
MT362/462/5462 CRYPTOGRAPHY I

MARK WILDON

How to follow this course: These notes give the logical structure of the
course. Many of you may prefer to learn the material from the slides
on Moodle. These have all the content in the notes, and extra informal
quizzes. Use the videos on Moodle as backup and if you need explana-
tion of the quizzes on the slides, or the formal quizzes on Moodle.

These notes are based in part on notes written by Dr Siaw-Lynn Ng. I
would very much appreciate being told of any corrections or possible
improvements.

You are warmly encouraged to ask questions in the plenary, group work
and Q&A sessions. Sessions marked ‘face-to-face’ will also be streamed
online.

• Tuesday 1pm, Plenary problem solving (face-to-face) ARTS LT1,
• Wednesday 12 noon, Group Work (face-to-face), MFOX-SEM
• Friday 10am, Q&A session (online)
• Friday 3pm, Group Work (online)

I am also happy to answer questions about the lectures or problem sheets
by email. My email address is mark.wildon@rhul.ac.uk.

MSc students doing MT5462: You have an extra session at Tuesday 11am
ALT2. Also there are separate printed notes (like these), slides and videos
on the Moodle page. These are marked M.Sc.

Office hour in McCrea LGF 0-25 or online: Thursday 2pm. The MS
Teams link is https://tinyurl.com/y38jovro. It is also on the Moodle
page.

Group work. Your timetable will show face-to-face (Wednesday 12 noon
MFOX-SEM) and online (Friday 3pm) group work sessions in alternating
weeks. Note that Teaching Week 1 is Week 2 of term.

• Session A
– Face-to-face group work in Teaching Weeks: 1, 3, 5, 8, 10
– Online group work in Teaching Weeks: 2, 4, 7, 9, 11

• Session B
– Face-to-face group work in Teaching Weeks: 2, 4, 7, 9, 11
– Online group work in Teaching Weeks: 1, 3, 5, 8, 10

If you intend to follow the course online only, you should still attend
the scheduled face-to-face group work session on your timetable: online
small groups will be formed so that you can take part.

Date: First Term 2020/21.

2

CIPHER SYSTEMS

We will study symmetric and public key ciphers and understand how
they promise confidential communication. We will also see how they
have been attacked, and in many cases defeated, using mathematical
ideas from linear algebra, elementary number theory, probability theory,
and statistics.

Outline.

(A) Introduction: alphabetic ciphers including the Vigenère cipher and
one-time-pad. Statistical tests and applications of entropy. Secu-
rity models and Kerckhoffs’s Principle.

(B) Stream ciphers: linear feedback shift registers and pseudo-random
number generation. Non-linear stream ciphers.

(C) Block ciphers: design principles, Feistel networks, DES and AES.
Differential cryptanalysis.

(D) Public key ciphers and digital signatures: one-way functions, Diffie–
Hellman, RSA and ElGamal. Factoring and discrete logs. Hash
functions and signatures. Extra (and non-examinable): the Bitcoin
blockchain.

The MT5462 course has additional material on boolean functions, the
Berlekamp–Massey algorithm and linear cryptanalysis of block ciphers.
Separate lecture notes will be issued.

Recommended Reading. All these books are in the library. If you find
there are not enough copies, email me.

[1] Cryptography, theory and practice, D. Stinson, Chapman & Hall /
CRC (2006). Concise and usually very clear, covers all the course
(and more), 001.5436 STI (multiple copies, some on short loan).

[2] Introduction to cryptography with coding theory, W. Trappe and L. C.
Washington, Pearson / Prentice Hall (2006), 001.5436 TRA. Simi-
lar to [1], but a bit more relaxed with more motivation.

[3] Cryptography: a very short introduction, F. C. Piper and S. Murphy,
Oxford University Press (2002). A nice non-technical overview of
cryptography: you can read it online via the library website.

[4] Codes and cryptography, D. Welsh, Oxford University Press (1988),
001.5436 WEL. Goes into more detail on some of the M.Sc. topics.
Also useful for MT341/441/5441.

Prerequisites. You need basic probability, binary numbers and modular
arithmetic. Probability is particularly important and conditional proba-
bility is reviewed in the videos on Moodle and quizzes.

3

Problem sheets. There will be 8 marked problem sheets; the first is due
in on Friday 11th October. 15% of your final mark for the course is given
for making a reasonable attempt at the problem sheets.

Mathematica. The MATHEMATICA notebooks available from Moodle will
be used for demonstrations in lectures and are useful (almost essential
unless you want to do long encryptions by hand) for some problem sheet
questions. You can get MATHEMATICA for free: search for ’Free Software
Royal Holloway’ or go to:
https://intranet.royalholloway.ac.uk/students/help-support/

it-services/it-essentials/free-software.aspx

To get a notebook ready, select ‘Evaluate Notebook’ in the ’Evaluation’
menu. If you find a freshly downloaded MATHEMATICA notebook gives
errors, even after restarting MATHEMATICA, please email me at once.

Moodle. All handouts, problem sheets and answers will be posted on
Moodle. Once you are registered for the course you should find a link
under ‘My courses’. If not please go to

https://moodle.royalholloway.ac.uk/course/view.php?id=380

This is the Moodle page for 462 (the M.Sci. course) and 5462 (the M.Sc.
course) as well as 362: everyone should have access. If you find you do
not, email me at once.

Exercises and quizzes. Exercises set in these notes are mostly simple
tests that you are following the material. Some will be used for quizzes.
There are also many further quizzes in the slides on Moodle, and some
formal quizzes on Moodle you must attempt, for 15% of your final
grade.

Optional questions and extras. Optional questions on problem sheets
and any ‘extras’ in these notes are included for interest only, and to show
you some mathematical ideas beyond the scope of this course. You should
not worry if you find them difficult.

If you can do the compulsory questions on problem sheets, can do the
quizzes on the slides and on Moodle, and can prove the results whose
proofs are marked as examinable in these notes, then you should do
very well in the examination.

4

(A) Introduction: alphabetic ciphers and the language of cryptography

1. INTRODUCTION: SECURITY AND KERCKHOFFS’S PRINCIPLE

This course is about the mathematics underlying cryptography. But
you will not get the point unless you understand the overall objective.

As a basic model, Alice wants to send Bob a plaintext message. This
message may be observed in the channel by the eavesdropper Eve, or
intercepted and then modified by Malcolm, the Man-in-the-Middle. So
Alice first encrypts the plaintext using some secret key known to her and
Bob. At the other end Bob decrypts the ciphertext.

- - -

plaintext
message Alice

encrypts
ciphertext Bob

decrypts

decrypted
ciphertext

channel

6

Eve eavesdrops
@
@@R

key
�

��	

key

Here the key is the same for Alice and Bob. In Part D we look at public
key cryptography, where Bob knows more about the key than Alice. But
either way, it is essential that Bob knows something Eve/Malcolm do not.

Alice and Bob may have any of the following security requirements.
• Confidentiality: Eve cannot read the message.
• Data integrity: any change made by Malcolm to the ciphertext is

detectable.
• Authentication: Alice and/or Bob are who they claim to be.
• Non-repudiation: Alice cannot plausibly deny she sent the mes-

sage.

Example 1.1.
(0) For email the channel is the internet. Every email you send is

typically received and sent on by multiple computers before it
reaches its destination. Unless you arrange your own encryption,
any rogue system-administrator can easily read your email.

(1) If you encrypt a file using a password on your computer, you
require confidentiality and data integrity. In this case, you are
Alice, and Bob is you a week later. The channel is the hard-disk
(or SSD) in your computer.

(2) Using online banking to make a payment, both you and the bank
require authentication and data integrity. The bank also requires
non-repudiation. It is good practice to use two-factor authenti-
cation, so ideally the key is a code sent to your mobile phone,
or generated by a ‘PIN-sentry’ device, in addition to a password.
The channel is the internet.

5

Kerckhoffs’s Principle. It is obviously important in cryptography to be very
clear about what is public information and what is private. Kerckhoffs’s
Principle is that

‘all the security in a cryptosystem lies in the key’.
Thus the attacker is assumed to know everything about the method that
Alice uses to encrypt and Bob uses to decrypt. The only thing the attacker
does not know is which specific key is used.

Example 1.2. On Friday, Alice will learn Bob’s final year exam result x
while Bob is out of the country. Alice, Bob and their trusted friend Trevor
agree this method.

• On Monday, Trevor chooses a key k ∈ {0, 1, . . . , 99}. He meets Al-
ice and secretly tells her k. He meets Bob and secretly tells him k.
• On Tuesday, Bob leaves for Borneo. He can read email. Bob can-

not send email or communicate in any other way.
• On Friday, Alice learns the plaintext x ∈ {0, 1, . . . , 99} and emails

Bob the ciphertext (x + k) mod 100.
By Kerckhoffs’s Principle, all this, except for the value of k, is known to
the whole world. Eve, the eavesdropper, also learns y, the ciphertext sent
by Alice to Bob.

(a) Can Eve learn anything about the plaintext x from the cipher-
text y?

(b) What can Eve learn about the key from Alice’s email? [Hint: Eve
will certainly know that most marks are between 50 and 80.]

(c) Find some other problems in the scheme.
(d) Suppose that next year Alice sends Bob her own exam result x′ ∈
{0, 1, . . . , 99} using the same key. What can Eve learn now?

The big picture. The extended diagram below shows how cryptography
fits into the broader setting of communication theory. You can learn
about source encoding (for compression) in MT341/441/5441 Channels
and channel encoding (for error correction) in MT341/441/5441 Chan-
nels and MT361/461/5461 Error Correcting Codes, but there is no need
to do these courses to understand this one.

In some cases, for example, sending an encrypted zip file, source en-
coding might be done before encryption, rather than after.

- - - -

?

����

source
encodingcryptography channel

encoding

encrypt compress pad

decrypt decompress correct
errors

noise
Eve/Malcolm

6

The mathematical model. As a mathematical model we suppose that there
is a set P of plaintexts, a set C of ciphertexts, and a set K of keys. For each
key k ∈ K there is an encryption function ek : P → C.

Note that mathematical functions are ‘deterministic’: if you put in
plaintext x to the encryption function ek, you will always get the same
ciphertext out, namely ek(x). It is only by varying the key that the same
plaintext can be encrypted as different ciphertexts.

Exercise 1.3. In Example 1.2, we have P = C = K = {0, 1, . . . , 99}.
(a) What are the encryption functions ek : P → C in Example 1.2?
(b) Generally, what properties should the encryption functions have?

We answer (b) as part of the formal Definition 3.1 below of cryptosys-
tems.

2. ALPHABETIC CIPHERS

Question. Suppose Eve, the eavesdropper, observes a ciphertext.
What can she deduce about the plaintext and the key?

We shall answer this basic question for some ciphers that operate di-
rectly on English letters and words. It is a useful convention to write
plaintexts in lower case and ciphertexts in UPPER CASE.

Caesar and substitution ciphers.

Example 2.1. The Caesar cipher with key k ∈ {0, 1, . . . , 25} encrypts a
word by shifting each letter s positions forward in the alphabet, wrap-
ping round at the end. For example if the key is 3 then ’hello’ becomes
KHOOR and ’zany’ becomes CDQB. The table below shows all 26 possible
shifts.

0 ABCDEFGHIJKLMNOPQRSTUVWXYZ 13 NOPQRSTUVWXYZABCDEFGHIJKLM

1 BCDEFGHIJKLMNOPQRSTUVWXYZA 14 OPQRSTUVWXYZABCDEFGHIJKLMN

2 CDEFGHIJKLMNOPQRSTUVWXYZAB 15 PQRSTUVWXYZABCDEFGHIJKLMNO

3 DEFGHIJKLMNOPQRSTUVWXYZABC 16 QRSTUVWXYZABCDEFGHIJKLMNOP

4 EFGHIJKLMNOPQRSTUVWXYZABCD 17 RSTUVWXYZABCDEFGHIJKLMNOPQ

5 FGHIJKLMNOPQRSTUVWXYZABCDE 18 STUVWXYZABCDEFGHIJKLMNOPQR

6 GHIJKLMNOPQRSTUVWXYZABCDEF 19 TUVWXYZABCDEFGHIJKLMNOPQRS

7 HIJKLMNOPQRSTUVWXYZABCDEFG 20 UVWXYZABCDEFGHIJKLMNOPQRST

8 IJKLMNOPQRSTUVWXYZABCDEFGH 21 VWXYZABCDEFGHIJKLMNOPQRSTU

9 JKLMNOPQRSTUVWXYZABCDEFGHI 22 WXYZABCDEFGHIJKLMNOPQRSTUV

10 KLMNOPQRSTUVWXYZABCDEFGHIJ 23 XYZABCDEFGHIJKLMNOPQRSTUVW

11 LMNOPQRSTUVWXYZABCDEFGHIJK 24 YZABCDEFGHIJKLMNOPQRSTUVWX

12 MNOPQRSTUVWXYZABCDEFGHIJKL 25 ZABCDEFGHIJKLMNOPQRSTUVWXY

7

Exercise 2.2.
(a) Mark (the mole) knows that the plaintext is ‘apple’ and the ci-

phertext is CRRNG. Show that Mark can deduce the key.
(b) Eve (the eavesdropper) has observed the ciphertext ACCB. What is

the key and what is the plaintext?
(c) Suppose instead Eve observes GVTJPO. What can she deduce? Sup-

pose Eve later observes BUPN. What does she conclude?

Barring the (very exceptional behaviour) in (c), the key can typically
be deduced from a single ciphertext; (a) shows that the Caesar cipher can
always be broken if both a plaintext and its ciphertext are known.

Example 2.3. Let π : {a, . . . , z} → {A, . . . , Z} be a bijection. The substitu-
tion cipher eπ applies π to each letter of a plaintext in turn. For example,
if

π(a) = Z, π(b) = Y, . . . , π(z) = A

then eπ(hello there) = SVOOL GSVIV. (In practice spaces were deleted
before encryption, but we will keep them to simplify the cryptanalysis.)
The Caesar cipher with key k is the special case where π shifts each letter
forward k times.

The table below (taken from Stinson’s book [1]) shows the frequency
distribution of English, most frequent letters first. Probabilities are given
as percentages.

e t a o i n s h r d l u c

12.7 9.1 8.2 7.5 7.0 6.7 6.3 6.1 6.0 4.3 4.0 2.8 2.8

m w f g y p b v k j x q z

2.4 2.3 2.2 2.0 2.0 1.9 1.5 1.0 0.8 0.2 0.1 0.1 0.1

The frequency distribution of English is shown in the graph on the left
below.

a

b

c

d

e

f g

h
i

j
k

l

m

n
o

p

q

r s

t

u

v

w

x

y

z
0

2

4

6

8

10

12

A

B

C

D

E

F

G

H I

J
K

L
M

N

O

P
Q

R

S

T U

V

W

X

Y

Z
0

2

4

6

8

10

12

Using a substitution cipher, the probability distribution of ciphertext let-
ters is a rearrangement of the probability distribution of plaintext letters.
In particular, there are still three peaks, corresponding to e, t, and a.

8

For example, the graph on the right above shows the distribution in the
(very) special case where π is the Caesar shift by 2, so π(a) = C, π(b) =
D, . . . , π(z) = B.

A sufficient long ciphertext can be decrypted by using frequency anal-
ysis to deduce π(e), π(t), . . ., and then guessing likely words. For ex-
ample, ‘hello there’ has ’e’ as its most common character. Correspond-
ingly, when encrypted using the Caesar shift by 2, π(e) = G is the most
common character in the ciphertext.

It is also helpful to look for common digrams and trigrams such as ’th’,
’he’, ’in’, ’er’, ’the’, ’and’, ’ing’: see Example 2.5 and Example 2.7.

Exercise 2.4. How many substitution ciphers are there? [Hint: count the
keys π by multiplying choices. There are 26 choices for π(a), then 25
choices for π(b), since we can choose any letter in {A, . . . , Z} except π(a),
and so on.]

Example 2.5. Eve observes the ciphertext

KQX WJZRUHXZKUY GTOXSKPIX GW SMBFKGVMUFQB PL KG XZUTYX KDG

FXGFYX JLJUYYB MXWXMMXR KG UL UYPSX UZR TGT KG SGHHJZPSUKX

GIXM UZ PZLXSJMX SQUZZXY PZ LJSQ U DUB KQUK UZ GFFGZXZK

XIX SUZZGK JZRXMLKUZR DQUK PL TXPZV LUPR KQX SQUZZXY SGJYR

TX U KXYXFQGZX YPZX GM KQX PZKXMZXK WGM XCUHFYX

The frequencies, again expressed as percentages, of all the letters are
shown below. (All the donkey work in this example can be done using
the MATHEMATICA notebook AlphabetCiphers available on Moodle.)

X Z U K G Y S P M Q L J F

14.7 10.3 9.5 8.6 7.7 5.2 4.7 4.7 4.7 4.3 3.4 3.4 3.4

R T W H B I D V O C N E A

3.0 2.6 1.7 1.7 1.7 1.3 1.3 0.9 0.4 0.4 0 0 0

The first word is KQX; this also appears in the final line, and X is comfort-
ably the most common letter. We guess that KQX is ’the’ and that ZUKG are
most probably four of the letters ‘taoin’. Since U appears on its own, it
is probably ‘a’ or ‘i’, and from KQUK in line 3 it seems U is ‘a’. Since the
digraph UZ cannot be ‘at’, it is probably ‘an’. Substituting for KQXUZ gives

the WJnRaHentaY GTOeStPIe GW SMBFtGVMaFhB PL tG enaTYe tDG

FeGFYe JLJaYYB MeWeMMeR tG aL aYPSe anR TGT tG SGHHJnPSate

GIeM an PnLeSJMe ShanneY Pn LJSh a DaB that an GFFGnent

eIe SannGt JnReMLtanR Dhat PL TePnV LaPR the ShanneY SGJYR

Te a teYeFhGne YPne GM the PnteMnet WGM eCaHFYe

9

From here it should not be too hard to decrypt the ciphertext. Good
words to guess are ‘teYeFhGne’ and ‘PnteMnet’ in the bottom line and
‘ShanneY’ in two lines above.

Exercise 2.6.
(a) After deciphering in Example 2.5, Eve knows that π(a) = U,

π(b) = T, and so on. Does she know the key π?
(b) Will Eve have any difficulty in decrypting further messages en-

crypted using the same substitution cipher?
(c) Can Malcolm (the man-in-the-middle) successfully alter the ci-

phertext?

The substitution cipher is weak mainly because it is possible to start
with a guess for the key, say π, that is partially correct, and then improve
it step-by-step by looking at the decrypt e−1

π (y) implied by this key.

Example 2.7. To make this process automatic, we need a quantitative way
to measure how ‘close to English’ e−1

π (y) is. Recall that a trigram is three
consecutive letters. A good scoring function is ∑t log pt where the sum
is over all trigrams t in e−1

π (y) and pt is the probability of the trigram t
in English. (This is motivated by maximum likelihood estimation.) For
example, the three most common trigrams in English are ‘the’, ‘and’, ‘ing’
with probabilities

pthe = 0.01876, pand = 0.00750, ping = 0.00742

and the score of ‘there’ is

pthe + pher + pere = log 0.01876 + log 0.00370 + log 0.00321 = −15.317.

Note the score is always negative, since log pt < 0 for each trigram t.

We start with the guess for the key given by frequency analysis. In each
step we swap the encryptions of two plaintext letters. Since you can sort
a deck of cards by repeatedly choosing two cards and then swapping
them, this means all 26! (see Exercise 2.4) possible keys can be reached by
taking enough steps. In Example 2.5 the guess from frequency analysis is

π(a) = U, π(b) = B, π(c) = F,π(d) = Q, π(e) = X, π(f) = W, π(g) = H . . . ,

. . . , π(p) = I, π(q) = E, . . . , π(y) = D, π(z) = A

with score −2868.97, implying that the plaintext is
ode futmayetoan iwkesohpe if srgcoivracdg hl oi etawne

obi ceicne uluanng referrem oi al anhse atm wiw oi

siyyuthsaoe iper at htlesure sdatten ht lusd a bag ...

The first step is chosen to maximize the increase in the score. Scoring
using the 3000 most common trigrams, it turns out to be optimal to swap
the encryptions of ‘b’ and ‘g’. The new guess for the key is π′ where

10

π′(b) = H and π′(g) = B; otherwise π′ agrees with π. The score improves
to −2868.68.

After 40 steps the implied plaintext is

rie futhametral ockedryve of dngprownapig ys ro etacle

rbo people usuallg nefenneh ro as alyde ath coc ro

dommutydare oven at ytsedune diattel yt sudi a bag ...

with score −2465.68. Looking at people and usuallg we can see this
gives a much better approximation to the key. After 53 steps the im-
plied plaintext is entirely correct! Try it online at repl.it/@mwildon/

SubstitutionHillClimbWeb.

Exercise 2.8. The strategy in Example 2.7 is called ‘hill-climbing’. Why
this name?

In the substitution cipher the same bijection is applied to every posi-
tion in the plaintext. Choosing a different bijection for some positions,
even using only Caesar shifts, gives a stronger cipher.

Vigenère cipher. We need some more mathematical notation. Define a bi-
jection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b←→ 1, . . . , z←→ 25.

Using this bijection we identify a word of length ` with an element of
{0, 1, . . . , 25}`. For example, ‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s be-
comes the function c 7→ c + s mod 26.

Definition 2.9. The key k for the Vigenère cipher is a string. Suppose that k
has length `. Given a plaintext x with its spaces deleted, we define its
encryption by

ek(x) = (x0 + k0, x1 + k1, . . . , x`−1 + k`−1, x` + k0, x`+1 + k1, . . .)

where xi + ki is computed by converting xi and ki to numbers and adding
them mod 26.

Note that after ` letters we ‘wrap around’, by re-using position 0 of the
key, so y` = x` + k0 mod 26, y`+1 = x`+1 + k1 mod 26, and so on.

As seen in this definition, in this course we number positions in tuples
from 0. This often works best in cryptography: for example, it means that
ek(x)i = xi + ki mod ` for all i ∈ N0. (Numbering from 1, the case when
i = ` would have to be defined separately.)

11

Example 2.10. Take k = bead, so k has length 4. Under the bijection be-
tween letters and numbers, bead ←→ (1, 4, 0, 3). The table below shows
that

ebead(meetatmidnightnear) = NIEWBXMLERIJIXNHBV.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

xi
m e e t a t m i d n i g h t n e a r

12 4 4 19 0 19 12 8 3 13 8 6 7 19 13 4 0 17

ki
b e a d b e a d b e a d b e a d b e

1 4 0 3 1 4 0 3 1 4 0 3 1 4 0 3 1 4

xi + ki
13 8 4 22 1 23 12 11 4 17 8 9 8 23 13 7 1 21
N I E W B X M L E R I J I X N H B V

Exercise 2.11.
(i) If you had to guess, which of the following sequences of 50 char-

acters would you say was more likely to be a sample of letters
(not necessarily adjacent) from a Caesar cipher ciphertext?

UWBBJSNMXUBSOWGFZTUIFFBIIJUBSTBUNGFIBSJETSGMJPTOOB

UIWRBKBDJTSONEMOXSULBTSNOEWLGEFAZATEUIINFBFIBEIHID

ULIVWIRBBAKZBVDKJWTRSCOINVEOMMOWXESVUMLOBJTHSENLOX

To help you decide, the table below shows the frequencies of the
ten most common letters, and the rest all lumped together.

(A)
B U S T J I F O G W the rest
8 5 5 4 4 4 4 3 3 2 8

(B)
D V L K C Y F Z U R the rest
6 5 5 3 3 3 3 3 3 2 14

(C)
L X D C Y M K I F B the rest
5 4 4 3 3 3 3 3 3 2 17

(ii) Suppose we take every kth character from a Vigenère ciphertext.
Why will it have the most ‘spiky’ frequency distribution when k
is the length of the key?

The samples in (i) are 50 every 4th, every 2nd and every from the ci-
phertext y in Example 2.16 below, encrypted using the Vigenère cipher
with the key bead, and taking just 50 letters in total.

When we take every 4th letter of y, we get the plaintext shifted for-
wards by 1 (since b ←→ 1) and the probability distribution is the shift
by 1 of the English distribution shown on page 7. For instance, the peaks
at B and S correspond to a and t. (The sample is small; while e was not
the most common letter, there is still a high value at F.)

12

When we take every letter of y we get the average of four shifts of
the English distribution, making the distribution much closer to uniform.
This can be seen by comparing the black and grey lines in the graph be-
low, produced using AlphabetCiphers.nb

�

�

� �

�

�

�

�

� �

� �

� �

�

�

� �

�

�

�

�

�

�

�

�

0

5

10

15 Black: every 4th letter, one shift
Grey: every 2nd letter, two shifts

To make this idea of ‘spikiness’ and ‘uniformity’ precise, we need to
measure it by a statistic we can compute given a ciphertext.

Definition 2.12. The Index of Coincidence of a ciphertext y, denoted I(y),
is the probability that two entries of y, chosen at random from different
positions, are equal.

Exercise 2.13. Explain why I(QXNURA) = I(QNRFLX) = 0 and check that
I(MOODLE) = 1

15 . What is I(AAABBC)?

There is a simple formula for I(y). (An examinable proof: see the slides
and videos!)

Lemma 2.14. If the ciphertext y of length n has exactly fi letters corresponding
to i, for each i ∈ {0, 1, . . . , 25} then

I(y) =
25

∑
i=0

fi(fi − 1)
n(n− 1)

.

Attack 2.15. Given a Vigenère ciphertext y, take every kth letter for all small k.
For instance when k = 3 the sample is y0y3y6y9 . . . and when k = 4 the sample
is y0y4y8 The Index of Coincidence will be greatest (for long samples) when
we split at the key length, `. Now y0y`y2` . . . have all been encrypted by shifting
by k0: assuming that the most common letter is the shift of ‘e’ determines the
shift. Repeat with y1y`+1y2`+1 . . . to determine k1, and so on, up to k`−1.

The Index of Coincidence of English is about 0.066. You don’t need to
memorize this: in practice you can just pick the highest value!

13

Example 2.16. The final part of Chapter 1 of Persuasion by Jane Austen
begin

This very awkward history of Mr Elliot was still, after an interval
of several years, felt with anger by Elizabeth, who had liked the
man for himself, and still more for being her father’s heir, and
whose strong family pride could see only in him a proper match
for Sir Walter Elliot’s eldest daughter.

After deleting spaces and punctuation and encrypting using the Vigenère
cipher with key ‘bead’, the ciphertext is

ULIVWIRBBAKZBVDKJWTRSCOINVEOMMOWXESVUMLOBJTHSENL . . .

The graph on the left below shows the mean Index of Coincidence
when the ciphertext is split taking every kth letter, starting at the first,
for k ∈ {1, 2, . . . , 13}.

+

+

+

+

+

+

+

+

+

+

+

+

+

2 4 6 8 10 12

0.045

0.050

0.055

0.060

0.065

0.070

0.075

+

+

+

+

+

+

+

+

+

+

+

+

+

2 4 6 8 10 12

0.045

0.050

0.055

0.060

0.065

0.070

While there is a slight decrease from 8 to 12, the similar values for 4
and 8 suggest the key has length 4. This is confirmed by splitting the
ciphertext taking every kth letter, starting at each of the initial k letters in
turn, and then taking the mean of k different IOCs. This bigger sample
(improving on Attack 2.15 as described above), gives the more accurate
picture shown in the graph on the right above

Continuing with the attack, we now take every four letter of the ci-
phertext starting at the first (in position 0) to get

y0y4y8 . . . = ‘UWBBJSNMXUBSOWGFZTUIFFBIIJUB . . .′

These ciphertext letters have all been shifted in the same way. The per-
centage frequency table (as in Example 2.5) begins

F P U O

12.5 8.3 8.0 8.0

Assuming ‘F‘←→ 5 is the encryption of ‘e‘←→ 4, the shift in the Caesar
cipher is 1 ←→ ‘b‘, so we correctly guess the first letter of the key is
‘b’. The MATHEMATICA notebook on Moodle shows this simple strategy
works in all 4 positions to reveal the key bead.

14

Exercise 2.17. Why are there are smaller peaks at 2, 6 and 10 in the plot
of Indices of Coincidence above? [Hint: taking every 2nd position only
two of the four shifts are seen. The same is true taking every 6th . . .].

Extra: A more reliable method. Suppose you know the key length in the
Vigenère cipher is ` and you have a sample ypy`+py2`+p . . ., obtained by
taking every `th letter in the plaintext x, starting at position p. Let x be
an English sample of about the same length as ypy`+py2`+p A better
way to find the Caesar shift for position p is to concatenate x with the text
obtained by shifting each letter of ypyp+`yp+2` . . . forward by s, for each
s ∈ {0, 1, . . . , 25}. The Index of Coincidence will be maximized when s is
the Caesar shift, since then both parts of the sample are in English.

The f 2
i in the numerator of the formula in Lemma 2.14 may remind

you slightly of the χ2-test.

Exercise 2.18. What statistic would you compute to do a χ2-test that the
distribution of the ciphertext is uniform?

Statistics can appear a dry subject. I hope this example has shown you
that it can be both useful and interesting. For further examples, one only
has to look at the many triumphs of machine learning (the buzzword for
statistical inference), from ‘Intelligent personal assistants’ such as Siri to
the shocking defeat of the world Go champion by AlphaGo.

Extra: Different languages. The Index of Coincidence of English, estimated
from a large sample, is about 0.066, and for German it is about 0.071.
Since written German has 30 characters, so more ways for two characters
to be different, it is fairer to compare 26× 0.066 ≈ 1.72 and 30× 0.068 ≈
2.14. The most frequent letter in German is ‘e’, at 16%, followed by ‘n’ at
9.8% and then ‘s’ at 7.2%. These all show that the frequency distribution
of German is significantly ‘spikier’ than English. (The ‘extra’ German
characters not seen in English are ü, ö, ä, ß.)

Exercise 2.19. For which language are alphabetic ciphers easier to break?
(And, for amateur philologists, why is not surprising that German is
spikier than English?)

3. CRYPTOSYSTEMS AND PERFECT SECRECY

Question. What, mathematically, is a cryptosystem? When can
we be sure that Eve learns nothing about the plaintext from an ob-
served ciphertext?

Cryptosystems. The three different encryption functions for the Caesar ci-
pher with ‘alphabet’ {0, 1, 2} are shown in the diagram below.

15

0

1

2

0

1

2

key 0
0

1

2

0

1

2

key 1
0

1

2

0

1

2

key 2

Definition 3.1. Let K,P , C be non-empty finite sets. A cryptosystem is a
family of encryption functions ek : P → C and decryption functions dk : C →
P , one for each k ∈ K, such that for each k ∈ K,

(?) dk
(
ek(x)

)
= x

for all x ∈ P . We call K the keyspace, P the set of plaintexts, and C the set
of ciphertexts.

A function f : P → C is injective if for all x, x′ ∈ P , f (x) = f (x′)
implies x = x′. Equivalently (contrapositive), if x 6= x′ then f (x) 6= f (x′).

Exercise 3.2.
(i) Use (?) to show that the encryption functions ek in a cryptosystem

are injective for all k ∈ K.
(ii) Why do we want the encryption functions in a cryptosystem to

be injective?

Exercise 3.3. Each diagram (i)–(vi) below each show two functions. Which
are the encryption functions in a cryptosystem with two keys, one black
and one red? Equivalently, when can decryption functions satisfying (?)
be defined? In each case P is on the left-hand side and C = {0, 1, 2} is on
the right-hand side.

(i)

0

1

2

0

1

2

0

1

2

0

1

2

(ii)

0

1

2

0

1

2

0

1

2

0

1

2

(iii)

0

1

0

1

2

0

1

0

1

2

(iv)

0

1

0

1

2

0

1

0

1

2

(v)

0

1

2

0

1

2

0

1

2

0

1

2

(vi)

0

1

2

0

1

2

0

1

2

0

1

2

16

In (v), the black encryption function is not injective. Correspondingly,
someone using the cryptosystem with the black key does not know how
to decrypt 1. This shows why we require (?). In (vi) neither function is
well-defined.

It may seem strange that (iv) is a cryptosystem: in practice it would be
unusual for two keys to define the same encryption function. However
checking that this is definitely not the case would be non-trivial for some
practical ciphers, so we do not rule it out in the definition.

Exercise 3.4.

(i) An undergraduate writes ‘For each x ∈ P there is a unique y ∈ C’.
Does this mean that ek is injective?

(ii) Show that if |P| = |C| then the encryption functions are bijections
and dk = e−1

k for each k ∈ K.
(iii) Is there a cryptosystem with |C| < |P|?

Recall that Zn denotes the set {0, 1, . . . , n− 1} with addition and mul-
tiplication defined modulo n. (If you prefer the definition as a quotient
ring, please feel free to use it instead.) For example 7+ 8 ≡ 4 mod 11 and
7× 8 ≡ 1 mod 11.

Example 3.5 (Numeric one-time pad). Fix n ∈ N. The numeric one-time
pad on {0, 1, . . . , n− 1} has P = C = K = Zn. The encryption functions
are ek(x) = (x + k) mod n. As expected from Exercise 3.4(ii), each ek is a
bijection, and the decryption functions are dk = e−1

k . Explicitly, dk(y) =
(y− k) mod n.

The diagrams before Definition 3.1 show the numeric one-time pad on
{0, 1, 2}.
In Example 1.2 and Sheet 1 Question 2, Alice and Bob use the numeric
one-time pad with n = 100. The key was given to them by their trusted
friend Trevor, who was equally likely to pick each key.

• Suppose that Eve observes the ciphertext 80.
• The plaintext is x if and only if the key is (80− x) mod 100.
• Since each key is equally likely then it seems reasonable to say

that Eve learns nothing about the plaintext.

Moreover, as seen in the Group Work for Week 1, since the ciphertext is
x + k mod 100, and all keys are equally likely, so are all ciphertexts.

Probability model. To make precise the idea that Eve learns nothing about
the plaintext from an observed ciphertext we use a probability model.
There are notes on Moodle reviewing basic probability theory.

Fix a cryptosystem in our usual notation. We make K×P × C a prob-
ability space by assuming that the plaintext x ∈ P is chosen independently

17

of the key k ∈ K; the ciphertext is then ek(x). Thus if px is the probabil-
ity the plaintext is x ∈ P and rk is the probability the key is k then the
probability measure is defined by

p(k,x,y) =

{
rk px if y = ek(x)
0 otherwise.

Let K, X, Y be the random variables standing for the key, plaintext and
ciphertext, respectively.1

Exercise 3.6. Is the assumption that the key and plaintext are indepen-
dent reasonable?

Example 3.7. The cryptosystem below will be used for a quiz in lectures.

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

Note the critical calculation using conditional probability (or Bayes’
Theorem if you prefer):

P[X = x|Y = y] =
P[Y = y|X = x]P[X = x]

P[Y = y]
.

Here, and in general, P[Y = y|X = x] = ∑k∈K : ek(x)=y P[K = k] is a sum
of key probabilities: we saw P[Y = 0|X = 0] = rblack + rred.

Suppose that each key is used with equal probability. Then P[Y = 0] =
P[Y = 0|X = 0]p0 + P[Y = 0|X = 0]p1 + P[Y = 0|X = 2]p2 = 2

3 p0 +
1
3 p1

and by the basic calculation

P[X = 0|Y = 0] =
P[Y = 0|X = 0]p0

P[Y = 0]
=

2
3 p0

2
3 p0 +

1
3 p1 + 0p2

=
2p0

2p0 + p1
.

Whenever p2 > 0 this probability is more than p0, so Eve should now
believe that plaintext 0 is more probable. In the language of Bayesian sta-
tistics, Eve’s posterior probabilities are different to her prior probabilities.

Bluffers’ guide:
• if you see P[Y = y|X = x] think ‘nice: key probability’;
• if you see P[X = x|Y = y] think ‘nasty, turn it around’

1To be very formal, K, X and Y are the functions defined on the probability
space K×P × C by K(k, x, y) = k, X(k, x, y) = x and Y(k, x, y) = y.

18

Example 3.8. Consider the numeric one-time pad in Example 3.5, As-
sume that keys are chosen with equal probability 1

n . Suppose that Eve
observes the ciphertext y.

(a) By Question 1 on Problem Sheet 2, P[X = x|Y = y] = px for
all x, y ∈ Zn. This is a precise statement that Eve learns noth-
ing about the plaintext from observing y. (In the sense of Defini-
tion 3.11, the one-time pad has perfect secrecy.)

(b) Since P[K = k|Y = y] = P[X = y− k|Y = y], (a) implies that

P[K = k|Y = y] = py−k.

Thus the probability distribution P[K = k|Y = y] for k varying is
a reflected shift of the probability distribution P[X = x] on plain-
texts. Unavoidably, Eve learns something about the key. This was
seen in the Group Work for Week 1 (video and written answers
are available on Moodle). If however each plaintext is equally
likely, then Eve learns nothing about the key. By (a), in either
case, she learns nothing about the plaintext,

Shannon’s Perfect Secrecy Theorem. In practice, the user of a cryptosystem
needs to know how to choose the keys.

Definition 3.9. We define a practical cryptosystem to be a cryptosystem
together with a probability distribution on the keys such that

(1) P[K = k] > 0 for all k ∈ K
(2) for all y ∈ C there exists x ∈ P and k ∈ K such that ek(x) = y.

Exercise 3.10.

(a) Why are the two conditions in Definition 3.9 reasonable?
(b) Show that in a practical cryptosystem in which every plaintext

may sent, P[Y = y] > 0 for all y ∈ C.

Unlike the definition of perfect secrecy, which goes back to Shannon’s
1949 paper (see the extras for this part), Definition 3.9 is not a standard
definition in cryptography. You will be reminded of it when it is required.

Definition 3.11. Fix a practical cryptosystem.

(i) Let px for x ∈ X be a probability distribution on the plaintexts
The cryptosystem has perfect secrecy for the distribution px if

P[X = x|Y = y] = px

for all x ∈ P and all y ∈ C such that P[Y = y] > 0.

(ii) The cryptosystem has perfect secrecy if it has perfect secrecy for
every probability distribution on the plaintexts.

19

Some textbook accounts of Shannon’s Theorem have minor errors from
overlooking that P[Y = y] > 0 is needed for the conditional probability
in (i) to make sense. By Exercise 3.10(b), in a practical cryptosystem in
which every plaintext may be sent, this condition always holds.

By Example 3.8(a) the one-time pad on Zn has perfect secrecy when
keys are used with equal probability. In Example 3.7 the cryptosystem
does not have perfect secrecy when keys are used with equal probability:
we saw that if p0 = 0, p1 = 1− q and p2 = q then P[X = 2|Y = 1] =
2q/(1 + q) which is equal to q if and only if q = 0 or q = 1.

The aim of the remainder of this section is to prove a theorem describ-
ing practical cryptosystems with perfect secrecy.

Theorem 3.12 (Shannon 1949). If a practical cryptosystem has perfect secrecy
then

(a) For all x ∈ P and y ∈ C the events X = x and Y = y are independent
and P[Y = y|X = x] = P[Y = y] > 0.

(b) For all x ∈ P and all y ∈ C there exists a key k such that ek(x) = y.

(c) |K| ≥ |C|.
(d) Suppose |P| = |C| = |K| = n. For all x ∈ P and all y ∈ C there

exists a unique key k ∈ K such that ek(x) = y. Moreover each key is
used with equal probability 1/n and P[Y = y] = 1/n for all y ∈ C.

Exercise 3.13. How does the conclusion (b) in Theorem 3.12 differ from
property (2) in the definition of a practical cryptosystem?

We will go through the proof below of Shannon’s Theorem in the ple-
nary session in Teaching Week 3. The slides break it down further with
informal quiz questions: you are encouraged to stop reading here, and
instead try the slides! The proofs are the same.

Proof of Theorem 3.12 (An examinable proof.) Fix a probability distribution
on the plaintexts such that px > 0 for all x ∈ P .

Proof of (a). Since the cryptoscheme has perfect secrecy, P[X = x|Y =
y] = px for all x ∈ P and y ∈ C. (The event Y = y that we condition
on has positive probability by Exercise 3.10(b).) Hence P[X = x and Y =
y] = P[X = x|Y = y]P[Y = y] = pxP[Y = y]. This shows that the events
X = x and Y = y are independent and P[Y = y|X = x] = P[Y = y] > 0.

Proof of (b). For x ∈ P and y ∈ C, let

Exy = {k ∈ K : ek(x) = y}.
Note that P[Y = y|X = x] = P[k ∈ Exy]. By (a) P[k ∈ Exy] > 0 for all
x ∈ P, y ∈ C. Hence each Exy is non-empty.

20

Proof of (c). Fix x ∈ P . Observe that K =
⋃

y∈C Exy where the union is
disjoint. By (b) each Exy is non-empty. Therefore

(†) |K| ≥ ∑
y∈C
|Exy| ≥ ∑

y∈C
1 = |C|

as required.

Proof of (d). By hypothesis |K| = |C|. Hence each inequality in (†) is an
equality, and so |Exy| = 1 for all x ∈ P and y ∈ C. Equivalently, for all
x ∈ P and y ∈ C, there exists a unique key (it is the unique key in Exy)
such that ek(x) = y. Fix y? ∈ C and, for each x? ∈ P , let kx? be the unique
key such that ekx?

(x) = y?. If kx = kx′ = k then

ek(x) = ekx(x) = y? = ekx′ (x′) = ek(x′).

But ek is injective, hence x = x′. Therefore the keys kx for x ∈ P are
distinct, and since |P| = |K| by hypothesis, these are all the keys. By (a),

P[k = kx] = P[k ∈ Exy?] = P[Y = y?|X = x] = P[Y = y?]

is independent of x ∈ P . Therefore each key is used with equal proba-
bility 1/n and by the equation above, P[Y = y?] = 1/n. Since we could
have chosen any y? ∈ C, this shows P[Y = y] = 1/n for all y ∈ C. �

Some good questions to ask about a theorem, or a proof of a theorem,
are ‘What examples of it have I seen?’, ‘Did we use all the hypotheses?’,
‘Does the converse hold?’. These are explored on Problem Sheet 2. In par-
ticular, the optional Question 7(b) asks you to show the converse result
stated below.

Proposition 3.14 (Converse to Theorem 3.12(d)). Suppose that |P| = |C| =
|K|, that each key is used with equal probability, and for all x ∈ P and y ∈ C,
there exists a unique k ∈ K such that ek(x) = y. Then the cryptosystem has
perfect secrecy and each ciphertext is equally likely.

In Example 3.5 (also seen in the Group Work for Week 1), we saw a
special case of this proposition. As an exercise, check that the hypothesis
of this proposition hold in this example. Rather than prove it in the lim-
ited ‘live time’ for the course, we will instead use the Week 3 Group Work
to explore what it means in practice.

Example 3.15. Consider a practical cryptosystem with perfect secrecy in
which P = C = K = {0, 1, . . . , n− 1}. By (d) in Theorem 3.12 all the keys
have equal probability. Moreover, for each x, y ∈ {0, 1, . . . , n− 1} there
exists a unique k ∈ {0, 1, . . . , n− 1}. such that ek(x) = y. Therefore the
cryptosystem is determined by the n× n matrix M where

Mxy = k⇐⇒ ek(x) = y.

21

For example, the numeric one-time pad on {0, 1, 2} has matrix



0 1 2
2 0 1
1 2 0


 .

Note that rows/columns are numbered starting from 0 at the top/left.
Conversely, by Proposition 3.14, given a n× n matrix in which every row
and column has entries {0, 1, . . . , n − 1} there is a corresponding cryp-
tosystem with perfect secrecy. Such matrices are called Latin squares and
often arise in cryptography and coding theory.

Finally Question 8 on Problem Sheet 2 asks you to explore another
natural question. (Answers will be posted after the deadline.)

Exercise 3.16. Is there a practical cryptosystem with perfect secrecy in
which the ciphertexts have different probabilities?

4. ATTACK MODELS

Exercise 4.1. Suppose Eve observes a ciphertext. Why is it more valuable
to her to learn the key than the plaintext?

Question. What can an attacker learn about the plaintext and key
from an observed ciphertext? Can the key still be unknown when
an attacker knows both a plaintext and its ciphertext?

Example 4.2 (Affine cipher). Let q be prime. Let Zq = {0, 1, . . . , q− 1}.
The affine cipher on Zq has P = C = Zq and

K = {(a, c) : a ∈ Zq, c ∈ Zq, a 6= 0}.
The encryption functions are defined by e(a,c)(x) = ax + c mod q. The
decryption functions are defined by d(a,c)(y) = b(y− c) mod q, where b ∈
Zq is the unique element such that ab ≡ 1 mod q. With these definitions,
the affine cipher is a cryptosystem.
For example, in the affine cipher on Z11, e(9,2)(5) = 3 since 9× 5 + 2 ≡ 3
mod 11 and, as expected, d(9,2)(3) = 5 since 9× 5 ≡ 1 mod 11 (see below)
and 5× (3− 2) ≡ 5 mod 11.
To find b, the multiplicative inverse of a in Zq, you can either do an
exhaustive search, or run Euclid’s algorithm to find b and s such that
ab + qs = 1; then ab ≡ 1 mod p.
For instance, in Z11, to find 9−1, we run Euclid’s Algorithm getting 11 =
9 + 2 and then 9 = 4× 2 + 1, ending with the expected highest common
factor of 1. Hence

1 = 9− 4× 2 = 9− 4× (11− 9) = 5× 9− 4× 11

and so 9−1 = 5.

22

Exercise 4.3. The diagrams below show three encryption functions from
the affine cipher when q = 5. What are the keys?

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

In Question 2(c) on Problem Sheet 3 you are asked to show that the
affine cipher has perfect secrecy. So in a precise sense, observing a ci-
phertext tells Eve nothing about the plaintext. What can she learn about
the key?

Exercise 4.4. Consider the affine cipher on Z5.

(i) Suppose that Mark knows that e(a,c)(1) = 3. What does he learn
about the key? What happens if he later learns e(a,c)(2)?

(ii) Suppose that Eve observes the ciphertext 3. If she knows the
plaintext is either 1 or 2 with equal probability, what does she
learn about the key? (Compare Example 3.8(b) and the Group
Work in Week 1.)

Attack models. In each of the attack models below, we suppose that Alice
sends ciphertexts to Bob encrypted using the key k ∈ K. The aim of
the adversary (Eve or Mark) is to determine the plaintext and/or some
information about k.

• Known ciphertext. Eve knows ek(x) ∈ C.
• Known plaintext and ciphertext. Mark knows x ∈ P and ek(x) ∈ C.
• Chosen plaintext. Mark may choose any x ∈ P and is given the

encryption ek(x).
• Chosen ciphertext. Mark may choose any y ∈ C and is given the

decryption dk(y).

Each attack model has a generalization where the adversary observes or
chooses multiple plaintexts and/or ciphertexts.

Remark 4.5.

(1) In Example 2.5 we saw that (almost all) of the key in a substitution
cipher can be deduced from a sufficiently long ciphertext. So the
substitution cipher is broken by a known ciphertext attack.

(2) All the cryptosystems so far are broken by a chosen plaintext attack.
By the general version of Example 4.4, the affine cipher requires
two choices of plaintext, and by Question 4 on Sheet 2, the substi-
tution cipher and the Vigenère cipher just one.

23

Exercise: How many chosen plaintexts does it take to break the
numeric one-time pad?

(3) In Parts B and C we will see modern stream and block ciphers
where it is believed to be computationally hard to find the key
even allowing unlimited choices of plaintexts in a chosen plaintext
attack.

One-time pad. Fix n ∈ N. Let A = {a, b, . . . , z} be the Roman alphabet.
The one-time pad is a cryptosystem with P = C = K = An. You should
think of An as all strings of length n. Thus |P| = |C| = |K| = 26n. The
encryption functions are defined by

ek(x) = (x0 + k0, x1 + k1, . . . , xn−1 + kn−1)

where, as in the Vigenère cipher (see Example 2.10), xi + ki is computed
by converting xi and ki to numbers and adding modulo 26. (Note, as be-
fore, we number positions from 0.) Thus the one-time pad is the Vigenère
cipher when the key has the same length as the plaintext.

To make the cryptosystem practical, we assume that each key is used
with the same probability.

Example 4.6. Suppose that n = 8. Of the 268 keys, suppose (by a 1/268

chance) zyxwvuts is chosen. Then

ezyxwvuts(goodwork) = fmlzrikc

as shown in the table below.

i 0 1 2 3 4 5 6 7

xi
g o o d w o r k
6 14 14 3 22 14 17 10

ki
z y x v w u t s

25 24 23 22 21 20 19 18

xi + ki
5 12 11 25 17 8 10 2
f m l z r i k c

The one-time pad is closely related to the numeric one-time pad in
Exercise 3.5. The following proposition is a corollary of Proposition 3.14.
It could also be proved using the same strategy as Question 2 on Sheet 2
(as can this proposition).

Proposition 4.7. The one-time pad has perfect secrecy.

By the proposition, the one-time pad is secure against a known cipher-
text attack with one ciphertext.

24

Example 4.8. The spy-master Alice and her agent Bob have agreed to use
the one-time pad, with a key, chosen in advance uniformly at random.
By Kerckhoffs’s Principle, all this is known to Eve. Eve does not know
that their key is k = atcldqezyomuua.

• Alice sends ek(leaveinstantly) = lxcghyrrroznfy to Bob.

Bob decrypts lxcghyrrroznfy− atcldqezyomuua = leaveinstantly. As
expected from perfect secrecy, the ciphertext reveals nothing new about
the plaintext. For example,

x = gototheairport ⇐⇒ k = y− gototheairport = fjjsornrjxkzof

x = meetmeonbridge ⇐⇒ k = y− meetmeonbridge = ztynvudeqxrkzu

and so on. Since each key is equally likely, as already seen in Proposi-
tion 4.7, Eve learns nothing about the plaintext.

If, for instance, the plaintext x′ is very unlikely, then Eve now believes
that the key y − x′ is very unlikely. So as in the Week 1 Group Work,
Example 3.8 and Example 4.4, Eve learns something about the key. More
precisely, P[K = k|Y = y] = P[X = k− y|Y = y] = P[X = k− y], where
the final equality uses perfect secrecy. Provided the one-time pad is only
used once, this is not a problem.

Bob now makes a fatal mistake, and re-uses the key k in his reply.

• Bob sends ek(goingeasttrain) = ghkyjuerrhducn to Alice.

Eve now has ciphertexts k + leaveinstantly = lxcghyrrroznfy and
k + goingeasttrain = ghkyjuerrhducn. She subtracts them, working
modulo 26 in each position, to obtain ∆ = fqsiyenaahwtdl. Note that ∆
does not depend on k.2

The string ∆ has the unusual property that there is an English message x′

(Bob’s reply) such that ∆ + x′ is another English message (Alice’s plain-
text). This property is so rare that Eve and her computer can fairly easily
deduce x′ and ∆ + x′, and, from either of these, the key k. The code used
in the demonstration is here: repl.it/@mwildon/OneTimePad2.

Thus the one-time pad is broken by a known ciphertext attack with two
ciphertexts, when the likely plaintexts are English messages.

The slides include an analogy between this example and the Alice and
Bob exam mark (Example 1.2) where Eve can make inferences from two
observed ciphertexts y = x + k mod 100 and y′ = x′ + k mod 100, en-
crypted using the same key.

Exercise 4.9. Break the one-time pad using a chosen plaintext attack.

2We write ∆, the capital Greek letter like ‘D’, to emphasise that it is a difference:
we will see the difference attack on block ciphers in Part C of the course.

25

5. KEY UNCERTAINTY AND ENTROPY

We continue the theme of §4.

Question. How can we make precise the amount of information
an attacker learns about the key from an observed ciphertext?

Motivation for Entropy. Suppose Bob picks x ∈ {0, 1, . . . , 15}. How many
yes/no questions does Alice need to guess x? In the Group Work for
Week 3 you saw one simple strategy: ask Bob to write x in binary as
x3x2x1x0; then Alice asks about each bit in turn: ‘Is x0 = 1?’, ‘Is x1 = 1?’,
‘Is x2 = 1?’, ‘Is x3 = 1?’.

Exercise 5.1. Explain why no questioning strategy can guarantee to use
fewer than four questions.

Example 5.2. We consider the simpler game where Bob’s number is in
{0, 1, 2, 3}. Let px be the probability that Bob chooses x. (Alice knows Bob
very well, so, as in Kerckhoffs’s Principle, she knows these probabilities.)
For each case below, how many questions does Alice need on average, if
she chooses the best possible strategy?

(a) p0 = p1 = p2 = p3 = 1
4 ;

(b) p0 = 1
2 , p1 = 1

4 , p2 = 1
4 , p3 = 0;

(c) p0 = 1
2 , p1 = 1

4 , p2 = 1
8 , p3 = 1

8 ;

(d) p0 = 1
8 , p1 = 1

8 , p2 = 1
4 , p3 = 1

2 .

Alice is most uncertain about Bob’s number in (a), least uncertain in
(b), and equally uncertain in (c) and (d). Remarkably, there is a way to
make precise this ‘degree of uncertainty’, found by Shannon in 1948.3

Definition 5.3. Let X be a finite set. The entropy of a probability distribu-
tion px on X is

H(p) = − ∑
x∈X

px log2 px.

The entropy of a random variable X taking values in X is the entropy of
the probability distribution px = P[X = x].

Note that log2 means logarithm to the base 2, so log2
1
2 = −1, log2 1 =

0, log2 2 = 1, log2 4 = 2, and generally, log2 2n = n for each n ∈ Z. If
px = 0 then −0 log2 0 should be interpreted as limp→0−p log2 p = 0; this
limiting value can be seen from the graph in the margin.

−x loge x

1

1
e

3The story goes that Shannon asked von Neumann what he should call his mea-
sure of uncertainty, and von Neumann replied, ‘You should call it entropy, for two
reasons. In the first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more important, no one
really knows what entropy really is, so in a debate you will always have the advantage.’
While this may still be true, there is now a well-developed mathematical theory of
entropy.

26

Exercise 5.4.

(i) Show that H(p) = ∑x∈X px log2
1
px

, where if px = 0 then 0 log2
1
0

is interpreted as 0.

(ii) Show that if p is the probability distribution in Exercise 5.2(b) then

H(p) = 1
2 log2 2 + 1

4 log2 4 + 1
4 log2 4 + 0 = 3

2 .

Show that in all three cases, H(p) is the average number of ques-
tions, using the strategy found in this exercise.4

Informally. A random variable has entropy h if and only if you can
learn its value by asking about h well-chosen yes/no questions.

For this reason, entropy is often thought of as measured in bits. For
example, the entropy of Bob’s number in Example 5.2(a) is 2 bits.

Example 5.5.

(1) Suppose the random variable X takes two different values, with
probabilities p and 1− p. Then H(X) = p log2

1
p +(1− p) log2

1
1−p ,

as shown in the graph overleaf.

p

p log2
1
p + (1− p) log2

1
1−p

0

1
2

1
2

1

1

Thus the entropy of a single ‘yes/no’ random variable takes val-
ues between 0 and 1, with a maximum at 1 when the outcomes
are equally probable.

(2) Suppose a cryptographic key K is equally likely to be any ele-
ment of the keyspace K. If |K| = n then H(K) = 1

n log2 n + · · ·+
1
n log2 n = log2 n. This is often useful.

(3) Consider the cryptosystem in Exercise 3.3(iii). Suppose that P[X =
0] = p, and so P[X = 1] = 1− p, and that P[K = red] = r, and so

4In general the entropy is only a lower bound for the average number of ques-
tions. For example, if p0 = 1

2 , p1 = p2 = p3 = 1
6 then H(p) = 1

2 log2 2+ 3 1
6 log2 6 =

1 + 1
2 log2 3 ≈ 1.7925. The best questioning strategy uses the Huffman code 1, 01,

000, 001 with average codeword length 1
2 1 + 1

6 2 + 1
6 3 + 1

6 3 = 11
6 ≈ 1.8333. Huff-

man codes are part of MT341/441/5441 Classical Information Theory, in Term 2.

27

P[K = black] = 1− r. As in (1) we have

H(X) = p log2
1
p
+ (1− p) log2

1
1− p

.

Exercise: show that P[Y = 1] = pr + (1− p)(1− r) and find P[Y =
0]. Hence find H(Y) when r = 0, 1

4 , 1
2 and 1. Why is it not so

surprising that H(Y) > H(X)?

Conditional entropy and key uncertainty.

Definition 5.6. Let K and Y be random variables taking values in finite
sets K and C, respectively.The joint entropy of K and Y is defined by

H(K, Y) = − ∑
k∈K

∑
y∈C

P[K = k and Y = y] log2 P[K = k and Y = y].

The conditional entropy of K given that Y = y is defined by

H(K|Y = y) = − ∑
k∈K

P[K = k|Y = y] log2 P[X = k|Y = y].

The conditional entropy of K given Y is defined by

H(K|Y) = ∑
y∈C

P[Y = y]H(K|Y = y).

Note that H(K, Y) is the entropy, as already defined, of the random
variable (K, Y) taking values in K× C and H(K|Y = y) is the entropy of
the probability distribution of K conditioned on Y = y; i.e. the distribution
P[K = k|Y = y] as k varies over K.

You might also find it helpful to remember that H(K|Y) is the expected
value of H(K|Y = y), as y varies over C.5

Example 5.7. Consider the Caesar cryptosystem in which all 26 keys are
equally likely. What is H(K)? Find H(K|Y = ACCB) and H(K|Y = NCYP),
assuming Alice’s message is a random English word.

Exercise 5.8. Let r ∈ N0. Consider the guessing game in which Bob’s
number X has probability distribution (1

2 , 1
2r+1 , . . . , 1

2r+1).

(i) Using that the sum of probabilities is 1, what is the maximum
possible number Bob might have chosen?

(ii) Show that H(X) = 1 + r/2.
(iii) Suppose that, as the first question, Alice asks

‘Is your number 0?’

5If you have seen conditional expectation, please do not get confused into think-
ing that H(K|Y) is a random variable. If you have not seen conditional expectation,
please do not get confused by reading this footnote.

28

Let A be the answer. Show that H(X|A = ‘No’) = r. What is
H(X|A = ‘Yes’)? What is H(X|A)?

(iv) Show that H(X|A) + H(A) = H(X, A). [Hint: H(X, A) = H(X)
since if you know X then you certainly know A.]

This example shows that we may have H(X|Y = y) > H(X). It is true
however that H(X|Y) ≤ H(X) (see the optional extras for this section).
This inequality should be intuitive: knowing the further information in
Y cannot, on average, make us more uncertain about X.

The most important property of conditional entropy is stated in the
lemma below, and was seen in Exercise 5.8(iv). Intuitively ‘the uncer-
tainty of K and Y is the uncertainty of K given Y plus the uncertainty of
Y’. (Now try reading this replacing ‘uncertainty of’ with ‘information
in’.)

Lemma 5.9 (Chaining Rule). Let K and Y be random variables. Then

H(K|Y) + H(Y) = H(K, Y).

The proof of the Chaining Rule is examinable and will be given in a
video, and ‘live’ if time permits. We need two further results to prove the
main theorem of this section.

Lemma 5.10. Let K and X be random variables. If K and X are independent
then H(K, X) = H(K) + H(X).

For a proof (examinable) see Question 1 on Sheet 3 and the model an-
swer.

Lemma 5.11. Let Z be a random variable taking values in a set Z . Let f : Z →
W be a function. If f is injective then H

(
f (Z)

)
= H(Z). 2

The immediate QED box means that I think this result is obvious. In-
tuitively, imagine rolling an unbiased die and let Z ∈ {1, 2, 3, 4, 5, 6}. By
Exercise 5.5(2), H(Z) = log2 6. Let f (z) = 2z. If I tell you f (Z), you can
deduce Z (just take half!). So Z and f (Z) have the same information and
H(f (Z)) = H(Z).6

Theorem 5.12 (Shannon, 1949). Take a cryptosystem in our usual notation.
Then

H(K|Y) = H(K) + H(X)− H(Y).

Proof (Examinable). By the Chaining Rule (Lemma 4.8), H(K|Y) = H(K, Y)−
H(Y). There is an injective function f : K×P → K× C defined by

f (k, x) =
(
k, ek(x)

)
.

6If you really want a formal proof, see the answer to Question 7(b) on Problem
Sheet 3, which proves a more general result.

29

Clearly f (K, X) = (K, Y). By Lemma 5.10, H(K, Y) = H
(

f (K, X)
)
=

H(K, X). Hence

H(K|Y) = H(K, Y)− H(Y)

= H(K, X)− H(Y)

= H(K) + H(X)− H(Y)

where the final line follows from Lemma 5.9, and our assumption that K
and X are independent. �

We end with two applications of Shannon’s Theorem.

English entropy and the one-time pad. As in Example 4.6, letA = {a, b, . . . , z}
be the alphabet and P = C = An. To indicate that plaintexts and cipher-
texts have length n, we write X(n) and Y(n) rather than X and Y.

We suppose only those strings that make good sense in English have
non-zero probability. So if n = 8 then abcdefgh, goodwork ∈ P but
P[X8 = abcdefgh] = 0 whereas P[X8 = goodwork] > 0.

Shannon estimated that the per-character redundancy of English plain-
texts, with spaces, is about 3.2.

Let R = 3.2. If English plaintexts of length n had no redundancy,
their per-character entropy would be log2 26 ≈ 4.7. Therefore the per-
character entropy of English is about log2 26− R ≈ 1.5, and

H(X(n)) ≈ (log2 26− R)n ≈ 1.5n.

Example 5.13 (Entropy for the one-time pad). Suppose that all keys in
An are equally likely. Then, as seen on Problem Sheet 3, all ciphertexts
are equally likely, and by Example 5.5(2),

H(K) = (log2 26)n

H(Y(n)) = (log2 26)n.

We saw above that H(X(n)) ≈ (log2 26− R)n. Therefore by Shannon’s
formula,

H(K|Y(n)) = H(K) + H(X(n))− H(Y(n)) = (log2 26− R)n = H(X(n)).

This is consistent with the remark after Example 4.6 on the probability
distributions P[K = k|Y(n) = y] (k varying) and px.

Unicity distance. In Example 5.13 we proved that for the one-time-pad
H(K|Y(n)) = (log2 26− R)n and that H(K) = (log2 26)n. Therefore

(??) H(K|Y(n)) = H(K)− Rn.

In the non-examinable extras for this part we give Shannon’s argument
that (??) should be a good approximation for H(K|Y(n)) in any cryptosys-
tem where P = C = An, the messages are English texts, and keys are
chosen uniformly at random. It works best when K is large and n is
small.

30

Exercise 5.14. What is the largest length of ciphertext n for which (??)
could hold with equality?

The graph below shows the expected behaviour of H(K|Y).

en
tr

op
y

H(K|Y)
H(K)− nR

n

Definition 5.15. The quantity H(K)/R is the unicity distance of the cryp-
tosystem.

If H(K|Y(n)) < 1 then on average it takes less than one yes/no question
to guess the key K. Therefore (??) predicts that most of the key is known
when n is about the unicity distance of the cryptosystem.

Shannon’s equation (??) predicts that the unicity distance for the sub-
stitution cipher is

log2 |K|
R

=
log2(26!)

R
≈ 88.382

3.200
= 27.619.

So 28 characters of ciphertext should, in theory, determine most of the
key.

Example 5.16. The first 28 characters of the ciphertext in Example 2.5
are KQX WJZRUHXZKUY GTOXSKPIX GW. A computer search using a dictio-
nary of about 70000 words (and all their subwords, for instance tec is
a subword, but not a word) gives 6 possible decryptions of the first 24
letters. These include ‘imo purgatorial hedonics’, ‘the fundamental

objectiv’ and ‘tie fundamental povertys’. Taking 25 letters,

‘the fundamental objective’

is the only decryption consistent with the dictionary. This is in excellent
agreement with Shannon’s argument.

Since 10 characters do not appear in the first 28 letters of ciphertext,
there are 10! possible keys; assuming equally probable keys we have
H(K|Y = y28) = log2 10! = 21.791. Nothing new about the key is learned
after letter 25, so this is the value of the final 4 points in the graph of
H(K|Y(n) = y(n)) for 0 ≤ n ≤ 28 below.

31

Here H(K|Y(n) = y(n) = log2 M(n) where M(n) is the number of possible
keys, computed on the assumption that all keys consisting with a decryp-
tion that is an English phrase with words of the correct length are equally
likely. This is an oversimplification that will overestimate the true condi-
tional entropy.

� � � � �
�

�
�

�
�

�
�
�

� � �
� �

�
�

�

�
� � �

0 5 10 15 20 25

20

40

60

80

100

H(K|Y(n)=y(n))

n

Exercise 5.17. The first dot, after no characters of ciphertext have been
read, is at log2 26! ≈ 88.38195. The next dot, after the first character has
been read, showing log2 P[K|Y1 = ‘K’] is also at this value. Why is this?
[Hint: in the dictionary of 70000 words, there are words starting with
every English letter; for instance, the ‘xylophone’ makes its expected ap-
pearance.]

The remainder of the Part A notes have optional non-examinable ex-
tras. You are encouraged at least to read the first extra, which might be
used for a quiz question or Group Work.

Extra: One idea in Shannon’s argument for unicity distance.

Exercise 5.18. Suppose you ask each person in a large lecture room to
state their number of siblings (for instance, an only child will reply 0),
take the mean, and then add 1. Will the answer be a good estimator for
the mean number of children in a family?

The answer is no! Because we always sample children, rather than
families, we do not count any of the childless families. Worse, families
with large numbers of children are disproportionately likely to have a
child in the room. This ‘selection bias’ appears in Lemma 5.19 below.

32

Extra: Shannon’s argument for unicity distance. The amazing insight in Shan-
non’s proof of his Noisy Coding Theorem is that a good way to commu-
nicate on a binary channel that might corrupt the bits sent through it is to
choose a large binary code at random. Shannon also worked out exactly
how large this code can be so that the probability of error remains low.
His proof will be seen in MT341/441/5441 Classical Information Theory.

Shannon introduced the analogous idea of the random cryptosystem in
Communication theory of secrecy systems, Bell Systems Technical Journal 28
(1949) 656–715. Fix a set P of plaintexts, a set C of ciphertexts of the same
size as P , and a keyspace K. For each k ∈ K, choose a random bijection
ek : P → C as the encryption function. (Note that although the bijection
is random, this random choice is made once and for all, right now. As in
Kerckhoffs’s Principle, everyone knows the encryption functions.)

As a simple model for English plaintexts, we fix a partition of P
P = Pcommon ∪ Prare

into two disjoint sets. We suppose that each common plaintext is sent
with equal probability 1/|Pcommon|. Thus rare plaintexts are never sent,
and each common plaintext is equally likely.

Suppose a plaintext is chosen at random and encrypted to the cipher-
text y ∈ C by a key, chosen equiprobably from K. Define

g(y) =
∣∣{k ∈ K : ek(x) = y for some common plaintext x}

∣∣.
Equivalently, g(y) is the number of keys k such that the decryption e−1

k (y)
is common. Since y is the encryption of a common plaintext, we know
that g(y) ≥ 1. Since the keys are equiprobable, when Eve observes y ∈ C,
her uncertainty in the key is log2 g(y). That is, H(K|Y = y) = log2 g(y).

Let |Pcommon|/|P| = c be the proportion of common plaintexts.

Lemma 5.19. g(y) ∼ 1 + Bin(|K| − 1, c).

Proof. Suppose y was obtained by choosing x? ∈ Pcommon and k? ∈ K,
so y = ek?(x?). Since the encryption functions were chosen at random,
for each k ∈ K, with k 6= k?, the probability is c that e−1

k (y) is a common
plaintext. Hence the number of such k is distributed as Bin(|K| − 1, c).
Now add 1 to count k?. �

By the formula for conditional entropy,

H(K|Y) = ∑
y∈C

H(K|Y = y)P[Y = y]

= ∑
m≥1

(|K| − 1
m− 1

)
cm−1(1− c)|K|−m log2 m

=
1

c|K| ∑
m≥0

(|K|
m

)
cm(1− c)|K|−mm log2 m

33

where we used (|K|−1
m−1) = (|Km) m

|K| . The sum on the right-hand side is
E[Z log2 Z], where Z ∼ Bin(|K|, c). When |K| is large compared to |P|, Z
is likely to be near its mean c|K|, so E[Z log2 Z] ≈ c|K| log2(c|K|). Hence

H(K|Y) ≈ 1
c|K| c|K| log2(c|K|) = log2 |K|+ log2 c.

For English plaintexts of length n, we saw before Example 4.12 that
H(X(n)) ≈ (log2 26− R)n. Therefore a reasonable guess for |Pcommon| is
2(log2 26−R)n. With this value, log2 c = log2 |Pcommon| − log2 26n = −Rn
and H(K|Y) ≈ log2 |K| − Rn, as in (??).

Extra: An entropy inequality. We argued above on page 28 that if X is a
random variable taking values in a set X and Y is a random variable
taking values in a set Y then H(X|Y) ≤ H(X). Recall that, by definition,
H(X|Y) = ∑y∈Y P[Y = y]H(X|Y = y). There would be an easy proof if
H(X|Y = y) ≤ H(X), but this is not the case in general: see Example 5.8.
Instead we must use an important inequality from information theory,
which is used much more in the Classical Information Theory course in
Term 2.

Lemma 5.20 (Gibbs’ Inequality). Let (p1, . . . , pm) and (q1, . . . , qm) be prob-
ability distributions. Then −∑m

j=1 pj log2 pj ≤ −∑m
j=1 pj log2 qj.

We interpret the right-hand side as ∞ if qj = 0 for some j such that
pj 6= 0. Incidentally Gibbs is mainly known for his scientific work: you
might have heard of ‘Gibbs free energy’.

We now use Gibbs’ Inequality to prove that H(X|Y) ≤ H(X).

Proof. By the Chaining Rule, H(X|Y) = H(X, Y)− H(Y). It is therefore
equivalent to prove that H(X, Y) ≤ H(X) + H(Y). The left-hand side is
the entropy of the probability distribution defined by

p(x,y) = P[X = x and Y = y].

The right-hand side is the entropy of the probability distribution q(x,y) =

P[X = x]P[Y = y]; as motivation, note that q agrees with p if and only if
X and Y are independent, in which case by Lemma 5.10, H(X) + H(Y) =
H(X, Y). By Gibbs’ Inequality

− ∑
x∈X

∑
y∈Y

p(x,y) log2 p(x, y) ≤ − ∑
x∈X

∑
y∈Y

p(x,y) log2 q(x, y).

The right-hand side is

− ∑
x∈X

∑
y∈Y

P[X = x and Y = y] log2 P[X = x]P[Y = y]

= − ∑
x∈X

(
∑

y∈Y
P[X = x and Y = y]

)
log2 P[X = x]

− ∑
y∈Y

(
∑

x∈X
P[X = x and Y = y]

)
log2 P[Y = x]

34

= − ∑
x∈X

P[X = x] log2 P[X = x]− ∑
y∈Y

P[Y = y] log2 P[Y = y]

= H(X) + H(Y).

Since the left-hand side is H(X, Y), we have H(X, Y) ≤ H(X) + H(Y), as
required. �

An extended version of Gibbs’ Inequality states that equality holds in
Lemma 5.20 if and only if pj = qj for all j.

Exercise 5.21. Use this extended version to show that H(X|Y) ≤ H(X)
with equality if and only if X and Y are independent.

A motivated proof of the extended version of Gibbs’ Inequality. If m = 1 then
p1 = q1 = 1 and both sides are 0, se may assume that m ≥ 2. As in the
shorter proof, we may also assume that pj > 0 for all j, since if pj = 0
then both summands −pj log2 pj and −pj log2 qj are zero. Let

G(q) = −
m

∑
i=1

pj log2 qj.

We consider how G(q) changes as we vary q over the set {(q1, . . . , qm) ∈
Rm : qj ≥ 0, ∑m

i=1 qj = 1} of probability distributions. It suffices to show
that G(q) is minimized uniquely when qj = pj for all i. Since the set
of probability distributions is closed and bounded, a minimum exists.
Suppose it is q?. We have 0 < q?j < 1 for each i, since −pj log2 qj → ∞ as
qj → 0.

Exercise 5.22. Let 1 ≤ i < j ≤ s. Show that on the line through q?

where we slightly increase qi and slightly decrease qj, staying in the set
of probability measures, the values of G(q) are given by

g(t) = G(q?1 , . . . , q?i + t, . . . , q?j − t, . . . , q?s)

= pi log2(q
?
i + t) + pj log2(q

?
j − t) + ∑

i 6=j,k
pi log2 q?i

Show that
g′(t) =

pi
q?i loge 2

− pj

q?j loge 2
.

Since q? is a minimum of G, we have g′(t) = 0. Deduce from this that
pi/q?i = pj/q?j for all i and j and hence that q? = p.

Hence −∑m
j=1 pj log2 pj ≤ G(q) with equality if and only if q = p. This

is Gibbs’ Inequality. 2

If you have seen Lagrange multipliers you might recognise that this
proof uses the same method.

35

(B) Stream ciphers

6. LINEAR FEEDBACK SHIFT REGISTERS

Computers are deterministic: given the same inputs, you always get
the same answer.

Question. How can we get a sequence that ‘looks random’ out of a
deterministic algorithm? How can we use it to encrypt a plaintext?

Reminder of binary. Recall that F2 is the finite field of size 2 with elements
the bits (short for binary digits) 0, 1. Addition and multiplication are de-
fined modulo 2, so

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

By definition, Fn
2 is the set of n-tuples (x0, x1, . . . , xn−1) where each xi

is a bit 0 or 1. For brevity we may write this tuple as x0x1 . . . xn−1. As
usual in this course, we number positions from 0 up to n− 1. It is usual
to refer to elements of Fn

2 as binary words of length n.

Exercise 6.1. Write down 15 bits in a circle so that, reading the cycle clock-
wise, every non-zero binary word of length 4 appears exactly once. How
many 0s do you use? How many 1s do you use?

Definition of LFSRs.

Definition 6.2.
(i) Let ` ∈ N. A linear feedback shift register of width ` with taps T ⊆
{1, 2, . . . , `} is a function F : F`

2 → F`
2 of the form

F
(
(x0, x1, . . . , x`−2, x`−1)

)
= (x1, . . . , x`−1, ∑

t∈T
x`−t).

(ii) The function f : F`
2 → F2 defined by f (x) = ∑t∈T x`−t is called

the feedback function.
(iii) The keystream for k ∈ F`

2 is the sequence k0, k1, . . . , k`−1, k`, k`+1, . . . ,
where for each s ≥ ` we define

ks = ∑
t∈T

ks−t

Equivalently, ks = f
(
(ks−`, ks−`+1, . . . , ks−1)

)
and so

F
(
(ks−`, ks−`+1, . . . , ks−1)

)
= (ks−`+1, . . . , ks−1, ks).

Thus the LFSR function F shifts the bits in the first ` − 1 positions left
(forgetting the very first), and puts a new bit, defined by its feedback

36

function, into the rightmost position. Taking all these rightmost positions
gives the keystream. We call this the Very Useful Property:

(VUP) Fs((k0, k1, . . . , k`−1)
)
= (ks, ks+1, . . . , ks+`−1).

Here Fs is the function defined by applying F a total of s times. To sim-
plify notation, one may write Fs(k0, k1, . . . , k`−1) for the left-hand side,
omitting one set of parentheses.

Example 6.3. The LFSR F of width 4 with taps {3, 4} is defined by

F
(
(x0, x1, x2, x3)

)
= (x1, x2, x3, x0 + x1).

(i) Solving the equation F
(
(x0, x1, x2, x3)

)
= (y0, y1, y2, y3) shows

that F has inverse

F−1((y0, y1, y2, y3)
)
= (y0 + y3, y0, y1, y2).

(ii) The keystream for the key k = 0111 is

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

repeating from position 15 onwards: ks = ks+15 for all s ∈ N0.
(As a notational guide we sometimes use bold letters for the initial
key and its repeats: it is entirely optional.)

(iii) Exercise: observe that k′ = 0001 appears as k5k6k7k8 in the keystream.
Find the keystream when the LFSR is started with k′.

(iv) By the (VUP), starting with k = 0111, we have k1k2k3k4 = F(k) =
1111 and k2k3k4k5 = F2(k) = 1110. The full sequence k, F(k),
F2(k), F3(k), . . ., F14(k), F15(k) is

0111 7→ 1111 7→ 1110 7→ 1100 7→ 1000 7→ 0001 7→ 0010 7→ 0100

7→ 1001 7→ 0011 7→ 0110 7→ 1101 7→ 1010 7→ 0101 7→ 1011 7→ 0111

with F15(k) = k. Observe that, as expected from (VUP), the right-
most bits in each Fs(k), namely 1, 1, 0, 0, 0, 0, 1 . . . are the keystream
for 0111, starting from k3 = 1.

(v) We say that x′0x′1 . . . x′n−1 is a cyclic shift of x0x1 . . . xn−1 if there
exists r such that xrxr+1 . . . xn−1x0 . . . xr−1 = x′0x′1 . . . x′n−1.

Exercise: Is every keystream generated by F a cyclic shift of the
keystream for 0001?

In the cryptographic literature it is conventional to represent LFSRs by
circuit diagrams, such as the one below showing F of width 4 with taps
{3, 4}. By convention

⊕
denotes addition modulo 2, implemented in

electronics by the XOR gate.

37

tap 4 3 2 1

⊕

The word ‘register’ in LFSR refers to the boxed memory units storing
each bit.

Cryptosystem defined by an LFSR.

Definition 6.4. Let F be an LFSR of width ` and let n ∈N. The cryptosys-
tem defined by F has P = C = Fn

2 and keyspace K = F`
2. The encryption

functions are defined by

ek(x) = (k0, k1, . . . , kn−1) + (x0, x1, . . . , xn−1)

for each k ∈ K and x ∈ P .

Thus, like the one-time pad, the ciphertext is obtained by addition
to the plaintext. But unlike the one-time pad, the key is usually much
shorter than the plaintext.

Exercise 6.5. Define the decryption function dk : Fn
2 → Fn

2 .

Invertible LFSRs and periods.

Exercise 6.6. Let H be the LFSR of width 3 with taps {1, 2}. Show that H
is not invertible and check that 111011011011011 . . . is a keystream of H,
ending in the cycle 011011

This exercise and Example 6.3(i) suggest the general result: an LFSR of
width ` is invertible if and only if ` is one of the taps. The steps in a proof
are indicated in Question 3 of Sheet 4.

Exercise 6.7. Let G be the LFSR of width 4 with taps {1, 2, 4}.
(a) Find the keystreams for the keys 0001 and 0010.
(b) Which words of length 4 do not appear in either keystream?
(c) Find all keystreams generated by this LFSR.

For cryptographic purposes, an invertible LFSR is used, and we want
the keystream to be as long as possible before it repeats. For invertible
LFSRs, we now show this repeat must be ‘from the start’.

Fix a non-zero key k ∈ F`
2 and consider the binary words Fs(k) for

s ∈N0. Mini-exercise: why are they all non-zero? As in Example 6.3(iv),
we make a chain

k 7→ F(k) 7→ F2(k) 7→ . . . 7→ Fs(k) 7→ . . . 7→ Fs′(k) 7→

38

Since there are 2` − 1 non-zero binary words of length `, and

k, F(k), . . . , F2`−1(k)

has 2` words, there exist r, r′ with 0 ≤ r < r′ < 2` such that Fr(k) =

Fr′(k). Now applying F−r we get k = Fr′−r(k). Hence, by (VUP),

k0k1 . . . k`−1 = kr′−rkr′−r+1 . . . kr′−r+`−1

and the keystream repeats after at most r′ − r < 2` positions.

Definition 6.8. Let F be an invertible LFSR.
(i) We define the period of a keystream k0, k1, . . . generated by F to be

the least p ∈N such that ks+p = ks for all s ∈N0.
(ii) We define the period of F to be the least P ∈ N such that FP = id,

the identity function.

By the argument before the definition, each p is well-defined and if F
has width ` then p ≤ 2` − 1. By (VUP), P is the lowest common mul-
tiple of the periods of the keystreams of F. (See the optional Question
5 on Problem Sheet 4 for details.) In fact P is the maximum period of a
keystream. (See the optional Question 7 on Problem Sheet 4: this follows
easily from Lemma 5.4 in the M.Sc. course, and is part of Corollary 5.6.)

For example, the invertible LFSRs F and G in Example 6.3 and Exer-
cise 6.7 have non-zero keystreams of periods 15 (the maximum possible)
and 7, 7, 1, 1 respectively. The LFSR periods are 15 and 7, respectively.

7. KEYSTEAMS AND RANDOMNESS

Question. How random is the keystream generated by an invert-
ible LFSR? What do we mean by ‘random’ anyway?

We saw before Definition 6.8 that the maximum possible period of a
keystream of an LFSR of width ` is 2` − 1. Given any non-zero k ∈ F`

2,
the first 2` − 1 positions of the keystream for k are the generating cycle
for k. (The term ‘m-sequence’ is also used.) Thus

(†) k2`−1+s = ks for all s ∈N.

Exercise 7.1. Let F be the LFSR of width 4 with taps {3, 4} and period
15 = 24 − 1 seen in Example 6.3. It has the maximum possible period for
its width. The keystream for k = (1, 1, 0, 0) can be obtained by reading
the keystream in Example 6.3 from 1100. It is

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0 . . .).

Correspondingly, by the Very Useful Property (VUP),

F(1, 1, 0, 0) = (1, 0, 0, 0), F2(1, 1, 0, 0) = (0, 0, 0, 1), . . . , F14(1, 1, 0, 0) = (1, 1, 1, 0)

39

and F15(1, 1, 0, 0) = (1, 1, 0, 0). By taking the first 15 positions we get the
generating cycle

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14

Since the keystream period is 15, k15+s = ks for all s ∈N0, as seen in (†).
(a) Find all the positions s such that

(ks, ks+1, ks+2, ks+3) = (0, 1, 1, 1).

(b) What is the only element of F4
2 not appearing in the keystream for

(0, 0, 0, 1)?
(c) Why is the generating cycle for (0, 1, 1, 1) a cyclic shift of the gen-

erating cycle for (1, 1, 0, 0)?
(d) Find all the positions s such that (ks, ks+1, ks+2) = (0, 1, 1). How

many are there? [Hint: you do something similar in the Group
Work for Week 5.]

(e) Repeat (d) changing (0, 1, 1) to (0, 0, 1), (0, 0, 0) and then to (0, 1),
(1, 1), (1, 0) and (0, 0). Explain the pattern.

Proposition 7.2. Let F be an invertible LFSR of width ` with a keystream of pe-
riod 2` − 1. Let k ∈ F`

2 be non-zero and let (k0, k1, . . . , k2`−2) be its generating
cycle. We consider starting positions s within this cycle, so 0 ≤ s < 2` − 1.

(a) For each non-zero x ∈ F`
2 there exists a unique s such that

(ks, . . . , ks+`−1) = x.

(b) Given any non-zero y ∈ Fm
2 where m ≤ `, there are precisely 2`−m

positions s such that (ks, . . . , ts+m−1) = y.
(c) There are precisely 2`−m − 1 positions s such that (ks, . . . , ks+m−1) =

(0, 0, . . . , 0) ∈ Fm
2 .

In particular, (b) and (c) imply that, in a generating cycle of an invert-
ible LFSR of width ` and maximal possible period, there are 2`−1 ones
and 2`−1 − 1 zeros. How many times do 00, 01, 10 and 11 appear?

Exercise 7.3. Write down a sequence of 33 bits, fairly quickly, but trying
to make it seem random. Count the number of zeros and the number of
ones. Now count the number of adjacent pairs 00, 01, 10, 11. Does your
sequence still seem random?

Random sequences of length 33 will have, on average, 161
2 zeros and

ones, and 8 of each pair 00, 01, 10, 11. But because they are random, some
will have more, and some less. At what point should we suspect that the
sequence is not truly random?

Here we answer this question for the first test in Exercise 7.3, counting
the number of zeros and ones. This is the monobit test.

40

Exercise 7.4 (Monobit Test). Let M0 be the number of zeros and let M1 be
the number of ones in a binary sequence B0, B1, . . . , Bn−1 of length n.

(a) Explain why if the bits are random we would expect that M0 and
M1 both have the Bin(n, 1

2) distribution.

(b) Show that the χ2 statistic with (a) as null hypothesis is (M0 −
M1)

2/n.
(c) A sequence with n = 80 has 50 zeros. Does this suggest it is not

truly random? [Hint: if Z ∼ N(0, 1) then P[Z2 ≥ 3.841] ≈ 0.05
and P[Z2 ≥ 6.635] ≈ 0.01. The probability density functions for
Z (solid) and Z2 (dashed) are shown in the margin.]

(d) (For statisticians.) Is the test used in (c) one-tailed or two-tailed?

-2 2 4 6 8

0.1

0.2

0.3

0.4

0.5

See Question 4 on Problem Sheet 5 for the analogous test looking at
pairs of adjacent bits and the slides and videos for a quiz on the hypoth-
esis testing framework.

Another interesting measure of randomness is the degree to which a
sequence is correlated with a shift of itself.

Definition 7.5. Given (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) ∈ Fn
2 define

csame =
∣∣{i : xi = yi}

∣∣

cdiff =
∣∣{i : xi 6= yi}

∣∣.
The correlation between x and y is (csame − cdiff)/n.

Exercise 7.6. Find the correlation between a generating cycle for the LFSR
of width 3 with taps {2, 3} and each cyclic shift of itself. Would your an-
swer change if you used a different key to calculate the generating cycle?

More generally we shall prove the following proposition, which again
shows that a generating cycle of an LFSR of maximum possible period
for its width has a strong randomness property.

Proposition 7.7. Let (k0, k1, . . . , k2`−2) be a generating cycle of an LFSR of
width ` and maximum possible period 2` − 1. Let 1 ≤ r < 2` − 1. The correla-
tion between (k0, k1, . . . , k2`−2) and its proper cyclic shift

(kr, kr+1, . . . , k2`−2, k0, . . . , kr−1)

is − 1
2`−1

.

Remark on proof. If you remember the idea of defining us = ks + ks+r and
that ‘sames’ and ‘differents’ correspond to 0s and 1s in the keystream for
(u0, . . . , u`−1), you should be able to reconstruct the entire proof.

Note that (u0, . . . , u`−1) is a non-zero key because otherwise k0 = kr, . . . ,
k`−1 = k`+r−1, and so the keystream repeats after r positions, contradict-
ing that its period is 2` − 1.

41

8. NON-LINEAR STREAM CIPHERS

Question. Why is the LFSR cryptosystem weak? What can we do
to improve it?

A general stream cipher takes a key k ∈ F`
2, for some fixed `, and out-

puts a keystream u0u1u2 . . . of bits. For each n ∈ N there is a correspond-
ing cryptosystem where, as in Definition 6.4, the encryption functions
ek : Fn

2 → Fn
2 are defined by

ek(x) = (u0, u1, . . . , un−1) + (x0, x1, . . . , xn−1).

Exercise 8.1. In the LFSR cryptosystem of Definition 6.4, the keystream
u0u1u2 . . . is simply k0k1k2, Show how to find the key (k0, . . . , k`−1)
using a chosen plaintext attack.

One reason why this cryptosystem is weak is because every bit of in-
ternal state appears, unmodified, in the keystream.

Example 8.2. A way to avoid this weakness is to use two or more LFSR
keystreams as the internal state of the stream cipher, adding them to cre-
ate the output keystream. Some care is needed.

• Let F be the LFSR of width 4 with taps {3, 4} of period 15.
The first 20 bits in the keystreams for F with keys k = (0, 0, 0, 1) and
k′ = (1, 1, 1, 1) sum to the sequence (u0, u1, . . . , u19) below:

ki 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
k?i 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0
ui 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

The generating cycle 0, 0, 0, 1, . . . , 1, 1, 1, 1 is highlighted on its first ap-
pearance. We see that (u0, u1, u2, . . .) is also generated by F: since it starts
1110, it is the keystream for (1, 1, 1, 0).

(a) Exercise: Explain why this should have been expected. [Hint: the
same linearity was used to prove Proposition 7.7.]

(b) Exercise: can the keys k and k? be recovered from (u0, u1, u2, u3)? If
so, explain how; if not, explain how an attacker given (u0, u1, u2, u3)
can still decrypt ciphertexts encrypted by adding the keystreams
for k and k? to the plaintext.
• Let F′ be the LFSR of width 3 with taps {2, 3} of period 7.

The first 20 bits in the keystreams for F and F′ with keys k = (0, 0, 0, 1)
and k′ = (0, 0, 1) and their sum (u0, u1, . . . , u19) are:

ki 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
k′i 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1
ui 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

42

Exercise: what is the period of (u0, u1, u2, . . .)?

The exercise is encouraging: combining the LFSRs creates a keystream
with a much longer period than either individually.

The bad news is that the keystream (u0, u1, u2, . . .) is generated by the
LFSR of width 7 with taps {2, 4, 5, 7}.7 So as in (b) above, the keystream
u0u1u2 . . . is the keystream of a single LFSR. In particular an attacker who
learns (u0, u1, . . . , u6) can calculate the entire keystream and decrypt any
further ciphertexts sent using k and k′.

To avoid this problem, modern stream ciphers use non-linear func-
tions, such as multiplication. They also avoid using every bit of the inter-
nal state in the keystream.

Example 8.3. A Geffe generator is constructed using three LFSRs F, F′

and G of widths `, `′ and m, all with maximum possible period. Follow-
ing Kerckhoff’s Principle, the widths and taps of these LFSRs are public
knowledge.

• Let k0k1k2 . . . and k′0k′1k′2 . . . be keystreams for F and F′

• Let g0g1g2 . . . be a keystream for G.
The Geffe keystream (u0, u1, u2, . . .) is defined by

ui =

{
ki if gi = 0
k′i if gi = 1.

For example, if F and F′ and their keystreams are as in Example 8.2 (so
F has width 4, taps {3, 4}, F′ has width 3, taps {2, 3}), and G is the LFSR
of width 4 with taps {1, 4} and (g0, g1, g2, g3) = (0, 0, 0, 1) then, using
colours to indicate which bit is used:

ki 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
k′i 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1
gi 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1
ui 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Exercise: give an upper bound on the period of (u0, u1, u2, . . .), for this
example, and in general.

The Geffe generator is much better than taking the sum of k0k1k2 . . . and
k′0k′1k′2 But it is vulnerable to a correlation attack.

Exercise: Assume that the keystreams k0k1k2 . . . and k′0k′1k′2 . . . have inde-
pendent bits. Find P[ks = us] for each s ∈N0.8

7M.Sc. students will see the theoretical reason for this using annihilators in §5
of their course; §6 of the M.Sc. course is on the Berlekamp–Massey algorithm that
gives another way to find these taps.

8Formally, this means P[Ks = Us], where Ks and Us are the random variables
for the first keystream and the Geffe keystream, where, by our assumption Ks and
Us are independently and uniformly distributed on {0, 1}.

43

Up to a tiny error (it is even smaller than the−1/2`−1 in Proposition 7.7),
the independence assumption holds in practice. Thus the correlation be-
tween k0k1k2 . . . and u0u1u2 . . . is very nearly 3

4 − 1
4 = 1

2 . Recall that 0
corresponds to no correlation, 1 to equality in every position and −1 to
inequality in every position.

Attack 8.4. Suppose that n bits of the Geffe keystream are known. The attacker
computes, for each candidate key (v0, v1, . . . , v`−1) ∈ F`

2, the correlation be-
tween v0v1 . . . vn−1 and u0u1 . . . un−1. If the correlation is not nearly 1

2 then
the candidate key is rejected. Otherwise it is likely that (k0, k1, . . . , k`−1) =
(v0, . . . , v`−1).

Exercise: in the example above, ` > `′. Is it better to guess the key for F
or for F′?

One can repeat Attack 8.4 to learn (k′0, k′1, . . . , k′`′−1). Overall this re-
quires at most 2` + 2`

′
guesses. This is a huge improvement on the 2`+`′+m

guesses required by trying every possible triple of keys. Question 1(b) on
Sheet 6 suggests some ways to speed up finding k′ once k is known.

An attack such as Attack 8.4 is said to be sub-exhaustive because it finds
the key using fewer guesses than brute-force exhaustive search through
the keyspace.

Extras for Part B. Adding up multiple bits reduces the bias seen in the
Geffe generator. This is ‘extra’ for the MT362/462 course but examinable
for MT5462. It is a nice application of the ‘Piling-up’ Lemma (Lemma
4.11) in the M.Sc. notes.

Example 8.5. Let F be the LFSR of width 5 with taps {3, 5} and let F′

be the LFSR of width 6 with taps {2, 3, 5, 6}. These have the maximum
possible periods for their widths, namely 25 − 1 = 31 and 26 − 1 = 63.
Fix m ∈N and for each i ≥ m, define

us = ksk′s + ks−1k′s−1 + · · ·+ ks−(m−1)k
′
s−(m−1).

Note that there are m products in the sum. Define us = 0 if 0 ≤ s <
m − 1. The m-quadratic stream cipher is the cryptosystem defined using
the keystream u0u1 . . . u1023.

Taking m = 1 gives a cipher like the Geffe generator: since us = ksk′s we
have P[us = ks] =

3
4 , giving a correlation of 1

2 . Attack 8.4 is effective.

For general m, the expected correlation between keystream of the m-
quadratic stream cipher u0u1u2 . . . u1023 and the keystream k0k1k2 . . . k1023
of the LFSR of width 5 is about 1

2m . (This follows from the ‘Piling-Up’
lemma, Lemma 5.11 in the M.Sc. course.) Taking m = 5, this makes the
correlation attack ineffective because the difference between 0 correlation

44

and the correlation of ± 1
25 from a correct key guess cannot be detected

with 210 samples.

The graphs below show correlations for all 31 non-zero keys k when m =
1, m = 3 and m = 5. The correct key is 00111, or 7 in binary.

++++++

+

++++++++
+++++++++++

+
++++

5 10 15 20 25 30

-0.1

0.1

0.2

0.3

0.4

0.5

+
++
++

+

+

+
+

+

++

+

++
+

+
+

+
+

+
+
+
+

+

++
++

+

+

5 10 15 20 25 30

-0.10

-0.05

0.05

0.10

0.15

+

+
+
+

+
+++
+
+
+
++

+

+

+
+

+
++

++
++

++

+

++
+
+

5 10 15 20 25 30

-0.10

-0.05

0.05

Notice that when m = 3 there are 7 ‘fake keys’ with positive correla-
tion, as well as the correct key. M.Sc. students are asked to explain this,
in the case m = 2, in Question 3 on Problem Sheet 6.

Exercise 8.6. Unfortunately the m-quadratic cipher can still be attacked
because the sum of two adjacent bits ui and ui−1 in the keystream cancels
out many of the quadratic terms. Use this to find a subexhaustive attack.

We end by looking at a modern stream cipher that, like the quadratic
cipher, mixes multiplication and addition on multiple LFSRs. This com-
bination gives a practical cipher with no known sub-exhaustive attacks.

Example 8.7 (TRIVIUM). The building blocks are three LFSRs of widths
93, 84 and 111, with taps {66, 93}, {69, 84} and {66, 111}. Let x ∈ F93

2 ,
y ∈ F84

2 , z ∈ F111
2 be the internal states. The registers are updated using

the functions f , g and h, respectively, where

f (x, y, z) = z0 + z111−66 + z1z2 + x24

g(x, y, z) = x0 + x93−66 + x1x2 + y6

h(x, y, z) = y0 + y84−69 + y1y2 + z24

For instance the x-register is updated using f , so in each step

(x0, . . . , x92) 7→
(

x1, . . . , x92, f (x, y, z)
)
.

The keystream bit from each step is

x0 + x93−66 + y0 + y84−69 + z0 + z111−66.

Rather than use a 288-bit key, TRIVIUM uses a (secret) 80-bit key put in
the x-register, and a (non-secret) 80-bit initialization vector put in the y-
register. The remaining positions in the internal state start as 0, except
for z0, z1, z2 which start as 1.9 (Exercise: why do this?) The first 1152 bits
of the keystream are unusually biased, and so are discarded. This can
be seen, for the earlier bits, using the implementation of TRIVIUM in the
MATHEMATICA notebook on Moodle.

9See http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.

pdf for details: for consistency with the conventions in this part, the right-shifting
registers in the formal specification have been converted to (equivalent) left-
shifting registers, as in Definition 6.2, and in the specification on Wikipedia.

45

(C) Block ciphers

9. FEISTEL NETWORKS AND DES

Question. What are the strongest cryptosystems in common use?

In a block cipher of block size n and key length `, P = C = Fn
2 , and

K = F`
2. Since P = C, by Exercise 3.3(iii), each encryption function ek for

k ∈ K is bijective, and the cryptoscheme is determined by the encryption
functions.

In a typical modern block cipher, n = 128 and ` = 128. Since most
messages have more than n bits, they have to be split into multiple blocks,
each of n bits, before encryption.

Example 9.1. The binary one-time pad of length n is the block cipher of
block size n and key length n in which ek(x) = x + k for all k ∈ Fn

2 . For
example, e(1,1,1,1)

(
(1, 0, 0, 1)

)
= (0, 1, 1, 0).

Since we work over F2, addition is always modulo 2. The one-time
pad has perfect secrecy (see Question 2 on Sheet 2). But it is not a good
block cipher because the key can be deduced from a known plaintext/
ciphertext pair (x, y) by adding x and y, to get x + (x + k) = k.

Modern block ciphers aim to be secure even against a chosen plaintext
attack allowing arbitrarily many plaintexts. That is, even given all pairs(

x, ek(x)
)

for x ∈ Fn
2 , there should be no faster way to find the key k then

exhausting over all possible keys in the keyspace F`
2.

The following example aims to give some idea of the ‘needle in haystack’
effect of a strong block cipher, and why it is non-trivial to design one.

Example 9.2. Take n = 3 so P = C = F3
2. The toy block cipher has K =

F8
2. The encryption functions are 256 of the bijections F3

2 → F3
2, chosen

according to a fairly arbitrary rule (details omitted). For example, the
red edge in diagram 252 shows that e11111100(010) = 100, or in decimal,
e252(2) = 4

2402402402402402402402400 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2412412412412412412412410 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2422422422422422422422420 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2432432432432432432432430 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2442442442442442442442440 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2452452452452452452452450 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2462462462462462462462460 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2472472472472472472472470 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2482482482482482482482480 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2492492492492492492492490 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2502502502502502502502500 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2512512512512512512512510 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2522522522522522522522520 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2532532532532532532532530 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2542542542542542542542540 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2552552552552552552552550 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

The other 240 bijections are posted on Moodle and will be available in the
Q&A session in Week 9.

46

Suppose Alice and Bob use the toy block cipher with their shared secret
key k.

(i) By a chosen plaintext attack Mark learns that ek(000) = 011 and
ek(100) = 000. One possible key is 254, or 11111110 in binary.
There are twelve others: find at least one of them.

(ii) By choosing two further plaintexts Mark learns that ek(001) = 101
and ek(110) = 111. Determine k.

(iii) Later Mark’s boss Eve observes the ciphertext 100. What is dk(100)?

In this small example we used 256 of the (23)! = 8! = 40320 bijections
of F3

2.

A block cipher such as AES, with block size 128 and key length 128 uses
2128 ≈ 3.40× 1030 bijections of F128

2 . To store just one of these bijections
needs a list of 2128 pairs (x, ek(x)), one pair for each x ∈ F128

2 . Since 2128

bits is about 4.25× 1028 GB, this is impractical. Instead each encryption
function ek must be computed as it is used.16

Feistel networks. It will be useful to represent the elements of F2m
2 as pairs

(v, w) where v, w ∈ Fm
2 . For example

(
(1, 1, 1, 0), (1, 1, 0, 1)

)
, or more

briefly 1110 1101, both represent (1, 1, 1, 0, 1, 1, 0, 1).

Definition 9.3. Let m ∈N and let f : Fm
2 → Fm

2 be a function. The Feistel
network for f is the function F : F2m

2 → F2m
2 defined by

F
(
(v, w)

)
=
(
w, v + f (w)

)
.

This can be compared with an LFSR: we shift (v, w) left by m positions
to move w to the start. The analogue of the feedback function is (v, w) 7→
v + f (w). It is linear in v, like an LFSR, but typically non-linear in w.

v w

f

f(w)

v+f(w)

w v + f(w)

f

v w
w

w

f(w)

v+f(w)

v

16Computers work in binary so elements of Fn
2 can be stored very compactly

and easily manipulated. For example, key addition by + in Fn
2 corresponds to

XOR, which is a single instruction: on an Intel microprocessor, if register eax

contains 95 = 01010101 then xorl $15, %eax computes 01010101 + 00001111 =
01011010. For more see repl.it/@mwildon/CMinimalBlockCipher: download
and then compile with gcc -S, or paste the C code into godbolt.org (compiler
explorer) to see the assembly language instructions.

47

The circuit diagrams on the previous page show two equivalent defi-
nitions of the Feistel network: the right-hand diagram makes the analogy
with LFSRs more obvious; the left-hand diagram is useful for organizing
calculations (see Exercise 9.6).

Exercise 9.4. Show that, for any function f : Fm
2 → Fm

2 , the Feistel net-
work F for f is invertible and that its inverse is (v′, w′) 7→ (w′+ f (v′), v′).

See Question 2 on Problem Sheet 6 for an extension of this exercise,
showing that decryption can be performed by the same circuitry as en-
cryption.

A block cipher of Feistel type is defined by iterating a Feistel network
for a fixed number of rounds. The function f for each round depends on
a round key, constructed using the key k ∈ F`

2.

Example 9.5 (Q-block cipher). Take m = 4 and let

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

We define a block cipher with block size 8 and key length 12 composed
of three Feistel functions. If the key is k ∈ F12

2 we define the three round
keys by

k(1) = (k0, k1, k2, k3), k(2) = (k4, k5, k6, k7), k(3) = (k8, k9, k10, k11).

The Feistel function in round i is x 7→ S(x + k(i)).

Since in each round the new left register is the old right register, we can
consistently denote the output of round i by (v(i), v(i+1)). Thus the plain-
text (v, w) ∈ F16

2 is encrypted to the cipher text ek
(
(v, w)

)
= (v(3), v(4)) in

three rounds:

(v, w) = (v(0), v(1)) 7→
(
v(1), v(0) + S(v(1) + k(1))

)
= (v(1), v(2))

7→
(
v(2), v(1) + S(v(2) + k(2))

)
= (v(2), v(3))

7→
(
v(3), v(2) + S(v(3) + k(3))

)
= (v(3), v(4)).

Exercise 9.6.

(a) Suppose that k = 0001 0011 0111, shown split into the three round
keys. Show that ek(0000 0000) = 1110 0010 and (v(1), v(2)) =

(0000 0100) and (v(2), v(3)) = (0100 1110).

(b) Let k′ = 0001 0011 0000. Show that dk′(1110 0010) = 1100 1100
and (v(1), v(2)) = 1100 1011, (v(2), v(3)) = 1011 1110. Remember
to use the round keys in reverse order!

(c) Suppose Eve observes the ciphertext (v(3), v(4)) from the Q-block
cipher. What does she need to know to determine v(2)?

48

DES (Data Encryption Standard 1975). DES is a Feistel block cipher of
block size 64. The key length is 56, so the keyspace is F56

2 . Each round
key is in F48

2 . There are 16 rounds. (Details of how the 16 round keys are
derived from the key are omitted.)

The Feistel function f : F32
2 → F32

2 is defined in three steps using eight
functions S1, . . . , S8 : F6

2 → F4
2. Start with x ∈ F32

2 and a round key
k(i) ∈ F48

2 . Then

(a) Expand x by a linear function (details omitted) to x′ ∈ F48
2 .

(b) Add the 48-bit round key to get x′ + k(i).
(c) Let x′ + k(i) = (y(1), . . . , y(8)) where y(j) ∈ F6

2 for each j. Let

z =
(
S1(y(1)), . . . , S8(y(8))

)
∈ F32

2 .

(d) Apply a bijection (details omitted) of the positions of z.

Note that (a) and (d) are linear, and (b) is a conventional key addition in
F48

2 . So the S-boxes in (c) are the only source of non-linearity. (Here ‘S’
stands for ‘substitution’.)

• The aim of (c) is ‘confusion’: to make the relationship between
nearby bits of the plaintext and ciphertext complicated and non-
linear.
• The aim of (d) is ‘diffusion’: to turn confusion between nearby

bits into long range confusion.

In 1994 a sub-exhaustive attack on DES using linear cryptanalysis (part
of the M.Sc. course) on 248 known plaintext/ciphertext pairs was discov-
ered.

At about the same time, the relatively small keyspace F56
2 meant that ex-

haustive attacks became practical. Therefore DES cannot be considered
secure. Some timings for exhaustive attacks:

• 1997: 140 days, distributed search on internet
• 1998: 9 days ‘DES cracker’ special purpose $250000
• 2017: 1 day ‘COPACOBANA’ 35 FPGAs $10000 (estimate)

Exercise 9.7. Let 2DES be the block cipher defined by applying DES twice,
first with key k ∈ F56

2 then with k′ ∈ F56
2 . So the keyspace is F56

2 × F56
2

and for (k, k′) ∈ F56
2 ×F56

2 ,

e(k,k′)(x) = e′k
(
ek(x)

)
.

How long would a brute force exhaustive search over F56
2 ×F56

2 take?

In the following attack, blue letters and ? denotes known quantities
the attacker chooses or can obtain by encrypting using her black box. Red
denotes unknown quantities. Using colours is not a standard convention,
and you are welcome to ignore it if you prefer.

49

Attack 9.8. We attack 2DES supposing, in a chosen plaintext attack, that we
can encrypt arbitrary plaintexts. Let (k, k′) be the secret key. We choose x ∈ F64

2
and, using the black box in our possession, find e(k,k′)(x) = z ∈ F64

2 .

(1) For every k? ∈ F56
2 we calculate ek?(x), and separately, for every k′? ∈

F56
2 , we calculate dk′?(z). After 256 encryptions and 256 decryptions we

have the sets

E = {
(
k?, ek?(x)

)
: k? ∈ F56

2 }
D = {

(
k′?, dk′?(z)

)
: k′? ∈ F56

2 }.
(2) Using these sets we calculate, for each y? ∈ F56

2 , those key pairs (k, k′)
that ‘meet-in-the-middle’ at y?:

Ky? = {(k?, k′?) : ek?(x) = dk′?(z)}.
Setting y = ek(x) = dk′(z), we have (k, k′) ∈ Ky. So the correct key is
in one of the sets Ky? .

(3) To find (k, k′), we choose another plaintext X. Then for each y? ∈ F56
2

and each (k?, k′?) ∈ Ky? we test if

e(k?,k′?)(X) = e(k,k′)(X).

It is very likely that only the correct key passes this test.

Exercise 9.9. The total number of key pairs (k?, k′?) ∈ E×D we test in (3)
is M = ∑y∈F64

2
|Ky|. Assuming that the encryption function in DES be-

have like random bijections of F64
2 , show that the expected size of each

Ky is
(
256/264)2

= 1
216 , and so the expected size of M is 264 × 1

216 = 248.
Why is it then very likely that only the correct key passes the test that
e(k?,k′?)(X) = e(k,k′)(X)? Deduce that Attack 9.8 uses about 256 + 256 + 2×
248 encryptions/decryptions. Does this make the attack subexhaustive?

See Question 4 on Problem Sheet 7 for 3DES (Triple-DES): it has keyspace
F56

2 ×F56
2 ×F56

2 and encryption functions defined by

e(k,k′,k′′)(x) = e′′k
(
d′k
(
ek(x)

))
.

The DES model, of combining a non-linear S-box with linear maps and
key additions in Fn

2 , is typical of block ciphers.

Modes of operation. A block cipher of block size n encrypts plaintexts in
Fn

2 to ciphertexts in Fn
2 . If the message x is longer than n bits, it must be

split into blocks x(1), . . . , x(m) ∈ Fn
2 suitable for encryption:

x = (x(1), . . . , x(m)).

Fix a key k ∈ K: this is only key used.

• In Electronic Codebook Mode, the encryption function ek is ap-
plied to each block in turn:

x(1) 7→ ek(x(1)), x(2) 7→ ek(x(2)), . . . , x(m) 7→ ek(x(m))

50

• Cipher Block Chaining:

x(1) 7→ ek(x(1)) = y(1)

x(2) 7→ ek(y(1) + x(2)) = y(2)

...

x(m) 7→ ek(y(m−1) + x(m)) = y(m)

If x(i) = x(j) then, in Electronic Codebook Mode, the ciphertext blocks
ek(x(i)) and ek(x(j)) are equal. This leads to frequency attacks, as seen in
Example 2.5 for the substitution cipher. This is a weakness of the mode
of operation, not of the underlying block cipher. Cipher Block Chaining
avoids this problem.

10. DIFFERENTIAL CRYPTANALYSIS AND AES

Recall that in a chosen plaintext attack you get to pick a plaintext x and
are given ek(x), and in a chosen ciphertext attack you get to pick a cipher-
text y and are given dk(y).

Question. How can modern block ciphers be attacked if we are
allowed arbitrarily many encryptions and decryptions?

Differential cryptanalysis was known to the designers of DES in 1974;
the S-boxes were chosen to resist the difference attack below. They kept
this attack secret, at the request of the NSA.

One important idea is seen in the attack on the reused one-time pad in
Question 4 on Problem Sheet 3. We have unknown plaintexts x, x∆ ∈ Fn

2 ,
an unknown key kotp ∈ Fn

2 , and known ciphertexts x+ kotp and x∆ + kotp.
Adding the known ciphertexts gives x + x∆, independent of kotp.

Put another way, if two plaintexts x, x∆ differ by a difference ∆, so x +
x∆ = ∆, then so do their encryptions: (x + kotp) + (x∆ + kotp) = ∆.

As a notational aid, we write differences in bold in the printed notes
(but not on the board): again this is optional and non-standard.

Attack on the Q-block cipher. Recall that we may write elements as F8
2 as

pairs (v, w) where v ∈ F4
2 and w ∈ F4

2. In round 1 of the Q-block cipher
(see Example 9.5), the Feistel network sends (v, w) to

(
w, v+ S(w+ k(1))

)

where
S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

Lemma 10.1.
(i) For any w ∈ F4

2 we have S(w + 1000) = S(w) + 0010.
(ii) For any (v, w) ∈ F8

2 and any round key k(1) ∈ F4
2 round 1 of the

Q-block cipher is
(
v + 0000, w + 1000

)
7→
(
w, v + S(w + k(1))

)
+ 1000 0010.

51

Thus the first round of the Q-block cipher encrypts plaintexts differing
by 0000 1000 to intermediate ciphertexts differing by 1000 0010. This ‘de-
terministic’ behaviour is just like the one-time pad. This makes the Q-block
cipher vulnerable to a difference attack using chosen plaintexts and ci-
phertexts.

Example 10.2. Let x ∈ F8
2 and let ∆ = 0000 1000 ∈ F8

2. The diagram
below shows the encryption of x and x∆ = x + ∆ over the three rounds
of the Q-block cipher using the key k = (k(1), k(2), k(3)), split into three
round keys:

x k(1)−−−−−−−−−−−→ y k(2), k(3)−−−−−−−−−−−−−−−→ z

∆ = 0000 1000 ∆′ = 1000 0010 Γ

x∆
k(1)−−−−−−−−−−−→ y∆

k(2), k(3)−−−−−−−−−−−−−−→ z∆

The middle differences are ∆ = x + x∆ and ∆′ = y + y∆. We know ∆′ by
Lemma 10.1(ii).

We attack by guessing k(2)? and k(3)? . We use these guesses to decrypt the
ciphertexts z and z∆ over two rounds, obtaining the intermediate cipher-
texts w and w∆. On a correct guess k(2)? = k(2) and k(3)? = k(3) and then
w = y and w∆ = y∆ and w + w∆ = ∆′.

guess z

k(2)? ,k(3)?

��

z∆

k(2)? ,k(3)?

��

w

w∆
To test our guess we compute the difference ∆? = w + w∆. If ∆? 6= ∆′,
we know our guess is wrong.

To see this in practice, take k = 0001 0011 0111 and x = 0000 0000. (For
this example, we have chosen k, but from the attacker’s perspective, it is
unknown.) By Exercise 9.6(i), z = 1110 0010; a similar calculation gives
z∆ = 1101 1100.

(1) If we guess that k(2) = 0011, k(3) = 0000 then w = 1100 1011, as
can be read from (v(1), v(2)) in Example 9.6(ii), and w∆ = 1111 1011.
Hence ∆? = 0011 0000 and we know this guess is wrong.

(2) If we guess that k(2) = 0001, k(3) = 1111 then w = 0000 0110 and
w∆ = 1000 0100. Hence ∆? = 1000 0010 and we do not know
that the guess is wrong. (This example was chosen so that also
w0w1w2w3 = x4x5x6x7, as required by the Feistel function.)

In total there are 16 pairs (k(2)? , k(3)?) ∈ F8
2 such that ∆? = ∆′, namely

all binary words of the form ???1?1bb where b ∈ {0, 1}. Trying each
guess together with all 16 possibilities for k(1)? ∈ F4

2 and comparing the
encryption of x using k(1)? , k(2)? , k(3)? with z, shows that

k ∈ {0001 0011 0111, 0010 1111 0100, 1001 0001 1111, 1010 1101 1100}.
All these keys encrypt x to z and x∆ to z∆. Repeating the attack with a
different plaintext shows that k is either the first or third key.

52

That we are left with two keys is explained by Question 2(c) on Sheet 7:
it follows from Lemma 10.1(i) that, in the Q-block cipher, the encryption
functions ek and ek+1000 0010 1000 are the same.

Exercise 10.3. Assume that the difference attack shows the key is one of
16 possible (k(2)? , k(3)?). Show that it is subexhaustive: that is, it requires
less computing than trying all 212 = 4096 keys.

AES (Advanced Encryption Standard 2002). AES is the winner of an open
competition to design a successor to DES. Its block size is 128 and its
key length is 128 (with variants allowing 192 and 256). It is not a Feistel
cipher, but it is still built out of multiple rounds, like DES. It is the most
widely used block cipher. No-one has found a subexhaustive attack on
AES, despite the huge incentive. The remaining material below is ‘extra’,
and included for interest only.

Extra: the definition of AES. The two main building blocks in AES are
shown in the following two examples.

Example 10.4. The affine block cipher of block size n has keyspace all pairs
(A, b), where A is an invertible n×n matrix with entries in F2 and b ∈ Fn

2 .
The encryption functions e(A,b) : Fn

2 → Fn
2 are the affine transformations

defined by
e(A,b)(x) = xA + b.

As an exercise, show that the decryption functions are d(A,b)(y) = (y−
b)A−1. The key in the affine block cipher can be deduced by a known
plaintext attack using n + 1 chosen plaintexts: for example, encrypting
0 ∈ Fn

2 reveals b.

The affine block cipher gives excellent diffusion but poor confusion.

Definition 10.5. Let z be an indeterminate, as used in the M.Sc. course
for polynomials and power series. Define

F28 = {x0 + x1z + · · ·+ x7z7 : x0, x1, . . . , x7 ∈ F2}.
Elements of F8

2 are added and multiplied like polynomials in z, but when-
ever you see a power zd where d ≥ 8, eliminate it using the rule

z8 = 1 + z + z3 + z4.

For example (1 + z) + (z + z5) = 1 + z5 and

z9 = z× z8 = z(1 + z + z3 + z4) = z2 + z3 + z4 + z5.

Multiplying the defining rule for z by z−1, we get z−1 + 1+ z2 + z3 + z7 =

0 so z−1 = 1 + z2 + z3 + z7. In fact the strange rule17 for eliminating

17An equivalent definition using ring theory is F28 = F2[z]/〈1 + z + z3 + z4 +
z8〉; now z is the coset z+ 〈1+ z+ z3 + z4 + z8〉 in the quotient ring. In the quotient
ring, z8 + 〈1+ z+ z3 + z4 + z8〉 = 1+ z+ z3 + z4 + 〈1+ z+ z3 + z4 + z8〉, justifying
the rule for eliminating z8. The polynomial 1 + z + z3 + z4 + z8 was chosen by the
designers of AES: it is irreducible (hence it generates a maximal ideal, and the
quotient of F2[z] by this ideal is a field) but not primitive.

53

powers of z8 (and higher powers) means that every non-zero element of
F28 has a multiplicative inverse. Hence F28 is a field. For example

(1 + z2)−1 = z + z4 + z6,

as you can check by multiplying (1+ z2)(z + z4 + z6) and eliminating z8.

Definition 10.6. Define s : F28 → F28 by

s(β) =

{
β−1 if β 6= 0
0 if β = 0.

.

Let S : F8
2 → F8

2 be the corresponding function defined by identifying F8
2

with F28 by (x0, x1, . . . , x7)←→ x0 + x1z + x2z2 + · · ·+ x7z7.

The MATHEMATICA notebook BlockCiphers.nb includes an implemen-
tation of s and S, and can be used to calculate in F28 .

Example 10.7. Writing elements of F8
2 as words of length 8 (with a small

space for readability):
(1) 1000 0000←→ 1 ∈ F28 and 1−1 = 1, so s(1) = 1 and S(1000 0000) =

10000000;
(2) 0100 0000←→ z ∈ F28 and z−1 = 1+ z2 + z3 + z7 was seen above,

so s(z) = 1 + z2 + z3 + z7 and S(0100 0000) = 10110001.
(3) Exercise: Find s(z2) and hence show S(0010 0000) = 1101 0011.

Definition of AES. There are 10 rounds in AES. In each round, the input
x ∈ F128

2 is split into 128/8 = 16 subblocks each in F8
2.

• The round key in F128
2 is added (ADDROUNDKEY).

• The pseudo inverse function S : F8
2 → F8

2 is applied to each sub-
block followed by an affine transformation F8

2 → F8
2, of the type

in Example 10.4. This gives confusion and diffusion within each
subblock. (SUBBYTES.)
• Diffusion across all 128 bits comes from a row bijection of the 16

subblocks, organized into a 4× 4 grid

q(0) q(4) q(8) q(12)
q(1) q(5) q(9) q(13)
q(2) q(6) q(10) q(14)
q(3) q(7) q(11) q(15)

−→
q(0) q(4) q(8) q(12)

q(13) q(1) q(5) q(9)
q(10) q(14) q(2) q(6)
q(7) q(11) q(15) q(3)

and a further mixing of each column by the affine block cipher
(SHIFTROWS and MIXCOLUMNS)

AES was defined to be efficient in hardware: for example, the sub-
blocks fit exactly into 8-bit bytes. Encryption and decrption are single in-
struction operands on modern Intel and AMD microprocessors. In prac-
tice AES is about six times faster than 3DES.

54

There are also versions of AES defined with keyspace F192
2 and F256

2 ,
using 12 or 14 rounds, respectively.

Pseudo-inversion resists the difference attack.

Lemma 10.8. Let γ ∈ F8
2 be non-zero. Then

{
β ∈ F28 : s(β) + s(β + 1) = γ

}

has size 0 or 2, except when γ = 1, when it is {0, 1, ζ, 1 + ζ} where ζ =
z2 + z3 + z4 + z5 + z7.

The analogous result holds for S : F8
2 → F8

2. It is illustrated by the
diagram below.

0000 0000
1000 0000

1000 0000

0011 1101
1000 0000

1011 1101

0100 0000
1000 0000

1100 0000

. . .

0000 0000
1000 0000

1000 0000

1011 1101
1000 0000

0011 1101

1011 0001
Γ=1101 1110

0110 1111

. . .
y 7→P(y)−−−−→

Let ∆ = 1000 0000, corresponding to 1 ∈ F28 . The left diagram shows
F8

2 partitioned into pairs {x, x∆} with x + x∆ = ∆. The output difference
S(x) + S(x∆) can be any of 127 elements Γ ∈ F8

2. Unless Γ = 1000 0000,
the pair {x, x∆} for output difference Γ is unique (as in the bottom-right of
the diagram). Exceptionally, when Γ = 1000 0000, there are two possible
pairs (shown in the top-left of the diagram).

Exercise 10.9. Explain why the output difference cannot be 0000 0000.

Suppose we encrypt two plaintexts x, x∆ ∈ F128
2 differing by ∆ using

one round of AES. In the first step of the first round, an unknown round
key kround is added, to give x + kround and x∆ + kround. The difference is
still ∆. But by Lemma 10.8, there are 127 (almost) equally likely output
differences Γ. The difference attack is ineffective.

Extra: Physical limits to computation. In Computational capacity of the uni-
verse, Seth Lloyd, Phys. Rev. Lett. (2002) 88 237901, the author argues that
even if the universe is one vast computer18 then it cannot have performed
more than 10120 operations. Assuming one encryption per operation,
this would exhaust the keyspace of a block cipher with key length 398.
Similar arguments suggest that a block cipher of key length 128 with no
subexhaustive attacks, such as AES, is in practice secure.

18The temptation to cite Douglas Adams must have been hard to resist.

55

(D) Public key ciphers and digital signatures

11. INTRODUCTION TO PUBLIC KEY CRYPTOGRAPHY

So far in this course we have seen symmetric ciphers, which require
Alice and Bob to exchange the secret key before they communicate se-
curely. You may have noticed this does not appear to be necessary when
you use the internet.

Question. How can Alice and Bob establish a shared secret key
communicating only over the insecure channel on page 4?

In this part, everything in red is intended to be private. Everything not
in red is known to the whole world— this includes the eavesdropper Eve.
(You are welcome to ignore this non-standard convention if you prefer.)

Example 11.1. Alice and Bob need a 128-bit key for use in AES. They
agree a prime p such that p > 2128. Then

(1) Alice chooses a secret a ∈N with 1 ≤ a < p. Bob chooses a secret
b ∈N with 1 ≤ b < p.

(2) Alice sends Bob 2a mod p. Bob sends Alice 2b mod p. (Note that
a and b are secret, but 2a mod p and 2b mod p are sent publically.)

(3) Alice computes (2b mod p)a mod p and Bob computes (2a mod p)b

mod p.
(4) Now Alice and Bob both know 2ab mod p. They each calculate

the number 2ab mod p in binary and take its final 128 bits to get
an AES key.

After (2), the eavesdropper Eve knows p, 2a mod p and 2b mod p. It is
believed that it is hard for her to use this information to find 2ab mod p.
The difficulty can be seen even in small examples.

After (4) Alice and Bob can communicate using the AES cryptosys-
tems, which has no known sub-exhaustive attacks.

So remarkably, Alice and Bob can communicate securely without ex-
changing any private key material.

Exercise 11.2. Let p = 11. As Eve you know that Alice has sent Bob 6.
Do you have any better way to find a such that 2a = 6 than trying each
possibility?

n 0 1 2 3 4 5 6 7 8 9

2n mod 11 1 2 4 8 5 10 9 7 3 6

56

To compute this table it is not necessary to calculate, for instance, 28 =
256, and then reduce it modulo 11. Instead, just double the previous
entry. Thus from 27 ≡ 7 mod 11 we get 28 ≡ 7× 2 = 14 ≡ 3 mod 11.
Similarly, in

(2a mod p)b mod p = 2ab mod p = (2b mod p)a mod p

step (4) of Example 11.1 we always work with numbers mod p.

This exercise shows two further number-theoretic facts that will be
needed below. (See also Fact 11.4 below.)

• Fermat’s Little Theorem: cp−1 ≡ 1 mod p for any c not divisible
by p.

• If gm 6≡ 1 mod p for all m such that 1 ≤ m < p − 1, then g is
said to be a primitive root modulo p. If g is a primitive root then,
working modulo p, we have

{1, g, g2, . . . , gp−2} = {1, 2, . . . , p− 1}
Primitive roots always exist19: in Exercise 11.2 we took g = 2.

Note that 2 is not always a primitive root: for example if p = 127 then
we have 27 = 128 ≡ 1 mod 127, so the powers of 2 are {1, 2, 4, 8, 16, 32, 64},
giving only 7 of the 126 non-zero elements.

Diffie–Hellman key exchange. This is nothing more than Example 11.1, mod-
ified to avoid some potential weaknesses, and implemented efficiently.
The protocol is still not secure against a Man-in-middle attack, but this
can be fixed: see the extras for §12.

• The prime p is chosen so that p − 1 has at least one large prime
factor. (This is true of most primes. There are fast ways to decide
if a number is prime.)

• Rather than use 2, Alice and Bob use a primitive root modulo p,
so every element of {1, . . . , p − 1} is congruent to a power of g.
(The base is public.)

19Let Z×p = {1, . . . , p− 1} be the multiplicative group of Zp. Claim: Z×p is cyclic
of order p− 1. Proof: let t be the lowest common multiple of the orders of all the
elements of Z×p . Then xt = 1 for all x ∈ Z×p . But a polynomial of degree t has at
most t roots, hence t ≥ p− 1. By the lemma below, there is an element g of order t.
By Fermat’s Little Theorem (or Lagrange’s Theorem is you prefer), the order of g
is at most p− 1. 2
Lemma: if an abelian group A has elements g and g′ of order d and d′ respectively,
then it has an element of order lcm(d, d′).
Proof of lemma: let d = pec and d′ = pe′c′ with c, c′ coprime to the chosen prime p,
and assume without loss of generality that e ≥ e′. By induction A has an element
h of order lcm(c, c′); now gch is the product of elements of coprime orders pe and
lcm(c, c′) in an abelian group, so has order pelcm(c, c′) = lcm(d, d′).

57

• Alice and Bob compute ga mod p and gb mod p by repeated squar-
ing: see Question 1 on Sheet 9. This method is faster than the re-
peated doubling seen in Exercise 11.2. Either method shows that
ga can be computed using only numbers of size about p.

• The shared key is gab mod p.
Diffie–Hellman can be turned into the ElGamal cryptosystem: see Ques-

tion 6 on Sheet 9. But it is faster to use it, as defined above, to establish a
shared key, and then use this key with a fast block cipher such as AES.

One-way functions. A one-way function is a bijective function that is fast to
compute, but whose inverse is hard to compute. It is beyond the scope of
this course to make this more precise.

It is not known whether one-way functions exist. Their existence im-
plies P 6= NP: very roughly, if P = NP then any problem whose solution
is quick to check, such as Sudoku, is also quick to solve. It is widely
believed that P 6= NP, but no proof is known.

Diffie–Hellman key exchange is secure only if, given g and gx mod p, it
is hard to find x. (This is called the Discrete Log Problem.) Equivalently,
the function

f : {0, . . . , p− 2} → {1, . . . , p− 1}
defined by f (x) = gx mod p, is one-way. This is widely believed to be the
case. But it more likely that the Discrete Log Problem is easy than that
AES has a sub-exhaustive attack.

Inverting modular exponentiation. In the RSA cryptosystem, we use mod-
ular exponentiation as the encryption map. We therefore need to know
when it is invertible.

Lemma 11.3. If p is prime and hcf(a, p− 1) = 1 then the inverse of x 7→ xa

mod p is y 7→ yr mod p, where ar ≡ 1 mod p− 1.

For example, x 7→ x3 mod 29 is invertible, with inverse y 7→ y19 mod
29. This works, since after applying both functions, in either order, we
send x to x57; by Fermat’s Little Theorem, x57 = x28×2+1 = (x28)2x ≡ x
mod 29. On the other hand x 7→ x7 mod 29 is not invertible: working
mod 29 the image is {1, 27, 214, 221} = {1, 12, 28, 17}.

Given p and a with hcf(a, p− 1) = 1, one can use Euclid’s algorithm to
find s, t ∈ Z such that as + (p− 1)t = 1. Then as = 1− pt so as ≡ 1 mod
p− 1, and we take r ≡ s mod p− 1. For example, if p = 29 and a = 5
then we have 28 = 9× 3 + 1 so

1 = 3× (−9) + 28× 1

and s = −9. Since −9 ≡ 19 mod 28, we take r = 19, as above.

58

This example shows all the ideas needed for the proof of Lemma 11.3,
and shows that it is fast to find r. Thus we cannot use x 7→ xa mod p as a
secure encryption function.

Fact 11.4. Let p and q be distinct primes. Let n = pq. If

hcf
(
a, (p− 1)(q− 1)

)
= 1

then x 7→ xa mod n is invertible with inverse y 7→ yr mod n, where ar ≡ 1 mod
(p− 1)(q− 1).

Example 11.5. Let p = 11, q = 17, so n = pq = 187 and (p− 1)(q− 1) =
160. Let a = 9. Adapting the proof for Lemma 11.3, we use Euclid’s
Algorithm to solve 9s + 160t = 1, getting s = −71 and t = 4. Since
−71 ≡ 89 mod 160, the inverse of x 7→ x9 mod 187 is y 7→ y89 mod 187.

Thus given p, q and a, it is easy to find r as in Fact 11.4. But it is believed
to be hard to find r given only n and a. If so, x 7→ xa mod n is a one-way
function, suitable for use as the encryption function in a cryptosystem.

In this context the term trapdoor function is also used: knowing the trap-
door, here the factors p and q, makes it easy to compute the inverse.

By contrast, the function f : {0, . . . , p− 2} → {1, . . . , p− 1} defined by
f (x) = gx is not a suitable encryption function, since while it is believed
to be one-way, there is no known trapdoor that makes it fast to compute
the inverse.

RSA Cryptosystem. Let n = pq be the product of distinct primes p and q.
In the RSA Cryptosystem, with RSA modulus n,

P = C = {0, 1, . . . , n− 1}
and

K =
{
(p, q, a) : a ∈ {1, . . . , n− 1}, hcf

(
a, (p− 1)(q− 1)

)
= 1

}
.

The public key corresponding to (p, q, a) is (n, a) and the private key cor-
responding to (p, q, a) is (n, r), where ar ≡ 1 mod (p− 1)(q− 1). (Note
that a is part of the public key, so unlike Diffie–Hellman, it is public.) The
encryption function for (p, q, a) is

x 7→ xa mod n

and the decryption function is

y 7→ yr mod n.

Note that anyone knowing the public key can encrypt, but only someone
knowing the private key, or the entire key (p, q, a) can decrypt.

59

Example 11.6.
(1) For a small example, take p and q as in Example 11.5. If Alice’s

public key is (187, 9) then her private key is (187, 89). If Bob’s
message is 10 then he sends 109 to Alice, since 109 ≡ 109 mod
187. Alice decrypts to 10 by computing 10989 mod 187.

(2) The MATHEMATICA notebook PKC.nb available from Moodle can
be used when p and q are bigger.

Typically p and q are chosen so that the standard exponent a =
216 + 1 = 65537 is coprime to (p − 1)(q − 1). Since 216 + 1 is
prime, this can be checked just by dividing p − 1 and q − 1 by
216 + 1. Then xa mod n can be computed quickly by repeated
squaring, as in Question 1 on Problem Sheet 9.

Question 6 on Sheet 9 shows that knowing (p − 1)(q − 1) and n is
equivalent to knowing p and q; this makes it unlikely that there is an
attack on RSA other than by factorizing n. The extras for this section
show that given the private key (n, r) it is easy to find p and q.

The best known factoring algorithm is the Number Field Sieve. It was
used to factorize a 768 bit n in 2010. This took about 1500 computer years,
in 2010 technology. NIST (the US standard body) now recommend that n
should have 2048 bits.

Why don’t we just use Public Key Cryptography? The recommended key
lengths for public key cryptosystems are typically much longer than for
symmetric cryptosystems such as AES. Public key encryption is also much
slower. Unlike Diffie–Hellman and RSA, block ciphers such as AES are
widely believed to be resistant to quantum attacks: see the extras for this
section.

Extra: some history. Diffie–Hellman Key Exchange was published20 in
1976. The RSA Cryptosystem, named after Rivest, Shamir and Adle-
man was published21 in 1977. Both papers are clearly written and worth
reading—as here, the original account is often one of the best.

It emerged in 1997 that the RSA cryptoscheme had been discovered
in GCHQ in 1973 by Cocks, building on work of another GCHQ-insider,
Ellis, who had suggested in 1969 that ‘non-secret’ encryption might be
possible. Later in 1973 Williamson discovered Diffie–Hellman Key Ex-
change. See www.wired.com/1999/04/crypto/ for a good account.

20Diffie, Whitfield; Hellman, Martin E., New directions in cryptography, IEEE
Trans. Information Theory 22 (1976) 644–654.

21Rivest, R. L.; Shamir, A.; Adleman, L., A method for obtaining digital signatures
and public-key cryptosystems, Comm. ACM 21 (1978) 120–126.

60

Extra: factoring n given an RSA private key (n, r). Suppose we somehow
learn Alice’s private key (n, r). We know her public key (n, a), so can
compute ar. By choice of r, we know that ar ≡ 1 mod (p− 1)(q− 1).
Hence ar− 1 is a multiple of (p− 1)(q− 1).

Let t be obtained by dividing ar− 1 by small odd primes until a factor
is found. There is a good chance that p− 1 divides t and q− 1 does not, or
vice versa. Assuming the first case, Fermat’s Little Theorem implies that
xt ≡ 1 mod p for all x not divisible by p. Moreover, because hcf(t, q− 1)
is a proper factor of the order q − 1 of the group Z×q , xt 6≡ 1 mod q for
most x. Therefore for most x, p divides xt − 1 mod n, but q does not and
so computing hcf(xt − 1, n) = p reveals p.

This attack is related to the Pollard ρ-factoring method, which you can
learn about on the web or in our computational number theory course.

Example 11.7. As in the example in lectures we suppose Alice generates
an RSA key using MATHEMATICA, defining p and q by NextPrime[2^80]

and NextPrime[2^81].22 Alice publishes (n, 65537) as her public key.
Her decryption exponent r, found by PowerMod[65537,-1,(p-1)(q-1)]

is 2 486 450 . . . 629441 ≈ 2.4× 1048.

Suppose that Mark the Mole learns her private key (n, r). He computes
ar− 1 = 162 954 . . . 674 816 ≈ 1.6× 1053. Then by trial division
Select[Range[1, 1000], Mod[c*r - 1, #] == 0~And~PrimeQ[#] &]

in MATHEMATICA, he finds that the smallest prime factors of ar − 1 are
2, 3, 43, 617, Since 9 divides ar − 1, it is possible that 3 divides both
p − 1 and q − 1, so instead he uses 43 and takes t = (ar − 1)/43. Try-
ing x = 2 he computes 2t − 1 mod n using PowerMod[2, t, n] - 1 and
then hcf(2t − 1, n) using GCD[PowerMod[2, t, n] - 1, n]. This highest
common factor turns out to be p. (The numbers themselves are too big to
write here.)

You can check this using the MATHEMATICA notebook on Moodle. It has
a similar example with primes of the cryptographically standard size:
p, q ≈ 21024.

Why it worked: Factoring p− 1 and q− 1 shows that

p− 1 = 22 × 1093× 31039× 8 908 647 580 887 961

q− 1 = 24 × 3× 43× 617× 683× 78233× 35 532 364 099

and that cr − 1 = 3× 18483× (p − 1)(q − 1). Dividing by 43 removed
the factor of q− 1, so t is divisible by p− 1 but not q− 1, and the attack
quickly finds p.

22As mentioned in lectures this is a terrible idea: the binary form of n, namely
1 75 zeros. . . 101011 72 zeros. . . 11011101 makes the factors easily guessable.

61

Extra: Post-quantum cryptography. Computers operate on the bits {0, 1},
and binary words made up of these bits. Quantum computers operate
instead on qubits: a typical qubit is a ‘superposition’ of 0 and 1. For ex-
ample, in the standard notation, |0〉+ |1〉 is a qubit that, when measured,
is equally likely to collapse to each of the classical bits 0 and 1. Two en-
tangled qubits are the quantum analogue of a classical binary word in F2

2.

In theory, quantum computers can perform some computations far
more quickly than classical computers. In particular, using Shor’s Al-
gorithm, a quantum computer can quickly find the order of elements in
abelian groups. This gives a way to factor n, similar to the attack just
seen. It also makes the Discrete Logaithm Problem very easy to solve.
However to factor a 2048 bit RSA number n into its two primes p and q
requires a quantum computer with at least 2048 qubits. In March 2018,
Google reportedly tested a quantum processor with 72 qubits. There is an
ongoing debate over whether large scale quantum computing is feasible:
it is possible we will find out within our lifetimes.

Because of this NIST is running a competition to choose a public key
cryptosystem resistant to quantum attacks. (A similar competition led to
the block cipher AES. Symmetric cryptosystems such as AES are widely
believed to be resistant to quantum attacks.) Proposals have been submit-
ted using the mathematics of error-correcting codes, lattices and elliptic
curves. Much interesting work has been done on evaluating these cryp-
tosystems: it is an exciting time for cryptography.

12. DIGITAL SIGNATURES AND HASH FUNCTIONS

Question. Since anyone can send a message to Alice using her
public key, how can Alice be sure she is communicating with Bob?

In this section we suppose the possible messages are elements of N0.
Using the ASCII encoding (see Question 2 on Problem Sheet 5), any Eng-
lish message can be put in this form.

Digital signatures. Suppose Alice and Bob have RSA keys and encryption
and decryption functions as shown below. We write dA and dB in red, to
emphasise that the private key is used in these functions.

public private encrypt decrypt

Alice (m, a) (p, q, r) x
eA−→ xa mod m y

dA−→ yr mod m

Bob (n, b) (?, ?, s) x
eB−→ xb mod n y

dB−→ ys mod n

62

Suppose Alice wants to tell Bob her bank details in a message x. She
looks up his public key (n, b) and sends him eB(x) = xb mod n. (Assume
that x < n.)

Eve, the eavesdropper, or Malcolm, the man-in-the-middle, cannot de-
crypt xb mod n, because they do not know s. However Eve can send
another message x′a mod m, attempting to convince Bob that Alice’s first
message was wrong. Malcolm has control of the channel and so can re-
place xb mod n with another x′b mod n, again with x′ of his choice.

Eve and Malcolm can do this because they know Alice’s public key.
For comparison, using a symmetric cipher such as DES or AES, only Alice
and Bob know the encryption function ek, so eavesdroppers cannot attack
in this way.

How can Bob be confident that a message signed ‘Alice’ is from Alice,
and not from Eve or Malcolm pretending to Alice?

Example 12.1. Bob is expecting a message from Alice. He receives z, and
computes dB(z) = zs mod n, but gets garbage. Thinking that Alice has
somehow confused the keys, he computes eA(z) = za mod m, and gets
x ∈N0. He then finds that x is the ASCII encoding of

‘Dear Bob, my account number is 40081234, best wishes, Alice’.

(a) How did Alice compute z?
(b) Should Bob believe z was sent by Alice?
(c) Can Malcolm read z?
(d) How can Alice avoid the problem in (c)? (Assume that m < n.)

Let x ∈ N0 be Alice’s message. If Alice’s RSA modulus m is about
22048 then the message x is a legitimate ciphertext only if x < 22048. This
may seem big, but, using the 8-bit ASCII coding, it means only 2048/8 =
28 = 256 characters can be sent. Alice can get round this by splitting
the message into blocks, but computing dA(x(i)) for each block x(i) ∈
{1, . . . , n − 1} is slow. It is better to send x, and then append dA

(
h(x)

)

where h(x) ∈ {0, 1, . . . , n− 1} is a hash of x.

Hash functions and the birthday paradox.

Definition 12.2.

(i) A hash function of length r is a function h : N0 → Fr
2. The value

h(x) is the hash of the message x ∈N0.

(ii) Let (m, a) be Alice’s public key in the RSA cryptosystem where
m > 2r. To sign a message x, Alice computes h(x) ∈ Fr

2 and,
reading h(x) as a number written in binary, computes dA

(
h(x)

)
.

The pair
(

x, dA(h(x))
)

is a signed message of x from Alice.

63

Bob (or anyone else) verifies that a pair (x, v) is a valid signed message
from Alice by checking that h(x) = eA(v). Note that x need not be a
plaintext: it could be a ciphertext encrypted for Bob.

A cryptographically useful hash function has the following properties:
(a) It is fast to compute h(x).
(b) Given a message x ∈ N0, and its hash h(x), it is hard to find

y ∈N0 such that y 6= x and h(y) = h(x). (Preimage resistance.)
(c) It is hard to find x, x′ ∈ N0 with x 6= x′ such that h(x) = h(x′).

(Collision resistance.)

When Bob receives the signed message (x, v) from Alice, he verifies
that h(x) = eA(v), and so v = dA(h(x)). He now knows that Alice has
decrypted (that is signed), the hash value h(x). Only Alice can do this.
So an attacker who wants to change x has to replace x with some x′ with
h(x′) = h(x). By preimage resistance, it is hard for the attacker to find any
such x′. Therefore Bob can be confident that x really is Alice’s message.

A good hash function of length r behaves like a random function from
N0 to Fr

2.

Example 12.3. Malcolm has intercepted a signed message (x, v) from Al-
ice. If he can find x′ with h(x′) = v then he can replace x with x′ and
Bob will still verify Alice’s signature. Given a hash value v, a brute-force
search for x′ such that h(x′) = v will succeed on each x′ ∈N0 with prob-
ability 1

2r . After hashing 2r numbers, Malcolm can expect one success.

Thus in (b) ‘hard to find’ means ‘requires at least 2r hashes’.

Exercise 12.4. Let h : N0 → Fr
2 be a good hash function. On average,

how many hashes does an attacker need to calculate to find x, x ∈ N0
with x 6= x′ and h(x) = h(x′)?

Thus in (c) ‘hard to find’ means ‘requires at least 2r/2 hashes’.

The mathematics behind Exercise 12.4 is the well-known Birthday Para-
dox: in a room with 23 people, the probability is about 1

2 that two people
have the same birthday.

Hash functions in practice. A block cipher with keyspace F`
2 and block size

n can be used as a hash function. Fix (and make public, maybe as part
of your message) an initialisation state z(0) ∈ Fn

2 . Chop the message x
(assumed converted to binary) into binary words x(1), x(2), . . ., x(t) ∈ F`

2.
Then use the block cipher with keys x(i), starting with z(0) ∈ F`

2 as follows:

z(1) = z(0) + ex(1)(z
(0))

z(2) = z(1) + ex(2)(z
(1))

...

z(t) = z(t−1) + ex(t)(z
(t−1))

64

The final state z(t) ∈ Fr
2 depends on the entire message x in a complicated

way, so is a good choice for h(x). Using RSA, Alice sends the signed
message

(
x, dA

(
h(x)

))
.

Exercise 12.5. Suppose that we use AES (with 128-bit keys) to hash a
message x ∈ F128

2 , using the initialisation state z(0) = 0 . . . 0 ∈ F128
2 . Then

only one step is needed above and the hash value is h(x) = ex(0 . . . 0). An
adversary therefore knows the plaintext 0 . . . 0 and its encryption using x
as the key. Why is it hard for her to find x?

Example 12.6. Alice flips a coin and records the result. Bob guesses heads
or tails and Alice informs him whether he is correct. If the two can com-
municate only by email, how can Bob be sure that Alice does not falsely
claim that the flip is the opposite of Bob’s guess?

Example 12.7 (SHA-256). SHA-256 is the most commonly used hash func-
tion today. It has length 256. There is an internal state of 256 bits, divided
into 8 words of 32 bits. The message x is chopped into 512 bit blocks;
each block is then further divided into words, which are combined by
multiplying bits in the same positions (this is ‘logical and’), addition in
F32

2 , cyclic shifts (like an LFSR), and addition modulo 232, over 64 rounds.
As in Cipher Block Chaining, the output for block x(i) is used in the cal-
culation for x(i+1). The best attack is subexhaustive for preimages (b)
when the number of rounds is reduced to 57, and subexhaustive for col-
lisions (c) when the number of rounds is reduced to 46.

Extra: hashing passwords. When you create an account online, you typi-
cally choose a username, let us say ‘Alice’ and a password, say ‘alicepass-
word’. A well-run website will not store your password. Instead, over-
simplifying slightly, your password is converted to a number x and its
SHA-256 hash h(x) is stored. By (b), it is hard for anyone to find another
word whose hash is also h(x).

Provided your password is hard to guess, your account is secure, and
you have avoided telling the webmaster your password.

Exercise 12.8. As described, it will be obvious to a hacker who has ac-
cess to the password database when two users have the same password.
Moreover, if you use the same password on two different sites, the same
hash will be stored on both. How can this be avoided?

65

Extra: the Bitcoin blockchain.

Example 12.9. The bitcoin blockchain is a distributed record of all trans-
actions involving bitcoins. When Alice transfers a bitcoin b to Bob, she
posts a public message x, saying ‘I Alice give Bob the bitcoin b’, and signs
this message23, by appending dA

(
h(x)

)
, to get

(
x, dA

(
h(x)

))
.

Signing the message ensures that only Alice can transfer Alice’s bitcoins.
But as described so far, Alice can double-spend: a few seconds later she
can sign another message y, where y says ‘I Alice give Charlie the bit-
coin b’.

To avoid this, transactions are validated in blocks. To validate a block of
transactions

(
x(1), dA(1)

(
h(x(1))

))
,
(

x(2), dA(2)

(
h(x(2))

))
, . . .

a miner searches for c ∈ N such that, when the list with c appended
is converted to a number, its hash, by two iterations of SHA-256, has a
large number of initial zeros. (See the following exercise.) Assuming that
SHA-256 has property (b), preimage resistance, there is no better way to
do this then an exhaustive search for c. The list of validated transactions
becomes a block; making a new block is called ‘growing the blockchain’.

When Charlie receives
(
y, dA

(
h(y)

))
, he looks to see if there is are blocks

already containing a transaction involving the bitcoin b mentioned in y.
When Bob finds

(
x, dA

(
h(x)

))
as part of a block with the laboriously

computed c, Bob knows Alice has cheated.

Miners are incentivized to grow the block chain: the reward for growing
the blockchain is given in bitcoins. Thus bitcoin, which really is noth-
ing more than the blockchain, depends on the computational difficulty of
finding preimages and collisions for hash functions. The prize for grow-
ing the block chain is only given for blocks that have a consistent transac-
tion history, so Alice’s double-spending transaction will not make it into
a block.24

23Rather than use RSA, Bitcoin specifies the ECDSA signature algorithm: very
roughly this replaces the ring Zn with an elliptic curve. The hash function h is two
iterations of SHA-256.

24This is a oversimplification: it is possible for two inconsistent blocks to enter
the block chain, if they are mined at almost the same time. Then some miners will
work on growing the history from block A, and others from block B. The prize for
growing the blockchain is only paid for growing the longest (consistent) chain. So
after a few more verifications the network will agree on one consistent history. In
the Finney attack, which assumes Alice has considerable computational power, she
can (a) mine, but not release, a block verifying a transfer to Charlie (and a num-
ber of other, unrelated transactions); (b) make another transaction transferring the
same bitcoin to Bob; (c) release her mined block, voiding the transfer to Bob. Bob
can avoid being the victim of this attack by waiting for at least one verification of
the transfer. It is usual to wait for six.

66

Miners are further incentivized by transaction fees, again paid in bitcoins,
attached to each transaction. These will become more important as the
per block reward gets smaller.

An excellent introductory video on bitcoin is available here: www.youtube.
com/watch?v=bBC-nXj3Ng4&feature=youtu.be. The best summary account
of bitcoin is still the original paper: bitcoin.org/bitcoin.pdf by Satoshi
Nakamoto (2008).

Exercise 12.10. As we saw in Example 12.7, the SHA-256 hash function h
takes values in F256

2 . Oversimplifying things slightly, to validate a block
of bitcoin transactions a miner must find x ∈ F256

2 such that h(h(x)) be-
gins with 72 zeros (in the usual binary form). A modern general purpose
microprocessor requires about 128 cycles to calculate a single h(x), and
runs at 4GHz, so executes 4× 109 cycles per second. In 2019, a special
purpose device (the ASIC-based ‘Antminer R4’) advertised on the web
for $1000 claims 8.6× 1012 hashes per second.

(a) Estimate the time required to validate a block using both systems.
(b) The reward for the miner is 12.5 bitcoins (the reward is halved

every 210, 000 blocks) plus the transaction fees for all the transac-
tions in the newly validated block. What are the implication for
the bitcoin economy?

Extra: main-in-the-middle attack on Diffie–Hellman key exchange. As out-
lined in §11, Diffie–Hellman key exchange is vulnerable to a man-in-the-
middle attack, similar to the attack we saw on RSA. In the scheme in
Example 11.1, Malcolm interferes with step (2):

(2′) When Alice sends 2a mod p to Bob, Malcolm replaces it with 2a′

mod p. When Bob sends 2b mod p to Alice, Malcolm replaces it
with 2b′ mod p.

Now Alice computes (2b′ mod p)a mod p, that is 2ab′ mod p, and Bob
computes (2a′ mod p)b mod p, that is 2a′b mod p. Malcolm knows 2a

mod p, 2b mod p and a′ and b′, so he can also compute these. When Alice
sends a message to Bob using the key derived from 2ab′ mod p, Malcolm
can decrypt it, read it, and then re-encrypt it using the key derived from
2a′b mod p. He can even change the message if he wishes.

This attack can be avoided using digital signatures. Suppose Bob has
RSA encryption and decryption functions eB and dB, as in the table at the
start of this section. In Step (2), Bob makes a message s by concatenating
2a mod p and 2b mod p, and then sends both 2b mod p and dB(s) to Alice.
If Bob has in fact received 2a′ mod p, making his message s′, Alice will
realise this when she verifies the signature and finds that eB

(
dB(s′)) =

s′ 6= s. For a refined version of this search for ‘Station-to-station’ protocol
on the web, and see https://tinyurl.com/yypvycon.

