Let f : Fn
2 → F2 be a Boolean function. Then

(−1) f = ∑
T⊆{0,1,...,n−1}

corr(f , LT)(−1)LT .

We call (c) the ‘Discrete Fourier Inversion Theorem’. The function T 7→
corr(f , LT) = 〈(−1) f , (−1)LT 〉 is the Discrete Fourier Transform of f . For
example, by Example 4.4, the Discrete Fourier Transform of the majority
vote function is

(−1)maj = 1
2(−1)L{1} + 1

2(−1)L{2} + 1
2(−1)L{3} − 1

2(−1)L{1,2,3} .

The following corollary is known as Parseval’s Theorem.

Corollary 4.7. Let f be an n-variable boolean function. Then

∑
T⊆{0,1,...,n−1}

corr(f , LT)
2 = 1.

Since there are 2n linear functions (corresponding to the 2n subsets of
{0, 1, . . . , n− 1}), it follows that any n-variable boolean function f has a
squared correlation of at least 1/2n. Hence f has a correlation of at least
1/
√

2n in absolute value with some linear function.

Example 4.8.
(1) Let f (x0, x1, x2) = x0x1x2. We have corr(f , L∅) =

3
4 , corr(f , L{0}) =

1
4 , corr(f , L{0,1}) = − 1

4 and corr(f , L{0,1,2}) =
1
4 . By Theorem 4.6(c)

and symmetry, the Discrete Fourier Transform of f is

(−1) f = 3
4 +

1
4 ∑

T⊆{0,1,2}
T 6=∅

(−1)|T|−1(−1)LT .

15

The squares of the correlations are 9
16 and 1

14 (7 times); as expected
from Corollary 4.7, (3

4)
2 + 7(1

4)
2 = 1.

(2) Exercise: Consider the 2-variable boolean function f (x0, x1) =
x0x1. Find its correlations with the four linear functions L∅(x0, x1) =
1, L{0}(x0, x1) = x0, L{1}(x0, x1) = x1, L{0,1}(x0, x1) = x1 + x2 and
deduce that

(−1)x0x1 = 1
2(−1)L∅ + 1

2(−1)L{0} + 1
2(−1)L{1} − 1

2(−1)L{0,1}

(3) Let b(x0, x1, y0, y1) = x0y0 + x1y1. We shall use MATHEMATICA

to show that corr(b, LT) = ± 1
4 for every T ⊆ {0, 1, 2, 3}. By the

remark following Corollary 4.7, this function achieves the crypto-
graphic ideal of having all correlations as small (in absolute value)
as possible.

An n-variable boolean function such as b above where the correlations
all have absolute value 1/

√
2n is called a bent function. Since correlations

are rational numbers, they exist only for even n. Many different construc-
tions have been found and applied in cryptography.

We end with a lemma that is often useful for computing correlations.
For instance applied to x0y0, . . . , xm−1ym−1, and using Example 4.8(2)
for the correlations of x0y0, it says that the correlations for x0y0 + · · ·+
xm−1ym−1 are all ±1/2m. Thus this function is bent. The special case
m = 2 was seen in Example 4.8(3). See the end of Part B of the main
course for an application to the quadratic stream cipher.

Lemma 4.9 (Piling-up Lemma). Let f be an m-variable boolean function of
x0, . . . , xm−1 and let g be an n-variable boolean function of y0, . . . , yn−1. Define
f + g by

(f + g)(x0, . . . , xm−1, y0, . . . , yn−1) = f (x0, . . . , xm−1) + g(y0, . . . , yn−1).

Given S ⊆ {0, . . . , m− 1} and T ⊆ {0, . . . , n− 1}, let L(S,T)(x, y) = LS(x)+
LT(y). The L(S,T) are all linear functions of the m + n variables and

corr(f + g, L(S,T)) = corr(f , LS) corr(g, LT).

Since time is pressing, the proof may be omitted. But since it is very
short, we give it below.

Proof of Lemma 4.9. The first claim is immediate from Lemma 4.3, applied
with m + n variables. By the Discrete Fourier Transform (Theorem 4.6(c))
we have

(−1) f = ∑
S⊆{0,...,m−1}

corr(f , LS)(−1)LS

(−1)g = ∑
T⊆{0,...,n−1}

corr(g, LT)(−1)LT

16

Observe that by definition of L(S,T),

(−1)LS(x0,...,xm−1)(−1)LT(y0,...,yn−1) = (−1)L(S,T)(x0,...,xm−1,y0,...,yn−1).

Therefore multiplying the discrete fourier transforms gives

(−1) f+g = ∑
S⊆{0,...,m−1}

∑
T⊆{0,...,n−1}

corr(f , LS) corr(g, LT)(−1)L(S,T) .

This is the Discrete Fourier Transform of (−1) f+g. Taking the coefficient
of (−1)L(S,T) we get corr(f + g, L(S,T)) = corr(f , LS) corr(g, LT). �

5. BERLEKAMP–MASSEY ALGORITHM

The Berlekamp–Massey algorithm finds the width and feedback poly-
nomial of an LFSR of minimal width generating a given binary word
u0 . . . un−1. It is faster than the linear algebra method seen in Ques-
tion 3 of Sheet 5. If an LFSR generates u0 . . . un−1 then clearly it generates
u0 . . . um−1 for all m ≤ n. Therefore the minimal width stays the same or
goes up at each step of the algorithm.

Motivation. These examples can be checked using the MATHEMATICA

notebook LFSRs.nb available from Moodle. Recall from after Exercise 6.9
in the main course that the feedback polynomial of an LFSR with taps T
is gT(z) = 1 + ∑t∈T zt.

Example 5.1. By Question 4 on Sheet 5, the sum u of the keystreams of
the LFSR with taps {3, 4} and width 4 and the LFSR with taps {2, 3} and
width 3, using keys 0001 and 001, has period 105.

ui = (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

The table below shows the output of the Berlekamp–Massey algorithm
(use BerlekampMasseyFull[usQ4] in LFSRs.nb) applied to the first n terms
u0 . . . un−1 for n ≥ 6. The final column is the m in Proposition 5.5; ignore
it for now.

n width feedback polynomial taps m

6 3 1 + z {1} 2
9 4 1 + z + z4 {1, 4} 6
10 6 1 + z + z3 {1, 3} 9
11 6 1 + z2 + z3 + z5 {2, 3, 5} 9
≥ 13 7 1 + z2 + z4 + z5 + z7 {2, 4, 5, 7} 12

The LFSR does not change for n = 7, 8 or 12.

17

For instance, the first 10 terms u0u1 . . . u9 are generated by the LFSR of
width 6 with feedback polynomial 1 + z + z3; its taps are {1, 3}. Taking
as the key u0u1u2u3u4u5 = 001111, the first 30 terms of the keystream are:

ki =(0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, . . .)
ui =(0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, . . .)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Since k10 6= u10, running the Berlekamp–Massey algorithm on the first 11
bits u0 . . . u9u10 gives a different LFSR. (The width stays as 6, but the taps
change to {2, 3, 5}.) The new LFSR generates u0 . . . u9u10u11, so is also
correct for the first 12 bits. This is why there is no change for n = 12.

For all n ≥ 13 the output of the algorithm is the LFSR of width 7 and
feedback polynomial 1 + z2 + z4 + z5 + z7; as suggested on the problem
sheet, this may also be found by the method of annihilators.

Example 5.2. The first 30 bits output by the Geffe generator seen in Ex-
ample 8.3 of the main course are:

ui 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

The output of the Berlekamp–Massey algorithm run on the first 20 bits
is shown below. [Corrected several errors on May 19th, probably algo-
rithm was run on wrong keystream.]

n width feedback polynomial taps m

8 5 1 + z {1} 4
9 5 1 + z + z4 {1, 4} 4

14 9 1 + z + z4 + z9 {1, 4, 9} 13
18 9 1 + z + z5 + z8 + z9 {1, 5, 8, 9} 13
19 10 1 + z6 + z8 {1, 6, 8} 18

Taking n = 30, an LFSR of width 15 is required; the set of taps is then
{1, 3, 4, 5, 7, 8, 9, 10, 11, 12}. We see that the minimal width of a LFSR gen-
erating the first n terms is about n/2. This is the typical case for a ‘ran-
dom’ sequence. This, and the lack of any obvious pattern in the taps,
show that the Geffe cipher is stronger cryptographically than the output
of an LFSR.

Setup. Fix throughout a binary stream

u0u1u2

Let Un(z) = u0 + u1z + · · ·+ un−1zn−1 be the polynomial recording the
first n terms. Recall from §1 that the degree of a non-zero polynomial h(z)
is its highest power of z.

18

Lemma 5.3. The word u0u1 . . . un−1 is the output of the LFSR with width `
and taps T if and only if Un(z)gT(z) = h(z) + znr(z) for some polynomials
h(z) and r(z) with deg h < `.

Proof. Let T ⊆ {1, . . . , `}. We have Un(z)gT(z) = h(z) + znr(z) where
deg h < ` if and only if the coefficient of z in the left-hand side is 0 for
` ≤ s < n. Since gT(z) = 1 + ∑t∈T zt, this holds if and only if

ks + ∑
t∈Tn

ks−t = 0

for ` ≤ s < n. Equivalently, the LFSR with taps T and width ` generates
u0u1 . . . un−1. �

Example 5.4. Let u = (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0) = u0 . . . u12 be the first
13 entries of the keystream in Example 5.1. The first 12 entries u0 . . . u11
are generated by the LFSR of width 6 with taps {2, 3, 5}. Correspond-
ingly, by the ‘if’ direction of Lemma 5.3,

(z2 + z3 + z4 + z5 + z7)g{2,3,5}(z)

= (z2 + z3 + z4 + z5 + z7)(1 + z2 + z3 + z5)

= z2 + z3 + z5 + z12

= h(z) + z12r(z)

where h(z) = z2 + z3 + z5 and r(z) = 1. This equation also shows that
the ‘only if’ direction fails to hold when n = 13 since z12 is not of the
form z13r(z). Correspondingly, by the ‘only if’ direction of Lemma 5.3,
the LFSR generates (0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1) rather than u.

Berlekamp–Massey step. At step n of the Berlekamp–Massey algorithm we
have two LFSRs:

• An LFSR Fm of width `m with taps Tm, generating

u0u1 . . . um−1um

• An LFSR Fn of width `n with taps Tn, where n > m, generating

u0u1 . . . um−1um . . . un−1.

Thus Fm is correct for the first m positions, and then wrong, since it gen-
erates um rather than um. If Fn generates u0u1 . . . um−1um . . . un−1un then
case (a) applies and the algorithm returns Fn. The next proposition deals
with case (b), when Fn outputs un rather than un.

Proposition 5.5. With the notation above, suppose that the LFSR Fn generates
u0u1 . . . un−1un. The LFSR with feedback polynomial

zn−mgTm(z) + gTn(z)

and width max(n−m + `m, `n) generates u0u1 . . . un−1un.

19

As a useful notation we write [≥ d] for an unspecified polynomial with
minimum power of z at least d. For instance [≥ 5] could stand for z5 + z8,
or z6, but not z4. Several times below we use that [≥ d] + [≥ d] = [≥ d].

Proof. For r ∈ {0, 1, . . . , n + 1}, define Ur(z) = ∑r−1
i=0 uizi. Thus Un+1(z) is

the power series corresponding to u0u1 . . . un. Observe that

Un+1(z) + zn = Un(z) + unzn + zn = Un(z) + unzn.

Since Fn generates u0 . . . un−1un, Lemma 5.3 implies(
Un+1(z) + zn)gTn(z) = hn(z) + (≥ n + 1)

where deg hn < `n. The same argument replacing n with m shows that

(Um+1(z) + zm)gTm(z) = hm(z) + [≥ m + 1]

where deg hm < `m. Since zngTn(z) = zn + [≥ n + 1], and similarly
zmgTm(z) = zm + [≥ m + 1], we have

Un+1(z)gTn(z) = hn(z) + zn + [≥ n + 1]

Um+1(z)gTm(z) = hm(z) + zm + [≥ m + 1].

Hence

Un+1(z)
(
zn−mgTm(z) + gTn(z)

)
= zn−m(Um+1(z) + [≥ m + 1]

)
gTm(z) + Un+1(z)gTn(z)

= zn−mUm+1(z)gTm(z) + [≥ n + 1] + Un+1(z)gTn(z)

=
(
zn−mhm(z) + zn + [≥ n + 1]

)
+
(
hn(z) + zn + [≥ n + 1]

)
= zn−mhm(z) + hn(z) + (≥ n + 1).

where the first equality uses Un+1(z) = Um+1(z) + [≥ m + 1]. Note the
cancellation of the two zn terms. (Intuitively: two wrongs come together
to make a right.) Since

deg
(
zn−mhm(z) + hn(z)

)
< max

(
n−m + deg hm(z), deg hn(z)

)
≤ max(n−m + `m, `n),

the ‘if’ direction of Lemma 5.3 now implies that u0 . . . un−1un is a keystream
of the claimed LFSR. �

Example 5.6. Take the keystream k0k1 . . . k9 of length 10 shown below:

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

The LFSR F6 of width `6 = 3 and taps T6 = {1, 3} generates the keystream

(1, 1, 1, 0, 1, 0, 0, 1, 1, 1).
0 1 2 3 4 5 6 7 8 9

The LFSR F7 of width `7 = 4 and taps T7 = {1, 4} generates the keystream

(1, 1, 1, 0, 1, 0, 1, 1, 0, 0).
0 1 2 3 4 5 6 7 8 9

20

Note that F7 is wrong in position 7. Using Proposition 5.5, taking m = 6
and n = 7 we compute

zn−mgTm + gTn(z) = z7−6g{1,3}(z) + g{1,4}(z)

= z(1 + z + z3) + (1 + z + z4)

= 1 + z2.

This is the feedback polynomial of the LFSR F8 with taps T8 = {2} and
width `8 = n−m + `m = 7− 6 + 3 = 4. As expected this generates

(1, 1, 1, 0, 1, 0, 1, 0, 1, 0).
0 1 2 3 4 5 6 7 8 9

correct for the first 8 positions. (And then wrong for u8.) Although the
only tap in {2} is 2, we still have to take the width of F8 to be 4 (or more),
to get the first 8 positions correct.

Exercise 5.7. Continuing from the example, apply Proposition 5.5 taking
n = 8, m = 6, and F8 and F6 as in Example 5.6. You should get the LFSR
F9 with taps {3, 5} generating

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0).
0 1 2 3 4 5 6 7 8 9

which is the full keystream. The width is now 8− 6 + 3 = 5; since 5 is a
tap, this is the minimum possible width for these taps.

We could also have used F7 (wrong in position 7) as the ‘deliberately
wrong’ LFSR in Exercise 5.7. Doing this we get instead the LFSR with
taps {1, 5}, which generates (1, 1, 1, 0, 1, 0, 1, 0, 0, 1), also correct for the
first 9 positions. We choose F6 to follow the algorithm specified below.

Berlekamp–Massey algorithm. Let c be least such that uc 6= 0. The algo-
rithm defines LFSRs Fc, Fc+1, . . . so that each Fn has width `n and taps Tn
and generates the first n positions of the keystream: u0, . . . , un−1.

• [Initialization] Set Tc = ∅, `c = 0, Tc+1 = ∅ and `c+1 = c + 1. Set
m = c.
• [Step] We have an LFSR Fn with taps Tn of width `n generating

u0, . . . , un−1 and an LFSR Fm generating u0, . . . , um−1, um.
(a) If Fn generates u0, . . . , un−1, un then set Tn+1 = Tn, `n+1 = `n.

This defines Fn+1 with Fn+1 = Fn. Keep m as it is.
(b) If Fn generates u0, . . . , un−1, un, calculate

g(z) = zn−mgTm(z) + gTn(z)

where, as usual, gTm and gTn are the feedback polynomials.
Define Tn+1 so that g(z) = 1 + ∑t∈Tn+1

zt. Set

`n+1 = max(`n, n + 1− `n).

21

If `n+1 > `n, update m to n, otherwise keep m as it is.

Thus m is updated if and only if the width increases in step (b).

Apart from how the width changes, this should all be expected from
Proposition 5.5 and Example 5.6. Note that we need max Tn+1 ≤ `n+1 for
the LFSR Fn+1 to be well-defined. We prove this as part of Theorem 5.10.

Example 5.8. We apply the Berlekamp–Massey algorithm to the keystream
(1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1) from Example 5.6 extended by one extra bit u10 =
1. After initialization we have T0 = ∅, `0 = 0, T1 = ∅, `1 = 1. Case (a)
applies in each step n for n ∈ {2, 4, 5, 9}. The table below shows the steps
when case (b) applies.

n Tn `n m Tm n−m Tn+1 `n+1

1 ∅ 1 0 ∅ 1 {1} 1
3 {1} 1 0 ∅ 3 [corr.] {1, 3} 3
6 {1, 3} 3 3 {1} 3 {1, 4} 4
7 {1, 4} 4 6 {1, 3} 1 {2} 4
8 {2} 4 6 {1, 3} 2 {3, 5} 5
10 {3, 5} 5 8 {2} 2 {2, 3, 4, 5} 6

Exercise.

• Run the algorithm starting with step 1, in which you should de-
fine T2 = {1}, and finishing with step 6, in which you should
define T7 = {1, 4}.
• Then check that steps 7 and 8 of the algorithm are exactly what

we did in Example 5.6 and Exercise 5.7.
• At step 9 you should find that case (a) applies; check that step

10 finishes with the LFSR F11 of width `11 = 6 and taps T11 =
{2, 3, 4, 5}, generating u0u1 . . . u10.

Berlekamp–Massey theorem. To prove that the LFSRs defined by running
the Berlekamp–Massey algorithm have minimal possible width we need
the following lemma. The proof is not obvious, but if you think ‘what
can I possibly do using Lemma 5.3’ you should find the main idea.

Lemma 5.9. Let n ≥ `. If an LFSR F of width ` generates the keystream
(u0, u1, . . . , un−1, b) of length n+ 1 then any LFSR F′ generating the keystream
(u0, u1, . . . , un−1, b) has width `′ where `′ ≥ n + 1− `.

22

Proof. Let U(z) = u0 + u1z + · · ·+ un−1zn−1 + bzn. By Lemma 5.3, using
a similar argument to the proof of Proposition 5.5, we have

U(z)gT(z) = h(z) + [≥ n + 1](
U(z) + zn)gT′(z) = h′(z) + [≥ n + 1]

for polynomials h(z) and h′(z) with deg h < ` and deg h < `′. Since
zngT′(z) = zn + [≥ n + 1], the second equation implies

U(z)gT′(z) = h′(z) + zn + [≥ n + 1].

We now use these equations to compute U(z)gT(z)gT′(z) in two different
ways:

U(z)gT(z)gT′(z) = h(z)gT′(z) + [≥ n + 1]

U(z)gT′(z)gT(z) = h′(z)gT(z) + zngT(z) + [≥ n + 1].

Using that zngT(z) = zn + [≥ n + 1] and adding we find that

0 = h(z)gT′(z) + h′(z)gT(z) + zn + [≥ n + 1].

Since deg h(z)gT′(z) ≤ deg h + `′ < `+ `′ and deg h′(z)gT(z) < deg h′ +
` = `′ + `, the only way that zn can cancel is if `+ `′ > n. This is equiva-
lent to `′ ≥ n + 1− `. �

Recall that step n of the Berlekamp–Massey algorithm returns an LFSR
Fn+1 with taps Tn+1 and width `n+1 generating u0 . . . un−1un.

Theorem 5.10. With the notation above, max Tn+1 ≤ `n+1. Moreover `n+1 is
the least width of any LFSR generating u0, . . . , un−1, un.

Proof of Theorem 5.10 [Version 1: skip please!] Set `0 = 0 and T0 = ∅. We
work by induction on n ∈N. So our inductive hypothesis is that

Claim: For each r ≤ n, Fr is the minimum width LFSR
generating u0u1 . . . ur−1. Moreover, whenever r < n and
Tr 6= Tr+1 or `r+1 6= `r equality holds in Lemma 5.9, i.e.
`r+1 = max(`r, r + 1− `r).

Base case: let c be least such that kc 6= 0. When n = c or n = c + 1, by the
initialisation step, Tc = Tc+1 = ∅ and `c = 0 and `c+1 = c + 1. Clearly
these are the minimum possible widths. [Correction: it’s not vacuous]

Inductive step: Suppose the claim holds for n ∈ N. We must prove Theo-
rem 5.10, as stated above for n, and the ‘moreover’ part of the claim.

For (a), if Fn generates u0 . . . un−1un then, since no shorter LFSR gener-
ates u0 . . . un−1, Fn is the minimal length lFSR that generates the keystream
u0 . . . un−1un. The taps and lengths do not change, so there is nothing
more to check.

In (b), we suppose Fn generates u0 . . . un−1un. By Proposition 5.5 we get
a new LFSR Fn+1 generating u0 . . . un−1un with taps Tn+1 and width `n+1.
There are two cases for the width. Since m was the most recent width
change we have `m+1 > `m, and by induction, `m+1 = max(`m, m + 1−
`m) = m + 1− `m. Hence

`n = m + 1− `m.

23

By definition, `n+1 = max(`n, n + 1− `n). So by the previous displayed
equation n + 1− `n = n + 1− (m + 1− `m) = n−m + `m and

(‡) `n+1 = max(`n, n−m + `m).

We now consider two cases.
(i) Suppose n − m + `m ≤ `n. Since zn−mgTm(z) has degree ≤ n −

m + `m and gTn(z) has degree ≤ `n, their sum gTn+1(z) has degree
≤ `n. Hence Tn+1 ⊆ {1, . . . , `n}. By induction, no LFSR of width
< `n generates u0 . . . un−1, so `n is the minimal width of an LFSR
generating u0 . . . un−1un. By (‡) and the hypothesis n−m + `m ≤
`n, we have `n+1 = `n as required.

(ii) Suppose that n−m + `m > `n. Since the LFSR of width `n gener-
ates u0 . . . un−1un, by Lemma 5.9, the minimum width of an LFSR
generating u0 . . . un−1un is at least n + 1− `n. By (‡) and the hy-
pothesis n − m + `m > `n, we have `n+1 = n − m + `m. Hence
n − m + `m = n − m + (m + 1 − `n) = n + 1 − `n. Therefore
`n+1 = n + 1− `n, as required.

This proves the claim for n + 1, and completes the inductive step. �

[I now see that there is a simpler, and I find more intuitive, proof of the
result we need. Base case is now correct (it’s not vacuous).]

Proof. We work by induction on n.
Base case. let c be least such that kc 6= 0. When n = c or n = c + 1,

by the initialisation step, Tc = Tc+1 = ∅ and `c = 0 and `c+1 = c + 1.
Clearly these are the minimum possible widths.

Inductive step. By induction, `n is the minimum width of an LFSR gen-
erating u0u1 . . . un−1. Hence any LFSR generating u0u1 . . . un−1un has
width ≥ `n. By Lemma 5.9, the minimum width of an LFSR generat-
ing u0u1 . . . un−1un is at least n + 1− `n. Therefore the minimum width
of an LFSR generating u0u1 . . . un−1un is at least

max(`n, n + 1− `n).

By definition, this is `n+1. Therefore, provided Fn+1 is well-defined, that
is max Tn+1 ≤ `n+1, it has the minimum possible width.

Suppose case (a) holds. By definition, Tn+1 = Tn and `n+1 = `n. Hence
max Tn+1 = max Tn ≤ `n = `n+1 as required. Suppose case (b) holds.
Since the most recent width change was at step m, we have `m+1 > `m,
and since, by definition, `m+1 = max(`m, m + 1− `m) we have `m+1 =
m + 1− `m. Therefore `n = `n−1 = . . . = `m+1 = m + 1− `m and

n + 1− `n = n−m + `m.

The taps Tn+1 are defined by

1 + ∑
t∈Tn+1

zt = zn−mgTm(z) + gTn(z).

24

Here zn−mgTm(z) has degree at most n− m + `m, which is n + 1− `n by
the displayed equation above, and gTn(z) has degree at most `n. Since,
by definition, `n+1 = max(`n, n + 1− `n), we have max Tn+1 ≤ `n+1. �

The linear complexity of a word u0u1 . . . un−1 is the minimal width of an
LFSR that generates it. Modern stream ciphers aim to generate keystreams
with high linear complexity. For example, take the m-quadratic stream ci-
pher from Example 8.5. If m = 1 the keystream u0u1 . . . u29 for the key
pair k = 10101 and k′ = 101010 is

(1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1).

The table below shows the linear complexity of the first n bits of the
keystream for small n and m.

m\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 2 2 2 2 5 5 5 5 5 5 5 5 5
2 0 2 2 2 2 2 5 5 5 5 5 5 5 5 5
3 0 0 0 4 4 4 4 4 4 6 6 6 6 6 6
4 0 0 0 0 0 7 7 7 7 7 7 7 7 7 8
5 0 0 0 0 5 5 5 5 5 5 5 7 7 7 8

Some interesting features can be seen for larger lengths: for instance the
linear complexity when m = 1 jumps from 5 for n = 20 to 16 for n = 21.
For n = 5 the linear complexity is about n/2; this is the expected linear
complexity of a random sequence of bits.

Extra. The original paper is Shift-register synthesis and BCH decoding, James
L. Massey, IEEE Transactions on Information Theory, 15 (1969) 122–127.
It deals with LFSRs defined over an arbitrary field and leads to an al-
gorithm for decoding cyclic Reed–Solomon codes (and the more general
BCH codes in the title).

Example 5.11. The Berlekamp–Massey algorithm (for arbitrary fields) is
implemented in the MATHEMATICA notebook LFSRs.nb. Try

BerlekampMasseyFull[{1,1,1,0,1,0,1,0,0,0,1}] // TF

to check Example 5.8. Each line of the output gives a pair(
(m, `m, em, gTm(z)), (n, `n, en, gTn(z))

)
.

Here em and en are the errors on bits um and un; for the binary case, em = 1
for all relevant m (since the LFSR changed) and un = 1 if and only if
Step (b) applies. You can read the taps Tm and Tn off from the feedback
polynomials. Using this you should be able to translate the MATHEMAT-
ICA output into the table in Example 5.8. To see an example where it finds
a linear recurrence for an integer sequence try

BerlekampMasseyFull[{1,1,2,3,5,8,13,21,34},0] // TF

Now try instead the sequence 1, 1, 2, 3, 4, 6, 9, 13, 19, 28. What do you ex-
pect is the next term?

25

6. LINEAR CRYPTANALYSIS

In §4 we considered Boolean functions Fn
2 → F2. Typically crypto-

graphic functions return multiple bits, not just one. So we must choose
which output bits to tap.

Recall that ◦ denotes composition of functions: thus if F : Fm
2 → Fn

2
and G : Fn

2 → F
p
2 then G ◦ F : Fm

2 → F
p
2 is the function defined by

(G ◦ F)(x) = G
(

F(x)
)
.

Example 6.1. Let S : F4
2 → F4

2 be the S-box in the Q-block cipher (see
Example 9.5 in the main notes), defined by

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(a) Suppose we look at position 0 of the output by considering L{0} ◦
S : F4

2 → F2. We have

(L{0} ◦ S)
(
(x0, x1, x2, x3)

)
= L{0}(x2, x3, x0 + x1x2, x1 + x2x3)

= x2

= L{2}
(
(x0, x1, x2, x3)

)
.

Hence L{0} ◦ S = L{2}. By Lemma 4.3,

corr(L{0} ◦ S, LT) =

{
1 if T = {2}
0 otherwise.

(b) Instead if we look at position 2, the relevant Boolean function is
L{2} ◦ S, for which L{2} ◦ S

(
(x0, x1, x2, x3)

)
= x0 + x1x2. Exercise:

show that

corr(L{2} ◦ S, LT) =


1
2 if T = {0}, {0, 1}, {0, 2}
− 1

2 if T = {0, 1, 2}
0 otherwise

.

In linear cryptanalysis one uses a high correlation to get information
about certain bits of the key. We shall see this work in an example.

Example 6.2. For k ∈ F12
2 let ek : F8

2 → F8
2 be the Q-block cipher, as

defined in Example 8.4. Then ek
(
(v, w)

)
= (v′, w′) where

v′ = w + S
(
v + S(w + k(1)) + k(2)).

We choose v′ rather than w′ since v′ depends only on the first two round
keys. Recall that k(1) = (k0, k1, k2, k3) and k(2) = (k4, k5, k6, k7). Ex-
ample 6.1 suggests considering corr(L{0} ◦ ek, L{2}). We have (L{0} ◦
ek)
(
(v, w)

)
= L{0}

(
(v′, w′)

)
= v′0 and L{2}

(
(v, w)

)
= v2.

Exercise: using that k(1)0 = k0, k(1)1 = k1, k(1)2 = k2 and k(2)2 = k6, check that

v′0 = v2 + (w1 + k1)(w2 + k2) + k0 + k6.

26

By definition

corr(L{0} ◦ ek, L{2}) =
1
28 ∑

(v,w)∈F8
2

(−1)v2+(w1+k1)(w2+k2)+k0+k6(−1)v2

=
1
28 (−1)k0+k6 ∑

(v,w)∈F8
2

(−1)(w1+k1)(w2+k2)

=
26

28 (−1)k0+k6 ∑
w1,w2∈F2

(−1)(w1+k1)(w2+k2)

When we compute the sum, the values of k1 and k2 are irrelevant. For
instance, if both are 0 we average (−1)w1w2 over all four (w1, w2) ∈ F2

2
to get 1

2 ; if both are 1 we average (−1)(w1+1)(w2+1), seeing the same sum-
mands in a different order, and still getting 1

2 . Hence

corr(L{0} ◦ ek, L{2}) =
1
28 (−1)k0+k6 ∑

(v,w)∈F8
2

(−1)w1w2

= (−1)k0+k6
1
4 ∑

w1,w2∈{0,1}
(−1)w1w2

= 1
2(−1)k0+k6 .

We can estimate this correlation from a collection of plaintext/ciphertext
pairs (v, w), (v′, w′) by computing (−1)v′0+v2 for each pair. We get

(−1)k0+k6 with probability 3
4

−(−1)k0+k6 with probability 1
4

so the average is the correlation 1
2(−1)k0+k6 which tells us k0 + k6.

Using our collection of plaintext/ciphertext pairs we can also estimate

corr(L{0} ◦ ek, L{2,5}) =
1
2(−1)k0+k6+k1

corr(L{0} ◦ ek, L{2,6}) =
1
2(−1)k0+k6+k2

and so learn k1 and k2 as well as k0 + k6. (You are asked to show this on
Problem Sheet 9.) There are similar high correlations of 1

2 for output bit 1.
Using these one learns k2 and k3 as well as k1 + k7.

Exercise 6.3. Given k0 + k6, k1 + k7, k1, k2, k3, how many possibilities are
there for the key in the Q-block cipher?

This exercise shows that linear cryptanalysis gives a sub-exhaustive at-
tack on the Q-block cipher. It is more powerful than the difference attack
seen in the main course. Moreover, this attack required chosen plain-
texts, rather than the observed collection of plaintext/ciphertext pairs
used here. It is therefore more widely applicable.

27

In the attack on the Q-Block Cipher we saw that the correlation de-
pended on the key only by a sign. This is because key addition, as is
almost universally the case for block ciphers, was done in Fn

2 .

Lemma 6.4. Fix k ∈ Fn
2 . Define F : Fn

2 → Fn
2 by F(x) = x + k. Then

corr(LS ◦ F, LT) =

{
(−1)LS(k) if S = T
0 if S 6= T.

Another very useful result gives correlations through the composition
of two functions.

Proposition 6.5. Let F : Fn
2 → Fn

2 and G : Fn
2 → Fn

2 be functions. For
S, T ⊆ {0, 1, . . . , n− 1},

corr(LS ◦ G ◦ F, LT) = ∑
U⊆{0,1,...,n−1}

corr(LS ◦ G, LU) corr(LU ◦ F, LT).

Example 6.6.
(1) Take G(x0, x1) = (x0, x0x1). The matrix of correlations, with rows

and columns labelled ∅, {0}, {1}, {0, 1} is
1 0 0 0
0 1 0 0
1
2

1
2

1
2 − 1

2
1
2

1
2 − 1

2
1
2

 .

(2) By Lemma 6.4, the matrix for (x0, x1) 7→ (x0 + 1, x1) is diagonal,
with entries 1,−1, 1, 1.

(3) Hence H(x0, x1) = (x0 + 1, x0x1 + x1) = (x0, x0x1) has correlation
matrix

1 0 0 0
0 1 0 0
1
2

1
2

1
2 − 1

2
1
2

1
2 − 1

2
1
2




1 · · ·
· 1 · ·
· · 1 ·
· · · 1

 =


1 0 0 0
0 −1 0 0
1
2 − 1

2
1
2

1
2

1
2 − 1

2 − 1
2 − 1

2

 .

We end by applying Proposition 6.5 to the S-box in the Q-block cipher.
Let F : F3

2 → F3
2 be the S-box in the 3 bit version of the Q-block cipher, so

F
(
(x0, x1, x2)

)
= (x1, x2, x0 + x1x2). The matrix below shows the correla-

tions, 

1 · · · · · · ·
· · 1 · · · · ·
· · · · 1 · · ·
· · · · · · 1 ·
· 1

2 · 1
2 · 1

2 · − 1
2

· 1
2 · 1

2 · − 1
2 · 1

2

· 1
2 · − 1

2 · 1
2 · 1

2

· − 1
2 · 1

2 · 1
2 · 1

2



28

writing · for a 0 correlation, with subsets ordered

∅, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}.
For example the first four rows show that tapping in positions ∅, {0},
{1}, or {0, 1} gives a linear function. By taking powers of this matrix we
can compute correlations through any power of F.

In the lecture we will use MATHEMATICA to find the order of the (nor-
mal) four bit version of F.

The high correlations used in Example 6.2 were found by applying
Proposition 6.5 to the Feistel functions and S-box in the Q-block cipher.

