
MT362/462/5462 Cipher Systems
Mark Wildon, mark.wildon@rhul.ac.uk

I Sessions:
I Tuesday 1pm, Plenary problem solving (face-to-face) ARTS

LT1,
I Wednesday 12 noon, Group work (face-to-face), MFOX-SEM
I Friday 10am, Q&A session (online)
I Friday 3pm, Group work (online)

Group work sessions begin in Teaching Week 1. Your timetable
shows face-to-face and online sessions in alternate weeks.

I Extra session for MT5462: Tuesday 11 am (BOILER 0-07).
I Office hour McCrea LGF025 and online: Thursday 2pm
I Quizzes on Moodle: These are easy to medium difficulty

questions intended to prepare you for each week’s work.

Submit the quiz for Week i by Monday evening on Week i + 1.

(Exceptionally the Week 1 quiz will be open until Monday of Teaching Week 3.)

I Slides: like these! I suggest you start with these slides, do the

quizzes in them, and then use the online videos (which cover

all the course) when you need extra explanation.



Part A: Introduction: alphabetic ciphers and the language of
cryptography

§1 Introduction: Security and Kerckhoffs’s Principle

I Confidentiality: Eve cannot read the message.
I Data integrity: any change made by Malcolm to the

ciphertext is detectable
I Authentication: Alice and/or Bob are who they claim to be
I Non-repudiation: Alice cannot plausibly deny she sent the

message

Quiz. True or false: When you log in to gmail, Google is sent your
password (through an encrypted channel) and their computer
checks it matches their record.

(A) False (B) True

In fact they are sent a ‘hash’ of your password: see Part D of the
course. For instance, the SHA-256 hash of the password used to
encrypt this year’s exam is

10419890632902139458456423619801507446386374951765933585
629283702295140878021.
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Cryptography Matters!
What do the four below have in common?
I Mary, Queen of Scots (1542–1587)
I Claus Fuchs (the Los Alamos traitor)
I The Equifax share price.
I Edward Snowden?

Answer: Their lives (or value) were all changed forever because of
cryptographic leaks. Mary, Queen of Scots was executed after her
substitution cipher was cracked, Fuchs was imprisoned after reusing a
one-time pad, the Equifax share price halved after a server hack.
Snowden chose to leak classified information and is exiled in Russia.
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The Basic Picture and Kerckhoffs’s Principle
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Kerckhoffs’s Principle is ‘all the security is in the key’. All other
details of how the encryption works, the functions used, and how
data is sent, are public.
I If this surprises you, consider that the encryption algorithm

might be leaked. It is then known forever. A key can be
replaced and might only be used once anyway.

I Also what do you trust more: a public encryption algorithm
(using secret keys) that has withstood years of public scrutiny,
or a secret algorithm that ACME Cryptography assures you is
unbeatable?



Alice and Bob’s Exam Mark

Example 1.2

On Friday, Alice will learn Bob’s final year exam result x while Bob
is out of the country. Alice, Bob and their trusted friend Trevor
agree this method.

I On Monday, Trevor chooses a key k ∈ {0, 1, . . . , 99}. He
meets Alice and secretly tells her k . He meets Bob and
secretly tells him k .

I On Tuesday, Bob leaves for Borneo. He can read email. Bob
cannot send email or communicate in any other way.

I On Friday, Alice learns the plaintext x ∈ {0, 1, . . . , 99} and
emails Bob the ciphertext (x + k) mod 100.

By Kerckhoffs’s Principle, all this, except for the value of k , is
known to the whole world. Eve, the eavesdropper, also learns y ,
the ciphertext sent by Alice to Bob.



Exercise on Alice and Bob’s Exam Mark

In the example we supposed that the ciphertext y sent by Alice to
Bob was 20 and that all keys were equally likely.

(a) Can Eve learn anything about the plaintext x from the
ciphertext y?

(b) Suppose Eve is sure Bob’s mark is between 50 and 80. What
can Eve learn about the key from Alice’s email?

(c) Find some other problems in the scheme.



§2 Alphabetic Ciphers

Example 2.1

The Caesar cipher with key k ∈ {0, 1, . . . , 25} encrypts a word by
shifting each letter k positions forward in the alphabet, wrapping
round at the end. For example if the key is 3 then ’hello’
becomes KHOOR and ’zany’ becomes CDQB. The table in the
printed notes shows all 26 possible shifts.



Quiz on Caesar Cipher
Assume the plaintext is a common English word.

Exercise 2.2

(a) Mark (the mole) knows that the plaintext ’apple’ was
encrypted as CRRNG. What is the key?

(A) 0 (B) 1 (C) 2 (D) 3

(b) Eve (the eavesdropper) has observed the ciphertext ACCB.
What is the key?

(A) 11 (B) 12 (C) 13 (D) 14

What is the plaintext?

(c) Suppose instead Eve observes GVTJPO. What can she deduce
about k?

(A) k = 1 (B) k = 25 (C) k = 21 (D) k ∈ {1, 21}
Suppose Eve later observes BUPN. Assuming the same key k is
used, what does she conclude about k?

(A) k = 1 (B) k = 25 (C) k = 21 (D) k ∈ {1, 21}
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Substitution Ciphers (next slide has still from videos)

Example 2.3

Let π : {a, . . . , z} → {A, . . . , Z} be a bijection. The substitution
cipher eπ applies π to each letter of a plaintext in turn. For
example, if

π(a) = Z, π(b) = Y, . . . , π(z) = A

then eπ(hello there) = SVOOL GSVIV. (In practice spaces were
deleted before encryption, but we will keep them to simplify the
cryptanalysis.) The Caesar cipher with key k is the special case
where π shifts each letter forward k times.

Quiz: How many substitution ciphers are there?

(A) 26 (B) 262 (C) 26! (D) 2626

Is it feasible to find the key by trying all possibilities?

(A) No (B) Yes

26! = 403291461126605635584000000 ≈ 4.032× 1026 ≈ 288.38
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Diagram Drawn in Video for Example 2.3 and Exercise 2.4
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Frequency Analysis
The table below shows the frequency distribution of typical English,
most frequent letters first. Probabilities are given as percentages.

e t a o i n s h r d

12.7 9.1 8.2 7.5 7.0 6.7 6.3 6.1 6.0 4.3

All frequencies are shown in the graph left below.
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Using a substitution cipher, the probability distribution of
ciphertext letters is a rearrangement of the probability distribution
of plaintext letters. In particular, there are still three peaks,
corresponding to e, t, and a. The graph on the right shows the
special case where π is the Caesar shift by 2.



Frequency Analysis: Frequency Graph in Video
In the video we pretended that English had three common letters,
a, e, t and all the rest were rare. I drew the graphs below showing
how the frequency distribution is changed by
I the Caesar shift by 3 (special case of a substitution cipher)
I the substitution cipher reversing the alphabet

Note that there are still three peaks, just in different positions.

G V ±  
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Frequency Analysis
Example′ 2.5

(Here ′ means this is similar, but not the same, as the example in
the printed notes.) Eve intercepts the ciphertext

IFJAJ DAJ BNXKBWM UADLIKLDE AJDMBTM PBA MIWOCKTQ

LACUIBQADUFC IFJ MWNRJLI KM DEMB PWEE BP HDIFJHDIKLDE

KTIJAJMI IFJAJ DAJ LBTTJLIKBTM IB EKTJDA DEQJNAD TWHNJA

IFJBAC MIDIKMIKLM DTO UABNDNKEKIC IFJBAC DM GJEE DM

IFJBAJIKLDE LBHUWIJA MLKJTLJ

We will decrypt this using the Mathematica notebook
AlphabetCiphers on Moodle to do the donkey work.
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Frequency distribution of English and of the ciphertext.

e t a o i n s h r d

12.7 9.1 8.2 7.5 7.0 6.7 6.3 6.1 6.0 4.3

J I D A M B K L E T

11.2 10.7 9.2 8.8 7.3 7.3 6.8 5.8 5.3 4.9



Frequency analysis and then easy guessing quickly revealed the
plaintext in Example 2.5′.
there are obvious practical reasons for studying cryptography

IFJAJ DAJ BNXKBWM UADLIKLDE AJDMBTM PBA MIWOCKTQ LACUIBQADUFC

the subject is also full of mathematical interest there are

IFJ MWNRJLI KM DEMB PWEE BP HDIFJHDIKLDE KTIJAJMI IFJAJ DAJ

connections to linear algebra number theory statistics and

LBTTJLIKBTM IB EKTJDA DEQJNAD TWHNJA IFJBAC MIDIKMIKLM DTO

probability theory as well as theoretical computer science

UABNDNKEKIC IFJBAC DM GJEE DM IFJBAJIKLDE LBHUWIJA MLKJTLJ

Exercise′ 2.6

(a) After deciphering, we know that π(a) = D, π(b) = N, . . . ,
π(e) = J, . . . and so on. Do we know the key π?

(A) No (B) Yes

J I D A M B K L E T F W N

11.2 10.7 9.2 8.8 7.3 7.3 6.8 5.8 5.3 4.9 3.9 3.0 3.0

C U H Q P O X R G Z Y V S

3.0 2.4 2.0 1.5 1.5 1.0 0.5 0.5 0.5 0 0 0 0
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In Praise of Programming

You can get Mathematica for free from the College: see the top
hit for Google on ‘RHUL Mathematica’.

This is a chance to develop some useful transferable programming
skills!

“What I mean is that if you really want to understand something,
the best way is to try and explain it to someone else. That forces
you to sort it out in your own mind. And the more slow and
dim-witted your pupil, the more you have to break things down
into more and more simple ideas. And that’s really the essence
of programming. By the time you’ve sorted out a complicated
idea into little steps that even a stupid machine can deal with,
you’ve certainly learned something about it yourself.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency (1987)



Colossus at Bletchley Park and Cyber Attacks Now



The Guardian
4th October 2018



Hill Climbing

We saw that the substitution cipher is weak because it is possible
to start with a guess for the key, say π, that is partially correct,
and then improve it step-by-step by looking at the decrypted
ciphertext e−1

π (y) implied by this key.

Example 2.7

To make this process automatic, we need a quantitative way to
measure how ‘close to English’ e−1

π (y) is. Recall that a trigram is
three consecutive letters. A good scoring function is

∑
t log pt

where the sum is over all trigrams t in e−1
π (y) and pt is the

probability of the trigram t in English . . .

[See printed notes and the two videos: the picture I drew in the second
didn’t come through very well on the camera: there is a sharper scan as
the next slide.]

You can try the code online at

http://repl.it/@mwildon/SubstitutionHillClimbWeb.



Exercise 2.8
The strategy in Example 2.7 is called ‘hill-climbing’. Why this
name?

Answer: See the second video on the hill climb where I drew the
picture below: scores are from decrypting the ciphertext in
Example 2.5.
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Vigenère Cipher
Define a bijection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b ←→ 1, . . . , z ←→ 25.

Using this bijection we identify a word of length ` with an element
of {0, 1, . . . , 25}`. For example,

‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.
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After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.

Quiz. In this course it is most convenient to number positions in
tuples from 0, so a 3-tuple x is (x0, x1, x2).

One of these statement is false. Which one?

(A) {1, 2, 2} = {2, 1, 1} is a set of size 2,
(B) (0, 1, 1, 0, 0, 1) ∈ {0, 1}6 is a binary form of 16 + 8 + 1 = 25,
(C) (1, 2, 2) = (2, 1, 1),
(D) If u = (0, 1, 2, . . . , 25) then ui = i for i ∈ {0, 1, . . . , 25}.

(A) (B) (C) (D)
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(A) (B) (C) (D)



Vigenère Cipher
Define a bijection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b ←→ 1, . . . , z ←→ 25.

Using this bijection we identify a word of length ` with an element
of {0, 1, . . . , 25}`. For example,

‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s
becomes the function x 7→ x + s mod 26.

Definition 2.9
The key k for the Vigenère cipher is a string. Suppose that k has
length `. Given a plaintext x with its spaces deleted, we define its
encryption by

ek(x) = (x0 + k0, x1 + k1, . . . , x`−1 + k`−1, x` + k0, x`+1 + k1, . . .)

where xi + ki is computed by converting xi and ki to numbers and
adding them mod 26.

Note that after ` letters we ‘wrap around’, by re-using position 0 of
the key.



Vigenère Example

Example 2.10

Take k = bead, so k has length 4. Under the bijection between
letters and numbers, bead←→ (1, 4, 0, 3). The table below shows
that

ebead(meetatmidnightnear) = NIEWBXMLERIJIXNHBV.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

xi
m e e t a t m i d n i g h t n e a r

12 4 4 19 0 19 12 8 3 13 8 6 7 19 13 4 0 17

ki
b e a d b e a d b e a d b e a d b e

1 4 0 3 1 4 0 3 1 4 0 3 1 4 0 3 1 4

xi + ki
13 8 4 22 1 23 12 11 4 17 8 9 8 23 13 7 1 21
N I E W B X M L E R I J I X N H B V



Frequencies for one, two and four Caesar shifts applied to
typical English (made using AlphabetCiphers.nb in video)

I Black: one shift by 2: note peaks at C, G, V for a, e, t.

I Blue: shifts by 2 and 5: now C comes from the common a and
the rare x, so no peak!

I Red: shifts by 2, 5, 14, 15
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A Weakness in the Vigenère Cipher

Exercise 2.11

(i) Which text below is more likely to be a be a sample of letters
(not necessarily adjacent) from a Caesar Cipher ciphertext?

(A) UWBBJSNMXUBSOWGFZTUIFFBIIJUBSTBUNGFIBSJETSGMJPTOOB

(B) UIWRBKBDJTSONEMOXSULBTSNOEWLGEFAZATEUIINFBFIBEIHID

(C) ULIVWIRBBAKZBVDKJWTRSCOINVEOMMOWXESVUMLOBJTHSENLOX

(A) (B) (C)

Each sample has 50 characters. The ten most frequent letters,
with frequencies, and the total frequency of the rest are:

(A)
B U S T J I F O G W the rest
8 5 5 4 4 4 4 3 3 2 8

(B)
D V L K C Y F Z U R the rest
6 5 5 3 3 3 3 3 3 2 14

(C)
L X D C Y M K I F B the rest
5 4 4 3 3 3 3 3 3 2 17
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A Weakness in the Vigenère Cipher

Exercise 2.11

(i) Which text below is more likely to be a be a sample of letters
(not necessarily adjacent) from a Caesar Cipher ciphertext?

(A) UWBBJSNMXUBSOWGFZTUIFFBIIJUBSTBUNGFIBSJETSGMJPTOOB

(B) UIWRBKBDJTSONEMOXSULBTSNOEWLGEFAZATEUIINFBFIBEIHID

(C) ULIVWIRBBAKZBVDKJWTRSCOINVEOMMOWXESVUMLOBJTHSENLOX

(A) (B) (C)

(ii) The samples in (i) are every 4th, every 2nd and every
character from the ciphertext y in Example 2.16 below,
encrypted using the Vigenère cipher with the four letter key
bead.

Why should we expect the split ciphertext from a Vigènere
cipher to have the most ‘spiky’ frequency distribution at the
length of the keyword?

Hint: think about the number of Caesar shifts that are
relevant and look again at the graph on the previous slide.



Vigenère Cipher and Spikiness
The graph below shows the frequencies (as percentages as usual)
for every 4th, every 3rd, every 2nd and every character from the
ciphertext y in Example 2.16 below, encrypted using the Vigenère
cipher with the four letter key bead ←→ (1, 4, 0, 3). (See end of
AustenVigenereExample.nb on Moodle.)
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This is the final graph in the video ‘Vigenère Cipher and Spikiness’.



Shifts from Vigenère Ciphertext, key bead ↔ (1, 4, 0, 3)
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Quiz (four questions!): How many different shifts are used to encrypt

I the red sample obtained by taking every character in the
ciphertext?

(A) 1 (B) 2 (C) 3 (D) 4
I the blue sample obtained by taking every other character?

(A) 1 (B) 2 (C) 3 (D) 4
I the black sample obtained by taking every 4th character?

(A) 1 (B) 2 (C) 3 (D) 4

I the orange sample obtained by taking every 3rd character?
(A) 1 (B) 2 (C) 3 (D) 4



Shifts from Vigenère Ciphertext, key bead ↔ (1, 4, 0, 3)
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Shifts from Vigenère Ciphertext, key bead ↔ (1, 4, 0, 3)

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

2

4

6

8

10

12

Quiz (four questions!): How many different shifts are used to encrypt

I the red sample obtained by taking every character in the
ciphertext?

(A) 1 (B) 2 (C) 3 (D) 4
I the blue sample obtained by taking every other character?

(A) 1 (B) 2 (C) 3 (D) 4
I the black sample obtained by taking every 4th character?

(A) 1 (B) 2 (C) 3 (D) 4

I the orange sample obtained by taking every 3rd character?
(A) 1 (B) 2 (C) 3 (D) 4



Shifts from Vigenère Ciphertext, key bead ↔ (1, 4, 0, 3)
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Shifts from Vigenère Ciphertext, key bead ↔ (1, 4, 0, 3)
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Shifts from Vigenère Ciphertext, key bead ↔ (1, 4, 0, 3)
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Index of Coincidence or ‘The Measure of Spikiness’
Definition 2.12
The Index of Coincidence of a ciphertext y , denoted I (y), is the
probability that two entries of y , chosen at random from different
positions, are equal.

Exercise 2.13
Explain why I (QXNURA) = I (QNRFLX) = 0 and check that
I (MOODLE) = I (LOOMED) = 1

15 . What is I (AAABBC)?

(A) 1
5 (B) 4

15 (C) 3
10 (D) 11

30

What I (AAAAAABBBCCZ)?

(A) 17
66 (B) 3

11 (C) 19
66 (D) 39

132

Lemma 2.14 (Examinable: see video or click on for main idea)

If the ciphertext y of length n has exactly fi letters corresponding
to i , for each i ∈ {0, 1, . . . , 25} then

I (y) =
25∑

i=0

fi (fi − 1)

n(n − 1)
.
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Index of Coincidence or ‘The Measure of Spikiness’
Definition 2.12
The Index of Coincidence of a ciphertext y , denoted I (y), is the
probability that two entries of y , chosen at random from different
positions, are equal.

Exercise 2.13
Explain why I (QXNURA) = I (QNRFLX) = 0 and check that
I (MOODLE) = I (LOOMED) = 1
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(A) 17
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11 (C) 19
66 (D) 39

132

Idea of proof: let X and Z be the first and second characters chosen.
Condition on X , and then find the probability that Z = x given that
X = x . (I did warn you that you would need conditional probability.) If
you understand why

I (AAABBC) = P[Z = A|X = A] 3
6 + P[Z = B|X = B] 2

6 + P[Z = C|X = C] 1
6

then you have all the tools needed to write a general proof.



The IOC Works to Measure Spikiness
The graph below shows the frequencies (as percentages as usual)
for every 4th, every 3rd, every 2nd and every character from the
full ciphertext y in Example 2.16 below, encrypted using the
Vigenère cipher with the four letter key bead ←→ (1, 4, 0, 3).
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This table shows the IOC for the samples taking every kth letter
for k ∈ {1, 2, 3, 4, 5, 6}. Produced in Mathematica at the start
of the ‘Vigenère attack using Index of Coincidence’.

k 1 2 3 4 5 6

IOC 0.0458 0.0528 0.0431 0.0687 0.0452 0.0546



Quiz: Vigenère Cipher with Key ‘bead’
Imagine that English has common letters ‘a’ ‘e’ ‘t’ and all other
letters are rare, so the frequency graph is as shown on the left.

°'-- e 

I Suppose we split the ciphertext, encrypted using a Vigenère
key of length 4, taking every third position. What will the
frequency graph look more like?

(A) red (B) blue



Quiz: Vigenère Cipher with Key ‘bead’
Imagine that English has common letters ‘a’ ‘e’ ‘t’ and all other
letters are rare, so the frequency graph is as shown on the left.

°'-- e 

I Suppose we split the ciphertext, encrypted using a Vigenère
key of length 4, taking every third position. What will the
frequency graph look more like?

(A) red (B) blue

Since all four shifts are seen.



Quiz: Vigenère Cipher with Key ‘bead’
Imagine that English has common letters ‘a’ ‘e’ ‘t’ and all other
letters are rare, so the frequency graph is as shown on the left.

°'-- e 

I Let Ik be the Index of Coincidence computed by taking every
kth character. What order do you expect for I1, I2, I3, I4?
(A) I1 < I2 < I3 < I4; (B) I1 < I3 < I2 < I4;
(C) I1 ≈ I3 < I2 < I4; (D) I1 ≈ I2 ≈ I3 < I4.

(A) (B) (C) (D)
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Quiz: Vigenère Cipher with Key ‘bead’
Imagine that English has common letters ‘a’ ‘e’ ‘t’ and all other
letters are rare, so the frequency graph is as shown on the left.

°'-- e 

I Let Ik be the Index of Coincidence computed by taking every
kth character. What order do you expect for I1, I2, I3, I4?
(A) I1 < I2 < I3 < I4; (B) I1 < I3 < I2 < I4;
(C) I1 ≈ I3 < I2 < I4; (D) I1 ≈ I2 ≈ I3 < I4.

(A) (B) (C) (D)

Why (C)? Since the IOC measures how many different shifts are
used in the ciphertext sample: 4 shifts for k = 1 and for 3 (see
‘Index of Coincidence’ video); 2 shifts for k = 2; 1 shift for k = 4.



Attack on the Vigenère Cipher
We now have a strategy for decrypting a Vigenère ciphertext.

Attack 2.15
Given a Vigenère ciphertext y , take every k-th letter for all
small k . For instance when k = 3 the sample is y0y3y6y9 . . . and
when k = 4 the sample is y0y4y8 . . .. The Index of Coincidence will
be greatest (for long samples) when we split at the key length, `.

I Now y0y`y2` . . . have all been encrypted by shifting by k0:
assuming that the most common letter is the shift of ‘e’
determines the shift.

I Repeat with y1y`+1y2`+1 . . . to determine k1

I . . . and so on, up to k`−1.

Example 2.16

The following ciphertext is the output of a Vigènre cipher:
ULIVWIRBBAKZBVDKJWTRSCOINVEOMMOWXESVUMLOBJTHSENL ...

(A fuller ciphertext is in the printed notes and the whole lot is in
the Mathematica notebook VigenereAustenExample.nb.)



Example 2.16 [continued] Attack on Vigenère Cipher

The graph left below shows the mean Index of Coincidence when
the ciphertext is split taking every kth letter, for k ∈ {1, 2, . . . , 13}.
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I Improving on Attack 2.15, we took the average of the samples
by starting at each of the initial k letters in turn.

I If we just take samples starting at the first letter, the IOCs
vary more (see right), but one would still correctly guess the
key length is 4, since the increase from 4 to 8 is very small.



Example 2.16 [continued] Attack on Vigenère Cipher

Taking every four letter of the ciphertext, starting at the zeroth:

y0y4y8 . . . = ‘UWBBJSNMXUBSOWGFZTUIFFBIIJUB . . .′

This is the first sample in the quiz earlier. The frequency table (as
in Example 2.5) begins

F P U O

12.5 8.3 8.0 8.0

Assuming ‘F‘←→ 5 is the encryption of ‘e‘←→ 4, the shift in the
Caesar cipher is 1←→ ‘b‘, so we guess the first letter of the key is
‘b’. The Mathematica notebook VigenereAustenExample on
Moodle shows this simple strategy works in all 4 positions to reveal
the key bead.



Smaller Peaks when only some Shifts are Relevant

Exercise 2.17
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Explain why there are smaller peaks at 2, 6 and 10 in the plot of
Indices of Coincidence above.

Explanation: when we take every 2nd character from the beginning, we
see the shifts for b and a:

beadbead . . . .

(Or if we start at the second character the shifts are e and d.) Similarly
if we take every 6th character: the relevant shifts are again b and a:

beadbeadbeadbeadbeadbeadbdbe . . . .

Since the IOC measures the number of different shifts involved, it is in
the middle when k = 2, 6, 10, . . .. We have already seen it is highest
when k = 4, 8, . . . is a multiple of the key length (only one shift) and
lowest when all four shifts are relevant, so k = 1, 3, 5, 7, . . ..
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Second Quiz on Vigenère Splits
Suppose that the key has length 12 with 12 different letters. Recall
that yi = xi + ki mod 12 for each i . For instance

y0 = x0 + k0, y1 = x1 + k1, . . . , y12 = x12 + k0, y13 = x13 + k1.

(a) How many different shifts are seen when the ciphertext is split
taking every 6th position?

(A) 1 (B) 2 (C) 3 (D) 4

(b) How many different shifts are seen when the ciphertext is split
taking every 4th position?

(A) 1 (B) 2 (C) 3 (D) 4

(c) How many different shifts are seen when the ciphertext is split
taking every 8th position?

(A) 1 (B) 2 (C) 3 (D) 4
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Second Quiz on Vigenère Splits
Suppose that the key has length 12 with 12 different letters. Recall
that yi = xi + ki mod 12 for each i . For instance

y0 = x0 + k0, y1 = x1 + k1, . . . , y12 = x12 + k0, y13 = x13 + k1.

The table below shows the number of shifts for each `.

` 1 2 3 4 5 6 7 8 9 10 11

number of shifts 12 6 4 3 12 2 12 3 4 6 12

I When the ciphertext is split taking every `th letter, the Index
of Coincidence is maximized when ` = 12. What value(s) of `
will give the second highest?

(A) 2, 4, 6, 8, or 10 (B) 3, 6 or 9 (C) 4 or 8 (D) 6
I What value(s) of ` will give the third highest?

(A) 2, 4, 6, 8 or 10 (B) 3, 6 or 9 (C) 4 or 8 (D) 6
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Problem Sheet 1
I If you have no message to attack in Question 3 (c), email me

at mark.wildon@rhul.ac.uk and I will send you a ciphertext
encrypted using the key of the lazy pair in your block.

I If you have problems with AlphabetCiphers.nb, or any
other notebook in the course, please:
I Quit Mathematica
I Download a fresh copy of the notebook from Moodle.

Rename AlphabetCiphers.nb.txt to AlphabetCiphers.nb if necessary.

This is a Moodle bug affecting Safari on Mac OS X and maybe other browsers.

It looks like it might have gone away after one of the recent Moodle updates.

I Restart Mathematica
I Load the fresh copy of AlphabetCiphers.nb
I Select ‘Evaluate Notebook’ in the ‘Evaluation’ menu. (As

it says at the top of the notebook.)

Then remember that it’s always shift-return to evaluate. If
you ever press return, you are probably doing things wrong.

I If you are confused on Question 5(e) see Exercise 2.17 and the
quiz afterwards, the earlier quiz, and the first and second
videos on the Vigènere Cipher and Index of Coincidence. Yes,
I really want you to get this idea!



§3 Cryptosystems and Perfect Secrecy

The three different encryption functions for the Caesar cipher on
the ‘alphabet’ {0, 1, 2} are shown in the diagram below.
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Definition of Cryptosystems

Definition 3.1
Let K,P, C be finite sets. A cryptosystem is a family of encryption
functions ek : P → C and decryption functions dk : C → P, one for
each k ∈ K, such that for each k ∈ K ,

dk
(
ek(x)

)
= x (?)

for all x ∈ P. We call K the keyspace, P the set of plaintexts, and
C the set of ciphertexts.

Recall that a function f : P → C is injective if
I for all x , x ′ ∈ P, f (x) = f (x ′) implies x = x ′.

Equivalently (take the contrapositive), if x 6= x ′ then f (x) 6= f (x ′).

Exercise 3.2

(i) Use (?) to show that for each k ∈ K, the encryption functions
ek : P → C is injective.

(ii) Why do we want the encryption functions in a cryptosystem
to be injective?
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Exercise 3.3
Each diagram (i)–(vi) below each show two purported functions.
Which illustrate the encryption functions in a cryptosystem with
two keys (one black, one red)? In each case P is on left-hand side
and C = {0, 1, 2} is on right-hand side. Next two slides gives all answers.
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Summary: (i), (ii), (iii) and (iv) are cryptosystems. In (iv) two

keys define the same function: this is permitted. (v) is not a

cryptosystem: the black encryption function is not injective, so (?)

does not hold. (vi) is not a cryptosystem since the black

encryption function is not defined on 0. Also the red encryption

function is not well-defined: what is ered(0)? Is it 0 or is it 1?



Cryptosystems

Recall that a function f : P → C is injective if, for all x , x ′ ∈ P,
f (x) = f (x ′) implies x = x ′ and surjective if for all y ∈ C there
exists x ∈ P such that f (x) = y .

Exercise 3.4
(i) An undergraduate writes ‘For each x ∈ P there is a unique

y ∈ C’. Does this mean that ek is injective?

(ii) Show that if |P| = |C| then the encryption functions are
bijections and dk = e−1

k for each k ∈ K.

(iii) Is there a cryptosystem with |C| < |P|?



Cryptosystems

Recall that a function f : P → C is injective if, for all x , x ′ ∈ P,
f (x) = f (x ′) implies x = x ′ and surjective if for all y ∈ C there
exists x ∈ P such that f (x) = y .

Quiz: True or false? In any cryptosystem . . .

(a) the encryption functions ek : P → C determine the decryption
functions.

(A) False (B) True

(b) the decryption functions dk : C → P are surjective

(A) False (B) True

(c) if k ∈ K and x , x ′ are distinct plaintexts then ek(x) 6= ek(x ′).

(A) False (B) True

(d) if x ∈ P and k , k ′ are distinct keys then ek(x) 6= ek ′(x).

(A) False (B) True

(e) If ek(x) = ek ′(x ′) and x 6= x ′ then k 6= k ′.
(A) False (B) True
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Numeric one-time pad

Example 3.5 (Numeric one-time pad)

Fix n ∈ N. The numeric one-time pad on {0, 1, . . . , n − 1} has
P = C = K = Zn = {0, 1, . . . , n − 1}. The encryption functions
are ek(x) = (x + k) mod n. As expected from Exercise 3.4(ii),
each ek is a bijection, and the decryption functions are dk = e−1

k .
Explicitly, dk(y) = (y − k) mod n.

In Example 1.2 and Sheet 1 Question 2, Alice and Bob use the
numeric one-time pad with n = 100. The key was given to them by
their trusted friend Trevor, who was equally likely to pick each key.

I Suppose that Eve observes the ciphertext 80.

I The plaintext is x if and only if the key is (80− x) mod 100.

I Since each key is equally likely then it seems reasonable to say
that Eve learns nothing about the plaintext.

Moreover, as seen in the Group Work for Week 1, since the
ciphertext is x + k mod 100, and all keys are equally likely, so are
all ciphertexts.



Numeric one-time pad

Example 3.5 (Numeric one-time pad)

Fix n ∈ N. The numeric one-time pad on {0, 1, . . . , n − 1} has
P = C = K = Zn = {0, 1, . . . , n − 1}. The encryption functions
are ek(x) = (x + k) mod n. As expected from Exercise 3.4(ii),
each ek is a bijection, and the decryption functions are dk = e−1

k .
Explicitly, dk(y) = (y − k) mod n.

The diagrams before Definition 3.1 show the numeric one-time pad
on {0, 1, 2}.
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Probability model

Fix a cryptosystem in our usual notation. We make K × P × C a
probability space by assuming that the plaintext x ∈ P is chosen
independently of the key k ∈ K; the ciphertext is then ek(x). Thus
if px is the probability the plaintext is x ∈ P and rk is the
probability the key is k then the probability measure is defined by

p(k,x ,y) =

{
rkpx if y = ek(x)

0 otherwise.

Let K ,X ,Y be the random variables standing for the plaintext,
ciphertext and key, respectively.

Exercise 3.6
Is the assumption that the key and plaintext are independent
reasonable?



Basic Quiz on Probability Model
We use the numeric one-time pad with n = 4 supposing that keys
are equally likely and p0 = 1

2 , p1 = 1
4 , p2 = 1

6 , p3 = 1
12 .
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(a) By assumption r0 = r1 = r2 = r3. What is this value?

(A) 1
5 (B) 1

4 (C) 1
3 (D) need more information

(b) What is P[X = 2]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(c) What is P[K = 3]?

(A) 1
5 (B) 1

4 (C) 1
3 (D) need more information

(d) What is P[X = 2 and K = 3]?

(A) 1
4 (B) 1

6 (C) 1
12 (D) 1

24

Finally, decide whether each of the following probabilities is
I ‘easy’: you can do it in a few seconds by finding the relevant

X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!
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(e) What is P[X = 2|K = 3]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(f) What is P[Y = 0|X = 3]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(g) What is P[Y = 0]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(h) What is P[X = 0 and Y = 0]?

(A) 1
2 (B) 1

4 (C) 1
8 (D) 1

16

Finally, decide whether each of the following probabilities is
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X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!



Basic Quiz on Probability Model
We use the numeric one-time pad with n = 4 supposing that keys
are equally likely and p0 = 1

2 , p1 = 1
4 , p2 = 1

6 , p3 = 1
12 .

0

1

2

3

0

1

2

3

key 0
0

1

2

3

0

1

2

3

key 1
0

1

2

3

0

1

2

3

key 2
0

1

2

3

0

1

2

3

key 3

(e) What is P[X = 2|K = 3]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(f) What is P[Y = 0|X = 3]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(g) What is P[Y = 0]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(h) What is P[X = 0 and Y = 0]?

(A) 1
2 (B) 1

4 (C) 1
8 (D) 1

16

Finally, decide whether each of the following probabilities is
I ‘easy’: you can do it in a few seconds by finding the relevant

X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!



Basic Quiz on Probability Model
We use the numeric one-time pad with n = 4 supposing that keys
are equally likely and p0 = 1

2 , p1 = 1
4 , p2 = 1

6 , p3 = 1
12 .

0

1

2

3

0

1

2

3

key 0
0

1

2

3

0

1

2

3

key 1
0

1

2

3

0

1

2

3

key 2
0

1

2

3

0

1

2

3

key 3

(e) What is P[X = 2|K = 3]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(f) What is P[Y = 0|X = 3]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(g) What is P[Y = 0]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(h) What is P[X = 0 and Y = 0]?

(A) 1
2 (B) 1

4 (C) 1
8 (D) 1

16

Finally, decide whether each of the following probabilities is
I ‘easy’: you can do it in a few seconds by finding the relevant

X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!



Basic Quiz on Probability Model
We use the numeric one-time pad with n = 4 supposing that keys
are equally likely and p0 = 1

2 , p1 = 1
4 , p2 = 1

6 , p3 = 1
12 .

0

1

2

3

0

1

2

3

key 0
0

1

2

3

0

1

2

3

key 1
0

1

2

3

0

1

2

3

key 2
0

1

2

3

0

1

2

3

key 3

(e) What is P[X = 2|K = 3]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(f) What is P[Y = 0|X = 3]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(g) What is P[Y = 0]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(h) What is P[X = 0 and Y = 0]?

(A) 1
2 (B) 1

4 (C) 1
8 (D) 1

16

Finally, decide whether each of the following probabilities is
I ‘easy’: you can do it in a few seconds by finding the relevant

X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!



Basic Quiz on Probability Model
We use the numeric one-time pad with n = 4 supposing that keys
are equally likely and p0 = 1

2 , p1 = 1
4 , p2 = 1

6 , p3 = 1
12 .

0

1

2

3

0

1

2

3

key 0
0

1

2

3

0

1

2

3

key 1
0

1

2

3

0

1

2

3

key 2
0

1

2

3

0

1

2

3

key 3

(e) What is P[X = 2|K = 3]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(f) What is P[Y = 0|X = 3]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(g) What is P[Y = 0]?

(A) 1
2 (B) 1

4 (C) 1
6 (D) 1

12

(h) What is P[X = 0 and Y = 0]?

(A) 1
2 (B) 1

4 (C) 1
8 (D) 1

16

Finally, decide whether each of the following probabilities is
I ‘easy’: you can do it in a few seconds by finding the relevant

X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!



Basic Quiz on Probability Model
We use the numeric one-time pad with n = 4 supposing that keys
are equally likely and p0 = 1

2 , p1 = 1
4 , p2 = 1

6 , p3 = 1
12 .

0

1

2

3

0

1

2

3

key 0
0

1

2

3

0

1

2

3

key 1
0

1

2

3

0

1

2

3

key 2
0

1

2

3

0

1

2

3

key 3

Finally, decide whether each of the following probabilities is
I ‘easy’: you can do it in a few seconds by finding the relevant

X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!

(i) P[X = 2|K = 1]? (A) Easy (B) Hard

(j) P[Y = 2|X = 3]? (A) Easy (B) Hard

(k) P[X = 3|Y = 3]? (A) Easy (B) Hard

(l) P[K = 3|Y = 3]? (A) Easy (B) Hard



Basic Quiz on Probability Model
We use the numeric one-time pad with n = 4 supposing that keys
are equally likely and p0 = 1

2 , p1 = 1
4 , p2 = 1

6 , p3 = 1
12 .

0

1

2

3

0

1

2

3

key 0
0

1

2

3

0

1

2

3

key 1
0

1

2

3

0

1

2

3

key 2
0

1

2

3

0

1

2

3

key 3

Finally, decide whether each of the following probabilities is
I ‘easy’: you can do it in a few seconds by finding the relevant

X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!

(i) P[X = 2|K = 1]? (A) Easy (B) Hard

(j) P[Y = 2|X = 3]? (A) Easy (B) Hard

(k) P[X = 3|Y = 3]? (A) Easy (B) Hard

(l) P[K = 3|Y = 3]? (A) Easy (B) Hard



Basic Quiz on Probability Model
We use the numeric one-time pad with n = 4 supposing that keys
are equally likely and p0 = 1

2 , p1 = 1
4 , p2 = 1

6 , p3 = 1
12 .

0

1

2

3

0

1

2

3

key 0
0

1

2

3

0

1

2

3

key 1
0

1

2

3

0

1

2

3

key 2
0

1

2

3

0

1

2

3

key 3

Finally, decide whether each of the following probabilities is
I ‘easy’: you can do it in a few seconds by finding the relevant

X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!

(i) P[X = 2|K = 1]? (A) Easy (B) Hard

(j) P[Y = 2|X = 3]? (A) Easy (B) Hard

(k) P[X = 3|Y = 3]? (A) Easy (B) Hard

(l) P[K = 3|Y = 3]? (A) Easy (B) Hard



Basic Quiz on Probability Model
We use the numeric one-time pad with n = 4 supposing that keys
are equally likely and p0 = 1

2 , p1 = 1
4 , p2 = 1

6 , p3 = 1
12 .

0

1

2

3

0

1

2

3

key 0
0

1

2

3

0

1

2

3

key 1
0

1

2

3

0

1

2

3

key 2
0

1

2

3

0

1

2

3

key 3

Finally, decide whether each of the following probabilities is
I ‘easy’: you can do it in a few seconds by finding the relevant

X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!

(i) P[X = 2|K = 1]? (A) Easy (B) Hard

(j) P[Y = 2|X = 3]? (A) Easy (B) Hard

(k) P[X = 3|Y = 3]? (A) Easy (B) Hard

(l) P[K = 3|Y = 3]? (A) Easy (B) Hard



Basic Quiz on Probability Model
We use the numeric one-time pad with n = 4 supposing that keys
are equally likely and p0 = 1

2 , p1 = 1
4 , p2 = 1

6 , p3 = 1
12 .

0

1

2

3

0

1

2

3

key 0
0

1

2

3

0

1

2

3

key 1
0

1

2

3

0

1

2

3

key 2
0

1

2

3

0

1

2

3

key 3

Finally, decide whether each of the following probabilities is
I ‘easy’: you can do it in a few seconds by finding the relevant

X and/or K and maybe using P[X = x ,K = k] = px rk .
I ‘hard’: you can see you’re going to have to use conditional

probability and think!

(i) P[X = 2|K = 1]? (A) Easy (B) Hard

(j) P[Y = 2|X = 3]? (A) Easy (B) Hard

(k) P[X = 3|Y = 3]? (A) Easy (B) Hard

(l) P[K = 3|Y = 3]? (A) Easy (B) Hard



Conditional Probability: Using the Definition
We will need the formula for conditional probability:

P[A|B] =
P[A and B]

P[B]
.

Quiz. Let Ω = {HH,HT,TH,TT} be the probability space for two
flips of a fair coin. What is the probability of exactly one head,
given that at least one flip was a head?

(A) 2/3 (B) 1/3 (C) 1/2 (D) 1/6

Using the definition of conditional probability, this is proved by

P[{HT,TH}|{HH,HT,TH}] =
P[{HT,TH} ∩ {HH,HT,TH}]

P[{HH,HT,TH}]

=
P[{HT,TH}]

P[{HH,HT,TH}] =
1
4 + 1

4
1
4 + 1

4 + 1
4

=
2
4
3
4

=
2

3

See the ‘Treasure Island’ video for a similar example, and the alternative
approach by restricting the probability space. Here we would restrict to
{HH,HT,TH} and define pHH = pHH/P[{HH,HT,TH}] = 1

4
/ 3

4
= 1

3
, and so

on. Hence the quiz probability is pHT + pTH = 1
3

+ 1
3

= 2
3
.
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Conditional Probability: Conditioning
Just to remind you how it works, the table below shows the
encryption of notthatagain using the Vigenére key abc.

i 0 1 2 3 4 5 6 7 8 9 10 11

xi
n o t t h a t a g a i n

13 14 19 19 7 0 19 0 6 0 8 13

ki
a b c a b c a b c a b c

0 1 2 0 1 2 0 1 2 0 1 2

xi + ki
13 15 21 19 8 2 19 1 8 0 9 15
N P V T I C T B I A J P

Given that the letters c, d, e appear in English with percentage
probabilities, 2.8%, 4.3%, 12.7%, what percentage of ciphertext
letters do you expect to be E?

(A) 5.4% (B) 6.6% (C) 8.5% (D) 12.7%

[Hint: condition on the position of the ciphertext letter modulo 3.]
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Conditional Probability: Conditioning
Thus the probability of E is the average probability of c, d, e,

2.8% + 4.3% + 12.7%

3
= 6.6%.

The graph below shows this average for all ciphertext letters (red
line), compared with English probability distribution (black line).
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For instance, the frequency of E is 6.6%. See Example 2.11 and
later for how we use this with the IOC to guess the key length.

Question: why are F, and G more frequent in a typical ciphertext
than f and g are in a typical plaintext?



Conditional Probability: a Girl called Alice

This is an optional challenge, generalizing a problem set in the
Guardian:

https://www.theguardian.com/science/2019/nov/18/

can-you-solve-it-the-two-child-problem

Suppose that 1
2 of all children are girls, and of all girls, a

proportion p are called Alice.

I Imagine I tell you ‘I have exactly two children and one is a girl
called Alice’. What is the probability I have two girls?

(A) 1
3 (B) 1

3p (C) 2+p
4+p (D) 2−p

4−p

To think about: Is it intuitive that if p is very small then the
probability is nearly 1

2 , and if p is nearly 1 (so all girls are called
Alice) then the probability is nearly 1

3 ?
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Probability Model: Example 3.7
Consider the cryptosystem below.
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0

1
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0

1

2

Let P[K = black] = rblack, P[K = red] = rred, P[K = blue] = rblue.

(1) What is P[Y = 1|X = 2]?
(A) rred (B) rblue (C) rred + rblue (D) rblack + rred

(2) Suppose that the three keys are used with equal probability 1
3 ,

and that p1 = 1− q, p2 = q so p0 = 0.

What is P[Y = 1]? [Hint: condition on the plaintext.]

(A)
1 + q

3
(B)

1− q

3
(C)

1 + 2q

3
(D)

1

3

What is P[X = 2|Y = 1]?

(A)
2

3
(B)

2

3
q (C)

2q

1 + q
(D)

q

1 + q



Probability Model: Example 3.7
Consider the cryptosystem below.

0

1− q

q

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

Let P[K = black] = rblack, P[K = red] = rred, P[K = blue] = rblue.

(1) What is P[Y = 1|X = 2]?
(A) rred (B) rblue (C) rred + rblue (D) rblack + rred

(2) Suppose that the three keys are used with equal probability 1
3 ,

and that p1 = 1− q, p2 = q so p0 = 0.

What is P[Y = 1]? [Hint: condition on the plaintext.]

(A)
1 + q

3
(B)

1− q

3
(C)

1 + 2q

3
(D)

1

3

What is P[X = 2|Y = 1]?

(A)
2

3
(B)

2

3
q (C)

2q

1 + q
(D)

q

1 + q



Probability Model: Example 3.7
Consider the cryptosystem below.

0

1− q

q

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

Let P[K = black] = rblack, P[K = red] = rred, P[K = blue] = rblue.

(1) What is P[Y = 1|X = 2]?
(A) rred (B) rblue (C) rred + rblue (D) rblack + rred

(2) Suppose that the three keys are used with equal probability 1
3 ,

and that p1 = 1− q, p2 = q so p0 = 0.

What is P[Y = 1]? [Hint: condition on the plaintext.]

(A)
1 + q

3
(B)

1− q

3
(C)

1 + 2q

3
(D)

1

3

What is P[X = 2|Y = 1]?

(A)
2

3
(B)

2

3
q (C)

2q

1 + q
(D)

q

1 + q



Probability Model: Example 3.7
Consider the cryptosystem below.

0

1− q

q

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

Let P[K = black] = rblack, P[K = red] = rred, P[K = blue] = rblue.

(1) What is P[Y = 1|X = 2]?
(A) rred (B) rblue (C) rred + rblue (D) rblack + rred

(2) Suppose that the three keys are used with equal probability 1
3 ,

and that p1 = 1− q, p2 = q so p0 = 0.

What is P[Y = 1]? [Hint: condition on the plaintext.]

(A)
1 + q

3
(B)

1− q

3
(C)

1 + 2q

3
(D)

1

3

What is P[X = 2|Y = 1]?

(A)
2

3
(B)

2

3
q (C)

2q

1 + q
(D)

q

1 + q



Warm-up for Quiz on Probability Model

In Example 3.7 we saw the key calculation using conditional
probability (or Bayes’ Theorem if you prefer):

P[X = x |Y = y ] =
P[Y = y |X = x ]P[X = x ]

P[Y = y ]
[Corrected]

Here, and in general, P[Y = y |X = x ] =
∑

k∈K : ek (x)=y P[K = k] is
a sum of key probabilities: we saw P[Y = 1|X = 2] = rred + rblue.

Bluffers’ guide:

I if you see P[Y = y |X = x ] think ‘nice: key probability’;

I if you see P[X = x |Y = y ] think ‘nasty, turn it around’

Curious fact:

I P[X = x |Y = y ] is what we most care about: think ‘What
can I infer about the plaintext, given I’ve seen a ciphertext y ’

I P[Y = y |X = x ] is the thing that is most easy to compute.



Quiz on Probability Model for Cryptosystems
In the cryptosystem below, the red key is used with probability r .
In symbols: P[K = red ] = r .

0

1

2

0

1

2

0

1

2

0

1

2

Suppose the plaintexts are sent with probabilities p0, p1 and p2.

I What is the probability distribution of Y , conditioned on
X = 0? Equivalently, what is

(P[Y = 0|X = 0],P[Y = 1|X = 0],P[Y = 2|X = 0])?

(A) (r , 1− r , 0) (B) (p0r , p0(1− r), 0) (C) (p0r , 1− p0r , 0) (D) (p0, 1− p0, 0)

I Which expression below is equal to P[Y = 0]?
(A) P[Y = 0|X = 0] + P[Y = 0|X = 1] + P[Y = 0|X = 2]
(B) P[Y = 0|X = 0]p0 + P[Y = 0|X = 1]p1 + P[Y = 0|X = 2]p2

(A) (B)
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(A) (r , 1− r , 0) (B) (p0r , p0(1− r), 0) (C) (p0r , 1− p0r , 0) (D) (p0, 1− p0, 0)

I Which expression below is equal to P[Y = 0]?
(A) P[Y = 0|X = 0] + P[Y = 0|X = 1] + P[Y = 0|X = 2]
(B) P[Y = 0|X = 0]p0 + P[Y = 0|X = 1]p1 + P[Y = 0|X = 2]p2

(A) (B)



Quiz on Probability Model for Cryptosystems
In the cryptosystem below, the red key is used with probability r .
In symbols: P[K = red ] = r .

0

1

2

0

1

2

0

1

2

0

1

2

Suppose the plaintexts are sent with probabilities p0, p1 and p2.

I What is the probability distribution of Y , conditioned on
X = 0? Equivalently, what is

(P[Y = 0|X = 0],P[Y = 1|X = 0],P[Y = 2|X = 0])?

(A) (r , 1− r , 0) (B) (p0r , p0(1− r), 0) (C) (p0r , 1− p0r , 0) (D) (p0, 1− p0, 0)

I Which expression below is equal to P[Y = 0]?
(A) P[Y = 0|X = 0] + P[Y = 0|X = 1] + P[Y = 0|X = 2]
(B) P[Y = 0|X = 0]p0 + P[Y = 0|X = 1]p1 + P[Y = 0|X = 2]p2

(A) (B)



Quiz on Probability Model for Cryptosystems [ctd]

In the cryptosystem below, the red key is used with probability r .
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Suppose the plaintexts are sent with probabilities p0, p1 and p2.

I What is P[Y = 0]?

(A) p0r (B) p2(1− r) (C) p0r + p2(1− r) (D) p0r + p2

I What is P[X = 0|Y = 0]?

(A) p0r (B) p0r
p0r+p2(1−r) (C) p0r

p2(1−r) (D) other

I What is P[X = 1|Y = 1]?

(A) 0 (B) r (C) 1− r (D) 1
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Quiz on Probability Model: Purple Spots Disease
People may have Purple Spots Disease. In its first 14 days, the
disease is completely symptomless. Fortunately there is a test.

I If you have Purple Spots Disease, the test is always positive.

I If you don’t have it, there is a tiny 1
1000 chance of a false

positive.

Let

I D be the event ‘I have Purple Spots Disease’,

I T be the event ‘My test was positive’.

Suppose that the proportion of the population having Purple Spots
Disease is p.

(a) Which probability do you care about more?
(A) P[D|T ] (B) P[T |D]

(b) Which probability is easier to compute?
(A) P[D|T ] (B) P[T |D]

Indeed, P[T |D] = 1: the test always works if you have the disease.
But you really want to know ‘what’s the chance I have the disease,
given the bad news from my test’, and this is P[D|T ].
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Quiz on Probability Model: Purple Spots Disease [ctd]
Recall that

I If you have Purple Spots Disease, the test is always positive.
I If you don’t have it, there is a tiny 1

1000
chance of a false positive.

We defined D to be the event ‘I have PSD’, and T to be the event ‘My test
was positive’. Suppose that the proportion of the population having PSD is p.

(c) What is P[T |not D]?

(A) 1
1000 (B) p

1000 (C) p (D) 1− p

(d) What is P[T ]?

(A) p (B) 1
1000 (C) 1

1000 + 999
1000p (D) 1

1000 + p
1000

(e) What is P[D|T ]?

(A) p (B) 1000p
1+999p (C) 999p

1+1000p (D) 999p
1000
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Note that (c) was given: it’s the false positive rate; (d) and (e)

can be done using the ‘switch it round’ trick (equivalently Bayes,

equivalently the definition of conditional probability),

P[D|T ] =
P[D ∩ T ]

P[T ]
=

P[T |D]P[D]

P[T ]
=

1× p
1

1000 + 999
1000p

=
1000p

1 + 999p
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1+999p (C) 999p

1+1000p (D) 999p
1000

(f) Suppose that p = 1
2000 . What, very nearly, is P[D|T ]?

(A) 1
1000 (B) 1

3 (C) 1
2 (D) 1

(g) Is it a good idea to roll out mass testing?
(A) No (B) Yes
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Indeed no, when about 2
3 of all tests will give the wrong result!
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Recall that
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(h) What’s the connection with the probability model?



Example 3.8

Consider the numeric one-time pad in Example 3.5, Assume that
keys are chosen with equal probability 1

n . Suppose that Eve
observes the ciphertext y .

(a) By Question 1 on Problem Sheet 2, P[X = x |Y = y ] = px for
all x , y ∈ Zn. This is a precise statement that Eve learns
nothing about the plaintext from observing y . (In the sense of
Definition 3.11, the one-time pad has perfect secrecy.)

(b) As P[K = k |Y = y ] = P[X = y − k mod n|Y = y ], (a)
implies

P[K = k |Y = y ] = py−k mod n.

Thus the probability distribution P[K = k |Y = y ] for k
varying is a reflected shift of the probability distribution
P[X = x ] on plaintexts. So, unavoidably, Eve learns
something about the key.
This was seen in the setting of Example 1.2 (Alice sent Bob his exam
mark using the numeric one-time pad with n = 100) in the groupwork for
Week 1, and in Question 1 on Problem Sheet 1.)



Shannon’s Theorem: Preliminaries
In practice, the user of a cryptosystem needs to know how to
choose the keys.

Definition 3.9
We define a practical cryptosystem to be a cryptosystem together
with a probability distribution on the keys such that

(1) P[K = k] > 0 for all k ∈ K
(2) for all y ∈ C there exists x ∈ P and k ∈ K such that

ek(x) = y .

Exercise 3.10

(a) Why are the two conditions in Definition 3.9 reasonable?

(b) Show that in a practical cryptosystem, if every plaintext may
be sent, then P[Y = y ] > 0 for all y ∈ C.

Unlike the definition of perfect secrecy, which goes back to
Shannon’s 1949 paper, Definition 3.9 is not a standard definition in
cryptography. You will be reminded of it when it is required.



Definition of Perfect Secrecy

Definition 3.11
Fix a practical cryptosystem.

(i) Let px for x ∈ X be a probability distribution on the
plaintexts such that P[Y = y ] > 0 for all y ∈ C. The
cryptosystem has perfect secrecy for the distribution px if

P[X = x |Y = y ] = px

for all x ∈ P and all y ∈ C such that P[Y = y ] > 0.

(ii) The cryptosystem has perfect secrecy if it has perfect secrecy
for every probability distribution on the plaintexts.

I By Example 3.8(a) the numeric one-time pad on Zn has
perfect secrecy when keys are used with equal probability.



Definition of Perfect Secrecy

Definition 3.11
Fix a practical cryptosystem.

(i) Let px for x ∈ X be a probability distribution on the
plaintexts such that P[Y = y ] > 0 for all y ∈ C. The
cryptosystem has perfect secrecy for the distribution px if

P[X = x |Y = y ] = px

for all x ∈ P and all y ∈ C such that P[Y = y ] > 0.

(ii) The cryptosystem has perfect secrecy if it has perfect secrecy
for every probability distribution on the plaintexts.

I In Example 3.7 we saw a cryptosystem where if the three keys are
used with equal probability, and p0 = 0, p1 = 1− q, p2 = q then
P[X = 2|Y = 1] = 2p2/(1 + p2). Hence

P[X = 2|Y = 1] = p2 ⇐⇒
2p2

1 + p2
= p2

⇐⇒ p2 = 0 or p2 = 1.

This probabilistic cryptosystem does not have perfect secrecy.



Shannon’s Theorem

Recall that a practical cryptosystem is a cryptosystem together
with a probability distribution on keys such that P[K = k] > 0 for
all k ∈ K and for all y ∈ C there exists x ∈ P and k ∈ K such that
ek(x) = y .

Theorem 3.12 (Shannon 1949)

If a practical cryptosytem has perfect secrecy then

(a) For all x ∈ P and y ∈ C the events X = x and Y = y are
independent and P[Y = y |X = x ] = P[Y = y ] > 0.

(b) For all x ∈ P and all y ∈ C there exists a key k such that
ek(x) = y.

(c) |K| ≥ |C|.
(d) Suppose |P| = |C| = |K|. For all x ∈ P and all y ∈ C there

exists a unique key k ∈ K such that ek(x) = y. Each key has
equal probability and each ciphertext is equally likely.



Quantifiers Matter!
Quiz: let P(k , x , y) be a mathematical statement depending on
quantities k, x and y . Which are logically equivalent?

(Q) ∀y∃x∃k P(k , x , y)

(R) ∀y∀x∃k P(k , x , y)

(S) ∀x∀y∃k P(k , x , y)

(A) Q and R (B) R and S (C) Q and S (D) none

In Theorem 3.12 we assume a practical cryptosystem. Property (2)
in the definition of practical cryptosystem is

(2) for all y ∈ C there exists x ∈ P and k ∈ K such that
ek(x) = y .

Conclusion (b) in Theorem 3.12 is

(b) For all x ∈ P and all y ∈ C there exists a key k such that
ek(x) = y .

Exercise 3.13
How does the conclusion (b) in Theorem 3.12 differ from property
(2) in the definition of a practical cryptosystem?
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Proof of Theorem 3.12

Theorem 3.12 (Shannon 1949)

If a practical cryptosytem has perfect secrecy then

(a) For all x ∈ P and y ∈ C the events X = x and Y = y are
independent and P[Y = y |X = x ] = P[Y = y ] > 0.

Proof.
I By hypothesis the cryptosystem has perfect secrecy.
I So we can choose any probability distribution px on the

plaintexts and writing out what perfect secrecy means, get

P[X = x |Y = y ] = px

for all x ∈ P and y ∈ C.
I We should be careful only to condition on events that have

positive probability. Why do we know that P[Y = y ] > 0?
I Okay, so after this check, we know that

P[X = x |Y = y ] = px = P[X = x ] for all x and y . Is this
close to independence?



Theorem 3.12 (Shannon 1949)

If a practical cryptosytem has perfect secrecy then

(b) For all x ∈ P and all y ∈ C there exists a key k such that
ek(x) = y.

So far we know that for all x ∈ P and y ∈ C the events X = x and
Y = y are independent and both have positive probability.

I In Example 3.7 we saw probabilities such as P[Y = y |X = x ].



Theorem 3.12 (Shannon 1949)

If a practical cryptosytem has perfect secrecy then

(b) For all x ∈ P and all y ∈ C there exists a key k such that
ek(x) = y.

So far we know that for all x ∈ P and y ∈ C the events X = x and
Y = y are independent and both have positive probability.
I In Example 3.7 we saw probabilities such as P[Y = y |X = x ].

Here is a reminder of the first quiz question:
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Let P[K = black] = rblack, P[K = red] = rred, P[K = blue] = rblue.

(1) What is P[Y = 1|X = 2]?

(A) rred (B) rblue (C) rred + rblue (D) rblack + rred

I So P[Y = y |X = x ] is the probability that k is the set Exy of
keys such that ek(x) = y . Use this to prove (b).



Theorem 3.12 (Shannon 1949)

If a practical cryptosytem has perfect secrecy then

(c) |K| ≥ |C|.

We have just shown that for all x ∈ P and y ∈ C, the set
Exy = {k ∈ K : ek(x) = y} is non-empty.

I Hint: fix x ∈ P. Can the same key encrypt x to two different
ciphertexts? So how many different keys are needed to get
every ciphertext?

I Prove (c).

(d) Suppose |P| = |C| = |K|. For all x ∈ P and all y ∈ C there
exists a unique key k ∈ K such that ek(x) = y . Each key has
equal probability and each ciphertext is equally likely.

I Prove the uniqueness.
I Fix y? ∈ C. For each x ∈ P, let k?x be the unique key with

ek?
x

(x) = y?. Are the k?x distinct? Is every key some k?x ?
I What can you say about P[K = k?x ]? [Hint: it is

P[Y = y?|X = x?]. We saw in (b) that, by independence, this
probability is P[Y = y?], not depending on x?.]) Hence prove (d).
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x
(x) = y?. Are the k?x distinct? Is every key some k?x ?

I What can you say about P[K = k?x ]? [Hint: it is
P[Y = y?|X = x?]. We saw in (b) that, by independence, this
probability is P[Y = y?], not depending on x?.]) Hence prove (d).
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Thinking about Shannon’s Theorem

Some good questions to ask about a theorem, or a proof of a theorem,
are ‘What examples of it have I seen?’, ‘Did we use all the hypotheses?’,
‘Does the converse hold?’. These are explored on Problem Sheet 2. In
particular, the optional Question 7(b) asks you to show the converse
result stated below.

Proposition 3.14 (Converse to Theorem 3.12(d))

Suppose that |P| = |C| = |K|, that each key is used with equal

probability, and for all x ∈ P and y ∈ C, there exists a unique

k ∈ K such that ek(x) = y. Then the cryptosystem has perfect

secrecy and each ciphertext is equally likely.

In Example 3.5 (also seen in the Group Work for Week 1), we saw

a special case of this proposition. As an exercise, check that the

hypothesis of this proposition hold in this example.

Rather than prove it in the limited ‘live time’ for the course, we will
instead use the Week 3 Group Work to explore what it means in practice.



Example 3.15: Latin Squares
Consider a cryptosystem with perfect secrecy in which
P = |C| = |K| = {0, 1, . . . , n − 1}. By (c) in Theorem 3.12, for
each x , y ∈ {0, 1, . . . , n − 1}, there exists a unique
k ∈ {0, 1, . . . , n − 1} such that ek(x) = y . Therefore the
cryptosystem is determined by the n × n matrix M where

Mxy = k ⇐⇒ ek(x) = y .
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has matrix 


0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0



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Cheat Sheet for Cryptosystem Probability Calculations

(a) P[Y = y |X = x ]: this is the probability that the key encrypts
x to y . It depends only on the keys. Do not use Bayes’ Law.

(b) P[Y = y ] =
∑

x∈P P[Y = y |X = x ]px , find using (a).

(c) P[X = x |Y = y ] =
P[Y = y |X = x ]px

P[Y = y ]
, use (a) and (b).

Here (c) is what the lecturer has often called the ‘turn it around’
rule. You might also recognise it as a version of Bayes’ Law.

Of course I would rather you understood things at a deeper level,
but here is the three step programme you need to follow to
compute any P[X = x |Y = y ]. Please try it out on the
end-of-section quiz.



Final Quiz on §3
Consider the cryptosystem below in which the keys have
probabilities 1−r

3 for black, blue and orange, and r for red.
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As usual let X be the random plaintext, Y the random ciphertext
and K the random key.

(a) What is P[eK (1) = 2]?

(A) 1−r
3 (B) 1+2r

3 (C) 1−r
3 p1 (D) 1+2r

3 p1

(b) What is P[X = 1 and Y = 2]?

(A) 1−r
3 (B) 1+2r

3 (C) 1−r
3 p1 (D) 1+2r

3 p1

(c) What is P[Y = 2|X = 1]?

(A) 1−r
3 (B) 1+2r

3 (C) 1−r
3 p1 (D) 1+2r

3 p1
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(d) What is P[Y = 2]?

(A) 1−r
3 (B) 1−r

3 + rp1 (C) 1−r
3 (p1 + p2) (D) other

(e) What is P[X = 1|Y = 2]?

(A) p1 (B)
(1 + 2r)p1

1− r + 3rp1
(C)

2rp1

1− r + 3rp1
(D) other

(f) Take r = 0. Does the cryptosystem have perfect secrecy?
(A) No (B) Yes

(g) Take r = 1
2 . Does the cryptosystem have perfect secrecy?

(A) No (B) Yes
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§4 Attack Models

Exercise 4.1
Eve observes a ciphertext. What is more useful for her: to learn
the plaintext or to learn the key?

(A) Plaintext (B) Key

Reason. Because knowing the key, she can find the plaintext by
decrypting, and she can also decrypt any other ciphertexts sent
using the same key.
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Motivating Question

Question. What can an attacker learn about the plaintext and

key from an observed ciphertext? Can the key still be unknown

when an attacker knows both a plaintext and its ciphertext?

Interpreting ‘unknown’ to mean ‘not completely known’, you have
already seen an example showing that the answer to the second
question is:

(A) No (B) Yes

Reason. In Example 2.5 we successfully decrypted a ciphertext
from a substitution cipher using frequency analysis. After this,
both the plaintext and ciphertext were known. Since the 2 letters
q, z were not in the plaintext, and the 2 letters A and E were not
in the ciphertext, either
I π(q) = A and π(z) = E or
I π(q) = E and π(z) = A

but we do not know which case holds. The key is not completely
known. (In Example’ 2.5 on these slides, there are 4 missing letters.)
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Affine Cipher

Example 4.2 (Affine cipher)

Let q be prime. Let Zq = {0, 1, . . . , q − 1}. The affine cipher on
Zq has P = C = Zq and

K = {(a, c) : a ∈ Zq, c ∈ Zq, a 6= 0}.

The encryption functions are defined by e(a,c)(x) = ax + c mod q.
The decryption functions are defined by d(a,c)(y) = b(y − c) mod
q, where b ∈ Zq is the unique element such that ab ≡ 1 mod q.
Exercise: prove this formula for d(a,c).

With these definitions, the affine cipher is a cryptosystem.

For example, in the affine cipher on Z11, e(9,2)(5) = 3 since
9× 5 + 2 ≡ 3 mod 11 and, as expected, d(9,2)(3) = 5 since
9× 5 ≡ 1 mod 11 (see below) and 5× (3− 2) ≡ 5 mod 11.

To find b, the multiplicative inverse of a in Zq, you can either do an
exhaustive search, or run Euclid’s algorithm to find b and s such that
ab + qs = 1; then ab ≡ 1 mod p: see the slide after Exercise 4.3.



Quiz on Affine Cipher
Take q = 13
I What is e(3,4)(4)?

(A) 2 (B) 3 (C) 5 (D) 16
I Mark the Mole knows that ek(12) = 0. One possible key is

(1, 1). What is the unique possible key of the form (2, c)?
(A) (2, 0) (B) (2, 1) (C) (2, 2) (D) (2, 4)

Thus even knowing a plaintext/ciphertext pair does not
determine the key.

I What is the multiplicative inverse of 3 modulo 13? [Hint:
there are only 12 possibilities, so you could just try them all.]

(A) 3 (B) 4 (C) 9 (D) 0.333 . . .

Since 3× 4 = 12 ≡ −1 mod 13, and so 3× (−4) ≡ 1 mod 13, the
inverse is −4 ≡ 9 mod 13. It’s okay to write 1/3 as long as you
understand that it means 9 in this context, but 0.333 . . . is just
wrong.

I What is d(3,4)(8)?
(A) 4 (B) 8 (C) 10 (D) 12

d(a,c)(y) = b(y − c) mod q gives 9× (8− 4) ≡ 10 mod 13.
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Affine Cipher
Exercise 4.3
The diagrams below show three encryption functions from the
affine cipher when q = 5. Find the keys.
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Quiz: the red key is

(A) (0, 3) (B) (1, 3) (C) (3, 1) (D) (3, 0)

and the blue key is

(A) (0, 1) (B) (2, 1) (C) (3, 1) (D) (2,−4)

In Question 1 on Problem Sheet 3 you are asked to show that the
affine cipher has perfect secrecy.
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affine cipher has perfect secrecy.



Affine Cipher
Exercise 4.3
The diagrams below show three encryption functions from the
affine cipher when q = 5. Find the keys.
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affine cipher when q = 5. Find the keys.
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Quiz: How many keys are there in the affine cipher on Z5?

(A) 4 (B) 5 (C) 20 (D) not enough information

Since the keys are all (a, c) where a, c ∈ Z5 and a 6= 0. There are
four choices for a then 5 independent choices for c , so 4× 5 = 20
keys. We saw earlier that there are 4 keys (a, c) such that
e(a,c)(2) = 0.



Affine Cipher
Exercise 4.3
The diagrams below show three encryption functions from the
affine cipher when q = 5. Find the keys.

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Quiz: How many keys are there in the affine cipher on Z5?

(A) 4 (B) 5 (C) 20 (D) not enough information

Since the keys are all (a, c) where a, c ∈ Z5 and a 6= 0. There are
four choices for a then 5 independent choices for c , so 4× 5 = 20
keys. We saw earlier that there are 4 keys (a, c) such that
e(a,c)(2) = 0.



Inverses in Modular Arithmetic
There is an efficient way to compute modular inverses when q is
large using Euclid’s Algorithm. This is useful for the affine cipher,
and essential for the RSA Cryptosystem which we’ll see in Part D
of the course on Public Key Cryptography.

I For instance, in Z61, to find 7−1, we run Euclid’s Algorithm
getting 61 = 8× 7 + 5, 7 = 1× 5 + 2 and 5 = 2× 2 + 1,
ending with the expected highest common factor of 1. Hence,
working back

1 = 5− 2× 2 = 5− 2× (7− 5) = 3× 5− 2× 7

= 3× (61− 8× 7)− 2× 7 = 3× 61− 26× 7.

and so 7−1 = −26 ≡ 35 mod 61.

(a) Use Euclid’s Algorithm to find b and s such that
17b + 257s = 1.

We have 257 = 15× 17 + 2 and 17 = 8× 2 + 1, hence

1 = 17− 8× 2 = 17− 8× (257− 15× 17) = 121× 17− 8× 257.

So b = 121 and s = 8.
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Quiz on Inverses in Modular Arithmetic and Affine Cipher
(b) Which formula below defines the inverse function to e(17,1) in

the affine cipher on Z257?

(A) 17y + 1 (B) 121y − 1 (C) 121y + 240 (D) 121y + 136

(c) True or false: the decryption function d(17,1) is equal to an
encryption function in the affine cipher on Z257?

(A) False (B) True

It is e(121,136) by the previous part.

(d) (Optional.) Bob thinks that he can improve on the affine
cipher on Zp by encrypting twice, using two different keys
(a, c) and (a′, c ′), so the encryption function for his double
key is e(a,c),(a′,c ′)(x) = a′(ax + c) + c ′. Is Bob’s ‘composed’
cryptosystem better than the original affine cipher?

(A) No (B) Yes
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(c) True or false: the decryption function d(17,1) is equal to an
encryption function in the affine cipher on Z257?

(A) False (B) True

It is e(121,136) by the previous part.

(d) (Optional.) Bob thinks that he can improve on the affine
cipher on Zp by encrypting twice, using two different keys
(a, c) and (a′, c ′), so the encryption function for his double
key is e(a,c),(a′,c ′)(x) = a′(ax + c) + c ′. Is Bob’s ‘composed’
cryptosystem better than the original affine cipher?

(A) No (B) Yes
Because

a′(ax + c) + c ′ = a′ax + (a′c + c ′) = e(a′a mod p,a′c+c ′ mod p)

so the new encryption function is the same as an encryption
function in the affine cipher.



Quiz on Inverses in Modular Arithmetic and Affine Cipher
(b) Which formula below defines the inverse function to e(17,1) in

the affine cipher on Z257?

(A) 17y + 1 (B) 121y − 1 (C) 121y + 240 (D) 121y + 136

(c) True or false: the decryption function d(17,1) is equal to an
encryption function in the affine cipher on Z257?

(A) False (B) True

It is e(121,136) by the previous part.

(d) (Optional.) Bob thinks that he can improve on the affine
cipher on Zp by encrypting twice, using two different keys
(a, c) and (a′, c ′), so the encryption function for his double
key is e(a,c),(a′,c ′)(x) = a′(ax + c) + c ′. Is Bob’s ‘composed’
cryptosystem better than the original affine cipher?

(A) No (B) Yes
If you have done or are doing a group theory course, you might notice
that the encryption functions in the affine cipher form a group. For
instance, the identity is e(1,0). Inverses were seen in (c) and closure in (d).



Attacks on the Affine Cipher

Exercise 4.4
Consider the affine cipher on Z5 = {0, 1, 2, 3, 4}.

(i) Suppose that Eve observes the ciphertext 2. Does she learn
anything about the key? (Assume she has no knowledge
about the plaintexts, so all plaintexts are equally likely.)

(A) No (B) Yes

(ii) Suppose that Mark knows that e(a,c)(1) = 2. How many
possible keys are there?

(A) 3 (B) 4 (C) 5 (D) 20

(iii) Mark later learns m such that e(a,c)(2) = m ∈ Z5. What in
terms of m is the key?

(A) (2, 0)

(B) (m − 4,−m + 4)

(C) (m − 4 mod 5,−m + 4 mod 5)

(D) (m − 2 mod 5,−m + 4 mod 5)

(A) (B) (C) (D)
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Attack Models

In each of the attack models below, we suppose that Alice sends
ciphertexts to Bob encrypted using the key k ∈ K. The aim of the
adversary (Eve or Mark) is to determine all or part of k .

I Known ciphertext. Eve knows ek(x) ∈ C.

I Known plaintext and ciphertext. Mark knows x ∈ P and
ek(x) ∈ C.

I Chosen plaintext. Mark may choose any x ∈ P and is given
the encryption ek(x).

I Chosen ciphertext. Mark may choose any y ∈ C and is given
the decryption dk(y).

Each attack model has a generalization where the adversary
observes or chooses multiple plaintexts and/or ciphertexts.



Attack Models: Remarks

Remark 4.5

(1) In Example 2.5 we saw that (almost all) of the key in a
substitution cipher can be deduced from a sufficiently long
ciphertext. So the substitution cipher is broken by a known
ciphertext attack.

(2) All the cryptosystems so far are broken by a chosen plaintext
attack. By the general version of Example 4.4, the affine
cipher requires two chosen plaintexts; by Question 4 on Sheet
2, the substitution cipher and the Vigenère cipher just one.

Exercise: How many chosen plaintexts are needed to break the
numeric one-time pad?

(A) 1 (B) 2 (C) 4 (D) depends on key

How many known plaintext/ciphertext pairs are need to break
the numeric one-time pad?

(A) 1 (B) 2 (C) 4 (D) depends on key
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Attack Models: Remarks

Remark 4.5

(1) In Example 2.5 we saw that (almost all) of the key in a
substitution cipher can be deduced from a sufficiently long
ciphertext. So the substitution cipher is broken by a known
ciphertext attack.

(2) All the cryptosystems so far are broken by a chosen plaintext
attack. By the general version of Example 4.4, the affine
cipher requires two chosen plaintexts; by Question 4 on Sheet
2, the substitution cipher and the Vigenère cipher just one.

Exercise: How many chosen plaintexts are needed to break the
numeric one-time pad?

(A) 1 (B) 2 (C) 4 (D) depends on key

(3) In Parts B and C we will see modern stream and block ciphers
where it is believed to be computationally hard to find the key
even allowing unlimited choices of plaintexts in a chosen
plaintext attack.



One-time Pad
Fix n ∈ N. The one-time pad is a cryptosystem with plaintexts,
ciphertexts and keyspace An. You can think of An as all strings of
length n. The encryption functions are defined by

ek(x) = (x0 + k0, x1 + k1, . . . , xn−1 + kn−1)

where, as in the Vigenère cipher (see Example 2.10), xi + ki is
computed by converting xi and ki to numbers and adding modulo
26. (Note, as before, we number positions from 0.) Thus the
one-time pad is the Vigenère cipher when the key has the same
length as the plaintext.

To make the cryptosystem practical (see Definition 3.9) we assume
that each key is used with the same probability.

Example 4.6

Suppose that n = 8. Of the 268 keys, suppose (by a 1/268 chance)
zyxwvuts is chosen. Then

ezyxwvuts(goodwork) = fmlzrikc.



Example 4.6

Suppose that n = 8. Of the 268 keys, suppose (by a 1/268 chance)
zyxwvuts is chosen. Then

ezyxwvuts(goodwork) = fmlzrikc.

i 1 2 3 4 5 6 7 8

xi
g o o d w o r k
6 14 14 3 22 14 17 10

ki
z y x v w u t s

25 24 23 22 21 20 19 18

xi + ki
5 12 11 25 17 8 10 2
f m l z r i k c

The following proposition is a corollary of Proposition 3.14.

Proposition 4.7

The one-time pad has perfect secrecy.

By the proposition, the one-time pad is secure against a known
ciphertext attack with one ciphertext.



Reminder of Proposition 3.14
Proposition 3.14 (Converse to Theorem 3.12(d))

Suppose that |P| = |C| = |K|, that each key is used with equal
probability, and for all x ∈ P and y ∈ C, there exists a unique
k ∈ K such that ek(x) = y. Then the cryptosystem has perfect
secrecy and each ciphertext is equally likely.

In the one-time pad, for all x ∈ An and y ∈ An there exists a
unique k ∈ An such that ek(x) = y , namely k = y − x ; here
subtraction is done by converting to numbers and then working
modulo 26. Therefore Proposition 3.14 applies.

Suppose Eve observes the ciphertext abcdeabcde. (The special structure
is chosen just to make the examples here a bit easier to see by hand.)
She can infer the plaintext has length 10, but since this is part of the
definition of the keyspace, she already knows this by Kerckhoffs’s
assumption. She learns nothing more. For instance

I x = university ⇐⇒ k = abcdeabcde− university = gouiajjukg

I x = governance ⇐⇒ k = abcdeabcde− governance = unhznnbpba

I x = ridiculous ⇐⇒ k = abcdeabcde− ridiculous = jtzvcggojm

and so on.
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Attacks on the One-time Pad

Example 4.8

The spy-master Alice and her agent Bob have agreed to use the
one-time pad. Following Kerckhoffs’s Principle, all this is known to
Eve. Eve does not know that their key is k = atcldqezyomuua.

I Alice’s plaintext is x = leaveinstantly. She sends
ek(x) = lxcghyrrroznfy to Bob.

Bob calculates

lxcghyrrroznfy− atcldqezyomuua = leaveinstantly.

Eve cannot guess the plaintext x : for example

x = gototheairport ⇐⇒ k = y − gototheairport

= fjjsornrjxkzof

x = meetmeonbridge ⇐⇒ k = y − meetmeonbridge

= ztynvudeqxrkzu

For each guessed plaintext there is a unique possible key. Since
keys are equiprobable, this proves that a single known ciphertext
attack reveals no information about the plaintext.



Reuse of One-time Pad Considered Harmful
Bob now makes a fatal mistake, and re-uses the key k in his reply.

I Bob’s plaintext is x ′ = goingeasttrain. He sends
ek(x ′) = ghkyjuerrhducn to Alice.

Eve now has ciphertexts

k + leaveinstantly = lxcghyrrroznfy

k + goingeasttrain = ghkyjuerrhducn.

She subtracts them, working modulo 26 in each position, to obtain
∆ = fqsiyenaahwtdl. Note that ∆ does not depend on k . (You
can use the Mathematica notebook AlphabetCiphers to do
this.)

The string ∆ has the unusual property that there is an English
message x ′ (Bob’s plaintext) such that ∆ + x ′ is another English
message (Alice’s plaintext). This property is so rare that Eve and
her computer can fairly easily deduce x ′ and ∆ + x ′, and, from
either of these, the key k .



Simplified Model for the ∆ Attack
To make this point without the distracting complexity of English
getting in the way, consider Example 1.2. In Question 1(d) on
Problem Sheet 1:

I x is Bob’s mark

I x ′ is Alice’s mark

I k is the key (given to them secretly by Trevor)

Eve observes the ciphertexts

I y = x + k mod 100 (Bob’s mark, encrypted) and

I y ′ = x ′ + k mod 100 (Alice’s mark, encrypted)

She computes ∆ = y − y ′ = x − x ′ mod 100. Note ∆ = 0 if and
only if Alice and Bob got the same mark. So Eve learns this much.
(Many people wrongly claimed in their answers that Eve could
learn nothing.)

The number ∆ has the property that there is an exam mark x ′

such that ∆ + x ′ is another exam mark. To complete the analogy,
we arrange things so that this property is unusual. (Click on.)



Simplified Model for the ∆ Attack
Eve observes the ciphertexts
I y = x + k mod 100 (Bob’s mark, encrypted) and
I y ′ = x ′ + k mod 100 (Alice’s mark, encrypted)

She computes ∆ = y − y ′ = x − x ′ mod 100. Note ∆ = 0 if and
only if Alice and Bob got the same mark. So Eve learns this much.

The number ∆ has the property that there is an exam mark x ′

such that ∆ + x ′ is another exam mark. To complete the analogy,
we arrange things so that this property is unusual.

Suppose that, perhaps because of ‘stepped marking’ and Eve’s
belief about Alice and Bob’s likely marks, that she is sure
I x , x ′ ∈ {42, 45, 48, 52, 55, 58, 62, 65, 68, 72, 75, 78, 82, 85, 88} = X

This set is analogous to the set of reasonable English messages.
Suppose that y = 12 and y ′ = 76.
I What is ∆?

(A) −64 (B) 64 (C) 34 (D) 36
I What is the strongest claim that Eve can deduce?

(A) x ∈ X and x ≤ 52 (B) x = 42 (C) x ∈ {42, 52} (D) x ∈ {42, 45, 52}
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Attack on ∆
Going back the alphabetic one-time pad, recall that
∆ = fqsiyenaahwtdl = x − x ′ where x and x ′ are plaintexts.
The Haskell code online at https://repl.it/@mwildon/OneTimePad2
tries all strings x ′ looking for a string x ′ such that x ′ looks ‘Englishy’ and
so does x = ∆ + x ′. The measure of ‘Englishy’ is the same trigram
log-likelihood statistic used in the hill-climb attack on substitution
ciphers (Example 2.7). The score of the pair (x , x ′) is the sum of the
scores for x and x ′.

I The output below shows that, considering the first five

characters of ∆, the second most highly scored pair (x , x ′) is

(leave, going).



Attack on ∆
Going back the alphabetic one-time pad, recall that
∆ = fqsiyenaahwtdl = x − x ′ where x and x ′ are plaintexts.
The Haskell code online at https://repl.it/@mwildon/OneTimePad2
tries all strings x ′ looking for a string x ′ such that x ′ looks ‘Englishy’ and
so does x = ∆ + x ′. The measure of ‘Englishy’ is the same trigram
log-likelihood statistic used in the hill-climb attack on substitution
ciphers (Example 2.7). The score of the pair (x , x ′) is the sum of the
scores for x and x ′.

I Considering the next four characters, the correct pair (inst,

east) is the 4th choice.
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scores for x and x ′.

I Considering the final five characters, the correct pair (antly,

train) is the 7th choice.

One has to experiment to find to split at 5 and then 4 characters,

but still, this shows that x and x ′ can be found quite easily from ∆.



Venona Decrypts
The Venona project collected Soviet messages encrypted using
one-time pads. Between 1942 and 1945 many pads were produced
using duplicated keys. This re-use was detected by NSA
cryptographers.

Venona decrypts were important evidence (although not usable in
court) against Klaus Fuchs and Ethel and Julius Rosenberg.



Other Attacks on One-time-pad
The previous example shows that the one-time pad is broken by a
known ciphertext attack with two known ciphertexts.
I Can the one-time pad be broken (i.e. the key k found) using a

single chosen plaintext attack? Assume you know the length
n, so your chosen plaintext should be a string in An.

(A) No (B) Yes

Just encrypt aa . . . a ∈ An to get k .

I Can the one-time pad be broken by a single chosen ciphertext
attack?

(A) No (B) Yes

Decrypt aa . . . a ∈ An to get −k .

I Is the one-time pad broken by a single known plaintext /
ciphertext pair?

(A) No (B) Yes

We’ve seen that given x and y = ek(x) = x + k , its easy to
find the key from k = y − x .

These all show that one-time pad is strong only when it is used
just once, and only by the intended Alice and Bob.
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§5 Key Uncertainty and Entropy

Suppose Bob picks x ∈ {0, 1, . . . , 15}. How many yes/no questions
does Alice need to guess x? Please do not click on until you have
thought hard about this, and maybe even played the game with
someone.

One easy strategy is to ask Bob to write x in binary as x3x2x1x0;
then Alice asks about each bit in turn: ‘Is x0 = 1?’, ‘Is x1 = 1?’, ‘Is
x2 = 1?’, ‘Is x3 = 1?’.

0 0000 4 0100 8 1000 12 1100
1 0001 5 0101 9 1001 13 1101
2 0010 6 0110 10 1010 14 1110
3 0011 7 0111 11 1011 15 1111

Exercise 5.1
Explain why no questioning strategy can guarantee to use fewer
than four questions.
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4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Q1
Is x0 = 1?
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4 Yes/No Questions for 4 Bits of Information

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111
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Guessing Games

Example 5.2

We consider the simpler game where Bob’s number is in
{0, 1, 2, 3}. Let px be the probability that Bob chooses x . (Alice
knows Bob very well, so she knows these probabilities.) For each
case below, how many questions does Alice need on average, if she
chooses the best possible strategy?

(a) p0 = p1 = p2 = p3 = 1
4 .

(A) 3
2 (B) 2 (C) 3 (D) depends on Bob

This is just the previous exercise.

(b) p0 = 1
2 , p1 = 1

4 , p2 = 1
4 , p3 = 0.

(A) 1 (B) 3
2 (C) 2 (D) 3

Alice asks: is your number 0? If yes, done. If not, one more
question does it. Average is 1

2 1 + 1
2 2 = 3

2 .

(c) p0 = 1
2 , p1 = 1

4 , p2 = 1
8 , p3 = 1

8 .

(A) 1 (B) 3
2 (C) 7

4 (D) 2

See video. [Hint: modify the previous strategy.]
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knows Bob very well, so she knows these probabilities.) For each
case below, how many questions does Alice need on average, if she
chooses the best possible strategy?

(d) p2 = 1, p0 = p1 = p3 = 0

(A) 0 (B) 1 (C) 2 (D) undefined

You know Bob’s number is 0. So no questions are needed.
You don’t have to ask a question to announce the number!
(Compare the previous examples if you doubt this.)
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Definition of Entropy

Definition 5.3
Let X be a finite set.

(i) The entropy of a probability distribution px on X is

H(p) = −
∑

x∈X
px log2 px .

(ii) The entropy of a random variable X taking values in X is the
entropy of the probability distribution px = P[X = x ].

Note that log2 means logarithm to the base 2, so log2
1
2 = −1, log2 1 = 0,

log2 2 = 1, log2 4 = 2, and generally, log2 2r = r for each r ∈ Z. If px = 0
then −0 log2 0 should be interpreted as limp→0−p log2 p = 0.

Quiz: For r ∈ N, what is − 1
2r log2

1
2r ?

(A) 1
2r (B) - r

2r (C) r
2r (D) r

What is log2 24− log2 9 + log2 6?

(A) 3 (B) 3 + log2 3 (C) 4 (D) 4− log2 3
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Claude Shannon (1916 — 2001)

Communication theory of secrecy systems, Bell System Technical
Journal (1949) 28, 656–715.



Entropy and Guessing Games

Exercise 5.4

(i) Show that H(p) =
∑

x∈X px log2
1
px

, where if px = 0 then

0 log2
1
0 is interpreted as 0.

(ii) Show that if p is the probability distribution in Exercise 5.2(b)
then

H(p) = 1
2 log2 2 + 1

4 log2 4 + 1
4 log2 4 + 0 = 3

2 .

Show that in all three cases, H(p) is the average number of
questions, using the strategy found in this exercise.

(a) p0 = p1 = p2 = p3 = 1
4 ; H(p) = 2

(b) p0 = 1
2 , p1 = 1

4 , p2 = 1
4 , p3 = 0; H(p) = 3

2

(c) p0 = 1
2 , p1 = 1

4 , p2 = 1
8 , p3 = 1

8 ; H(p) = 7
4

(d) p0 = 1, p1 = p2 = p3 = 0; H(p) = 0



Entropy Quiz
(a) Bob chooses a random number K in {0, 1, 2, 3, 4}. If

P[K = k] = 1/5 for each k , what is H(K )?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

(b) Now Bob chooses X in the same set, but with probabilities
1
2 ,

1
8 ,

1
8 ,

1
8 ,

1
8 . What is H(X )?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

How many questions on average do you need to guess X?
(A) 2 (B) log2 5 ≈ 2.322 (C) 3 (D) 4

Would your answer change if Bob’s probabilities change to
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
2 ?

(A) No (B) Yes

No, since the entropy of a random variable depends only on
the probability it takes each of its values, not the values
themselves.

A random variable has entropy h if and only if you can learn
its value by asking about h well-chosen yes/no questions.
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Example 5.5
(1) Suppose the random variable X takes two different values,

with probabilities p and 1− p. Then
H(X ) = p log2

1
p + (1− p) log2

1
1−p , as shown in the graph

below. (Using − log2 q = log2
1
q to remove two minus signs.)

p

p log2
1
p + (1− p) log2

1
1−p

0

1
2

1
2

1

1

Thus the entropy of a single ‘yes/no’ random variable takes
values between 0 and 1, with a maximum at 1 when the
outcomes are equally probable.



Example 5.5 [continued]

(2) Suppose a cryptographic key K is equally likely to be any
element of the keyspace K. If |K| = n then
H(K ) = 1

n log2 n + · · ·+ 1
n log2 n = log2 n. This is often

useful.

(3) Consider the numeric one-time pad on {0, 1} from
Example 3.5. Suppose that P[X = 0] = p, and so
P[X = 1] = 1− p, and that P[K = red] = r , and so
P[K = black] = 1− r . As in (1) we have

H(X ) = p log2
1

p
+ (1− p) log2

1

1− p
.

Exercise: show that P[Y = 0] = p(1− r) + (1− p)r and
P[Y = 1] = (1− p)(1− r) + pr and hence find H(Y ) when
r = 0, 1

4 ,
1
2 and 1. Is it surprising that usually H(Y ) > H(X )?



Definition 5.6
Let K and Y be random variables taking values in finite sets K
and C, respectively.The joint entropy of K and Y is defined by

H(K ,Y ) = −
∑

k∈K

∑

y∈C
P[K = k and Y = y ] log2P[K = k and Y = y ].

The conditional entropy of K given that Y = y is defined by

H(K |Y = y) = −
∑

k∈K
P[K = k |Y = y ] log2P[X = k |Y = y ].

The conditional entropy of K given Y is defined by

H(K |Y ) =
∑

y∈C
P[Y = y ]H(K |Y = y).

Example 5.7

Consider the Caesar cryptosystem in which all 26 keys are equally
likely and the plaintext is a random English word. By Example 5.5,
H(K ) = log2 26 ≈ 4.7. True or false: H(K |Y = ACCB) = 0?

(A) False (B) True

What is H(K |Y = NCYP)?

(A) 0 (B) 1 (C) log2 3 (D) can’t say
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Example 5.7

Consider the Caesar cryptosystem in which all 26 keys are equally
likely and the plaintext is a random English word. By Example 5.5,
H(K ) = log2 26 ≈ 4.7. True or false: H(K |Y = ACCB) = 0?

(A) False (B) True

What is H(K |Y = NCYP)? English shifts are lawn and pear.

(A) 0 (B) 1 (C) log2 3 (D) can’t say



Definition 5.6
Let K and Y be random variables taking values in finite sets K
and C, respectively.The joint entropy of K and Y is defined by

H(K ,Y ) = −
∑

k∈K

∑

y∈C
P[K = k and Y = y ] log2P[K = k and Y = y ].

The conditional entropy of K given that Y = y is defined by

H(K |Y = y) = −
∑

k∈K
P[K = k |Y = y ] log2P[X = k |Y = y ].

The conditional entropy of K given Y is defined by

H(K |Y ) =
∑

y∈C
P[Y = y ]H(K |Y = y).

Example 5.7

Consider the Caesar cryptosystem in which all 26 keys are equally
likely and the plaintext is a random English word. By Example 5.5,
H(K ) = log2 26 ≈ 4.7. True or false: H(K |Y = ACCB) = 0?

(A) False (B) True

What is H(K |Y = NCYP)? English shifts are lawn and pear.

(A) 0 (B) 1 (C) log2 3 (D) can’t say



Example 5.8: Motivation for Chaining Rule
Fix r ∈ N0. Suppose that Bob chooses a secret key K according to
the probability distribution ( 1

2 ,
1

2r+1 , . . . ,
1

2r+1 ) on {0, 1, . . . ,m}.
Here m is determined by r .
I For instance, if r = 2 then because the sum of the

probabilities is 1, we have

1 = 1
2 +

m︷ ︸︸ ︷
1
23 + · · ·+ 1

23 = 1
2 + m × 1

23

which implies m = 4.

(a) Using that the sum of probabilities is 1, what, in terms of r , is
the maximum possible number m that the Picker might have
chosen?

(b) Show that H(K ) = 1 + r/2.
(c) Suppose that Alice begins by asking ‘Is your key 0?’. Let A be

the answer. If A = ‘No’ how many questions are needed to
guess K? Show that H(K |A = ‘No’) = r . How many
questions are needed if A = ‘Yes’? What is H(K |A = ‘Yes’)?

(d) Is it possible to have H(K |A = ‘No’) > H(K )? (If so, then
after learning A = ‘No’ you are more uncertain about K than
you were at the start.)

(e) By the definition of conditional entropy

H(X |A) = P[A = ‘No’]H(X |A = ‘No’)+P[A = ‘Yes’]H(X |A = ‘Yes’).

Compute H(X |A) using (c).
(f) Show that H(K |A) + H(A) = H(K ,A). [Hint:

H(K ,A) = H(K ), since if you know K you certainly know A,
so there is no extra information in the pair (K ,A).]
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and C, respectively.The joint entropy of K and Y is defined by
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P[Y = y ]H(K |Y = y).

Lemma 5.9 (Chaining Rule)

Let K and Y be random variables taking values in sets K and C,
respectively. Then

H(K ,Y ) = H(K |Y ) + H(Y ).



Shannon’s Theorem on Key Uncertainty

Lemma 5.10
Let K and X be random variables. If K and X are independent
then H(K ,X ) = H(K ) + H(X ).

Lemma 5.11
Let Z be a random variable taking values in a set Z. Let
f : Z → W be a function. If f is injective then H

(
f (Z )

)
= H(Z ).

Theorem 5.12 (Shannon, 1949)

Take a cryptosystem in our usual notation. Then

H(K |Y ) = H(K ) + H(X )− H(Y ).



Per-Character Information/Redundancy of English
Let A = {a, b, . . . , z} be the alphabet. We take P = C = An: you
can think of this as the set of all strings of length n. To indicate
that plaintexts and ciphertexts have length n, we write X (n) and
Y (n) rather than X and Y .

We suppose only those strings that make good sense in English
have non-zero probability. So if n = 8 then ‘abcdefgh′ ∈ P and
‘goodwork′ ∈ P but

P[X (8) = ‘abcdefgh′] = 0
whereas

P[X (8) = ‘goodwork′] > 0.

Shannon estimated that the per-character redundancy of English
plaintexts, with spaces, is about 3.2 bits.

Quiz: what is the entropy in a string in An if all strings are equally likely?
(A) log2 26 (B) n log2 26 (C) 3.2n (D) (log2 26− 3.2)n

According to Shannon’s estimate, what is the entropy in an English

plaintext X (n) of length n?
(A) log2 26 (B) n log2 26 (C) 3.2n (D) (log2 26− 3.2)n
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The One-Time Pad
Let X (n), Y (n) and K (n) be the plaintext, ciphertext and key in the
one-time pad with plaintext, ciphertext and key all of length n.

Example 5.13 (One-time-pad)

Suppose that all keys in An are equally likely. Then
H(K ) = (log2 26)n by Example 5.5(2). By Proposition 4.7 the
one-time has perfect secrecy. Hence by Theorem 3.12, all
ciphertexts are equally likely. Therefore

H(Y (n)) = (log2 26)n.

We saw above that H(X (n)) ≈ (log2 26− R)n. Therefore by
Shannon’s formula,

H(K |Y (n)) = H(K )+H(X (n))−H(Y (n)) = (log2 26−R)n = H(X (n)).

Thus if Eve knows something about the probability distribution of
plaintexts then she learns something about the key. In fact, her
uncertainty about the key is precisely her uncertainty about the
plaintext.



One-Time Pad Quiz

Let R = 3.2 be the per character redundancy of English.

In the one-time pad of length n,

I H(K |Y (n)) is

(A) 0 (B) 1 (C) n(log2 26− R) (D) n log2 26

I H(K |(X (n),Y (n))) is

(A) 0 (B) 1 (C) n(log2 26− R) (D) n log2 26

I H(X (n)|Y (n)) is

(A) 0 (B) 1 (C) n(log2 26− R) (D) n log2 26

For discussion please see video: ‘One-time Pad Quiz’. Hint: use
that the one-time pad has perfect secrecy, and so Shannon’s
Theorem, Theorem 3.12 applies. For instance, in the third
question, you could use that X (n) and Y (n) are independent by
Theorem 3.12(a).
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Unicity Distance

In Example 5.13 we proved that for the one-time pad
H(K |Y (n)) = (log2 26− R)n and that H(K ) = (log2 26)n.
Therefore

H(K |Y (n)) = H(K )− Rn. (??)

In the non-examinable extras for this part we give Shannon’s
argument that (??) should be a good approximation for H(K |Y (n))
in any cryptosystem where P = C = An, and the messages are
English texts. It works best when K is large and n is small.

Exercise 5.14
What is the largest length of ciphertext n for which (??) could
hold with equality?



Expected behaviour of H(K |Y (n))

The graph below shows the expected behaviour of H(K |Y (n)).

en
tr

op
y

H(K |Y )

H(K )− nR

n

Definition 5.15
The quantity H(K )/R is the unicity distance of the cryptosystem.



Unicity Distance for Substitution Cipher

Exercise 5.16
In the substitution cipher attack in Example 2.5 we saw that the
ciphertext y (280) of length 280 determined the key π except for
π(k), π(q), π(z). By Exercise 2.6(a) π(k), π(q), π(z) are the
three letters, namely A, E, N, which never appear in the ciphertext.
Assuming equally likely keys, what is H(K |Y (280) = y (280))?

(A) 0 (B) log2 3 (C) log2 6 (D) 6

What is H(K )?

(A) log2 26 (B) log2 26! (C) 26 log2 26 (D) depends on the key
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Example 5.17

The first 28 characters of the ciphertext in Example 2.5 are KQX

WJZRUHXZKUY GTOXSKPIX GW. A computer search using a
dictionary of about 70000 words gives 6 possible decryptions of the
first 24 letters. These include ‘imo purgatorial hedonics’,
‘iwo purgatorial hedonism’ and ‘the fundamental

objectiv’. Taking 25 letters,

‘the fundamental objective’

is the only decryption consistent with the dictionary. This is in
excellent agreement with Shannon’s argument.

Since 10 characters do not appear in the first 28 letters of
ciphertext, the argument in Exercise 5.16 shows that
H(K |Y (28) = y (28)) = log2 10! = 21.791. Nothing new about the
key is learned after letter 25, so this is the value of the final 4
points in the graph of H(K |Y (n) = y (n)) for 1 ≤ n ≤ 28.

See the printed notes for full details, including the simplifying assumption
that all English phrases whose words have the right lengths are equally
likely.



H(K |Y (n)) for Ciphertext Y from Substitution Cipher
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The remaining slides are on the optional extras for Part A.



Outline of Shannon’s Argument for H(K |Y (n)) ≈ H(K )− Rn

I Fix n ∈ N. As a simplified model for English messages of
length n, we suppose that a proportion c of the strings of
length n are common. The rest are rare.

I All common strings of length n are equally likely as messages.
Rare strings are never sent.
I What value, in terms of the per-character redundancy R of

English, should we pick for c?

(A) 1
2n log2 26 (B) 1

2n(log2 26−R) (C) 1
2nR (D) 1

Rn

I As a simplified model of a cryptosystem encrypting English
messages, we take P = C = An and fix a keyspace K. (This
can be any set you like, for instance a subset of N.)

I For each k ∈ K choose a random bijection ek : P → C. These
are part of the definition of the cryptoscheme, so known to
everyone by Kerckhoffs’s Assumption.

I As usual, we suppose all keys are equally likely.
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Outline of Shannon’s Argument for H(K |Y (n)) ≈ H(K )− Rn
I Suppose you observe a ciphertext y .

I What is the probability that y is an encryption of a common
plaintext?

(A) 0 (B) c (C) 1 (D) 1
26n log2 26

I Define a function g : C → Z so that g(y) is the number of keys that
encrypt some common plaintext to the ciphertext y .
I Which of the sets below is the smallest set that must contain

the range of g?
(A) N0 (B) N (C) {0, 1, . . . , |K|} (D) {1, . . . , |K|}

I Let y be a ciphertext observed after a user encrypts the common
x ∈ P with the key k .
I If K? is a key, chosen uniformly at random but not equal to k,

what is the probability that dK?(y) is common?
(A) 0 (B) c (C) 1

26n log2 26 (D) 1
I True or false: since the chance that after decrypting y by a

random key we get a common plaintext is c , and there are |K|
keys, g(Y ) is distributed as Bin(|K|, c).

(A) False (B) True

You probably already realised this. The answer (D) above shows
g(Y ) ≥ 1, but a binomially distribed random variable always has a
chance of being 0. Next slide shows the fallacy.
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Ciphertexts with High g(y) are Extra Likely: Intuition
Quiz: Suppose I ask everyone here online how many siblings you
have (not counting yourself). If the mean is s, then 1 + s is a good
estimate for the average number of children in a family.

(A) False (B) True

Sampling the school, the observed probabilities are 0 (no children),
1/4 (3 green only children), 1/2 (6 red children), 1/4 (3 black
children).
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Quiz: Suppose I ask everyone here online how many siblings you
have (not counting yourself). If the mean is s, then 1 + s is a good
estimate for the average number of children in a family.

(A) False (B) True

Sampling the school, the observed probabilities are 0 (no children),
1/4 (3 green only children), 1/2 (6 red children), 1/4 (3 black
children). So we observe the 1 + Bin( 1

2 , 2) distribution.



Ciphertexts with High g(y) are Extra Likely: Intuition
Quiz: Suppose I ask everyone here online how many siblings you
have (not counting yourself). If the mean is s, then 1 + s is a good
estimate for the average number of children in a family.

(A) False (B) True

In Shannon’s argument for unicity distance, g(y) is the number of
English plaintexts that encrypt to y by some substitution cipher
key. Ciphertexts with high g(y) are disproportionately likely.



Ciphertexts with High g(y) are Extra Likely: Intuition
Quiz: Suppose I ask everyone here online how many siblings you
have (not counting yourself). If the mean is s, then 1 + s is a good
estimate for the average number of children in a family.

(A) False (B) True

To complete the analogy: sampling g(y) is a bit like sampling from
the school: we never observe the childless families or the rare
plaintexts.



Ciphertexts with High g(y) are Extra Likely: Intuition
Quiz: Suppose I ask everyone here online how many siblings you
have (not counting yourself). If the mean is s, then 1 + s is a good
estimate for the average number of children in a family.

(A) False (B) True

In fact sampling from the school exaggerates the effect: the
right-hand part of the diagram shows that the observed distribution
is 1 + 3Bin(2, 1

2 ) and not Bin(3, 1
2 ). For g(y) we don’t see the

scaling (at least, not in this way), but the shift by 1 is still present.



End of Shannon’s Argument for H(K |Y (n)) ≈ H(K )− Rn
I The correct argument is that since the chance that after

decrypting y by a random key we get a common plaintext is
c , and there are |K| − 1 keys other than the key k used to
obtain y ,

g(Y ) ∼ 1 + Bin(|K| − 1, c).

I By the formula for conditional entropy:

H(K |Y ) =
∑

y∈C
H(K |Y = y)P[Y = y ]

=
∑

m≥1

(|K| − 1

m − 1

)
cm−1(1− c)|K|−m log2m

=
1

c |K|
∑

m≥0

(|K|
m

)
cm(1− c)|K|−mm log2m

where we used
(|K|−1
m−1

)
=
(|K
m

)
m
|K| .

I Hence with high probability H(K |Y ) is about

H(K |Y ) ≈ 1

c |K|c |K| log2(c |K|) = log2 |K|+ log2 c .



End of Shannon’s Argument for H(K |Y (n)) ≈ H(K )− Rn

I We showed that with high probability

H(K |Y ) ≈ log2 |K|+ log2 c .

I From earlier c = 1
2nR

.

I Hence H(K |Y ) ≈ log2 |K| − Rn = H(K )− Rn as required.



Part B: Stream ciphers

§6 Linear Feedback Shift Registers

Computers are deterministic: given the same inputs, you always
get the same answer. In this part we will see how to get sequences
that ‘look random’ out of deterministic algorithms.

Recall that F2 is the finite field of size 2 with elements the bits
(short for binary digits) 0, 1. Addition and multiplication are
defined modulo 2, so

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

By definition, Fn
2 is the set of n-tuples (x0, x1, . . . , xn−1) where

each xi is a bit 0 or 1. For brevity we may write this tuple as
x0x1 . . . xn−1. As seen here, we number positions from 0 up to
n − 1. It is usual to refer to elements of Fn

2 as binary words of
length n.



Definition of LFSRs

Exercise 6.1
Write down 15 bits in a circle so that, reading the cycle clockwise,
every non-zero binary word of length 4 appears exactly once. How
many 0s do you use? How many 1s do you use?

Definition 6.2

(i) Let ` ∈ N. A linear feedback shift register of width ` with taps
T ⊆ {1, 2, . . . , `} is a function F : F`

2 → F`
2 of the form

F
(
(x0, x1, . . . , x`−2, x`−1)

)
= (x1, . . . , x`−1,

∑

t∈T
x`−t).

(ii) The function f : F`
2 → F2 defined by f (x) =

∑
t∈T x`−t is

called the feedback function.

(iii) The keystream for k ∈ F`
2 is the sequence

k0, k1, . . . , k`−1, k`, k`+1, . . . , where for each s ≥ ` we define

ks =
∑

t∈T
ks−t



Definition of LFSRs

Exercise 6.1
Write down 15 bits in a circle so that, reading the cycle clockwise,
every non-zero binary word of length 4 appears exactly once. How
many 0s do you use? How many 1s do you use? How often does
110 appear when your circle is read clockwise? What about other
words of length 3?

0 0
0

1

0

0
1

10
1

0

1

1
1

1

This is the unique solution, up to rotations and reflections.
I There are seven 0s and eight 1s
I 110 appears twice (click on to see highlighted), as do each of

the words 001, 010, . . . , 111. Can you see why? We generalize
this observation in Proposition 7.2. What about 000?
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First Quiz on LFSRs

The keystream of the LFSR F of width 4 with taps {3, 4} is
defined by ks = ks−3 + ks−4 for s ≥ 4. The keystream for key
k = (k0, k1, k2, k3) = (0, 1, 1, 0) starts

(0, 1, 1, 0, 1, 0, 1, 1, . . .)
0 1 2 3 4 5 6 7

Thus k4 = k0 + k1 = 0 + 1 = 1, k5 = k1 + k2 = 1 + 1 = 0, and
k7 = k3 + k4 = 0 + 1 = 1.

I True or false: k8 = 1?

(A) False (B) True

I What is k8k9k10k11 ∈ F4
2?

(A) 1100 (B) 1110 (C) 1000 (D) 1111

I What is k9k10k11k12 ∈ F4
2?

(A) 1100 (B) 1110 (C) 1000 (D) 1111
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The Very Useful Property

Equivalently, ks = f
(
(ks−`, ks−`+1, . . . , ks−1)

)
and so

F
(
(ks−`, ks−`+1, . . . , ks−1)

)
= (ks−`+1, . . . , ks−1, ks).

Thus the LFSR function F shifts the bits in the first `− 1 positions
left (forgetting the very first), and puts a new bit, defined by its
feedback function, into the rightmost position. Taking all these
rightmost positions gives the keystream. We call this the Very
Useful Property:

F s
(
(k0, k1, . . . , k`−1)

)
= (ks , ks+1, . . . , ks+`−1). (VUP)

Here F s is the function defined by applying F a total of s times.

See (iv) in Example 6.3, slide after the quiz, for an example.



Quiz on the Very Useful Property

Very Useful Property

F s
(
(k0, k1 . . . , k`−1)

)
= (ks , ks+1, . . . , ks+`−1).

The keystream for the LFSR F in Example 6.3 with key 0111 is
below

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

True or false?

(1) F 2(0111) = 1110 (A) False (B) True

(2) F 3(0111) = 1100 (A) False (B) True

(3) F 11(0111) = 1101 (A) False (B) True

(4) F 2(1110) = 1100 (A) False (B) True
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Example 6.3
The LFSR F of width 4 with taps {3, 4} is defined by

F
(
(x0, x1, x2, x3)

)
= (x1, x2, x3, x0 + x1).

(i) Solving the equation F
(
(x0, x1, x2, x3)

)
= (y0, y1, y2, y3) shows

that F has inverse

F−1
(
(y0, y1, y2, y3)

)
= (y0 + y3, y0, y1, y2).

(ii) The keystream for the key k = 0111 is
(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

repeating from position 15 onwards: ks = ks+15 for all s ∈ N0.

(iii) Exercise: k ′ = 0001 appears as k5k6k7k8 in the keystream.
Find the keystream when the LFSR is started with k ′.

Use that k ′s = k ′s−3 + k ′s−4 satisfies same recurrence as
ks = ks−3 + ks−4 so you just read the keystream for k from 0001.

(iv) By the (VUP), starting with k = 0111, we have

k1k2k3k4 = F (k) = 1111 and k2k3k4k5 = F 2(k) = 1110.

Observe that F 14(k) = 1011 with F 15(k) = k .
(v) Quiz. Every keystream generated by F is obtained by reading the

circle of 15 bits we used to solve Exercise 6.1. (Click on if surprised.)

(A) False (B) True
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(v) Quiz. Every keystream generated by F is obtained by reading the
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Because 0000 . . . is also a keystream. Every other keystream is obtained
from the circle of bits.



Circuit Diagrams

In the cryptographic literature it is conventional to represent
LFSRs by circuit diagrams, such as the one below showing F . By
convention

⊕
denotes addition modulo 2, implemented in

electronics by the XOR gate.

tap 4 3 2 1

⊕

The word ‘register’ in LFSR refers to the boxed memory units
storing the bits.



Cryptosystem defined by an LFSR

Definition 6.4
Let F be an LFSR of width ` and let n ∈ N. The cryptosystem
defined by F has P = C = Fn

2 and keyspace K = F`
2. The

encryption functions are defined by

ek(x) = (k0, k1, . . . , kn−1) + (x0, x1, . . . , xn−1)

for each k ∈ K and x ∈ P.

Thus, like the one-time pad, the ciphertext is obtained by addition
to the plaintext. But unlike the one-time pad, the key is usually
much shorter than the plaintext.

Exercise 6.5
Define the decryption function dk : Fn

2 → Fn
2.

Question 1 on Problem Sheet 5 shows how to encrypt an English
message of length n by using the ASCII encoding to convert it to a
word in F8n

2 .



Cryptosystem defined by an LFSR

Definition 6.4
Let F be an LFSR of width ` and let n ∈ N. The cryptosystem
defined by F has P = C = Fn

2 and keyspace K = F`
2. The

encryption functions are defined by

ek(x) = (k0, k1, . . . , kn−1) + (x0, x1, . . . , xn−1)

for each k ∈ K and x ∈ P.

Thus, like the one-time pad, the ciphertext is obtained by addition
to the plaintext. But unlike the one-time pad, the key is usually
much shorter than the plaintext.

Quiz. Alice sends Bob (a hardworking student) his exam mark
using the LFSR F in Example 6.2, by writing the mark in binary
using 8 bits and encrypting using their key k0k1k2k3.

What is the binary form of 61 written using 8 bits?
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Invertible LFSRs and periods: motivation

Exercise 6.6
Let H be the LFSR of width 3 with taps {1, 2}. Show that H is
not invertible and check that 111011011011011 . . . is a keystream
of H, ending in the cycle 011011 . . ..

This exercise and Example 6.3(i) suggest the general result: an
LFSR is invertible if and only if ` is one of the taps.

Exercise 6.7
Let G be the LFSR of width 4 with taps {1, 2, 4}.
(a) Find the keystreams for the keys 0001 and 0010.

(b) Which words of length 4 do not appear in either keystream?

(c) Find all keystreams generated by this LFSR.

After how many positions does the keystream for key 0110 repeats?
(This is the period of the keystream for 0110, and also 0001.)

(A) 3 (B) 7 (C) 14 (D) 15

True or false: G 7 = id, the identity function.

(A) False (B) True
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Invertible LFSRs and Periods

For example, the LFSR F of width 4 with taps {3, 4} has a
keystream with period 15: ks = ks+15 for all s.

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Fix a non-zero key k ∈ F`
2 and consider the binary words F s(k) for

s ∈ N0. Mini-exercise: why are they all non-zero? We make a
chain

k 7→ F (k) 7→ F 2(k) 7→ . . . 7→ F s(k) 7→ . . . 7→ F s′(k) 7→ . . . .

Since there are 2` − 1 non-zero binary words of length `, and

k ,F (k), . . . ,F 2`−1(k)

has 2` words, there exist r , r ′ with 0 ≤ r < r ′ < 2` such that
F r (k) = F r ′(k). Now applying F−r we get k = F r ′−r (k). Hence,
by (VUP),

k0k1 . . . k`−1 = kr ′−rkr ′−r+1 . . . kr ′−r+`−1

and the keystream repeats after at most r ′ − r < 2` positions.



Definition 6.8
Let F be an invertible LFSR.

(i) We define the period of a keystream k0, k1, . . . generated by F
to be the least p ∈ N such that ks+p = ks for all s ∈ N0.

(ii) We define the period of F to be the least P ∈ N such that
FP = id, the identity function.

For example, the LFSRs F and G in Example 6.3 and Exercise 6.7
have non-zero keystreams of periods 15 (the maximum possible)
and 7, 7, 1, 1, respectively. Their periods are 15 and 7, respectively.
We just saw that the period of a keystream of an LFSR of width `
is at most 2` − 1.



Definition 6.8
Let F be an invertible LFSR.

(i) We define the period of a keystream k0, k1, . . . generated by F
to be the least p ∈ N such that ks+p = ks for all s ∈ N0.

(ii) We define the period of F to be the least P ∈ N such that
FP = id, the identity function.

Quiz. The minimum period an LFSR with keystreams of lengths 4
and 30 could have is

(A) 30 (B) 60 (C) 120 (D) 360

The LFSR H of width 4 with taps {2, 4} has the keystreams
I 0 0 0 . . .
I 011 011 011 . . .
I 000101 000101 000101 . . .
I 001111 001111 001111 . . .

Observe that, as seen in Exercise 6.7 and the slide on periods, every
binary word of length 4 appears exactly once in some keystream (reading
the keystream until its first repeat).

What is the period of H?
(A) 3 (B) 6 (C) 15 (D) 18
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In general, (VUP) implies that the period of an LFSR is the lowest

common multiple of the periods of its keystreams.



§7 Keysteams and Randomness

We saw before Definition 6.8 that the maximum possible period of
a keystream of an LFSR of width ` is 2` − 1. Given any non-zero
k ∈ F`

2, the first 2` − 1 positions of the keystream for k are the
generating cycle for k . (The term ‘m-sequence’ is also used.) Thus

k2`−1+s = ks for all s ∈ N. (†)



Generating Cycles of Maximum Period LFSRs

Exercise 7.1
Let F be the LFSR of width 4 with taps {3, 4} and period
15 = 24 − 1 seen in Example 5.1. It has the maximum possible
period for its width. The keystream for k = (1, 1, 0, 0) is

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0 . . .).

Correspondingly, by the Very Useful Property,

F (1, 1, 0, 0) = (1, 0, 0, 0), . . .F 14(1, 1, 0, 0) = (1, 1, 1, 0)

and F 15(1, 1, 0, 0) = (1, 1, 0, 0). By taking the first 15 positions we
get the generating cycle

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14



Exercise 7.1 [continued]
By taking the first 15 positions we get the generating cycle

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14

(a) Find all the positions s such that

(ks , ks+1, ks+2, ks+3) = (0, 1, 1, 1).

(b) What is the only element of F4
2 not appearing in the

keystream for (0, 0, 0, 1)?

(c) Why is the generating cycle for (0, 1, 1, 1) a cyclic shift of the
generating cycle for (1, 1, 0, 0)?

(d) Find all the positions s such that (ks , ks+1, ks+2) = (0, 1, 1).
How many are there? [Hint: you do something similar in the
Group Work for Week 5.]

(e) Repeat (d) changing (0, 1, 1) to (0, 0, 1), (0, 0, 0) and then to
(0, 1), (1, 1), (1, 0) and (0, 0). Explain the pattern.



Quiz Very Similar to Exercise 7.1 (used in Plenary Session Week 7)

The keystream for the LFSR with taps {0, 2, 3, 4} and width 5 for
the key 00001 has period 31. The first 31 positions are

(0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14k15k16k17k18k19k20k21k22k23k24k25k26k27k28k29k30

I How many times does 11110 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 1111 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 111 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 010 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 100 appear?
(A) 1 (B) 2 (C) 3 (D) 4

I How many times does 000 appear?
(A) 1 (B) 2 (C) 3 (D) 4
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Generalizing Example 7.1

Proposition 7.2

Let F be an invertible LFSR of width ` with a keystream of period
2` − 1. Let k ∈ F`

2 be non-zero and let (k0, k1, . . . , k2`−2) be its
generating cycle. We consider starting positions s within this cycle,
so 0 ≤ s < 2` − 1.

(a) For each non-zero x ∈ F`
2 there exists a unique s such that

(ks , . . . , ks+`−1) = x .

(b) Given any non-zero y ∈ Fm
2 where m ≤ `, there are precisely

2`−m positions s such that (ks , . . . , ks+m−1) = y.

(c) There are precisely 2`−m − 1 positions s such that
(ks , . . . , ks+m−1) = (0, 0, . . . , 0) ∈ Fm

2 .



Testing for Randomness

Exercise 7.3
Write down a sequence of 33 bits, fairly quickly, but trying to make
it seem random. Count the number of zeros and the number of
ones. (Do not wrap around.) Now count the number of adjacent
pairs 00, 01, 10, 11. Does your sequence still seem random?

Exercise 7.4 (Monobit Test)

Let M0 be the number of zeros and let M1 be the number of ones
in a binary sequence B0,B1, . . . ,Bn−1 of length n.

(a) Explain why if the bits are random we would expect that M0

and M1 both have the Bin(n, 12) distribution.

(b) Show that the χ2 statistic with (a) as null hypothesis is
(M0 −M1)2/n.

(c) A sequence with n = 100 has 60 zeros. Does this suggest it is
not truly random? [Hint: if Z ∼ N(0, 1) then
P[Z 2 ≥ 3.841] ≈ 0.05 and P[Z 2 ≥ 6.635] ≈ 0.01.]



The Hypothesis Testing Framework
In Exercise 7.4 our null hypothesis was
I M0 and M1 are distributed binomially as Bin(n, 12).

We tested this using the statistic (M0 −M1)2/n.

If the null hypothesis is true, this statistic is distributed as the χ2

distribution, with 1 degree of freedom. (This is the square of an
N(0, 1) random variable: mean 0, variance 1.)

(c) A sequence with n = 100 has 60 zeros. Does this suggest it is
not random? [Hint: if Z ∼ N(0, 1) then P[Z 2 ≥ 3.841] ≈ 0.05

and P[Z 2 ≥ 6.635] ≈ 0.01. The probability density functions for
Z (solid) and Z 2 (dashed) are shown below.]
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The Hypothesis Testing Framework
In Exercise 7.4 our null hypothesis was
I M0 and M1 are distributed binomially as Bin(n, 12).

We tested this using the statistic (M0 −M1)2/n.
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Z (solid) and Z 2 (dashed) are shown below.]

The statistic is 202/100 = 4. If the null hypothesis is true,
I we observed a random variable Z ∼ N(0, 1) and found that

Z 2 = 4;
I the event that Z 2 is 3.891 or more has probability about 0.05
I we therefore decide the hypothesis is false.

The ‘p-value’ is 0.05 or 5%.



Quiz on Hypothesis Testing
We test a hypothesis using a statistic Z . If the hypothesis is true,
Z has a known distribution; often this is a χ2 distribution.
Examples: ‘this medical intervention is no better than a placebo’, ‘this
keystream is equally likely to be 0 as 1’.

(a) A p-value of 0.01 means there is only a 1% chance the

hypothesis is true.
(A) False (B) True

(b) The p-value is the probability of seeing the exact value of Z .
(A) False (B) True

(c) The p-value is the probability, if the hypothesis is true, of

seeing this value of Z , or something more extreme.
(A) False (B) True
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The p-value for the CERN Higgs Boson test is 3× 10−7, corresponding
to 5 standard deviation off the mean in a normal distribution.



Correlation
Definition 7.5
Given (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) ∈ Fn

2 define

csame =
∣∣{i : xi = yi}

∣∣
cdiff =

∣∣{i : xi 6= yi}
∣∣.

The correlation between x and y is (csame − cdiff)/n.

Exercise 7.6
Find the correlation between a generating cycle for the LFSR of
width 3 with taps {2, 3} and each cyclic shift of itself. Would your
answer change if a different key was used in the generating cycle?

Proposition 7.7

Let (k0, k1, . . . , k2`−2) be a generating cycle of an LFSR of width `
and maximum possible period 2` − 1. Let 1 ≤ r < 2` − 1. The
correlation between (k0, k1, . . . , k2`−2) and its proper cyclic shift

(kr , kr+1, . . . , k2`−2, k0, . . . , kr−1)
is − 1

2`−1 .

Again this shows that the keystream of a full-period LFSR has a
strong randomness property.



Quiz and Reminder of Proof of Proposition 7.7
Here are the key ideas. You should try to write out a proof for
yourself using them and the quiz. Suppose the shift is r ∈ N.

(a) Define us = ks + ks+r for each s ∈ N0.

For example, the LFSR F of width 4 and taps {1, 4} has a
unique non-zero keystream of period 15. Taking r = 2 and
k = 0001, we have

k0k1k2 . . . k12k13k14 = 000111101011001

k2k3k4 . . . k14k0k1 = 011110101100100

u0u1u2 . . . u12u13u14 = 011001000111101

I True or false: u0u1u2 . . . is the keystream of F with key 0110?
(A) False (B) True

I The number of 0s in the generating cycle u0u1u2 . . . u14 is?
(A) 6 (B) 7 (C) 8 (D) 9

I The number of positions s in the generating cycle
k0k1k2 . . . k14 such that ks = ks+1 is?

(A) 6 (B) 7 (C) 8 (D) 9

To complete the proof just generalize from this quiz.
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Quiz and Reminder of Proof of Proposition 7.7
Here are the key ideas. You should try to write out a proof for
yourself using them and the quiz. Suppose the shift is r ∈ N.

(a) Define us = ks + ks+r for each s ∈ N0.

(b) Show that us satisfies the same recurrence relation
ks =

∑
t∈T ks−t as the original keystream (and its shift).

(c) In the keystream for u, ‘sames’ where ks = ks+r correspond to
0s and ‘differents’ where ks 6= ks+r correspond to 1s.

(d) Use Proposition 7.2 and (b) to determine the number of
‘sames’ and ‘differents’. Why is the relevant key u0u1 . . . u`
non-zero?



§8 Non-Linear Stream Ciphers

A general stream cipher takes a key k ∈ F`
2, for some fixed `, and

outputs a sequence u0, u1, u2, . . . of bits. For each n ∈ N there is a
corresponding cryptosystem where, as in Definition 6.4, the
encryption functions ek : Fn

2 → Fn
2 are defined by

ek(x) = (u0, u1, . . . , un−1) + (x0, x1, . . . , xn−1).

Exercise 8.1
In the LFSR cryptosystem of Definition 6.4, the keystream
u0u1u2 . . . is simply k0k1k2, . . .. Show how to find the key
(k0, . . . , k`−1) using a chosen plaintext attack.



Sum of LFSRs

Example 8.2
I Let F be the LFSR of width 4 with taps {3, 4} of period 15.

The first 20 bits in the keystreams for F with keys k = (0, 0, 0, 1)
and k ′ = (1, 1, 1, 1) sum to the sequence (u0, u1, . . . , u19) below:

ki 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
k?i 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0

ui 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Unfortunately, u0u1u2 . . . is also generated by F : since it starts
1110, it is the keystream for (1, 1, 1, 0). Exercise:

(a) Explain why this should have been expected. [Hint: the same
linearity was used to prove Proposition 7.7.]

(b) Exercise: which pair of keys below gives the same sequence
(u0, u1, . . . , u19)?

(A) 0001, 1110 (B) 0011, 1110 (C) 0011, 1101 (D) 0011, 1111



Sum of LFSRs

Example 8.2
I Let F be the LFSR of width 4 with taps {3, 4} of period 15.

The first 20 bits in the keystreams for F with keys k = (0, 0, 0, 1)
and k ′ = (1, 1, 1, 1) sum to the sequence (u0, u1, . . . , u19) below:

ki 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
k?i 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0

ui 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Unfortunately, u0u1u2 . . . is also generated by F : since it starts
1110, it is the keystream for (1, 1, 1, 0). Exercise:

(a) Explain why this should have been expected. [Hint: the same
linearity was used to prove Proposition 7.7.]

(b) Exercise: which pair of keys below gives the same sequence
(u0, u1, . . . , u19)?

(A) 0001, 1110 (B) 0011, 1110 (C) 0011, 1101 (D) 0011, 1111



Sum of LFSRs

Example 8.2
I Let F be the LFSR of width 4 with taps {3, 4} of period 15.

The first 20 bits in the keystreams for F with keys k = (0, 0, 0, 1)
and k ′ = (1, 1, 1, 1) sum to the sequence (u0, u1, . . . , u19) below:

ki 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
k?i 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0

ui 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Unfortunately, u0u1u2 . . . is also generated by F : since it starts
1110, it is the keystream for (1, 1, 1, 0). Exercise:

(a) Explain why this should have been expected. [Hint: the same
linearity was used to prove Proposition 7.7.]

(b) Exercise: can the keys k and k? be recovered from
(u0, u1, . . . , u19)?

(A) No (B) Yes
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keystream to the plaintext?

(A) No (B) Yes
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1110, it is the keystream for (1, 1, 1, 0). Exercise:

(a) Explain why this should have been expected. [Hint: the same
linearity was used to prove Proposition 7.7.]

(b) Reason: She doesn’t need k and k?, she just needs u0u1u2u3,
since this is the key for the keystream u0u1u2u3 . . . u19.



Example 8.2 [continued]
I Let F ′ be the LFSR of width 3 with taps {2, 3} of period 7.

The first 20 bits in the keystreams for F and F ′ with keys
k = (0, 0, 0, 1) and k ′ = (0, 0, 1) and their sum u0u1 . . . u19 are:

ki 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
k ′i 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1

ui 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Quiz: what is the period of u0u1u2 . . .?
(A) 7 (B) 15 (C) 105 (D) need more info

This is encouraging: combining the LFSRs creates a keystream
with a much longer period than either individually.

The bad news is that the keystream (u0, u1, u2, . . .) is generated by
the LFSR of width 7 with taps {2, 4, 5, 7}. So any LFSR attack is
still effective.

M.Sc. students will see the Berlekamp–Massey Algorithm in §6, that can
be used to find this LFSR. We also used these keystreams as an example
of annihilators in §5.
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Geffe Generator

Example 8.3

A Geffe generator is constructed using three LFSRs F , F ′ and G of
widths `, `′ and m, all with maximum possible period. Following
Kerckhoff’s Principle, the widths and taps of these LFSRs are
public knowledge.

I Let k0k1k2 . . . and k ′0k
′
1k
′
2 . . . be keystreams for F and F ′

I Let g0g1g2 . . . be a keystream for G .

The Geffe keystream (u0, u1, u2, . . .) is defined by

ui =

{
ki if gi = 0

k ′i if gi = 1.



Example 8.3 [continued]
For example, if F and F ′ and their keystreams are as in
Example 8.2 (so F has width 4, taps {3, 4}, F ′ has width 3, taps
{2, 3}), and G is the LFSR of width 4 with taps {1, 4} and
g0g1g2g3 = 0001, then, using colours to indicate which bit is used:
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So when we guess correctly, we see a correlation of 7
10 . The sample

is small, and by chance this is more than the predicted 1
2 .
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Suppose we guess (wrongly) that

(k0, k1, k2) = (1, 1, 0).

The correlation between the implied keystream (v0, v1, v2, . . . , v19)
and (u0, u1, . . . , u19) is (7− 13)/20 = − 3

10 .

vi 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0
ui 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1



Correlation Attack on Geffe Generator

Attack 8.4
Suppose that n bits of the Geffe keystream are known. The
attacker computes, for each candidate key (v0, v1, . . . , v`−1) ∈ F`

2,
the correlation between (v0, v1, . . . , vn−1) and (u0, u1, . . . , un−1). If
the correlation is not nearly 1

2 then the candidate key is rejected.
Otherwise it is likely that (k0, . . . , k`−1) = (v0, . . . , v`−1).

Quiz: suppose that ` < `′. Is it better to guess the key for F or the
key for F ′?

(A) Guess F (B) Guess F ′

One can repeat Attack 8.4 to learn (k ′0, k
′
1, . . . , k

′
`′−1). Overall this

requires at most 2` + 2`
′

guesses. This is a huge improvement on
the 2`+`′ guesses required by trying every possible pair of keys.
(See Question 1(b) on Sheet 6 for a faster finish.)

An attack such as Attack 8.4 is said to be sub-exhaustive because
it finds the key using fewer guesses than brute-force exhaustive
search through the keyspace.
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Quadratic Stream Cipher
The remaining slides are on optional extras for Part B. You are
encouraged to look briefly at Trivium, just to see the first example in this
course of a complete cryptosystem that is used in practice for highly
confidential data.

Example 8.5

Let F be the LFSR of width 5 with taps {3, 5} and let F ′ be the

LFSR of width 6 with taps {2, 3, 5, 6}. These have the maximum

possible periods for their widths, namely 25 − 1 = 31 and

26 − 1 = 63. Fix m ∈ N and for each i ≥ m, define

us = ksk
′
s + ks−1k ′s−1 + · · ·+ ks−(m−1)k

′
s−(m−1).

Note that there are m products in the sum. Define us = 0 if

0 ≤ s < m − 1. The m-quadratic stream cipher is the

cryptosystem defined using the keystream u0, u1,. . . , u1023.

Taking m = 1 gives a cipher like the Geffe generator: since

us = ksk
′
s we have P[us = ks ] = 3

4 , giving a correlation of 1
2 .

Attack 8.4 is effective.



Quadratic Stream Cipher

For general m, the expected correlation between keystream of the
m-quadratic stream cipher u0u1u2 . . . u1023 and the keystream
k0k1k2 . . . k1023 of the LFSR of width 5 is about 1

2m . (M.Sc.
students: this was seen for the cases m = 1 and m = 2 in §4 and
the general case follows from the Piling-Up Lemma.)

Taking m = 5, this makes the correlation attack ineffective
because the difference between 0 correlation and the correlation of
± 1

25
from a correct key guess cannot be detected with 210 samples.

The 5-quadratic stream cipher is therefore somewhat resistant to
the chosen plaintext attack in Exercise 8.1.

Exercise 8.6
Unfortunately the m-quadratic cipher is still vulnerable because
taking the sum of two adjacent bits ui and ui−1 in the keystream
cancels out many of the quadratic terms. Use this to find a
subexhaustive attack.



Trivium

Example 8.7 (Trivium)

The building blocks are three LFSRs of widths 93, 84 and 111,
with taps {66, 93}, {69, 84} and {66, 111}. Let x ∈ F93

2 , y ∈ F84
2 ,

z ∈ F111
2 be the internal states. The registers are updated using

the functions f , g and h, respectively, where

f (x , y , z) = z0 + z111−66 + z1z2 + x24

g(x , y , z) = x0 + x93−66 + x1x2 + y6

h(x , y , z) = y0 + y84−69 + y1y2 + z24

For instance the x-register is updated using f , so in each step

(x0, . . . , x92) 7→
(
x1, . . . , x92, f (x , y , z)

)
.

The keystream bit from each step is

x0 + x93−66 + y0 + y84−69 + z0 + z111−66.



Example 8.7 [continued]: Trivium Key

Rather than use a 288-bit key, Trivium uses a (secret) 80-bit key
put in the x-register, and a (non-secret) 80-bit initialization vector
put in the y -register. The remaining positions in the internal state
start as 0, except for z0, z1, z2 which start as 1. (Exercise: why do
this?) The first 1152 bits of the keystream are unusually biased,
and so are discarded. This can be seen, for the earlier bits, using
the implementation of Trivium in the Mathematica notebook
on Moodle.



Example 8.7 [continued]: Trivium Circuit Diagram



Part C: Block ciphers

§9 Feistel Networks and DES

In a block cipher of block size n and key length `, P = C = Fn
2,

and K = F`
2. Since P = C, by Exercise 3.3(ii), each encryption

function ek for k ∈ K is bijective, and the cryptoscheme is
determined by the encryption functions.

In a typical modern block cipher, n = 128 and ` = 128. Since most
messages have more than n bits, they have to be split into multiple
blocks, each of n bits, before encryption.

Example 9.1

The binary one-time pad of length n is the block cipher of block
size n and key length n in which ek(x) = x + k for all k ∈ Fn

2.

Modern block ciphers aim to be secure even against a chosen
plaintext attack allowing arbitrarily many plaintexts. That is, even
given all pairs (x , ek(x)) for x ∈ Fn

2, there should be no faster way
to find the key k then exhausting over all possible keys in F`

2.
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Finding a Key in a Haystack: Example 9.2

Take n = 3 so P = C = F3
2. The toy block cipher has K = F8

2.
The encryption functions are 256 of the bijections F3

2 → F3
2,

chosen according to a fairly arbitrary rule (details omitted). For
example, the red edge in diagram 252 shows that
e11111100(010) = 100, or in decimal, e252(2) = 4

All 256 bijections are posted on Moodle, or use this direct link
http://www.ma.rhul.ac.uk/~uvah099/Ciphers/

RandomCipherPAllP.pdf.



Example 9.2 [continued]

Suppose Alice and Bob used the toy block cipher with their shared
secret key k .

(i) By a chosen plaintext attack Mark learns that ek(000) = 011
and ek(100) = 000. One possible key is 254, or 11111110 in
binary. There are twelve others: find at least one of them.

(ii) By choosing two further plaintexts Mark learns that
ek(001) = 101 and ek(110) = 111. Determine k .

(A) 6 (B) 122 (C) 170 (D) 254

(iii) Later Mark’s boss Eve observes the ciphertext 100. What is
dk(100)?

(A) 1 (B) 3 (C) 5 (D) 7

In this case since |F3
2| = 8, there are 8! = 40320 bijections of F3

2,
of which 256 were used.
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Feistel Networks

Definition 9.3
Let m ∈ N and let f : Fm

2 → Fm
2 be a function. Given v , w ∈ Fm

2 ,
let (v ,w) denote (v0, . . . , vm−1,w0, . . . ,wm−1) ∈ F2m

2 . The Feistel
function for f is the function F : F2m

2 → F2m
2 defined by

F
(
(v ,w)

)
= (w , v + f (w)).

This can be compared with an LFSR: we shift left by m bits to
move w to the first position. The feedback function is
(v ,w) 7→ v + f (w). It is linear in v , like an LFSR, but typically
non-linear in w .

Exercise 9.4
Show that, for any function f : Fm

2 → Fm
2 , the Feistel function F

for f is invertible. Give a formula for its inverse in terms of f .



Example 9.5 (Q-Block Cipher)

Take m = 4 and let

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

We define a block cipher with block size 8 and key length 12
composed of three Feistel functions. If the key is k ∈ F16

2 then

k(1) = (k0, k1, k2, k3), k(2) = (k4, k5, k6, k7), k(3) = (k8, k9, k10, k11).

The Feistel function in round i is x 7→ S(x + k(i)). Since in each
round the contents of the right register shift to the left, we can
consistently denote the output of round i by (v (i), v (i+1)). Thus
the plaintext (v ,w) ∈ F16

2 is encrypted to the cipher text
ek
(
(v ,w)

)
= (v (3), v (4)) in three rounds:

(v ,w) = (v (0), v (1)) 7→
(
v (1), v (0) + S(v (1) + k(1))

)
= (v (1), v (2))

7→
(
v (2), v (1) + S(v (2) + k(2))

)
= (v (2), v (3))

7→
(
v (3), v (2) + S(v (3) + k(3))

)
= (v (3), v (4)).



Q-Block Cipher: Recall (v ,w) 7→
(
w , v + S(w + kround)

)

Exercise 9.6
(a) Suppose that k = 0001 0011 0111, shown split into the three

round keys. Show that ek(0000 0000) = 1110 0010 and
(v (1), v (2)) = (0000 0100). Find (v (2), v (3)).

(A) (0100 1110) (B) (1110 0100)

(C) (0100 1010) (D) (1010 0100)

(A) (B) (C) (D)

(b) Let k ′ = 0001 0011 0000. When (1110, 0010) is decrypted,
what is (v (2), v (3))?

(A) (1011 1110) (B) (1001 1110)

(C) (0100 1110) (D) (1110 1011)

(A) (B) (C) (D)

(c) Suppose Eve observes the ciphertext (v (3), v (4)) from the
Q-block cipher with key k. What does she need to know to
learn v (2)?

(A) k (B) k0k1k2k3 (C) k4k5k6k7 (D) k8k9k10k11
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(C) (0100 1010) (D) (1010 0100)

(A) (B) (C) (D)

(b) Let k ′ = 0001 0011 0000. When (1110, 0010) is decrypted,
what is (v (2), v (3))?

(A) (1011 1110) (B) (1001 1110)

(C) (0100 1110) (D) (1110 1011)

(A) (B) (C) (D)

(c) Suppose Eve observes the ciphertext (v (3), v (4)) from the
Q-block cipher with key k. What does she need to know to
learn v (2)?

(A) k (B) k0k1k2k3 (C) k4k5k6k7 (D) k8k9k10k11
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Exercise 9.6(a): (v ,w) 7→
(
w + v + S(w + kround)

)

v w

w v + S(w + kround)

w

w + kround

S(w + kround)

v + S(w + kround)

S

kround



Exercise 9.6(a): (v ,w) 7→
(
w + v + S(w + kround)

)

v = v (0) = 0000 w = v (1) = 0000

v (1) = 0000 v (2) = 0100

0000

0001

0100

0100

S

0001



Exercise 9.6(a): (v ,w) 7→
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v = v (0) = 0000 w = v (1) = 0000

v (1) = 0000 v (2) = 0100

0000

0001

0100

0100

S

0001

v (1) = 0000 v (2) = 0100
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0100
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1110
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0011



Exercise 9.6(a): (v ,w) 7→
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)

v = v (0) = 0000 w = v (1) = 0000
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0000

0001

0100
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S

0001

v (1) = 0000 v (2) = 0100

v (2) = 0100 v (3) = 1110

0100

0111

1110

1110

S

0011

v (2) = 0100 v (3) = 1110

v ′ = v (3) = 1110 w ′ = v (4) = 0010

1110

1001

0110

0010

S

0111



Exercise 9.6(b) flip: (w ′, v ′) 7→
(
v ′,w ′ + S(v ′ + kround)

)

w ′ v ′

v ′ w ′+S(v ′+kround)

v ′

v ′+kround

S(v ′+kround)

w ′+S(v ′+kround)

S

kround
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S

kround

v (4) = 0010 v (3) = 1110

v (3) = 1110 v (2) = 1011

1110

1110

1001

1011

S

0000



Exercise 9.6(b) flip: (w ′, v ′) 7→
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v ′
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S

kround

v (4) = 0010 v (3) = 1110

v (3) = 1110 v (2) = 1011

1110

1110

1001

1011

S

0000

v (3) = 1110 v (2) = 1011

v (2) = 1011 v (1) = 1100

1011

1000

0010

1100

S

0011



DES (Data Encryption Standard 1975)
DES is a Feistel block cipher of block size 64. The key length is
56, so the keyspace is F56

2 . Each round key is in F48
2 . There are 16

rounds. (Details of how the 16 round keys are derived from the key
are omitted.)

Each Feistel Network is defined using a function F32
2 → F32

2 :

(a) Expand w ∈ F32
2 by a linear function (details omitted) to

w ′ ∈ F48
2 .

(b) Add the 48-bit round key to get w ′ + k(i).

(c) Let w ′ + k(i) = (y (1), . . . , y (8)) where y (i) ∈ F6
2. Let

z =
(
S1(y (1)), . . . ,S8(y (8))

)
∈ F32

2 . Confusion: obscure
relationship between plaintext and ciphertext on nearby bits.

(d) Apply a bijection (details omitted) of the positions of z .
Diffusion: turn short range confusion into long range
confusion.

Note that (a) and (d) are linear, and (b) is a conventional key
addition in F48

2 . So the S-boxes Si : F6
2 → F4

2 in (c) are the only
source of non-linearity.



DES S-boxes



DES attacks
The small keyspace F56

2 makes DES insecure.
I 1997: 140 days, distributed search on internet
I 1998: 9 days ‘DES cracker’ (special purpose) $250000
I 2017: 6 days ‘COPACOBANA’ (35 FPGA’s) $10000

Roughly how many keys does COPACOBANA test in each second?

(A) 232 (B) 236 (C) 237 (D) 240

Hint: log2(6× 24× 60× 60) ≈ 19.

Exercise 9.7
Suppose we apply DES twice, first with key k ∈ F56

2 then with
k ′ ∈ F56

2 . So the keyspace is F56
2 × F56

2 and for (k, k ′) ∈ F56
2 × F56

2 ,

e(k,k ′)(x) = e ′k
(
ek(x)

)
∈ F64

2 .

(a) Roughly how long would a brute force exhaustive search over
F56

2 × F56
2 take? (Assume you own a COPACOBANA.)

(A) 12 days (B) 36 days (C) 106 years (D) 1015 years

(b) Does this mean 2DES is secure?
(A) False (B) True
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Meet-in-the-Middle Attack on 2DES
In a chosen plaintext attack on 2DES we choose a plaintext
x ∈ F64

2 and get its encryption z = ek ′
(
ek(x)

)
∈ F64

2 , by an
unknown 2DES key

(k , k ′) ∈ F56
2 × F56

2 .

We define

E = {
(
k?, ek?(x)

)
: k? ∈ F56

2 }
D = {

(
k ′?, dk ′

?
(z)
)

: k ′? ∈ F56
2 }.

Using the sets E and D, the attacker computes for each y ∈ F64
2

Ky =
{

(k?, k
′
?) : k? ∈ F56

2 , k
′
? ∈ F56

2 , ek?(x) = y = dk ′
?
(z)
}
.

I The correct key (k , k ′) is in one of the sets Ky . Which y?
(A) e(k,k ′)(x) (B) ek(x) (C) z (D) ek(z)

I What is another way to write y?
(A) d(k,k ′)(z) (B) dk ′(z) (C) x (D) dk ′(x)

I There may be many non-empty sets Ky . Can the attacker
know just from E and D which set Ky contains (k, k ′)?

(A) No (B) Yes
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Same Idea in Group Work Week 9
In the Group Work in Week 9, we saw the cut-down version using
8 keys from the Toy Block Cipher.

(c) Let y = e(1)(000, 000) and let y� = e(1)(000, 110). By (b), y + y� = 000110. The
equations d(2)

�
d(3)(111 111)

�
= 000 011 and d(2)

�
d(3)(101 101)

�
= 110 111 show that y =

000 011 and y� = 110 111 if the attacker’s guess is correct. But since we then have

y + y� = 000 011 + 110 111 = 110 100

the guess is not correct.

2. The Smaller Toy Block Cipher (STBC) has block size 3 so P = C = F3
2. The 8

encryption functions are shown below. For instance e3(110) = 100 since diagram 3
shows that 6 = 1102 is encrypted as 4 = 1002.

111

110

101

100

011

010

001

000
0

000
0

000
0

000
0

000
0

000
0

000
0

000
0

000

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

1
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1

001
1

001
1

001
1

001
1

001
1

001
1

001

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

2
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2

010
2

010
2

010
2

010
2

010
2

010
2

010

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

3
011
3

011
3

011
3

011
3

011
3

011
3

011
3

011

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7
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100
4

100
4

100
4

100
4

100
4

100
4

100

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

5
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5

101
5

101
5

101
5

101
5

101
5

101
5

101

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7
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6

110
6

110
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2 2
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7 7
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111
7

111
7

111
7

111
7

111

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

The block cipher 2STBC has keyspace
�
(k, k0) : k, k0 2 {0, 1, . . . 7}

 
. The block

size is still 3. The encryption functions in 2STBC are defined by

e(k,k0)(x) = ek0(ek(x)).

Note ek is applied first. For instance e(3,5)(110) = e5(e3(110)) = e5(100) = 000.

(a) Verify that e(1,1)(110) = 000 and find e(1,2)(110).

(b) Let dk0 : F3
2 ! F3

2 be the decryption function for the key k0 in STBC. For
instance since e3(110) = 100, we have d3(100) = 110. What is d3(110)?

(a) The diagram for key 1 shows that e1(110) = 010 and e1(010) = 000, hence e(1,1)(110) =
e1
�
e1(110)

�
= e1(010) = 000. Similarly e(1,2)(110) = e2

�
e1(110)

�
= e2(010) = 010.

(b) The diagram for key 3 shows that e3(100) = 110, hence d3(110) = 100. (Thus the
encryption function for key 3 swaps 4 and 6.)

(c) By a chosen plaintext attack, Mark the Mole discovers that e(k,k0)(011) = 110.

(i) Complete the table below showing ek(011) and dk0(110) for each k and k0.
You can write the encryptions/decryptions as numbers in {0, 1, . . . , 7} or
in binary, as you prefer. [The bold entries were left to you.]

k ek(011) k0 dk0(110)

0 3 = 0112 0 7 = 1112
1 4 = 1002 1 0 = 0002
2 7 = 1112 2 0 = 0002
3 0 = 0002 3 4 = 1002

4 4 = 1002 4 5 = 1012

5 4 = 1002 5 6 = 1102

6 2 = 0102 6 2 = 0102

7 3 = 0112 7 2 = 0102

The secret key was (6, 7) and we choose x = 011, so
z = e(6,7)(011) = e7

(
e6(011)

)
= 110. In this setup the sets Ky are

Ky =
{

(k?, k
′
?) :

k? ∈ {0, 1, . . . , 7}, k ′? ∈ {0, 1, . . . , 7}
ek?(x) = y = dk ′

?
(z)

}
.

If you already understand why the correct key is in the set Ky

where y = e6(011) = d7(110) you can skip this quiz.
I What is e6(011)?

(A) 0 (B) 1 (C) 2 (D) 3
I What is d7(110)?

(A) 0 (B) 1 (C) 2 (D) 3
I Which set Ky contains the key?

(A) 0 (B) 1 (C) 2 (D) 3
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The block cipher 2STBC has keyspace
�
(k, k0) : k, k0 2 {0, 1, . . . 7}

 
. The block

size is still 3. The encryption functions in 2STBC are defined by

e(k,k0)(x) = ek0(ek(x)).

Note ek is applied first. For instance e(3,5)(110) = e5(e3(110)) = e5(100) = 000.

(a) Verify that e(1,1)(110) = 000 and find e(1,2)(110).

(b) Let dk0 : F3
2 ! F3

2 be the decryption function for the key k0 in STBC. For
instance since e3(110) = 100, we have d3(100) = 110. What is d3(110)?

(a) The diagram for key 1 shows that e1(110) = 010 and e1(010) = 000, hence e(1,1)(110) =
e1
�
e1(110)

�
= e1(010) = 000. Similarly e(1,2)(110) = e2

�
e1(110)

�
= e2(010) = 010.

(b) The diagram for key 3 shows that e3(100) = 110, hence d3(110) = 100. (Thus the
encryption function for key 3 swaps 4 and 6.)

(c) By a chosen plaintext attack, Mark the Mole discovers that e(k,k0)(011) = 110.

(i) Complete the table below showing ek(011) and dk0(110) for each k and k0.
You can write the encryptions/decryptions as numbers in {0, 1, . . . , 7} or
in binary, as you prefer. [The bold entries were left to you.]

k ek(011) k0 dk0(110)

0 3 = 0112 0 7 = 1112
1 4 = 1002 1 0 = 0002
2 7 = 1112 2 0 = 0002
3 0 = 0002 3 4 = 1002

4 4 = 1002 4 5 = 1012

5 4 = 1002 5 6 = 1102

6 2 = 0102 6 2 = 0102

7 3 = 0112 7 2 = 0102

The secret key was (6, 7) and we choose x = 011, so
z = e(6,7)(011) = e7

(
e6(011)

)
= 110. In this setup the sets Ky are

Ky =
{

(k?, k
′
?) :

k? ∈ {0, 1, . . . , 7}, k ′? ∈ {0, 1, . . . , 7}
ek?(x) = y = dk ′

?
(z)

}
.

If you already understand why the correct key is in the set Ky

where y = e6(011) = d7(110) you can skip this quiz.
I What is e6(011)?

(A) 0 (B) 1 (C) 2 (D) 3
I What is d7(110)?

(A) 0 (B) 1 (C) 2 (D) 3
I Which set Ky contains the key?

(A) 0 (B) 1 (C) 2 (D) 3



Same Idea in Group Work Week 9
In the Group Work in Week 9, we saw the cut-down version using
8 keys from the Toy Block Cipher.

(c) Let y = e(1)(000, 000) and let y� = e(1)(000, 110). By (b), y + y� = 000110. The
equations d(2)
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d(3)(111 111)

�
= 000 011 and d(2)

�
d(3)(101 101)

�
= 110 111 show that y =

000 011 and y� = 110 111 if the attacker’s guess is correct. But since we then have

y + y� = 000 011 + 110 111 = 110 100

the guess is not correct.

2. The Smaller Toy Block Cipher (STBC) has block size 3 so P = C = F3
2. The 8

encryption functions are shown below. For instance e3(110) = 100 since diagram 3
shows that 6 = 1102 is encrypted as 4 = 1002.
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size is still 3. The encryption functions in 2STBC are defined by

e(k,k0)(x) = ek0(ek(x)).

Note ek is applied first. For instance e(3,5)(110) = e5(e3(110)) = e5(100) = 000.

(a) Verify that e(1,1)(110) = 000 and find e(1,2)(110).

(b) Let dk0 : F3
2 ! F3

2 be the decryption function for the key k0 in STBC. For
instance since e3(110) = 100, we have d3(100) = 110. What is d3(110)?

(a) The diagram for key 1 shows that e1(110) = 010 and e1(010) = 000, hence e(1,1)(110) =
e1
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e1(110)

�
= e1(010) = 000. Similarly e(1,2)(110) = e2
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e1(110)
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= e2(010) = 010.

(b) The diagram for key 3 shows that e3(100) = 110, hence d3(110) = 100. (Thus the
encryption function for key 3 swaps 4 and 6.)

(c) By a chosen plaintext attack, Mark the Mole discovers that e(k,k0)(011) = 110.

(i) Complete the table below showing ek(011) and dk0(110) for each k and k0.
You can write the encryptions/decryptions as numbers in {0, 1, . . . , 7} or
in binary, as you prefer. [The bold entries were left to you.]

k ek(011) k0 dk0(110)

0 3 = 0112 0 7 = 1112
1 4 = 1002 1 0 = 0002
2 7 = 1112 2 0 = 0002
3 0 = 0002 3 4 = 1002

4 4 = 1002 4 5 = 1012

5 4 = 1002 5 6 = 1102

6 2 = 0102 6 2 = 0102

7 3 = 0112 7 2 = 0102

The secret key was (6, 7) and we choose x = 011, so
z = e(6,7)(011) = e7

(
e6(011)

)
= 110. In this setup the sets Ky are

Ky =
{

(k?, k
′
?) :

k? ∈ {0, 1, . . . , 7}, k ′? ∈ {0, 1, . . . , 7}
ek?(x) = y = dk ′

?
(z)

}
.

If you already understand why the correct key is in the set Ky

where y = e6(011) = d7(110) you can skip this quiz.
I What is e6(011)?

(A) 0 (B) 1 (C) 2 (D) 3
I What is d7(110)?

(A) 0 (B) 1 (C) 2 (D) 3
I Which set Ky contains the key?

(A) 0 (B) 1 (C) 2 (D) 3
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d(3)(111 111)

�
= 000 011 and d(2)
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= 110 111 show that y =

000 011 and y� = 110 111 if the attacker’s guess is correct. But since we then have

y + y� = 000 011 + 110 111 = 110 100

the guess is not correct.

2. The Smaller Toy Block Cipher (STBC) has block size 3 so P = C = F3
2. The 8

encryption functions are shown below. For instance e3(110) = 100 since diagram 3
shows that 6 = 1102 is encrypted as 4 = 1002.
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. The block

size is still 3. The encryption functions in 2STBC are defined by

e(k,k0)(x) = ek0(ek(x)).

Note ek is applied first. For instance e(3,5)(110) = e5(e3(110)) = e5(100) = 000.

(a) Verify that e(1,1)(110) = 000 and find e(1,2)(110).

(b) Let dk0 : F3
2 ! F3

2 be the decryption function for the key k0 in STBC. For
instance since e3(110) = 100, we have d3(100) = 110. What is d3(110)?

(a) The diagram for key 1 shows that e1(110) = 010 and e1(010) = 000, hence e(1,1)(110) =
e1
�
e1(110)

�
= e1(010) = 000. Similarly e(1,2)(110) = e2

�
e1(110)

�
= e2(010) = 010.

(b) The diagram for key 3 shows that e3(100) = 110, hence d3(110) = 100. (Thus the
encryption function for key 3 swaps 4 and 6.)

(c) By a chosen plaintext attack, Mark the Mole discovers that e(k,k0)(011) = 110.

(i) Complete the table below showing ek(011) and dk0(110) for each k and k0.
You can write the encryptions/decryptions as numbers in {0, 1, . . . , 7} or
in binary, as you prefer. [The bold entries were left to you.]

k ek(011) k0 dk0(110)

0 3 = 0112 0 7 = 1112
1 4 = 1002 1 0 = 0002
2 7 = 1112 2 0 = 0002
3 0 = 0002 3 4 = 1002

4 4 = 1002 4 5 = 1012

5 4 = 1002 5 6 = 1102

6 2 = 0102 6 2 = 0102

7 3 = 0112 7 2 = 0102

The secret key was (6, 7) and we choose x = 011, so
z = e(6,7)(011) = e7

(
e6(011)

)
= 110. In this setup the sets Ky are

Ky =
{

(k?, k
′
?) :

k? ∈ {0, 1, . . . , 7}, k ′? ∈ {0, 1, . . . , 7}
ek?(x) = y = dk ′

?
(z)

}
.

If you already understand why the correct key is in the set Ky

where y = e6(011) = d7(110) you can skip this quiz.
I What is e6(011)?

(A) 0 (B) 1 (C) 2 (D) 3
I What is d7(110)?

(A) 0 (B) 1 (C) 2 (D) 3
I Which set Ky contains the key?

(A) 0 (B) 1 (C) 2 (D) 3



Same Idea in Group Work Week 9
In the Group Work in Week 9, we saw the cut-down version using
8 keys from the Toy Block Cipher.

(c) Let y = e(1)(000, 000) and let y� = e(1)(000, 110). By (b), y + y� = 000110. The
equations d(2)

�
d(3)(111 111)

�
= 000 011 and d(2)

�
d(3)(101 101)

�
= 110 111 show that y =

000 011 and y� = 110 111 if the attacker’s guess is correct. But since we then have

y + y� = 000 011 + 110 111 = 110 100

the guess is not correct.

2. The Smaller Toy Block Cipher (STBC) has block size 3 so P = C = F3
2. The 8

encryption functions are shown below. For instance e3(110) = 100 since diagram 3
shows that 6 = 1102 is encrypted as 4 = 1002.
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The block cipher 2STBC has keyspace
�
(k, k0) : k, k0 2 {0, 1, . . . 7}

 
. The block

size is still 3. The encryption functions in 2STBC are defined by

e(k,k0)(x) = ek0(ek(x)).

Note ek is applied first. For instance e(3,5)(110) = e5(e3(110)) = e5(100) = 000.

(a) Verify that e(1,1)(110) = 000 and find e(1,2)(110).

(b) Let dk0 : F3
2 ! F3

2 be the decryption function for the key k0 in STBC. For
instance since e3(110) = 100, we have d3(100) = 110. What is d3(110)?

(a) The diagram for key 1 shows that e1(110) = 010 and e1(010) = 000, hence e(1,1)(110) =
e1
�
e1(110)

�
= e1(010) = 000. Similarly e(1,2)(110) = e2

�
e1(110)

�
= e2(010) = 010.

(b) The diagram for key 3 shows that e3(100) = 110, hence d3(110) = 100. (Thus the
encryption function for key 3 swaps 4 and 6.)

(c) By a chosen plaintext attack, Mark the Mole discovers that e(k,k0)(011) = 110.

(i) Complete the table below showing ek(011) and dk0(110) for each k and k0.
You can write the encryptions/decryptions as numbers in {0, 1, . . . , 7} or
in binary, as you prefer. [The bold entries were left to you.]

k ek(011) k0 dk0(110)

0 3 = 0112 0 7 = 1112
1 4 = 1002 1 0 = 0002
2 7 = 1112 2 0 = 0002
3 0 = 0002 3 4 = 1002

4 4 = 1002 4 5 = 1012

5 4 = 1002 5 6 = 1102

6 2 = 0102 6 2 = 0102

7 3 = 0112 7 2 = 0102

The secret key was (6, 7) and we choose x = 011, so
z = e(6,7)(011) = e7

(
e6(011)

)
= 110. In this setup the sets Ky are

Ky =
{

(k?, k
′
?) :

k? ∈ {0, 1, . . . , 7}, k ′? ∈ {0, 1, . . . , 7}
ek?(x) = y = dk ′

?
(z)

}
.

I What is the set K2?

(A) {(6, 7)} (B) {(6, 6)} (C) {(6, 6), (6, 7)} (D) {(6, 6), (6, 7), (0, 6)}
I What is the set K0?

(A) {(3, 1)} (B) {(3, 2)} (C) {(3, 1), (3, 2)} (D) {(3, 1), (3, 2), (0, 2))}



Same Idea in Group Work Week 9
In the Group Work in Week 9, we saw the cut-down version using
8 keys from the Toy Block Cipher.

(c) Let y = e(1)(000, 000) and let y� = e(1)(000, 110). By (b), y + y� = 000110. The
equations d(2)

�
d(3)(111 111)

�
= 000 011 and d(2)

�
d(3)(101 101)

�
= 110 111 show that y =

000 011 and y� = 110 111 if the attacker’s guess is correct. But since we then have

y + y� = 000 011 + 110 111 = 110 100

the guess is not correct.

2. The Smaller Toy Block Cipher (STBC) has block size 3 so P = C = F3
2. The 8

encryption functions are shown below. For instance e3(110) = 100 since diagram 3
shows that 6 = 1102 is encrypted as 4 = 1002.
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The block cipher 2STBC has keyspace
�
(k, k0) : k, k0 2 {0, 1, . . . 7}

 
. The block

size is still 3. The encryption functions in 2STBC are defined by

e(k,k0)(x) = ek0(ek(x)).

Note ek is applied first. For instance e(3,5)(110) = e5(e3(110)) = e5(100) = 000.

(a) Verify that e(1,1)(110) = 000 and find e(1,2)(110).

(b) Let dk0 : F3
2 ! F3

2 be the decryption function for the key k0 in STBC. For
instance since e3(110) = 100, we have d3(100) = 110. What is d3(110)?

(a) The diagram for key 1 shows that e1(110) = 010 and e1(010) = 000, hence e(1,1)(110) =
e1
�
e1(110)

�
= e1(010) = 000. Similarly e(1,2)(110) = e2

�
e1(110)
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= e2(010) = 010.

(b) The diagram for key 3 shows that e3(100) = 110, hence d3(110) = 100. (Thus the
encryption function for key 3 swaps 4 and 6.)

(c) By a chosen plaintext attack, Mark the Mole discovers that e(k,k0)(011) = 110.

(i) Complete the table below showing ek(011) and dk0(110) for each k and k0.
You can write the encryptions/decryptions as numbers in {0, 1, . . . , 7} or
in binary, as you prefer. [The bold entries were left to you.]

k ek(011) k0 dk0(110)

0 3 = 0112 0 7 = 1112
1 4 = 1002 1 0 = 0002
2 7 = 1112 2 0 = 0002
3 0 = 0002 3 4 = 1002

4 4 = 1002 4 5 = 1012

5 4 = 1002 5 6 = 1102

6 2 = 0102 6 2 = 0102

7 3 = 0112 7 2 = 0102

The secret key was (6, 7) and we choose x = 011, so
z = e(6,7)(011) = e7

(
e6(011)

)
= 110. In this setup the sets Ky are

Ky =
{

(k?, k
′
?) :

k? ∈ {0, 1, . . . , 7}, k ′? ∈ {0, 1, . . . , 7}
ek?(x) = y = dk ′

?
(z)

}
.

I What is the set K2?

(A) {(6, 7)} (B) {(6, 6)} (C) {(6, 6), (6, 7)} (D) {(6, 6), (6, 7), (0, 6)}
I What is the set K0?

(A) {(3, 1)} (B) {(3, 2)} (C) {(3, 1), (3, 2)} (D) {(3, 1), (3, 2), (0, 2))}



Same Idea in Group Work Week 9
In the Group Work in Week 9, we saw the cut-down version using
8 keys from the Toy Block Cipher.

(c) Let y = e(1)(000, 000) and let y� = e(1)(000, 110). By (b), y + y� = 000110. The
equations d(2)

�
d(3)(111 111)

�
= 000 011 and d(2)

�
d(3)(101 101)

�
= 110 111 show that y =

000 011 and y� = 110 111 if the attacker’s guess is correct. But since we then have

y + y� = 000 011 + 110 111 = 110 100

the guess is not correct.

2. The Smaller Toy Block Cipher (STBC) has block size 3 so P = C = F3
2. The 8

encryption functions are shown below. For instance e3(110) = 100 since diagram 3
shows that 6 = 1102 is encrypted as 4 = 1002.
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The block cipher 2STBC has keyspace
�
(k, k0) : k, k0 2 {0, 1, . . . 7}

 
. The block

size is still 3. The encryption functions in 2STBC are defined by

e(k,k0)(x) = ek0(ek(x)).

Note ek is applied first. For instance e(3,5)(110) = e5(e3(110)) = e5(100) = 000.

(a) Verify that e(1,1)(110) = 000 and find e(1,2)(110).

(b) Let dk0 : F3
2 ! F3

2 be the decryption function for the key k0 in STBC. For
instance since e3(110) = 100, we have d3(100) = 110. What is d3(110)?

(a) The diagram for key 1 shows that e1(110) = 010 and e1(010) = 000, hence e(1,1)(110) =
e1
�
e1(110)

�
= e1(010) = 000. Similarly e(1,2)(110) = e2

�
e1(110)

�
= e2(010) = 010.

(b) The diagram for key 3 shows that e3(100) = 110, hence d3(110) = 100. (Thus the
encryption function for key 3 swaps 4 and 6.)

(c) By a chosen plaintext attack, Mark the Mole discovers that e(k,k0)(011) = 110.

(i) Complete the table below showing ek(011) and dk0(110) for each k and k0.
You can write the encryptions/decryptions as numbers in {0, 1, . . . , 7} or
in binary, as you prefer. [The bold entries were left to you.]

k ek(011) k0 dk0(110)

0 3 = 0112 0 7 = 1112
1 4 = 1002 1 0 = 0002
2 7 = 1112 2 0 = 0002
3 0 = 0002 3 4 = 1002

4 4 = 1002 4 5 = 1012

5 4 = 1002 5 6 = 1102

6 2 = 0102 6 2 = 0102

7 3 = 0112 7 2 = 0102

The secret key was (6, 7) and we choose x = 011, so
z = e(6,7)(011) = e7

(
e6(011)

)
= 110. In this setup the sets Ky are

Ky =
{

(k?, k
′
?) :

k? ∈ {0, 1, . . . , 7}, k ′? ∈ {0, 1, . . . , 7}
ek?(x) = y = dk ′

?
(z)

}
.

I What is the set K2?

(A) {(6, 7)} (B) {(6, 6)} (C) {(6, 6), (6, 7)} (D) {(6, 6), (6, 7), (0, 6)}
I What is the set K0?

(A) {(3, 1)} (B) {(3, 2)} (C) {(3, 1), (3, 2)} (D) {(3, 1), (3, 2), (0, 2))}



Meet-in-the-Middle Attack on 2DES
In a chosen plaintext attack on 2DES we choose a plaintext x ∈ F64

2 and
get its encryption z = ek′

(
ek(x)

)
∈ F64

2 , by an unknown

(k , k ′) ∈ F56
2 × F56

2 . We defined

E = {
(
k?, ek?(x)

)
: k? ∈ F56

2 }
D = {

(
k ′
?, dk′

?
(z)
)

: k ′
? ∈ F56

2 }.
and Ky =

{
(k?, k

′
?) : k? ∈ F56

2 , k
′
? ∈ F56

2 , ek?(x) = y = dk′
?
(z)
}

and saw
that the key (k, k ′) is in Ky where y = ek(x) = dk′(z).

Model DES as a random cipher, so the encryption function are

independent bijections F64
2 → F64

2 . Fix y? ∈ F64
2 .

I Given k? ∈ F56
2 what is the probability that (k?, y?) ∈ E?

(A) 1
2128 (B) 1

264 (C) 1
256 (D) 1

28

I Given k? ∈ F56
2 and k ′? ∈ F56

2 , what is the probability that

(k?, y?) ∈ E and (k ′?, y?) ∈ D?
(A) 1

2128 (B) 1
264 (C) 1

256 (D) 1
28

I What is the expected size of the set Ky??
(A) 1

216 (B) 1
28 (C) 1 (D) 28
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(A) 248 (B) 256 (C) 264 (D) 272

I How many DES encryptions / decryptions in total to find key?
[Hint: check the possible keys by encrypting another plaintext.]

(A) 257 (B) 257 + 248 (C) 257 + 249 (D) 2112



Meet-in-the-Middle Attack on 2DES
In a chosen plaintext attack on 2DES we choose a plaintext x ∈ F64

2 and
get its encryption z = ek′

(
ek(x)

)
∈ F64

2 , by an unknown

(k , k ′) ∈ F56
2 × F56

2 . We defined

E = {
(
k?, ek?(x)

)
: k? ∈ F56

2 }
D = {

(
k ′
?, dk′

?
(z)
)

: k ′
? ∈ F56

2 }.
and Ky =

{
(k?, k

′
?) : k? ∈ F56

2 , k
′
? ∈ F56

2 , ek?(x) = y = dk′
?
(z)
}

and saw
that the key (k, k ′) is in Ky where y = ek(x) = dk′(z).

Model DES as a random cipher, so the encryption function are

independent bijections F64
2 → F64

2 . Fix y? ∈ F64
2 .

I What is the expected size of the set Ky??
(A) 1

216 (B) 1
28 (C) 1 (D) 28

I What is the expected total size of the sets Ky ; in other words,

what is
∑

y?∈F64
2
|Ky? |?

(A) 248 (B) 256 (C) 264 (D) 272

I How many DES encryptions / decryptions in total to find key?
[Hint: check the possible keys by encrypting another plaintext.]

(A) 257 (B) 257 + 248 (C) 257 + 249 (D) 2112



Meet-in-the-Middle Attack on 2DES
In a chosen plaintext attack on 2DES we choose a plaintext x ∈ F64

2 and
get its encryption z = ek′

(
ek(x)

)
∈ F64

2 , by an unknown

(k , k ′) ∈ F56
2 × F56

2 . We defined

E = {
(
k?, ek?(x)

)
: k? ∈ F56

2 }
D = {

(
k ′
?, dk′

?
(z)
)

: k ′
? ∈ F56

2 }.
and Ky =

{
(k?, k

′
?) : k? ∈ F56

2 , k
′
? ∈ F56

2 , ek?(x) = y = dk′
?
(z)
}

and saw
that the key (k, k ′) is in Ky where y = ek(x) = dk′(z).

Model DES as a random cipher, so the encryption function are

independent bijections F64
2 → F64

2 . Fix y? ∈ F64
2 .

I What is the expected size of the set Ky??
(A) 1

216 (B) 1
28 (C) 1 (D) 28

I What is the expected total size of the sets Ky ; in other words,

what is
∑

y?∈F64
2
|Ky? |?

(A) 248 (B) 256 (C) 264 (D) 272

I How many DES encryptions / decryptions in total to find key?
[Hint: check the possible keys by encrypting another plaintext.]

(A) 257 (B) 257 + 248 (C) 257 + 249 (D) 2112



Modes of Operation
A block cipher with block size n encrypts plaintexts x ∈ Fn

2. If x is
longer it has to be split into blocks x (1), . . . , x (m) ∈ Fn

2:

x = (x (1), . . . , x (m)).

Fix a key k ∈ K: this is only key used.
I Electronic Codebook Mode:

x (1) 7→ ek(x (1))

x (2) 7→ ek(x (2))
...

x (m) 7→ ek(x (m))

I Cipher Block Chaining:

x (1) 7→ ek(x (1)) = y (1)

x (2) 7→ ek(y (1) + x (2)) = y (2)

...

x (m) 7→ ek(y (m−1) + x (m)) = y (m)



Same In Implies Same Out

If x (i) = x (j) then, in Electronic Codebook Mode, the ciphertext
blocks ek(x (i) and ek(x (j)) are equal. This is a weakness of the
mode of operation, not of the underlying block cipher.

Cipher Block Chaining (and the many other modes of operation
you are not expected to know about) avoid this problem.



Grace Murray Hopper, Cryptanalyst and US Navy Officer



§10 Differential Cryptanalysis and AES

Differential cryptanalysis was known to the designers of DES in
1974 and was considered when designing the DES S-boxes. They
kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time
pad in Question 4 on Problem Sheet 3. We have unknown
plaintexts x , x ′ ∈ Fn

2, an unknown key k ∈ Fn
2, and known

ciphertexts x + k and x ′ + k. Adding the known ciphertexts gives
x + x ′, independent of k .

Thus if x and x ′ differ by ∆ then so do their encryptions x + k and
x ′ + k . In symbols:

x + x ′ = ∆ =⇒ (x + k) + (x ′ + k) = ∆.

This shows the one-time-pad is weak to differences.

Quiz: If this is a difference attack, where are all the minus signs?
It should be x − x ′ = ∆ and (x + k)− (x ′ + k) = ∆
It’s the same: we’re working in F2
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Example 10.2: Difference Attack on the Q-Block Cipher
Recall that we may write elements as F8

2 as pairs (v ,w) where
v ∈ F4

2 and w ∈ F4
2. In round 1 of the Q-block cipher (see

Example 9.5), the Feistel network sends (v ,w) to(
w , v + S(w + k(1))

)
where

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

Lemma 10.1

(i) For any w ∈ F4
2 we have S(w + 1000) = S(w) + 0010.

(ii) For any (v ,w) ∈ F8
2 and any round key k(1) ∈ F4

2, round 1 of
the Q-block cipher is

(
v +0000,w +1000

)
7→
(
w , v +S(w +k(1))

)
+(1000, 0010).

Thus the first round of the Q-block cipher encrypts plaintexts
differing by 0000 1000 to intermediate ciphertexts differing by
1000 0010. This ‘deterministic’ behaviour is just like the one-time
pad. This makes the Q-block cipher vulnerable to a difference
attack using chosen plaintexts and ciphertexts.
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Attack on the Q-Block Cipher [continued]

Let x ∈ F8
2 and let ∆ = 0000 1000 ∈ F8

2. The diagram below
shows the encryption of x and x∆ = x + ∆ over the three rounds
of the Q-block cipher using the key k = (k(1), k(2), k(3)), split into
three round keys:

x
k(1)

−−−−−−−−−−−−−→ y
k(2), k(3)

−−−−−−−−−−−−−−−−−→ z

∆ = 0000 1000 ∆′ = 1000 0010 Γ

x∆
k(1)

−−−−−−−−−−−−−→ y∆
k(2), k(3)

−−−−−−−−−−−−−−−−→ z∆

The middle differences are ∆ = x + x∆ and ∆′ = y + y∆. We
know ∆′ by Lemma 10.1(ii).

We attack by guessing k
(2)
guess and k

(3)
guess. We use these guesses to

decrypt the ciphertexts z and z∆ over two rounds, obtaining the
intermediate ciphertexts w and w∆. On a correct guess
k

(2)
guess = k(2) and k

(3)
guess = k(3) and then w = y and w∆ = y∆ and

w + w∆ = ∆′.
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(2)
guess and k

(3)
guess. We use these guesses to

decrypt the ciphertexts z and z∆ over two rounds, obtaining the
intermediate ciphertexts w and w∆. On a correct guess
k

(2)
guess = k(2) and k

(3)
guess = k(3) and then w = y and w∆ = y∆ and

w + w∆ = ∆′.



Attack on the Q-Block Cipher [continued]

To see this in practice, take k = 0001 0011 0111 and
x = 0000 0000. (For this example, we have chosen k, but from the
attacker’s perspective, it is unknown.) By Exercise 5.6(i),
z = 1110 0010; a similar calculation gives z∆ = 1101 1100.

(1) If we guess that k(2) = 0011, k(3) = 0000 then
w = 1100 1011, as can be read from (v (1), v (2)) in
Example 5.6(ii), and w∆ = 1111 1011. Hence
∆? = 0011 0000 and we know this guess is wrong.

(2) If we guess that k(2) = 0001, k(3) = 1111 then
w = 0000 0110 and w∆ = 1000 0100. Hence
∆? = 1000 0010 and we do not know that the guess is
wrong. (This example was chosen so that also
w0w1w2w3 = x4x5x6x7, as required by the Feistel function.)

Exercise 10.3
Assume that the difference attack shows the key is one of 16

possible (k
(2)
? , k

(3)
? ). Show that it is subexhaustive: that is, it

requires less computing than trying all 212 = 4096 keys.
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Advanced Encryption Standard (2002): AES

AES is the winner of an open competition to design a successor to
DES. Its block size is 128 and its key length is 128 (with variants
allowing 192 and 256). It is not a Feistel cipher, but it is still built
out of multiple rounds, like DES. It is the most widely used block
cipher. No-one has found a subexhaustive attack on AES, despite
the huge incentive.

The remaining material below is ‘extra’, and included for interest
only.



Building Blocks of AES: Affine Transformations

Example 10.4

The affine block cipher of block size n has keyspace all pairs
(A, b), where A is an invertible n × n matrix with entries in F2 and
b ∈ Fn

2. The encryption functions e(A,b) : Fn
2 → Fn

2 are the affine
transformations defined by

e(A,b)(x) = xA + b.

I True or false: e(A,b) is good for ‘diffusion’, i.e. making sure
that every bit of the ciphertext depends on the key.

(A) False (B) True

I True or false: e(A,b) is good for ‘confusion’, i.e. making sure
the ciphertext depends in a non-linear way on the plaintext.

(A) False (B) True

In fact e(A,b) is the composition of a linear function, namely
x 7→ xA with a translation, so is almost no use for ‘confusion’.
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Building Blocks of AES: Pseudo-inversion

Definition 10.5
Let z be an indeterminate, as used for polynomials and power
series in Part B. Define

F28 = {x0 + x1z + · · ·+ x7z
7 : x0, x1, . . . , x7 ∈ F2}.

Elements of F8
2 are added and multiplied like polynomials in z , but

whenever you see a power zd where d ≥ 8, eliminate it using the
rule z8 = 1 + z + z3 + z4.

Definition 10.6
Define p : F28 → F28 by

p(β) =

{
β−1 if β 6= 0

0 if β = 0.
.

Let P : F8
2 → F8

2 be the corresponding function defined by
identifying F8

2 with F28

(x0, x1, . . . , x7)←→ x0 + x1z + x2z
2 + · · ·+ x7z

7.



Working with Pseudo-inversion: z8 = 1 + z + z3 + z4

Example 10.7

Writing elements of F8
2 as words of length 8 (with a small space for

readability):

(1) 1000 0000←→ 1 ∈ F28 and 1−1 = 1, so p(1) = 1 and
P(1000 0000) = 10000000;

(2) 0100 0000←→ z ∈ F28 and z−1 = 1 + z2 + z3 + z7 was seen
above, so p(z) = 1 + z2 + z3 + z7 and

P(0100 0000) = 10110001.

(3) Exercise: Find p(z2) and hence show

P(0010 0000) = 1101 0011.



Advanced Encryption Standard (AES)
There are 10 rounds in AES. In each round, the input x ∈ F128

2 is
split into 128/8 = 16 subblocks each in F8

2.

I The round key in F128
2 is added (AddRoundKey).

I The pseudo inverse function P : F8
2 → F8

2 is applied to each
subblock followed by an affine transformation F8

2 → F8
2, of the

type in Example 10.4. This gives confusion and diffusion
within each subblock. (SubBytes.)

I Diffusion across all 128 bits comes from a row bijection of the
16 subblocks, organized into a 4× 4 grid

q(0) q(4) q(8) q(12)
q(1) q(5) q(9) q(13)
q(2) q(6) q(10) q(14)
q(3) q(7) q(11) q(15)

−→
q(0) q(4) q(8) q(12)
q(13) q(1) q(5) q(9)
q(10) q(14) q(2) q(6)
q(7) q(11) q(15) q(3)

and a further mixing of each column by the affine block cipher
(ShiftRows and MixColumns)

There are no known sub-exhaustive attacks on AES. It is the most
commonly used block cipher.



Differences through Pseudo-inverse

Lemma 10.8
Let γ ∈ F8

2 be non-zero. Then

{
β ∈ F28 : p(β) + p(β + 1) = γ

}

has size 0 or 2, except when γ = 1, when it is {0, 1, ζ, 1 + ζ}
where ζ = z2 + z3 + z4 + z5 + z7.

The analogous result holds for P : F8
2 → F8

2.

0000 0000

1000 0000

1000 0000

0011 1101

1000 0000

1011 1101

0100 0000

1000 0000

1100 0000

. . .

0000 0000

1000 0000

1000 0000

1011 1101

1000 0000

0011 1101

1011 0001

Γ=1101 1110

0110 1111

. . .
y 7→P(y)−−−−−→



AES Resists the Difference Attacks

Let ∆ = 1000 0000, corresponding to 1 ∈ F28 . The left diagram
shows F8

2 partitioned into pairs {x , x∆} with x + x∆ = ∆. The
output difference P(x) + P(x∆) can be any of 127 elements
Γ ∈ F8

2. Unless Γ = 1000 0000, the pair {x , x∆} for output
difference Γ is unique (as in the bottom-right of the diagram).
Exceptionally, when Γ = 1000 0000, there are two possible pairs
(shown in the top-left of the diagram).

Exercise 10.9
Explain why the output difference cannot be 0000 0000.

Suppose we encrypt two plaintexts x , x∆ ∈ F128
2 differing by ∆

using one round of AES. In the first step of the first round, an
unknown round key kround is added, to give x + kround and
x∆ + kround. The difference is still ∆. But by Lemma 10.8, there
are 127 (almost) equally likely output differences Γ. The difference
attack is ineffective.



Part D: Public Key Cryptography and Digital Signatures

§11 Introduction to Public Key Cryptography
Throughout this course we have supposed that Alice sends Bob a
plaintext encrypted using some key k to a ciphertext ek(x) = y
and Bob decrypts. Eve the eavesdropper observes y .

Suppose that Eve has no way (even using many years of computing
time) to decrypt y getting the plaintext x . True or false?
I Bob has to know something about k that Eve does not.

(A) False (B) True
I Alice has to know something about k that Eve does not.

(A) False (B) True

In this part we will see why the second answer is ‘False’.
I In the RSA cryposystem, Alice can encrypt a message to Bob

using only Bob’s public key. This is known to Eve (and
everyone else). Only Bob can decrypt.

I Diffie–Hellman key exchange is even more remarkable: both
Alice and Bob get a shared secret key (which they can use in
AES or any other strong cipher), which Eve cannot determine,
even though Eve observes all the messages they send.
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Diffie–Hellman Key Exchange

Everything in red is private. Everything not in red is known to the
whole world — this includes the eavesdropper Eve.

Example 11.1

Alice and Bob need a 128-bit key for use in AES.

(0) Alice (say) chooses a prime p > 2128.

(1) Alice chooses a secret a ∈ N with 1 ≤ a < p and sends Bob
2a mod p.

(2) Bob chooses a secret b ∈ N with 1 ≤ b < p and sends Alice
2b mod p.

(3) Alice computes (2b mod p)a mod p and Bob computes
(2a mod p)b mod p.

(4) Now Alice and Bob both know 2ab mod p. They each write
2ab mod p in binary and take the final 128 bits to get an AES
key.



Example 11.1 [continued]

After (2), the eavesdropper Eve knows p, 2a mod p and 2b mod p.
It is believed that it is hard for her to use this information to find
2ab mod p. The difficulty can be seen even in small examples.

Exercise 11.2
Let p = 11. As Eve you know that Alice has sent Bob 6. Do you
have any better way to find a such that 2a = 6 than trying each
possibility?

m 0 1 2 3 4 5 6 7 8 9

2m mod 11 1 2

m 10 11 12 13 14 15 16 17 18 19

2m mod 11

After (4) Alice and Bob can communicate using the AES
cryptosystem, which has no known sub-exhaustive attacks.
So remarkably, Alice and Bob can communicate securely without
exchanging any private key material.
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Integers Modulo a Prime

I By Fermat’s Little Theorem, cp−1 ≡ 1 mod p for any c not
divisible by p.

I If cm 6≡ 1 mod p for m < p − 1 then c is said to be a
primitive root modulo p and, working modulo p,

{1, c , c2, . . . , cp−2} = {1, 2, . . . , p − 1}

Primitive roots always exist: often one can take 2.

I Equivalently: Z×p is cyclic of order p − 1.

I For instance 2 is a primitive root modulo 11 but 5 is not,
because 5 ≡ 24 mod 11, so 55 ≡ 210 ≡ 1 mod 11.



Diffie–Hellman Key Exchange
This is nothing more than Example 11.1, modified to avoid some
potential weaknesses, and implemented efficiently.

I The prime p is chosen so that p − 1 has at least one large
prime factor. (This is true of most primes. There are fast
ways to decide if a number is prime.)

I Rather than use 2, Alice and Bob use a primitive root modulo
p, so every element of {1, . . . , p − 1} is congruent to a power
of g . (The base is public.)

I Alice and Bob compute ga mod p and gb mod p by repeated
squaring. See Problem Sheet 8 for the idea. For example 221

mod 177 is computed as follows:
I 22 ≡ 4 mod 199
I 24 ≡ 42 = 16 mod 199
I 28 ≡ 162 = 256 ≡ 57 mod 199
I 216 ≡ 572 = 3249 ≡ 65 mod 199

Now use 221 = 216+4+1 ≡ 65× 16× 2 = 2080 ≡ 90 mod 199.

I The shared key is now gab mod p.



Discrete Logarithms (See also Group Work Week 10)
A primitive root modulo 131 is g = 2. So 2130 = 1 mod 131 (this
is Fermat’s Little Theorem) and

{1, 2, . . . , 130} = {1 mod 130, 2 mod 130, 22 mod 130, . . . , 2130 mod 130}.

m 0 1 2 3 4 5 6 7 8 9 . . .

2m mod 131 1 2 4 8 16 32 64 128 125 119 . . .

If 2m = y mod 131 where 0 ≤ m ≤ 129 then we say that m is the
discrete log of y (with respect to 2), modulo 131. For example
246 ≡ 5 mod 131 so the discrete log of 5 is 46: write dlog 46 = 5.

(a) What is the discrete log of 16?
(A) 1 (B) 2 (C) 4 (D) 130

(b) What is the discrete log of 125? [Hint: 125 = 53.]
(A) 8 (B) 48 (C) 92 (D) 138

(c) What is the discrete log of 80?
(A) 46 (B) 50 (C) 54 (D) 184

(d) What is dlog−1? [Hint: 2130 ≡ 1 mod 131.]
(A) 1 (B) 65 (C) 66 (D) 130

(e) What is dlog 11?

(D) is also fine: finding discrete logs is hard!

(A) 50 (B) 54 (C) 56 (D) need a computer
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Discrete Logarithm Problem and One-way Functions
I Diffie–Hellman key exchange is secure only if given g , p and

gm mod p it is hard to find m;

Equivalently, given p, g and y it is hard to find dlogg y . This is
called the Discrete Logarithm Problem.

The function

f : {0, . . . , p − 2} → {1, . . . , p − 1}
defined by f (m) = gm mod p is bijective. Its inverse is
h : {1, . . . , p − 1} → {0, . . . , p − 2} defined by h(y) = dlogg y . It
is hard to find discrete logarithms if and only if f is one-way.

For instance, let p = 1 000 003.
I Asked to show that 565537 ≡ 730 930 mod p you could do it

using a pocket calculator and repeated squaring. [Hint:
65537 = 216 + 1, so 16 squarings will find 565536 mod p.]
I Computing that f (65537) = 730 930 is easy.

I But given y = 730 930 and asked to find m such that
5m ≡ 730 930 mod p you are somewhat stuck.
I Computing that h(730 930) = 65537 is hard.



Sudoku Analogy for One-way Functions
A one-way function is a bijective function that is fast to compute,
but whose inverse is hard to compute. It is beyond the scope of
this course to make this more precise. This analogy may be useful.
I Given the starting Sudoku grid on the left, it will probably

take you a while to find the unique solution on the right.
I But given the solution on the right, you can verify in a few

seconds that it is a Latin square (as in Example 3.15) and has
the same entries as the left grid.

This shows Sudoku is in the class NP, of problems whose solution
can be checked in polynomial time. P = NP if and only problems
whose solution can be checked quickly can also be solved quickly.



ElGamal Cryptosystem and Further Comments
Diffie–Hellman can be turned into the ElGamal cryptosystem: see
Question 6 on Sheet 8.

I ElGamal avoids the drawback of Diffie–Hellman that either
Alice and Bob both have to be online at the same time, or
one must wait for the other to respond before they can
exchange messages.

I It is faster to use Diffie–Hellmann to agree a secret key, and
then switch to a a block cipher such as DES or AES using this
key.

I Diffie–Hellman is secure only if the Discrete Log Problem is
hard. This is widely believed to be true (for classical
computers). But it is more likely that the Discrete Log
Problem is easy, or that someone will make a quantum
computer big enough to solve practical instances of it, than
that AES has a sub-exhaustive attack.

For these reasons block ciphers and stream ciphers are still widely
used.



Inverting Exponentiation Modulo p

In the RSA cryptosystem, we use modular exponentiation as the
encryption map. We therefore need to know when it is invertible.

Lemma 11.3
If p is prime and hcf(a, p − 1) = 1 then the inverse of x 7→ xa mod
p is y 7→ y r mod p, where ar ≡ 1 mod p − 1.

For example, if p = 29 then x 7→ x7 is not invertible, and x 7→ x3

is invertible, with inverse y 7→ y19. This works, since after doing
both maps, in either order, we send x to x57; by Fermat’s Little
Theorem, x57 = x28×2+1 = (x28)2x ≡ x mod 29.

Given p and a, one can use Euclid’s algorithm to find s, t ∈ Z such
that as + (p − 1)t = 1. Then as = 1− pt so as ≡ 1 mod p − 1,
and we take r ≡ s mod p − 1.

This proves Lemma 11.3, and shows that it is fast to find r . Thus
we cannot use x 7→ xa mod p as a secure encryption function.



Inverting Exponentiation Modulo n

Fact 11.4
Let p and q be distinct primes. Let n = pq. If

hcf
(
a, (p − 1)(q − 1)

)
= 1

then x 7→ xa mod n is invertible with inverse y 7→ y r mod n, where
ar ≡ 1 mod (p − 1)(q − 1).

Example 11.5

Let p = 11, q = 17, so n = pq = 187 and (p − 1)(q − 1) = 160.
Let a = 9. Adapting the proof for Lemma 11.3, we use Euclid’s
Algorithm to solve 9s + 160t = 1, getting s = −71 and t = 4.
Since −71 ≡ 89 mod 160, the inverse of x 7→ x9 mod 187 is
y 7→ y89 mod 187.

Thus given a, p and q it is easy to find r as in Fact 11.4. But it is
believed to be hard to find r given only a and n. This makes
x 7→ xa mod n suitable for use in a cryptosystem.



RSA Cryptosystem
Let n = pq be the product of distinct primes p and q. In the RSA
Cryptosystem, with RSA modulus n,

P = C = {0, 1, . . . , n − 1}
and

K =
{

(p, q, a) : a ∈ {1, . . . , n − 1},hcf
(
a, (p − 1)(q − 1)

)
= 1

}
.

The public key corresponding to (p, q, a) is (n, a) and the private
key corresponding to (p, q, a) is (p, q, r), where ar ≡ 1 mod
(p − 1)(q − 1). (Note that a is part of the public key, so unlike
Diffie–Hellman, it is public.) The encryption function for (p, q, a) is

x 7→ xa mod n

and the decryption function is

y 7→ y r mod n.

Note that anyone knowing the public key can encrypt, but only
someone knowing the private key, or the entire key (p, q, a), can
decrypt (or so it is widely believed).



Quiz on RSA
True or false?

I Alice’s encryption exponent a is public knowledge.
(A) False (B) True

I Alice’s decryption exponent r is public knowledge.
(A) False (B) True

I If Malcolm can learn r then he decrypt.
(A) False (B) True

I If Malcolm can learn r then he can factor n.

(In Part D extras.)

(A) False (B) True

Suppose Alice’s RSA modulus n is 13× 17 = 221 and her
encryption exponent is 8.

I If Bob’s plaintext is 2, what number will he send to Alice?
(A) 2 (B) 35 (C) 223 (D) 256

I Suppose Bob mistakenly uses the (invalid) plaintext 223.
What will Alice decode his ciphertext 2238 mod 221 as?

(A) 2 (B) 35 (C) 223 (D) 256
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Key Distribution and Other Traps
One problem with RSA is that Bob somehow has to learn Alice’s
public key. If Alice emails her public key to Bob, there is a
man-in-the-middle attack, in which Malcolm tricks Bob into
encrypting with his public key instead. See video! There are
several other traps for the unwary.
I Suppose Alice is expecting a ‘Yes’, ‘No’ message from Bob,

and Eve the eavesdropper knows this. Alice receives an RSA
ciphertext from Bob and decrypts it, using her private key, to
read ‘Yes’. Can Eve learn Bob’s message?

(A) No (B) Yes

What if Alice and Bob instead used AES with a shared secret
key. Can Eve learn Bob’s message?

(A) No (B) Yes
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(A) No (B) Yes

What if Alice and Bob instead used AES with a shared secret
key. Can Eve learn Bob’s message?

(A) No (B) Yes

Why? Anyone can encrypt an RSA message to Alice, so Eve can
encrypt ‘Yes’ and ‘No’ and see which one agrees with Bob’s
ciphertext. She cannot do this with AES, as she does not know the
key. To avoid this problem, Bob should ‘pad’ his message with
some random numbers, sending ‘Yes13242394239423 . . . ’.



Key Distribution and Other Traps
One problem with RSA is that Bob somehow has to learn Alice’s
public key. If Alice emails her public key to Bob, there is a
man-in-the-middle attack, in which Malcolm tricks Bob into
encrypting with his public key instead. See video! There are
several other traps for the unwary.
I Suppose Alice is expecting a ‘Yes’, ‘No’ message from Bob,

and Eve the eavesdropper knows this. Alice receives an RSA
ciphertext from Bob and decrypts it, using her private key, to
read ‘Yes’. Can Eve learn Bob’s message?

(A) No (B) Yes

What if Alice and Bob instead used AES with a shared secret
key. Can Eve learn Bob’s message?

(A) No (B) Yes
No-one has found a mathematical attack on RSA other than
factorizing n. The best known algorithm (the Number Field Sieve) was
used to factorize a 768 bit n in 2010. This took about 1500 computer
years, in 2010 technology.

NIST (US standards body) now recommend that n has 2048 bits.



RSA in Practice

Example 11.6
(1) For a small example, take p and q as in Example 11.5. If

Alice’s public key is (187, 9) then her private key is
(11, 17, 89). If Bob’s message is 10 then he sends 109 to
Alice, since 109 ≡ 109 mod 187. Alice decrypts to 10 by
computing 10989 mod 187.

(2) The Mathematica notebook PKC.nb available from Moodle
can be used when p and q are large. It has some ‘helper
functions’ for encrypting and decrypting strings.

Please use it for Question 3 on Problem Sheet 8. (If you do
not get a message from your partner then instead email the
lecturer your public key for a substitute.)

(3) RSA is much slower than block ciphers such as AES. In
practice RSA is often used to encrypt a key for AES or
another block cipher. This is how HTTPS (padlock in your
address bar) and Pretty Good Privacy work.



Quiz on Diffie–Hellman and RSA
Let p be a prime of size about 21024.

(a) Given g and a it is fast to compute ga mod p.
(A) False (B) True

(b) Given g and ga mod p, with a known to be in {1, . . . , p − 2},
it is fast to compute a.

(A) False (B) True

(c) The function {1, . . . , p − 1} → {1, . . . , p − 1} mod p defined
by x 7→ x2 is invertible.

(A) False (B) True

(d) If hcf(a, p − 1) = 1 then the function
{1, . . . , p − 1} → {1, . . . , p − 1} defined by x 7→ xa mod p is
invertible, and it is fast to compute its inverse.

(A) False (B) True

(e) Let g be a primitive root modulo p. The function
{0, . . . , p − 2} → {1, . . . , p − 1} defined by m 7→ gm mod p is
invertible and it is fast to compute its inverse.

(A) False (B) True
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Quiz on Diffie–Hellman and RSA [continued]
Let p and q be primes of size about 21024 and let n = pq.

(f) If hcf
(
a, (p − 1)(q − 1)

)
= 1 then the function

{1, . . . , n − 1} → {1, . . . , n − 1} defined by x 7→ xa mod n is
invertible.

(A) False (B) True

(g) Suppose x 7→ xa mod n is invertible. Given a and n it is fast
to compute its inverse.

(A) False (B) True

(h) Let x 7→ xa mod n be the encryption function in RSA. The
decryption function is y 7→ y r mod n where ar ≡ 1 mod
(p − 1)(q − 1).

(A) False (B) True

(i) Let (n, a) be an RSA public key with private key (p, q, r).
Knowing (n, a) and the decryption exponent r in the private
key, it is possible to find p and q.

(A) False (B) True

For (i) see the optional extras in §11 of the Part D Notes, in
particular Example 11.7.
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RSA as an Illegal Munition



§12 Digital Signatures and Hash Functions
Suppose Alice and Bob have the RSA keys:

public private

Alice (m, a) (p, q, r)
Bob (n, b) (?, ?, s)

Suppose Alice wants to tell Bob her bank details in a message x .
She looks up his public key (n, b) and sends him eB(x) = xb mod
n. (Assume that x < n.)

Malcolm cannot decrypt xb mod n, because he does not know s.
But if he has control of the channel, he can replace xb mod n with
another x ′b mod n, of his choice.

This requires Malcolm to know Bob’s public key. So the attack is
specific to public key cryptosystems such as RSA. If the key k is
secret, only Alice and Bob know the encryption function ek .

How can Bob be confident that a message signed ‘Alice’ is from
Alice, and not from Malcolm pretending to Alice?
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Motivation for Hash Functions

RSA keys public private

Alice (m, a) (p, q, r)
Bob (n, b) (?, ?, s)

Alice and Bob’s encryption and decryption functions are

eA(x) = xa mod m dA(x) = x r mod m

eB(x) = xb mod n dB(x) = x s mod n.
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Motivation for Hash Functions
Alice and Bob’s encryption and decryption functions are

eA(x) = xa mod m dA(x) = x r mod m

eB(x) = xb mod n dB(x) = x s mod n.

Example 12.1

Bob is expecting a message from Alice. He receives z , and
computes dB(z) = zs mod n, but gets garbage. Thinking that
Alice has somehow confused the keys, he computes eA(z) = za

mod m, and gets the ASCII encoding of

‘Dear Bob, my account number is 40081234, best wishes, Alice’.

(a) How did Alice compute z?

(b) Should Bob believe z was sent by Alice?

(c) Can Malcolm read z?

(d) How can Alice avoid the problem in (c)? (Assume that
m < n.)
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Signed Messages using RSA

Recall that Alice’s RSA functions are

eA(x) = xa mod m dA(x) = x r mod m.

Let x ∈ N0 be Alice’s message. If Alice’s RSA modulus m is about
22048 then the message x is a legitimate ciphertext only if
x < 22048. This may seem big, but, using the 8-bit ASCII coding,
it means only 2048/8 = 28 = 256 characters can be sent.

Alice can get round this by splitting the message into blocks, but
computing dA(x (i)) for each block x (i) ∈ {1, . . . , n − 1} is slow. It
is better to send x , and then append dA

(
h(x)

)
where

h(x) ∈ {0, 1, . . . , n − 1} is a hash of x .



Hash Functions
Definition 12.2

(i) A hash function of length r is a function h : N0 → Fr
2. The

value h(x) is the hash of the message x ∈ N0.

(ii) Let (m, a) be Alice’s public key in the RSA cryptosystem
where m > 2r . To sign a message x , Alice computes
h(x) ∈ Fr

2 and, reading h(x) as a number written in binary,
computes dA

(
h(x)

)
. The pair

(
x , dA(h(x))

)
is a signed

message of x from Alice.

Bob (or anyone else) verifies that a pair (x , v) is a valid signed
message from Alice by checking that h(x) = eA(v).

A cryptographically useful hash function satisfies:

(a) It is fast to compute h(x).
(b) Given a message x ∈ N0, and its hash h(x), it is hard to find

y ∈ N0 such that y 6= x and h(y) = h(x). (Preimage
resistance.)

(c) It is hard to find a pair (x , x ′) with x 6= x ′ such that
h(x) = h(x ′). (Collision resistance.)
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Preimage Resistance: Example 12.3
Malcolm has intercepted a signed message (x , v) from Alice. If he
can find y with h(y) = v then he can replace x with y and Bob
will still verify Alice’s signature.

Assume hash values are distributed uniformly at random in Fr
2.

I Given a hash value v ∈ Fr
2, what is the probability that a

random y ∈ N0 will have h(y) = v?
(A) 1

22r
(B) 1

2r (C) 1
2r/2

(D) 1
2

I How many hashes does Malcolm need to compute on average
to find y such that h(y) = v?

(A) 2r/2 (B) 2r−1 (C) 2r (D) 22r

I What is the distribution of the number of hashes Malcolm
computes before finding a suitable y?

Answer: geometric with
parameter 1/2r .

Therefore ‘hard to find’ in (b) means ‘takes about 2r hashes’.

(b) Given a message x ∈ N0, and its hash h(x), it is hard to find
y ∈ N0 such that y 6= x and h(y) = h(x). (Preimage
resistance.)
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Birthday Paradox
Assume hash values are distributed uniformly at random in Fr

2.

I Given a pair (x , x ′) ∈ N0, what is the probability that
h(x) = h(x ′)?

(A) 0 (B)
1

2r
(C)

1

2r+1
(D)

1

22r

I Suppose we hash R distinct numbers, x (1), . . . , x (R). How
many (unordered) pairs {x , x ′} with x 6= x ′ can be made?

(A) R (B)
R(R − 1)

2
(C)

R(R + 1)

2
(D) R(R − 1)

I How many numbers do we have to hash before the expected
number of collisions h(x) = h(x ′) is at least 1?

(A) About 2r (B) About 2r/2 (C) About 2r−1 (D) Depends on h

Exercise 12.4
Let h : N0 → Fr

2 be a good hash function. On average, how many
hashes does an attacker need to calculate to find x , x ′ ∈ N0 with
x 6= x ′ and h(x) = h(x ′)?
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Summary of Hash Functions

We can now make precise what ‘hard’ means in our requirements
for a good hash function h : N0 → Fr

2

(a) It is fast to compute h(x).

(b) Given a message x ∈ N0, and its hash h(x), it is hard to find
y ∈ N0 such that y 6= x and h(y) = h(x). (Preimage
resistance.)
I By Example 12.3, ‘hard’ means that the attacker must

compute about 2r hashes to find y .

(c) It is hard to find a pair (x , x ′) with x 6= x ′ such that
h(x) = h(x ′). (Collision resistance.)
I By Exercise 12.4, ‘hard’ means that the attacker must

compute about 2r/2 hashes to find x ′.



Hash Functions In Practice
A block cipher with keyspace F`

2 and block size n can be used as a
hash function. Fix an initialisation state z(0) ∈ Fn

2. Chop the
message x (assumed converted to binary) into binary words x (1),
x (2), . . ., x (t) ∈ F`

2. Then use the block cipher with keys x (i),
starting with z(0) ∈ F`

2 as follows:

z(1) = z(0) + ex(1)(z
(0))

z(2) = z(1) + ex(2)(z
(1))

...

z(t) = z(t−1) + ex(t)(z
(t−1))

The final state z(t) ∈ Fr
2 depends on the entire message x in a

complicated way, so is a good choice for h(x). Using RSA, Alice
sends the signed message

(
x , dA

(
h(x)

))
.

I Should the initialization vector z(0) be secret?

(A) No (B) Yes

No, since a receiver of the message x needs to know z(0) in order
to verify the hash.
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Block Ciphers as Hash Functions
Recall that to hash a message x (in binary) we chop x into binary
words x (1), x (2), . . ., x (`) ∈ F`

2, such that each x (i) < 2r and then
use the block cipher with keys x (i), starting with z(0) ∈ F`

2 as
follows:

z(1) = z(0) + ex(1)(z
(0))

z(2) = z(1) + ex(2)(z
(1))

...

z(t) = z(t−1) + ex(t)(z
(t−1))

to get the hash value z(t) ∈ Fr
2.

Exercise 12.5
Suppose that we use AES (with 128-bit keys) to hash a message
x ∈ F128

2 , using the initialisation state z(0) = 0 . . . 0 ∈ F128
2 . Then

only one step is needed above and the hash value is
h(x) = ex(0 . . . 0). An adversary therefore knows the plaintext
0 . . . 0 and its encryption using x as the key. Why is it hard for her
to find x?



Coin-flips by Email

Example 12.6

Alice flips a coin and records the result. Bob guesses heads or tails
and Alice informs him whether he is correct. If the two can
communicate only by email, how can Bob be sure that Alice does
not falsely claim that the flip is the opposite of Bob’s guess?

This was demonstrated in an early Q&A session: see the answer
posted to the Moodle Forum.



SHA-256

Example 12.7 (SHA-256)

SHA-256 is the most commonly used hash function today. It has
length 256. There is an internal state of 256 bits, divided into 8
blocks of 32 bits.

The blocks are combined with each other by multiplying bits in the
same positions (this is ‘logical and’), addition in F32

2 , cyclic shifts
(like an LFSR), and addition modulo 232, over 64 rounds.

The best attack can break (b) when the number of rounds is
reduced to 57, and (c) reducing the rounds further to 46.

A draft of the questions in this year’s MT362 exam will be posted
to Moodle. It has been encrypted using AES in ECB mode: the
key is the first 128 bits of the SHA-512 hash of the lecturer’s
password. The SHA-256 hash of this password is

170972f840215582a876e057f7b22ff662d77e94526df8e1f57c854ccd29c6c5

Here each of the 64 digits is a hexadecimal digit representing 4
bits. The decimal form is in the Part A Slides.
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Wiring Diagram for SHA256



Hashing Passwords — Optional

When you create an account online, you typically choose a
username, let us say ‘Alice’ and a password, say ‘alicepassword’. A
well run website will not store your password. Instead,
oversimplifying slightly, your password is converted to a number x
and the SHA-256 hash h(x) is stored. By (b), it is hard for anyone
to find another word whose hash is also h(x).

Provided your password is hard to guess, your account is secure,
and you have avoided telling the webmaster your password.

Exercise 12.8
As described, it will be obvious to a hacker who has access to the
password database when two users have the same password.
Moreover, if you use the same password on two different sites, the
same hash will be stored on both. How can this be avoided?



Example 12.9 (Bitcoin Blockchain — Optional)

The bitcoin blockchain is a distributed record of all transactions
involving bitcoins. When Alice transfers a bitcoin b to Bob, she
appends a message x to his bitcoin, saying ‘I Alice give Bob the
bitcoin b’, and signs this message, by appending da(h(x)).

Signing the message ensures that only Alice can transfer Alice’s
bitcoins. But as described so far, Alice can double-spend: a few
minutes later she can sign another message

(
x ′, da(h(x ′))

)
where

x ′ says ‘I Alice give Charlie the bitcoin b’.

To avoid this, transactions are validated. To validate a list of
transactions

(
b(1), x (1), da(1)(h(x (1)))

)
,
(
b(2), x (2), da(2)(h(x (2)))

)
, . . .

a miner searches for c ∈ N such that, when this list is converted to
a number, its hash, by two iterations of SHA-256, has a large
number of initial zeros.



Example 12.9 [continued]
When Bob receives

(
b, x ′, da(h(x ′))

)
, he looks to see if there is a

block already containing a transaction involving b. When Bob
finds (b, x , da(h(x))) as part of a block with the laboriously
computed c, Bob knows Alice has cheated.

Vast numbers of hashes must be computed to grow the blockchain.
Miners are incentivized to do this: the reward for growing the
blockchain is given in bitcoins.

This time in 2019 the bitcoin traded at $7415.64; in 2018 it was at
$3245.00, in 2017 it was at a (then) near record high of
$15879.79. This year it is $19,145.10. The reward for growing the
blockchain is 12.5 bitcoins. (This gradually decreases; there will
never be more than 21× 106 bitcoins in circulation.) Most
transactions therefore involve small fractions of a bitcoin. A typical
block verifies about 2500 separate transactions.

Miners are further incentivized by transaction fees, again paid in
bitcoins, attached to each transaction. These will become more
important as the per block reward gets smaller.


