
ERROR CORRECTING CODES MT361/MT461/MT5461

MARK WILDON

These notes are intended to give the logical structure of the course;
proofs and further remarks will be given in lectures. Further install-
ments will be issued as they are ready. All handouts and problem
sheets will be put on Moodle.

I would very much appreciate being told of any corrections or possible
improvements to these notes.

You are warmly encouraged to ask questions in lectures, and to talk
to me after lectures and in my office hours. I am also happy to answer
questions about the lectures or problem sheets by email. My email
address is mark.wildon@rhul.ac.uk.

Lecture times: Monday 3pm (ABLT3), Tuesday 3pm (ABLT1), Thurs-
day 10am (BLT2).

Extra lecture for MT461/MT5461: Thursday noon (ABLT2).

Office hours in McCrea 240: Tuesday 11am, Thursday 3pm, Fri-
day 3pm.

Date: Second term 2011/12.

2

Preliminaries

Error correcting codes were invented in the late 1940s and have since
become an essential part of the modern electronic world. Compact
discs, spacecraft and mobile phone networks all depend on ideas we
will develop in this course. Many of these ideas are due to Richard
W. Hamming (1915–1998).

“Mathematics is not merely an idle art form, it is an
essential part of our society.”

R. W. Hamming1.

Learning Objectives. This course will give a straightforward intro-
duction to error-detecting and error-correcting codes. We will begin
with some basic definitions and examples of codes. There will then be
three main parts.

(A) Further examples of codes. Error detection and error correction
and connection with Hamming distance and Hamming balls.
Information rate and the binary symmetric channel.

(B) The Main Coding Theory Problem. Singleton bound and codes
based on Latin squares. Plotkin bound and Hadamard codes.
Hamming and Gilbert–Varshamov bounds.

(C) Linear codes. Generator matrices and encoding. Cosets and de-
coding by standard arrays. Parity check matrices and syndrome
decoding. Hamming codes. Dual codes.

The MT461/MT5461 course has extra material on Reed–Solomon codes
and cyclic codes. Questions on problem sheets and handouts on Moo-
dle labelled MSc/MSci are on this extra material and can safely be
ignored if you are doing MT361.

Recommended Reading.

[1] Combinatorics: Topics, Techniques, Algorithms. Peter J. Came-
ron, CUP, 1994. (Chapter 17 gives a concise account of coding
theory.)

[2] Coding and Information Theory. Richard W. Hamming, Pren-
tice-Hall, 1980. (Chapters 2, 3 and 11 are relevant to this
course.)

[3] A First Course in Coding Theory. Raymond Hill, OUP, 1986.
(Highly recommended. It is very clear, covers all the 3rd year
course, and the library has several copies.)

1Mathematics on a Distant Planet, Amer. Math. Monthly, 105 (1998) 640–650,

bottom of page 640.

3

[4] Coding Theory: A First Course. San Ling and Chaoping Xing,
CUP, 2004.

[5] The Theory of Error-Correcting Codes. F. J. MacWilliams and
N. J. A. Sloane, North-Holland, 1977. (Mainly for reference.)

Hamming’s original paper, Error Detecting and Error Correcting
Codes, Bell Systems Technical Journal, 2 (1950) 147–160, is beautifully
written and, for a mathematics paper, very easy to read. It is available
from http://www.lee.eng.uerj.br/~gil/redesII/hamming.pdf.

Prerequisites.

• Basic discrete probability.

• Modular arithmetic in Zp where p is prime. If you are happy
with calculations such as 5+ 4 ≡ 2 mod 7, 5× 4 ≡ 6 mod 7 and
5−1 ≡ 3 mod 7, that should be enough.

• Some linear algebra: vector spaces, subspaces, matrices, image
and kernel, rank-nullity theorem, reduced row-echelon form. I
will issue a handout later in term to remind you of these ideas.

Problem sheets and exercises. There will be eight marked prob-
lem sheets and one preliminary sheet that you can mark for yourself.
Exercises set in these notes are intended to be basic tests that you
are following the material. I will go through some in lectures: please
attempt all the rest yourself.

Note on optional questions. Optional questions on problem sheets
are included for interest and to give extra practice. Harder optional
questions are marked (�). If you can do the compulsory questions
and know the bookwork, i.e. the definitions, main theorems, and their
proofs, as set out in the handouts and lectures, you should do very well
in the exam.

1. Introduction

The basic problem we will consider in this course is as follows.

Problem 1.1. Alice wants to send a message to Bob. She can com-
municate with him by sending him a word formed from symbols taken
from some fixed set. But every time she sends a word, there is a chance
that some of its symbols will be corrupted, so the word that Bob re-
ceives may not be the word that Alice sent. How can Alice and Bob
communicate reliably?

4

The symbols are sent through a channel. The channel could be a
phone line, a fibre-optic cable, the air in a room (the medium through
which sound-waves travel), a compact-disc, and so on. The errors could
come from human error, imperfections in the equipment, aeroplanes
flying overhead, scratches on the disc, and so on. These unwanted
phenomena are called noise.

Our basic setup is shown in the diagram below.

✲ ✲ ✲message
encoder

channel
decoder

decoded message

❄

noise

Example 1.2. Alice wants to send the message ‘Yes’ or ‘No’ to Bob.
The available symbols are 0 and 1, and we will imagine that the channel
is a noisy phone-line to which Alice and Bob have connected their
respective computers.

Scheme 1. The two decide, in advance, that Alice will send

• 00 for ‘No’,
• 11 for ‘Yes’.

If Bob receives 00 or 11 then he will assume this is the word that Alice
sent, and decode her message. If he receives 01 or 10 then he knows
an error has occurred, but does not know which symbol is wrong. If
he can get in touch with Alice to ask her to resend the message, this
may be acceptable.

Scheme 2. Suppose instead they decide that Alice will send

• 000 for ‘No’,
• 111 for ‘Yes’.

Then Bob can decode Alice’s message correctly, provided at most one
error occurs, by assuming that the symbol in the majority is correct.

Under either scheme, if two errors occur then when Bob decodes the
received word he gets the wrong message.

We will now see how this example is described using the technical
language of coding theory.

Definition 1.3. Let q ∈ N. A q-ary alphabet is a set of q different
elements, called symbols. A word of length n over an alphabet A is a
sequence (x1, x2, . . . , xn) where xi ∈ A for each i.

5

Equivalently, a word is an element of An = A×A× · · ·×A. We will
usually omit the round brackets and commas when writing words. For
example, in Example 1.2 the alphabet is {0, 1} and we may write the
word (1, 1, 1) of length 3, corresponding to ‘Yes’ in Scheme 2, as 111.

Definition 1.4. Let A be an alphabet and let n ∈ N. A code over A
of length n is a subset C of An containing at least two words. The
elements of C are called codewords. The size of C is |C|.

Definition 1.5. The binary alphabet of binary digits, or bits, is {0, 1}.
A binary code is a code over {0, 1}.

The binary alphabet and binary codes are particularly important
because they correspond to how computers store and send data.2

Example 1.2 (continued). In Scheme 1, Alice and Bob use the binary
code

C = {00, 11}
which has length 2 and size 2. The encoder is defined by

‘No’
encoded as

−−−−−−−→ 00

‘Yes’
encoded as

−−−−−−−→ 11.

The decoder decodes 00 as ‘No’ and 11 as ‘Yes’. If 01 or 10 is received
then rather than take a blind guess, Bob requests retransmission.

In Scheme 2, Alice and Bob use the binary code

D = {000, 111}
which has length 3 and size 2. The encoder encodes ‘No’ as 000 and
‘Yes’ as 111. The decoder decodes a received word according to its
majority symbol, so if Bob receives

000, 001, 010, 100 he assumes Alice sent 000 and decodes as ‘No’.

111, 110, 101, 011 he assumes Alice sent 111 and decodes as ‘Yes’.

In Part A we will define the Hamming distance between two words
of the same length and use this to generalize the decoding strategy in
Scheme 2. You may be able to guess the definition of Hamming distance
(for binary words) from the diagrams showing {0, 1}2 and {0, 1}3 on
the next page.

2
Some early computers represented internal data by words over ternary (3-ary)

or decimal (10-ary) alphabets, but they are now mere historical curiosities.

6

00 10

01 11

000 100

001 101

010 110

011 111

Example 1.2 (concluded). Suppose that whenever a bit 0 or 1 is
sent down the channel used by Alice and Bob, there is a probability p
that it flips, so a 0 becomes a 1, and a 1 becomes a 0.

Exercise: Why is it reasonable to assume that p < 1/2?

For definiteness we shall suppose that Alice sends ‘Yes’ to Bob: you
should be able to check that we get the same behaviour if Alice sends
‘No’. Using Scheme 2, Alice sends 111 and Bob decodes wrongly if and
only if he receives 000, 001, 010 or 100. This event has probability

p3 + 3p2(1− p).

The preliminary problem sheet leads you through a step-by-step anal-
ysis of Scheme 1 and asks you to compare it with Scheme 2.

Remarks 1.6. The following remarks on Definition 1.4 should be
noted.

(1) By Definition 1.4, all the codewords in a code have the same
length.

(2) We assume that all our codes have size≥ 2, because if a code has
no codewords, or only one, then it is useless for communication.

(3) It is very important to realise that the codes in this course are

not secret codes. The set of codewords, and how Alice and
Bob plan to use the code to communicate, should be assumed
to be known to everyone.3

3
Of course there is nothing to stop Alice encrypting her message to Bob be-

fore it is encoded for the channel. In addition, it is often important that Alice is

roughly equally likely to send each of her possible messages: this is achieved by

source encoding, which is the subject of MT441 Channels. This course is about the

innermost step in the chain of communication.

7

(4) The definition of a code does not mention the encoder or de-
coder. This is deliberate: the same code might be used for
different sets of messages, and with different decoding strate-
gies: see Example 1.7.

Example 1.7. Suppose Alice wants to send Bob one of the messages
‘Launch nukes’ or ‘Stand-down’. They decide to use the binary code
D = {000, 111} from Example 1.2, with the encoder

‘Stand-down’
encoded as

−−−−−−−→ 000

‘Launch nukes’
encoded as

−−−−−−−→ 111.

Erring on the side of safety, they decide that if Bob receives a non-
codeword (i.e. one of 001, 010, 100, 110, 101, 011), then he will request
retransmission. So the same code is used, but with a different encoder
and a different decoding strategy.

The following two exercises will be discussed in lectures.

Exercise: Alice thinks of a number between 0 and 15. Playing the role
of Bob, how many questions do you need to ask Alice to find out her
number?

Exercise: Now suppose that Alice is allowed to tell at most one lie
when she answers Bob’s questions; this corresponds to noise in the
channel. Repeat the game in the previous exercise: try not to use too
many questions!

Example 1.8. We will convert some of the possible questioning strate-
gies for Bob into binary codes of size 16.

We end with three examples of codes used in real life. These will
not be covered fully in lectures, and you are not expected to remember
any details. Exercise: read the examples and think about how each
fits into our setup of encoder, channel and decoder.

Example 1.9. A compact-disc contains information in the form of a
sequence of microscopic pits on a disc that are read by a laser. Here the
compact disc is the channel, and its purpose is to transmit information
reliably through time, rather than through space.

The pits encode a long sequence of the bits 0 and 1. The encoding and
decoding scheme used will always correct up to 16 errors in a block of
2048 consecutive bits. If, however, the errors occur in adjacent bits,
as is usual for a scratch, then at least 128 consecutive errors may be
corrected.

8

The code used in compact discs is a Reed–Solomon code: these codes
will be treated in detail in the MSc/MSci course.

Example 1.10. The Australian railway company ‘Victorian Railways’
used a telegraph system and codebook. The entire codebook can be
read online at http://www.railpage.org.au/telecode/tc04.gif.
html. Here is an extract from near the start.

Ayah Provide locomotive to work
Aybu Return locomotive at once
Azaf Breakdown train left at . . .
Azor Arrange to provide assistance locomotive
Azub A second locomotive will be attached to . . .

In telegraph transmission only upper case were used. So a typical mes-
sage might be something like ‘Breakdown train left at Sydney, provide
locomotive to work’, encoded as AZAF SYDNEY AYAH. The code has
these properties.

(1) All codewords are of length 4 and are words over the alphabet
{A,B,C, . . . ,X,Y,Z}. (This ignores place names such as SYD-
NEY, which break our rule that all codewords must have the
same length.)

(2) The codewords are easily pronounceable. Most, but not all,
have the pattern vowel–consonant–vowel–consonant. Probably
this reduced operator error when encoding messages.

(3) Most codewords differ from one another in at least two letters.
So if I mean to send ‘Ayah’, but because of human error, or a
problem with the line, ‘Ayam’ is received, then it will be clear
an error has occurred.

Exercise: Most codewords are not English words, although a few are:
‘Coma’ is an instruction about extra trucks, ‘Cosy’ is an instruction
about loading trucks. Why do you think English words were usually
avoided?

Exercise: Related instructions often start with the same letter: is this
a good feature of the coding scheme?

The high degree of redundancy in normal English text means that a
reader can detect and correct many errors. For example, even though
the sentence

‘Tae mext trxin tb Lxnton kas &e*n cznce!Hed’

9

has many errors, there is no difficulty in working out what it says. Here
it is worth bearing in mind that what is easy for a human may be very
hard to program on a computer.

The Australian telegraph code removes much of the redundancy from
English, in the interests of efficient use of the telegraph lines. However,
it is still the case that only a tiny number of all four letter strings are
used, so the code can still detect errors. The encoding process, turning
long sentences about train manoeuvers into four letter codewords, re-
places the complicated (and poorly understood) redundancy of English
with redundancy over which we have more control.

Example 1.11. The Mariner 9 probe, launched in 1971, took the first
pictures of Mars, ultimately transmitting 7239 pictures at a resolution
of 700 × 832 pixels. The images were grey-scale, using 64 different
shades of grey. The pictures were transmitted back to Earth by sending
one pixel at a time, so we can think of a message as a single number
between 0 and 63. The channel could send the two binary digits 0
and 1.

The näıve approach of just encoding each pixel as a string of 6 bits
would not have worked well. One survey article4 gives the probability
as 0.05 that any particular bit will be flipped by the channel (so a 0
becomes a 1, and a 1 becomes a 0, as in the final part of Example 1.2).
The probability that any particular pixel will be correctly transmitted
is then 0.956 ≈ 0.74. So about 26% of the image will be wrong.

It was acceptable for each pixel to be encoded by up to 32 bits, so
increasing the amount of data to be stored and transmitted by a factor
of 5. A code in which each bit was repeated 5 times, along the lines of
the codes C and D in Example 1.2, would have reduced the probability
that a pixel was incorrectly decoded to about 0.8%.

The code actually used was a binary Hadamard code of length 32
and size 64. We will see these codes in Part B. This code is capable of
correcting any 7 errors in a received word. (So of the 32 bits sent for
each pixel, even if 7 of them are corrupted by the channel, the pixel will
still be correctly decoded.) This reduces the probability of incorrect
decoding a pixel to less than 0.014%. Most images could be expected
to have fewer than 100 incorrect pixels.

The diagram overleaf shows 32 of the 64 codewords in the binary
Hadamard code used in Mariner 9. A black square represents 0 and
a white square represents 1. The other 32 codewords are obtained by
flipping each bit in the 32 codewords shown. For example, the first row
shows the codeword 00 . . . 0, which flips to 11 . . . 1.

4
Van Lint, Coding, decoding and combinatorics, available from http://

alexandria.tue.nl/repository/freearticles/593591.pdf.

10

When working with codes of long length and large size, it is no longer
at all obvious how to decode a received word. For example, suppose
you receive the word (0, 0, 1, 1, 1, 0, . . . , 1, 0, 1, 1), represented by

.

It is far from obvious which codeword in the Mariner 9 code it is nearest
to. In fact the received word differs from the bottom row in the matrix
above in 7 positions, and from all other rows in at least 11 positions,
so would be decoded as (0, 1, 1, 0, 1, 0 . . . , 1, 0, 0, 1). (And then this
codeword would be converted back into the corresponding shade of
grey.)

There is a very elegant decoding algorithm for the Mariner 9 code,
based on the Discrete Fourier Transform. Critically, this algorithm was
easy to implement on the relatively primitive computers available to
NASA in 1971. See Van Lint’s survey article for an outline. Finding
fast and accurate decoders for large codes is a central problem in coding
theory and has motivated much recent work in the subject.

11

Part A: Hamming distance and nearest neighbour decoding

2. Hamming distance and error detection/correction

In Definition 2.7 below we give a precise definition of what it means
for a code to be able to detect, or correct, a given number of errors.
For this we need the idea of Hamming distance between words, which
makes precise our intuitive idea of when two words are close together.

Definition 2.1. Let A be an alphabet. Let u, v ∈ An be words of
length n. The Hamming distance between u and v, denoted d(u, v), is
the number of positions in which u and v are different.

In mathematical notation, d(u, v) =
���i ∈ {1, 2, . . . , n} : ui �= vi

���.
We will often abbreviate ‘Hamming distance’ to ‘distance’.

Example 2.2. Working with binary words of length 4, we have

d(0011, 1101) = 3

because the words 0011 and 1101 differ in their first three positions,
and are the same in their final position. Working with words over
the alphabet {A,B,C, . . . ,X,Y,Z} we have d(TALE,TAKE) = 1 and
d(TALE,TILT) = 2.

Exercise: Check that d(0011, 0101) = 2. Find the number of binary
words v of length 4 such that d(0011, v) = r for each r ∈ {0, 1, 2, 3, 4}.6

The next theorem shows that Hamming distance has the expected
properties of a distance. Part (iii) is the triangle inequality for Ham-
ming distance: it will be used in Theorem 3.4 below.

Theorem 2.3. Let A be a q-ary alphabet and let u, v, w be words over

A of length n.

(i) d(u, v) = 0 if and only if u = v;
(ii) d(u, v) = d(v, u);
(iii) d(u, w) ≤ d(u, v) + d(v, w).

Exercise: Find all English words v such that

d(WARM, v) = d(COLD, v) = 2.

Check that the triangle inequality holds when u, v, w are WARM,
WALL and COLD, respectively. For the connection with Lewis Car-
roll’s ‘Doublets Game’, see Question 9 on Sheet 1.

6You may recognise the sequence you get. If not, try typing it into Google.

12

To motivate Definition 2.7 we introduce two important families of
codes.

Definition 2.4 (Repetition codes). Let n ∈ N and let A be a q-ary
alphabet with q ≥ 2. The repetition code of length n over A has as its
codewords all words of length n of the form

(s, s, . . . , s)

where s ∈ A. The binary repetition code of length n is the repetition
code of length n over the binary alphabet {0, 1}.

Note that if u and v are distinct codewords in a repetition code of
length n then d(u, v) = n.

In Example 1.2, Alice and Bob used the binary repetition codes of
lengths 2 and 3, with codewords {00, 11} and {000, 111}, respectively.
We saw that the length 2 repetition code could detect a single bit flip
in the channel. The length 3 repetition code, with decoding done by
the majority symbol in a received word, could correct a single bit flip.

Example 2.5. Consider the ternary repetition code of length 7 over
the alphabet {0, 1, 2} with codewords

0000000, 1111111 2222222.

Any two distinct codewords are at distance 7. If up to 6 of the symbols
in a codeword are corrupted in the channel, the received word will not
be a codeword, and so the receiver will know an error has occurred.
Decoding using the majority symbol gives the sent codeword when at
most 3 errors occur (and may succeed when more errors occur).

Example 2.6 (Parity check codes). Let n ∈ N and let C be the binary
code consisting of all binary words of length n. Let Cext be the code of
length n+ 1 whose codewords are obtained by appending an extra bit
to each codeword in C, so that the total number of 1s in each codeword
is even.

For instance, if n = 4 then C is the binary code of size 16 consisting of
all binary words of length 4. The extended code Cext has length 5 and
the same size as C, namely 16. Its codewords are

00000, 00011, 00101, 00110, . . . , 11101, 11110.

Suppose that a codeword u ∈ Cext is sent through the channel and the
word v is received. If a single bit is corrupted, so d(u, v) = 1, then v
must have an odd number of 1s. Hence v �∈ Cext and we detect that
an error has occurred. This shows that if u, u� ∈ Cext are distinct
codewords then d(u, u�) ≥ 2.

13

Exercise: How would you use the length 5 code Cext to encode a number
between 0 and 15?

Definition 2.7. Let C be a code of length n over an alphabet A and
let t ∈ N. We say that C is

• t-error detecting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that v �= u and d(u, v) ≤ t, then
v �∈ C.

• t-error correcting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that d(u, v) ≤ t, then

d(u, v) < d(u�, v)

for all codewords u� ∈ C such that u� �= u.

Remarks 2.8. We make the following remarks on Definition 2.7.

(1) Equivalently, a code C is t-error detecting if making up to t
changes in a codeword does not give another codeword. It is
t-error correcting if whenever v is a word within distance t of
a codeword u ∈ C, then v is strictly nearer to u than to any
other codeword of C. (So d(u, v) < d(u�, v) for all u� ∈ C such
that u �= u�.)

You are welcome to state the definitions in this way, but note
that we need Hamming distance to make clear what is meant
by ‘distance’ and ‘strictly nearer’.

(2) In both definitions we have d(u, v) ≤ t, so v is obtained from
u by changing up to t positions. Thus if s < t then a t-error
detecting code is also s-error detecting, and a t-error correcting
code is also s-error correcting.

If instead we required exactly t changes then, by Question 8
on Sheet 1, there would be codes that are 2-error detecting but
not 1-error detecting. The result would be theorems with long-
winded hypotheses of the form ‘Suppose C is a code that is
t-error detecting for all t ≤ c, . . . ’. This is undesirable.

(3) It may seem a bit odd to say that a code is ‘t-error correcting’
when it is the decoder (be it human or computer) that has
to do all the work of decoding! Moreover, we have seen in
Example 1.7 that the same code can reasonably be used with
different decoders. A code that is t-error correcting promises to
be able to correct up to t-errors, provided a suitable decoder is

used.

14

We will now show that Definition 2.7 agrees with our findings in
Examples 2.5 and 2.6.

Lemma 2.9. Let n ∈ N. Let C be the repetition code of length n over

a q-ary alphabet A, where q ≥ 2.

(i) C is (n− 1)-error detecting but not n-error detecting.

(ii) If n = 2m+1 then C is m-error correcting but not (m+1)-error
correcting.

(iii) If n = 2m then C is (m − 1)-error correcting, but not m-error

correcting.

The proof of part (iii) is left to you in Question 3 of Sheet 1.

Lemma 2.10. Let n ∈ N and let Cext be the binary parity check code

of length n+ 1 defined in Example 2.6. Then Cext is 1-error detecting

but not 2-error detecting. It is not 1-error correcting.

In Example 1.8 we saw two different codes of size 16 that could be
used to correct a single error. In the next lemma we show that the
code of length 12 is indeed 1-error correcting, as this term is defined in
Definition 2.7. The other code will be analysed on Sheet 2.

Lemma 2.11. Let C be the binary code of length 12 seen in Exam-

ple 1.8 whose codewords are all words of the form

u1u2u3u4 u1u2u3u4 u1u2u3u4

where u1, u2, u3, u4 ∈ {0, 1}. Then C is 2-error detecting and one 1-
error correcting. It is not 3-error detecting or 2-error correcting.

Note that, while the code C in Lemma 2.11 can be used to detect
some cases where 3 or more errors occur, it does not guarantee

to do so. The definitions of t-error detecting and t-error correcting
codes follow Hamming’s ‘adversarial’ approach, in which we aim to
decode reliably even if the enemy, who wants to cause us the maximum
inconvenience, is allowed to choose the positions in which the (up to t)
errors occur.

Example 2.12 (ISBN-10 code). All recent books have an Interna-
tional Standard Book Number (ISBN) assigned by the publisher. The
coding system changed in 2007 because the old scheme was running
out of space. However, the older ISBN-10 code is mathematically more
interesting, so we will use it. In this scheme, each book is assigned a
codeword of length 10 over the 11-ary alphabet {0, 1, 2, . . . , 9,X}.
For example, [5] in the list of recommended reading has ISBN

0-444-85193-3.

15

Here
• 0 identifies the country of publication;
• 444 identifies the publisher;
• 85193 is the item number assigned by the publisher.
• 3 is the check digit.

The hyphens are put in to make the ISBN more readable; they are
not part of the code. For us, the important feature is the check digit.
It is chosen so that if u1u2u3u4u5u6u7u8u9u10 is an ISBN then

10�

j=1

(11− j)uj = 10u1 + 9u2 + · · ·+ 2u9 + u10 ≡ 0 mod 11.

There is one technical point: it might be necessary to take 10 as a
check-digit. In this case the letter X is used to stand for 10 (it is never
used in the main part of an ISBN).

We will say that u1u2u3u4u5u6u7u8u9u10 is an ISBN if it satisfies the
check condition above (ignoring the question of whether it was ever
assigned to a book).

Lemma 2.13. The ISBN code is 1-error detecting but not 2-error de-

tecting. It is not even 1-error correcting.

We saw in the lemma that the ISBN-10 code cannot detect all double
errors. Question 5 on Sheet 1 asks you to show that the word obtained
by interchanging two adjacent positions in an ISBN is not an ISBN.
Therefore the ISBN-10 code can detect some errors, of the type likely
to be made by busy human beings.

3. Minimum distance

Question 4 on Sheet 1 shows that if C is a code such that d(u, u�) ≥ 3
for all distinct u, u� ∈ C, then C is 2-error detecting and 1-error cor-
recting. This is a special case of a very useful general result. We need
the following definition.

Definition 3.1. Let C be a code. The minimum distance of C, de-
noted d(C), is defined by d(C) = min{d(u, w) : u, w ∈ C, u �= w}.

By Definition 1.4, any code has at least two codewords, so the min-
imum distance is always well-defined.

Exercise: Let C be a code. What do you think is the relationship
between the maximum t for which C is t-error detecting / t-error cor-
recting and the minimum distance of C?

16

Example 3.2. Here is an example from Hamming’s original paper.
Let C be the binary code of length 3 with codewords

001, 010, 100, 111

as seen on Sheet 1, Question 2. Then d(u, w) = 2 for all distinct u and
w in C, so d(C) = 2. If we adjoin 000 as another codeword then the
minimum distance goes down to 1 since d(000, 001) = 1.

Lemma 3.3. Let n ∈ N.

(i) The minimum distance of any length n repetition code is n.
(ii) The minimum distance of the length n + 1 binary parity check

code Cext in Example 2.6 is 2.
(iii) The minimum distance of the square code is 3.

To add to the results in the lemma above, Question 2 on Sheet 2
gives a step-by-step proof that the 1-error correcting code of length 9
seen in Example 1.8 has minimum distance 3.

Theorem 3.4. Let C be a code with minimum distance d. Let t ∈ N.

(i) C is t-error detecting ⇐⇒ t ≤ d− 1;
(ii) C is t-error correcting ⇐⇒ 2t ≤ d − 1. [Misprinted as

‘t-error detecting’ in original.]

Corollary 3.5. A code of minimum distance d is (d−1)-error detecting
and �d−1

2 �-error correcting.

The table below (taken from Hamming’s original paper, see refer-
ence on page 3) shows the number of errors a code of small minimum
distance can detect and correct.

d(C) error detection / correction

1 no detection possible
2 1-error detecting
3 2-error detecting / 1-error correcting
4 3-error detecting / 1-error correcting
5 4-error detecting / 2-error correcting

There is a special notation for recording the most important param-
eters of a code.

Notation 3.6. If C is a code of length n, size M and minimum dis-
tance d, then C is said to be a (n,M, d)-code.

17

For example, a repetition code of length n over a q-ary alphabet is a
(n, q, n)-code [Corrected 31 January from (n, n, 2)], and the binary
parity check code of length n + 1 in Example 2.6 is a (n, 2n, 2)-code.
The square code is a (8, 16, 3)-code.

4. Nearest neighbour decoding

Let C be a code. Suppose that a codeword is sent through the chan-
nel and we receive the word v. The natural way to decode v is to look
through all the codewords of C and to pick the one that is nearest, in
the Hamming distance, to v. This procedure is called nearest neighbour

decoding. It could be that there is no unique nearest codeword to v. In
this case we shall say that nearest neighbour decoding fails.7

You have already used nearest neighbour decoding to decode words
in the quizzes on Example 2.5 and Lemma 2.11 (see the slides for Part A
on Moodle).

The example below uses the 1-error correcting code seen on Ques-
tion 4 on Sheet 1.

Example 4.1. Let C = {00000, 11100, 00111, 11011}.
(i) Suppose v = 11111 is received. Then since d(11011, 11111) = 1

and d(u�, 11111) ≥ 2 for all codewords u� �= 11011, we would decode v
as 11011 using nearest neighbour decoding.

(ii) Suppose v = 01110 is received. Then nearest neighbour decoding
fails because the nearest codewords to v are 11100 and 00111, both at
distance 2.

Nearest neighbour decoding is only one step in the decoding process.
To recover the sent word, the decoder must take the codeword given by
nearest neighbour decoding and then undo the encoder by translating
the codeword back into a message. It is therefore helpful to extend our
model of decoding to a two-step process. (The quiz on Lemma 2.11
gives an example of this.)

In the diagram overleaf, the codeword u is sent, the word v is re-
ceived, and nearest neighbour decoding gives the codeword w. The
decoded message is correct if and only if w = u. This is the case if and
only if u is the unique nearest codeword to v, i.e. d(u, v) < d(u�, v) for
all codewords u�, as in Definition 2.7.

7In practice it might be essential that the decoder always gives some result,
even if it is quite likely to be wrong; then the decoder will have to choose in some
arbitrary way from the nearest codewords to v, and hope for the best.

18

✲
u sent v received

channel
nearest
neighbour
decoder

✲
w

undo
encoder

decoded

message
✲

❄

noise

In Remark 2.8(3) we remarked that a t-error correcting code promises
to correct up to t errors, provided a suitable decoder is used. The nearest
neighbour decoder shown in the diagram above is this suitable decoder.

Exercise: Let C be a code. Show that C is t-error correcting ⇐⇒
whenever at most t errors occur in the channel, decoding a received
word using nearest neighbour decoding gives the sent codeword.

This is a convenient place to give a more geometric way of looking
at Hamming distance and t-error correcting codes.

Definition 4.2. Let A be a q-ary alphabet and let u be a word of
length n. The Hamming ball of radius t about u is

Bt(u) = {v : v ∈ An and d(u, v) ≤ t}.

An equivalent definition is that Bt(u) consists of all words that can
be obtained from u by changing up to t of its positions.

Example 4.3. The Hamming balls about the binary word 0000 are

B0(0000) = {0000}
B1(0000) = {0000, 1000, 0100, 0010, 0001},
B2(0000) = B1(0000) ∪ {1100, 1010, 1001, 0110, 0101, 0011}
B3(0000) = B2(0000) ∪ {1110, 1101, 1011, 0111}

and B4(0000) consists of all binary words of length 4.

The next lemma is essentially a restatement of the exercise above.
Recall that two sets are said to be disjoint if no element lies in both of
them.

Lemma 4.4. Let C be a code. Then C is t-error correcting ⇐⇒ for

all distinct codewords u, u� ∈ C, the Hamming balls Bt(u) and Bt(u�)
are disjoint.

19

In §5 we will use Lemma 4.4 to prove the remarkable Hamming
Packing Bound on the maximum size of a t-error correcting code of
length n.

The next exercise shows that Lemma 4.4 can be used to speed up
nearest neighbour decoding.8

Exercise: Let C be a t-error correcting code. Suppose that you receive
a word v, and that after searching through some of the codewords in C
for its nearest neighbour, you find a codeword u such that d(u, v) ≤ t.
Explain why u must be the unique nearest codeword to v.

We end Part A with the probabilistic justification for nearest neigh-
bour decoding in the case of binary codes.

Consider the binary channel in which each transmitted bit flips, so a 0
becomes a 1 and a 1 becomes a 0, independently with probability p > 0.
This channel is known as the binary symmetric channel. (It has already
been seen in Example 1.2 and Question 1 on the preliminary problem
sheet.) The probability p is called the cross-over probability. The
transition probabilities in the binary symmetric channel are shown in
the diagram below.

0 0

1 1

1− p

1− p

p

p

Theorem 4.5. Suppose that we use a binary code C of length n to

send messages through the binary symmetric channel, and that each

codeword in C is equally likely to be sent. Suppose we receive a binary

word v. For each u ∈ C,

P[u sent | v received] = pd(u,v)(1− p)n−d(u,v)C(v)

where C(v) does not depend on u. Hence P[u sent | v received] is max-

imized by choosing u to be the nearest codeword to v.

8Even with this speed up, the näıve implementation of nearest neighbour de-
coding is too slow to be used on many codes of interest. For example the 16-error
correcting Reed–Solomon code used on compact discs has size 28×223, which is far
too large to search through. Fortunately there are faster algorithms that will faith-
fully implement nearest neighbour decoding, provided at most 16 errors occur (see
the MSc/MSci course).

20

Thus, provided we accept that maximizing P[u sent | v received] is
a good idea, we are inevitably led to nearest neighbour decoding. The
syllabus talks only about ‘probability calculations’, so while interesting,
Theorem 4.5 may be regarded as non-examinable.

The assumption in Theorem 4.5 that each codeword is equally likely
to be transmitted is critical. See the optional questions on Sheet 3 for
a case where nearest neighbour decoding no longer works well because
one codeword is much more likely to be sent than another.9

Summary of Part A. In Part A we have seen the formal definition
(Definition 2.7) of t-error detecting/correcting codes. The examples
in §2 and the results in Lemmas 2.9 and 2.10 show that this definition
is a reasonable one.

We then saw other ways of thinking about t-error correcting codes,
using minimum distance (Definition 3.1) and nearest neighbour decod-
ing. These are summarised in the following theorem.

Theorem 4.6. Let C be a code. The following are equivalent

(a) C is t-error correcting;

(b) The minimum distance of C is at least 2t+ 1;
(c) Nearest neighbour decoding always gives the sent codeword, pro-

vided at most t errors occur;
(d) If u, u� ∈ C are distinct codewords then the Hamming balls

Bt(u) and Bt(u�) are disjoint.

Proof. This is just a matter of putting together results already proved:

• (a) ⇐⇒ (b): Theorem 3.4(ii),
• (a) ⇐⇒ (c): Exercise on page 18,
• (a) ⇐⇒ (d): Lemma 4.4. �

One might say that (c) shows the algorithmic side of the subject: it
tells us how to decode a t-error correcting code (and is informed by
probabilistic ideas), while (b) and (d) shows the geometric side of the
subject. We saw in Lemma 3.3 that (b) is often the easier condition to
work with; we will use it throughout Parts B and C.

9This is related to a famous statistical paradox: suppose there is an illness that
infects one person in a thousand. If a test for the illness always identifies infected
people, but gives a false positive with probability 1/500, then, when 1000 people
are tested, there will, on average, be one infected person, and two false positives. So
any particular person who tests positive for the illness still has a 2/3 chance of being
healthy. To translate this into a coding problem, imagine that we transmit ‘healthy’
with probability 999/1000 and ‘ill’ with probability 1/1000, but any transmission
of ‘healthy’ has a 1/500 chance of being corrupted into ‘ill’. Then when we receive
‘ill’ it is still more likely than not that ‘healthy’ was sent.

21

Part B: Main Coding Theory Problem

5. Main Coding Theory Problem and Hamming’s bound

Theorem 3.4 and Corollary 3.5 show that the maximum number
of errors a code can detect or correct is determined by its minimum
distance. In this part of the course we shall look at some codes of
specified length and minimum distance that have as many codewords
as possible.

Problem 5.1. The Main Coding Theory Problem is to find codes over
a given alphabet with

(1) small length;
(2) large size;
(3) high minimum distance.

Equivalently, we want to find (n,M, d)-codes over the given alphabet
with small n, high M and high d.

Remark 5.2. Another desirable property is that there should be an
efficient way to perform nearest neighbour decoding on received words.
For example, the Reed–Solomon code used on compact discs is of the
largest possible size for its length and minimum distance. There are
now efficient decoding algorithms, but when it was first invented, it was
impractical because there was no good way to decode received words.

The Main Coding Theory Problem is hard because the requirements
are conflicting. We shall begin by proving Hamming’s Packing Bound
which gives an upper bound on the size of a binary code with specified
length and minimum distance.10 Other bounds will be seen in the
remainder of Part B.

We need the following combinatorial lemma. Recall that the bino-
mial coefficient

�
n
k

�
is the number of ways to choose k objects from a

set of size n. One can compute binomial coefficients using the formula
�
n

k

�
=

n!

k!(n− k)!
for 0 ≤ k ≤ n.

Lemma 5.3. Let u be a binary word of length n. The number of words
in the Hamming ball Bt(u) of radius t about u is

t�

k=0

�
n

k

�
.

10This bound can be extended easily to codes over a general q-ary alphabet. For
an outline see Sheet 4. Only the binary case is examinable.

22

We also need the result of Question 5 of Sheet 3, that if C has
minimum distance at least 2t + 1 then the Hamming balls of radius t
about distinct codewords are disjoint. (Alternatively, this is (b) ⇒ (d)
in Theorem 4.6.)

Theorem 5.4 (Hamming’s Packing Bound). Let C be a binary (n,M, d)-
code. If e = �d−1

2 � then

M ≤ 2n�e
k=0

�
n
k

� .

We saw in Corollary 3.5 that a code is 1-error correcting if and only
if its minimum distance is at least 3. Hamming’s bound therefore
implies that a 1-error correcting binary code of length n has size at
most 2n/(1 + n).

For example, if n = 7 we get M ≤ 27/(1 + 7) = 24 = 16 and if
n = 5 we get M ≤ 25/(1 + 5) = 5 1

3 . Since it is impossible to have 1
3

of a codeword, we can tighten this bound to M ≤ 5. The table below
shows some other values of Hamming’s bound for a 1-error correcting
binary code.

length n 3 4 5 6 7 8 9 10

bound on size M 2 3 5 9 16 28 51 93

It is very important to realise that while Hamming’s bound is a
necessary condition for a binary code of specified length, size and min-
imum distance to exist, it is not in general sufficient. For example,
Question 4 on Sheet 3 implies that a binary code of length 5 and mini-
mum distance 3 has size at most 4. The exercise below gives a simpler
example. (See also Question 2 on Sheet 4.)

Exercise: Show that the largest size of a binary code of length 4 and
minimum distance 3 is 2.

6. Equivalences of codes and Aq(n, d)

The bounds we will prove in Part B can be stated very concisely
using the following definition.

Definition 6.1. Let q ≥ 2 and let n ∈ N, d ∈ N be such that n ≥ d.
We denote by Aq(n, d) the largest size of a code of length n and mini-
mum distance d over a q-ary alphabet.

23

Exercise: Convince yourself that the choice of which particular q-ary
alphabet to use makes no difference to Aq(n, d).

Exercise: Working over the q-ary alphabet {0, 1, . . . , q− 1}, show that
there is at least one code of length n and minimum distance d.

The previous two exercises imply that Aq(n, d) is well-defined.
11 We

can now restate Hamming’s Packing Bound as A2(n, d) ≤ 2n/
�e

k=0

�
n
k

�
,

where e = �(d− 1)/2�.

The following lemma gives two results for general q.

Lemma 6.2. Let q ≥ 2 and let n ∈ N. Then

(i) Aq(n, 1) = q
n;

(ii) Aq(n, n) = q.

Question 4 on Sheet 3 implies that A2(5, 3) ≤ 4. We have already
seen that there are binary codes of length 5 and minimum distance 3,
for example C = {00000, 11100, 00111, 11011} in Example 4.1, and so
A2(5, 3) = 4.

In the argument suggested for this question we supposed that C

was a binary (5,M, 3)-code with M ≥ 4. We then flipped bits in all
the codewords to assume, without loss of generality, that 00000 was
a codeword, and then shuffled bits in the codewords to assume, again
without loss of generality, that 11100 was a codeword. These operations
are examples of equivalences of codes. We shall use equivalences to solve
the Main Coding Theory Problem for some other small values of n.

Definition 6.3. Let C and C
� be codes over a q-ary alphabet A. We

say that C and C
� are equivalent if one can be obtained from the

other by repeatedly applying the following two operations to all the
codewords:

(a) relabelling the symbols appearing in a fixed position;
(b) shuffling the positions within each codeword.

Question 3 of Sheet 3 implies that the following lemma holds for
binary codes. (The only shuffles allowed in this question were swaps
on two positions, but any shuffle can be obtained by repeated swaps,
so this suffices.) The extension to a general alphabet is routine.

11To say that a definition is ‘well-defined’ means that the quantity being defined
does not depend on any of the choices allowed in the definition. Here, as well as
checking that the choice of alphabet is irrelevant, we also have to check that there
is at least one code of length n and minimum distance d, since if there were none,
it would make no sense to talk of the maximum size of such a code.

24

Lemma 6.4. If u and w are codewords in a code C, and u
� and w

�

are the corresponding codewords in an equivalent code C
� obtained by

relabelling (a) and/or shuffling positions (b) then d(u, w) = d(u�
, w

�).

In particular, Lemma 6.4 implies that equivalent codes have the same
minimum distance.

Example 6.5. Consider the four binary codes

C = {0000, 1100, 1010, 0110}
C

� = {1010, 0110, 0011, 1111}
D = {0000, 1100, 0011, 1111}
E = {1000, 0100, 0010, 0001}

All four codes have minimum distance 2. By applying operations (a)
and (b) we will show that C and C

� are equivalent. No other two of
these codes are equivalent.

For C and D this can be shown quite easily: there are codewords
in D that are distance 4 apart, for example d(0000, 1111) = 4, but all
codewords in C are distance 2 apart.

For C and E this argument does not apply, because all codewords in
both codes are distance 2 apart. But despite this C and E are not
equivalent: you are asked to prove this on Sheet 4.

Exercise: Let C be the binary code with codewords

11001, 01111, 10100, 00010.

and let C � be the binary code with codewords

00000, 11100, 00111, 11011

Show that C and C
� are equivalent.

We end this section by using equivalences of codes to find A2(8, 5).
The following lemma isolates the critical step. In it, we say that a
binary word u has weight r, and write wt(u) = r, if exactly r positions
of u are equal to 1, and the rest are equal to 0.

Lemma 6.6. Let u and w be binary codewords of length n. Suppose
that wt(u) ≥ r and wt(w) ≥ s. If r+s ≥ n then d(u, w) ≤ 2n−(r+s).

Theorem 6.7. A2(8, 5) = 4.

Note that the proof of Theorem 6.7 actually proves something stronger:
up to equivalence there is a unique binary (8, 4, 5)-code. On Sheet 4
you are asked to use similar ideas to show that A2(9, 6) = 4.

25

For background, the table below shows some other values of A2(n, d).
One result visible in the table is that A2(n, d) = A2(n + 1, d + 1)
whenever d is odd: see the optional questions on Sheet 4.

d A2(2, d) A2(3, d) A2(4, d) A2(5, d) A2(6, d) A2(7, d) A2(8, d)

1 4 8 16 32 64 128 256
2 2 4 8 16 32 64 128
3 2 2 4 8 16 20
4 2 2 4 8 16
5 2 2 2 4
6 2 2 2
7 2 2
8 2

Note that the values of A2(n, d) are not always powers of 2. For
example, A2(8, 3) = 20; equivalently (by Theorem 3.4) the largest 1-
error correcting of length 8 has 20 codewords. The reason why A2(n, d)
often is a power of 2 is that many good codes are linear (see Part C),
and all linear binary codes have size a power of 2.

7. Codes from Mutually Orthogonal Latin Squares

Definition 7.1. Let q ∈ N and let A be a q-ary alphabet. A Latin
square with entries from A is a q × q array in which every row and
column contains each symbol in A exactly once. We say that q is the
order of the square.

Note that since there are q symbols and each row and column has
length q, it is equivalent to require either

(i) each row and column contains every symbol in A; or
(ii) no symbol appears twice in any row or column of A.

For a large number of examples of Latin squares, see the Sudoku
answers in the newspaper of your choice. A completed Sudoku grid is
a Latin square of order 9 over the alphabet {1, 2, . . . , 9}, satisfying the
extra condition that each of its 3× 3 subsquares contains each number
exactly once.

26

Example 7.2. A Latin square of order 4 over the alphabet {0, 1, 2, 3},
constructed using the addition table for the integers modulo 4, is shown
below.

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Convention: It will be convenient to number the rows and columns of
a Latin square over the alphabet A = {0, 1, . . . , q− 1} by the numbers
in A. So if X is the Latin square in Example 7.2 then X00 = 0, X12 = 3
and X33 = 2.

Definition 7.3. Let X and Y be Latin squares over an alphabet A.
We say that X and Y are orthogonal if for each each a, b ∈ A there
exist unique i, j ∈ A such that Xij = a and Yij = b.

Equivalently, X and Y are orthogonal if for all a, b ∈ A there is a
unique position in which X contains a and Y contains b. We shall
abbreviate ‘X and Y are a pair of mutually orthogonal Latin squares’,
as ‘X and Y are a pair of MOLs’.

Example 7.4. Two MOLs over the alphabet {0, 1, 2, 3} are shown
below.

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

To show that these squares are orthogonal we form a new square whose
entries are pairs of entries from the two squares,

00 11 22 33
12 03 30 21
23 32 01 10
31 20 13 02

and then check that each of the 16 pairs 00, 01, . . . , 33 appears exactly
once.

Exercise: Show that there is no pair of MOLs of order 2.

27

Remark 7.5. In 1782 Euler posed the following problem: 36 officers
belong to six regiments and hold six different ranks, so that each com-
bination of rank and regiment corresponds to a unique officer. Can be
the officers be paraded on a 6 × 6 parade ground so that in any line
each regiment and rank occurs precisely once? Equivalently, does there
exist a pair of MOLs of order 6? Euler conjectured that the answer
was no, but this was not proved until 1900.

In fact there are pairs of MOLs of all orders other than 2 and 6. The
existence of MOLs of orders 10, 14, 18, . . . is quite tricky, and was only
proved in 1960. Here we will only prove existence for odd prime orders.
Note that there are other pairs of MOLs of odd prime order that do
not come from this construction.

Lemma 7.6. Let q ≥ 3 be prime and let A = {0, 1, . . . , q − 1}. For
i, j ∈ A let

Xij = i+ j mod q

Yij = 2i+ j mod q

Then X and Y are mutually orthogonal Latin squares.

We now show how to use MOLs to construct a family of 1-error cor-
recting codes. These codes all have length 4 and minimum distance 3.

Theorem 7.7. Let A be the alphabet {0, 1, . . . , q− 1}. There is a pair
of MOLs over A of order q ⇐⇒ there is a (4, q2, 3)-code over A.

In lectures we will prove the ‘⇒’ direction. See Sheet 5 for the ‘⇐’
direction.

Example 7.8. Let X and Y be the MOLs in Example 7.4. The cor-
responding code has a codeword (i, j,Xij, Yij) for every i, j such that
1 ≤ i, j ≤ q − 1. So the codewords are

0000 0111 0222 0333 1012 1103 1230 1321

2023 2132 2201 2310 3031 3120 3213 3302

Conversely given this list of codewords we can reconstruct X and Y .

The questions on Sheet 5 will help you to practice these construc-
tions.

28

8. The Singleton bound and puncturing a code

In this section we shall prove another bound on the maximum size
of a code of length n and minimum distance d over a q-ary alphabet.
This bound is often stronger than Hamming’s bound when q is large.

Definition 8.1. Let C be a code of length n ≥ 2 and minimum distance
≥ 2. Let C

� be the code whose codewords are obtained by removing
the final position from each codeword in C. We say that C� is obtained
by puncturing C in its final position.

Note that since C has minimum distance ≥ 2, it is impossible for two
codewords in C to become equal when their final position is removed.
So C

� has the same size as C.

Example 8.2. Let C be the binary code whose codewords are all
binary words of length 4 with an even number of 1s. Let C

� be the
code obtained by puncturing C in its final position. Then

C = {0000, 1100, 1010, 0110, 1001, 0101, 0011, 1111}
C

� = {000, 110, 101, 011, 100, 010, 001, 111}

Thus C has minimum distance 2 and C
� has minimum distance 1.

Lemma 8.3. Let C be a code of length n and minimum distance d. The
punctured code C

� has length n− 1 and minimum distance ≥ d− 1.

Theorem 8.4 (Singleton Bound). If C is a q-ary code of length n and
minimum distance d then |C| ≤ q

n−d+1. Hence Aq(n, d) ≤ q
n−d+1.

Remarks 8.5. We make the following remarks on Theorem 8.4.

(1) If n = 4 and d = 3 then the Singleton bound gives Aq(4, 3) ≤
q
4−3+1 = q

2. The codes constructed by MOLs achieve the
bound. So whenever there is a pair of MOLs of order q we
have Aq(4, 3) = q

2.

(2) The Reed–Solomon codes constructed in the MSc/MSci course
achieve the Singleton bound. They show that Aq(n, d) = q

n−d+1

whenever q is a prime power and q ≥ n.

29

(3) The special case of the Singleton bound when d = n is

Aq(n, n) ≤ q.

This was proved in Lemma 6.2(ii) by putting codewords into
pigeonholes according to their first position. A similar argu-
ment can be used to prove the general Singleton bound: see
Questions 3 and 6 on Sheet 5.

9. Hadamard codes and the Plotkin bound

Hadamard codes are a family of binary codes that have high mini-
mum distance and so can detect and correct many errors. We shall see
that, like the codes constructed from MOLs, Hadamard codes have the
largest possible size for their length and minimum distance.

The Hadamard (32, 64, 16)-code used in the 1971 Mariner 9 mission
to Mars was discussed in Example 1.11. Since the code has minimum
distance 16, it follows from Theorem 3.4(ii) that it is 7-error correcting,
as claimed (informally) in this example.

Hadamard codes are constructed using certain matrices with entries
+1 and −1.

Definition 9.1. Let n ∈ N. A Hadamard matrix of order n is an n×n

matrix H such that each entry of H is either +1 or −1 and HH
tr = nI.

Here I is the n × n identity matrix and H
tr is the transpose matrix

of H.

Example 9.2. If H =

�
1 1
1 −1

�
then H is a Hadamard matrix of

order 2. Two Hadamard matrices of order 4 are shown below; in these
matrices we write + for 1 and − for −1.

+ + + +
+ − + −
+ + − −
+ − − +

 ,

+ + + −
+ + − +
+ − + +
− + + +

 .

Except for the 1×1 matrices (+1) and (−1), all Hadamard matrices
have even order. This result follows from the following lemma.

Lemma 9.3. Suppose H is a Hadamard matrix of order n where n ≥ 2.
If i, k ∈ {1, 2, . . . , n} and i �= k then row i and row k of H are equal
in exactly n/2 positions.

30

The connection with coding theory is as follows.

Theorem 9.4. Suppose that H is a Hadamard matrix of order n ≥ 2.
Let B be the 2n× n matrix defined by

B =

�
H

−H

�
.

The rows of B are the codewords in a (n, 2n, n/2)-code over the alpha-
bet {+,−}.

We say that any code given by the construction in Theorem 9.4 is a
Hadamard code. These codes can be converted into binary codes over
the usual alphabet of bits {0, 1} by replacing each + with 0 and each
− with 1.

Example 9.5. Let

H =

+ + + −
+ + − +
+ − + +
− + + +

 .

The construction in Theorem 9.4 gives the binary code with codewords

0001 0010 0100 1000

1110 1101 1011 0111.

The Singleton bound is often the strongest bound for codes over
a large alphabet, but for a binary (2d,M, d)-code it only gives that
M ≤ 2d+1. The following result leads to a stronger bound on A2(2d, d).

Theorem 9.6 (Plotkin bound). Let n, d ∈ N be such that 2d > n.
Then

A2(n, d) ≤
2d

2d− n
.

The proof of this bound is non-examinable: see the optional ques-
tions on Sheet 6 for an outline proof.

For example, taking n = 8 and d = 5 we get

A2(8, 5) ≤ 10/(10− 8) = 5.

By Theorem 6.7, A2(8, 5) = 4 so the Plotkin bound comes close to the
strongest possible result. In other cases the Plotkin bound is sharp.

Exercise: Use the Plotkin bound to give an alternative proof of the
result of Question 2(b) on Sheet 4, that A2(9, 6) = 4.

31

A related bound is attained by Hadamard codes.

Corollary 9.7 (Another Plotkin bound). If d ∈ N then

A2(2d, d) ≤ 4d.

If there is a Hadamard matrix of order 2d then

A2(2d, d) = 4d.

It is quite easy to show that if there is a Hadamard matrix of order n
then either n = 1, or n = 2 or n is divisible by 4. It is a major
open problem to show that there are Hadamard matrices of all orders
divisible by 4.

There is also a related ‘asymptotic’ Plotkin bound, which states that
A2(n, d) ≤ 2n−2d+1

n for all n and d. (See optional questions on Sheet 6:
this is entirely non-examinable and mentioned for interest only.)

10. Gilbert–Varshamov Bound

Stated using the A2(n, d) notation introduced in Definition 6.1, the
Hamming Packing Bound (Theorem 5.4) becomes

A2(n, d) ≤
2n�e

k=0

�
n
k

�

where e = �(d − 1)/2�. In the proof of this bound, we argued that if
C is a binary (n,M, d)-code then the Hamming balls of radius e about
codewords in C are disjoint.

A related argument using Hamming balls of radius d − 1 gives a
lower bound on A2(n, d). The idea is to construct a code of minimum
distance d in the most näıve way possible: we just keep on adding
codewords until the Hamming balls of radius (d− 1) cover {0, 1}n, and
so every word is distance ≤ (d− 1) from some codeword.

Theorem 10.1 (Gilbert–Varshamov bound). If n, d ∈ N then

A2(n, d) ≥
2n

�d−1
k=0

�
n
k

� .

Summary of Part B. The Main Coding Theory Problem asks for
codes over a given q-ary alphabet with small length n, high size M and
high minimum distance d. To study these conflicting requirements, we
defined Aq(n, d) to be the largest size M of a q-ary code of length n

and minimum distance d.

32

We have seen the Hamming, Plotkin and Singleton upper bounds on
Aq(n, d). In some cases these bounds are achieved by certain ‘best pos-
sible’ codes: by Remark 8.5(1) the MOLs codes in §7 achieve the Sin-
gleton bound, and by Corollary 9.7 the Hadamard codes in §9 achieve
the Plotkin bound. In these cases the Main Coding Theory Problem is
completely solved.

These upper bounds and the Gilbert–Varshamov lower bound are
compared in the diagram below for binary codes of length 1000. (The
Mathematica notebook used to draw this graph is available from
Moodle.) The Plotkin bound used is the ‘asymptotic bound’ mentioned
after Corollary 9.7. Note that the graph shows log2 of each bound.

The Plotkin bound is stronger than the Hamming Packing Bound
for d ≥ 320. For most d there is a wide gap between the Gilbert–
Varshamov lower bound and the Hamming and Plotkin upper bounds,
and all we know is that A2(1000, d) is somewhere in between. Deter-
mining the true value of A2(n, d) for large n and d is one of the main
open problems in coding theory.

Comparison of bounds for binary codes of length 1000

Singleton
bound

Hamming
bound

Plotkin
bound

Gilbert–
Varshamov
bound

0 200 400 600 800 1000
0

200

400

600

800

1000

lo
g 2

b
ou

n
d

minimum distance d

33

Part C: Linear Codes

11. Linear codes and weights

In the final part of the course we shall look at linear codes. We shall
develop the theory for binary codes only, which shows all the main
ideas. The extension to larger alphabets of prime power degree is not
too difficult, and may be found in any of the recommended textbooks.

From now on the alphabet of of bits {0, 1} should be thought of
as Z2, that is, the integers modulo 2. So we have

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0.

Binary words of length n are elements of Zn
2 . Given u = (u1, u2, . . . , un)

and v = (v1, v2, . . . , vn) ∈ Zn
2 , we define

(u1, u2, . . . , un) + (v1, v2, . . . , vn) = (u1 + v1, u2 + v2, . . . , un + vn).

Definition 11.1. Let C be a binary code of length n. We say that C
is linear if for all u, w ∈ C we have u+ w ∈ C.

Note that if C is a linear binary code and u ∈ C then u + u =
(0, 0, . . . , 0). So it follows from Definition 8.1 that any binary code
contains the all-zeros word, written 0 (or 0 on the board).

We have already seen many examples of linear codes.

Example 11.2. Let n ∈ N.

(1) The length 5 code C = {00000, 11100, 00111, 11011} is linear.

(2) The binary repetition code of length n is a linear (n, 2, n)-code.

(3) The code of size 2n consisting of all binary words of length n is
a linear (n, 2n, 1)-code.

(4) Let C be all binary words of length 4. As in Example 2.6,
let Cext be the code obtained by adding an extra bit at the
end of each codeword to make the total number of 1s in each
codeword even. Then, Cext is a (5, 16, 2)-code and

Cext = {(u1, u2, u3, u4, u5) ∈ Z5
2 : u1 + u2 + u3 + u4 + u5 = 0}

We will show that Cext is linear.

34

It is curious that many codes that meet the bounds proved in Part B
are linear, or if not linear, at least equivalent to linear codes. For
example, A2(5, 3) = 4, and a small extension of Question 4 on Sheet 3
shows that any binary (5, 4, 3)-code is equivalent to

{00000, 11100, 00111, 11011}.
We saw that this code was linear in Example 11.2(1).

The following exercise is strongly recommended.

Exercise: Show that the square code (see Question 2 on Preliminary
Problem Sheet) is linear.

The next lemma shows that Hamming distance behaves well under
addition.

Lemma 11.3. Let u, w be binary words of length n ∈ N. For any
binary word v ∈ Zn

2 we have

d(u, w) = d(u+ v, w + v).

This lemma leads to an easy way to find the minimum distance of
a linear code. Recall that the weight of a binary word u was defined
(just before Lemma 6.6) to be the number of positions of u equal to 1.
For example, wt(11100) = 3 and wt(11011) = 4.

Lemma 11.4. Let C be a linear binary code. The minimum distance
of C is equal to the minimum weight of a non-zero codeword of C.

Exercise: Use Lemma 11.4 to find the minimum distances of the codes
in Example 11.2; check that the results are as expected.

The last result in this section generalises the parity check extension
codes seen in Example 2.6 and Example 11.2(2). (For a related result
see Questions 5 and 6 on Sheet 4.)

Definition 11.5. Let C be a binary code of length n. The parity check
extension of C is the code Cext of length n+ 1 defined by

Cext = {(u1, . . . , un, un+1) : (u1, . . . , un) ∈ C, u1 + · · ·+ un + un+1 = 0.}

Theorem 11.6. Suppose that C be a linear binary (n,M, d)-code. If d
is odd then the parity check extension Cext of C is a linear binary
(n+ 1,M, d+ 1)-code.

35

12. Bases, generator matrices and encoding

To proceed any further we need to think of binary words as vectors
and linear binary codes as subspaces of Zn

2 .

Exercise: Show from Definition 11.1 that if u(1), . . . , u(m) are code-
words in a linear binary code C and x(1), . . . , x(m) ∈ Z2 then

x(1)u(1) + · · ·+ x(m)u(m) ∈ C.

Definition 12.1. Let C be a linear code. We say that codewords
u(1), . . . , u(m) ∈ C are:

(a) linearly independent if the only solution to the equation

x(1)u(1) + · · ·+ x(m)u(m) = 0

with x(1), . . . , x(m) ∈ Z2 is x(1) = . . . = x(m) = 0.

(b) span C if for every w ∈ C there exist x(1), . . . , x(m) ∈ Z2 such
that

w = x(1)u(1) + · · ·+ x(m)u(m).

(c) a basis of C if they are linearly independent and span C.

Example 12.2.

(1) Let C = {00000, 11100, 00111, 11011} be as in Example 11.2(1)
Then a basis for C is {11100, 00111}.

(2) Let Cext be the parity check extension of all binary words of
length 4, considered in Example 11.2(4). Then

{10001, 01001, 00101, 00011}

is a basis for C.

Note that a linear binary code may have several different bases. So it
is correct to write ‘a basis of C’ rather than ‘the basis of C’. We will see
a systematic way to find a basis from a spanning set in Example 12.6(2).

Exercise: Find another basis for the code Cext in Example 12.2(2).

One reason why having a basis is useful is the following result. The
proof is nothing particular to do with coding theory, so will not be
covered in full in lectures (and is non-examinable).

36

Lemma 12.3. Let C be a linear code. The codewords

u(1), . . . , u(m) ∈ C

are a basis for C ⇐⇒ for all w ∈ C there exist unique x(1), . . . , x(m),
such that

w = x(1)u(1) + · · ·+ x(m)u(m).

Suppose that u(1), . . . , u(m), is a basis for a linear binary code C.
Then, by Lemma 12.4

C = {x(1)u(1) + · · ·+ x(m)u(m) : x(1), . . . , x(m) ∈ Z2}
and C has 2m elements, coming from the two choices for each of
x(1), . . . , x(m). It follows that any two bases of C have the same size12.
We also see that any linear binary code has size 2m for some m.

Definition 12.4. Suppose that C is a linear binary code of length n

and minimum distance d. If u(1), . . . , u(m) is a basis of C then we say
that C has dimension m and that C is a [n,m, d]-code.

Thus a linear binary (n, 2m, d)-code is a [n,m, d]-code. The codes in
Example 12.2 have parameters [5, 2, 3] and [5, 4, 2], respectively.

Exercise: (To appear on Sheet 7.) Find a basis for the square code.

Definition 12.5. Suppose that C is a linear binary code of length n

having u(1), . . . , u(m) ∈ Zn
2 as a basis. The m× n matrix G with rows

u(1), . . . , u(m) is said to be a generator matrix for C.

Example 12.6.

(1) Let C = {00000, 11100, 00111, 11011}. Then a generator matrix
for C is

G =

�
1 1 1 0 0
0 0 1 1 1

�
.

(2) Let C be the linear code of length 7 spanned by the codewords
1100110, 1011010, 0110011, 0001111. These codewords are not
linearly independent. We can demonstrate this, and find a basis
and generator matrix for C, by applying row operations to the
matrix

1 1 0 0 1 1 0
1 0 1 1 0 1 0
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

12This is a standard result from linear algebra. The proof indicated here only
works over finite fields such as Z2, but is much shorter than the usual proof.

37

(3) The parity check code Cext in Example 12.2(2) has as a gener-
ator matrix

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

 .

This is a convenient place to discuss encoding for linear codes. Let C
be a linear code of dimension m with generator matrix G. We have
seen that C has size 2m, so C can encode 2m different messages. We
will assume that the messages are numbers between 0 and 2m−1.

To encode a message, write its number in binary, say as b1b2, . . . bm,
and take the codeword

(b1, b2, . . . , bm)G.

Note that if G has rows u(1), u(2), . . . , u(m) then

(b1, b2, . . . , bm)G = b1u(1) + b2u(2) + · · ·+ bmu(m).

It follows from the exercise at the start of this section that b1u(1) +
b2u(2) + · · ·+ bmu(m) is a codeword in C.

Example 12.7. Let C be the linear code in Example 12.6(2). In this
example we saw that C has generator matrix

G =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

so C has dimension 3 and size 23. To encode the number 6 we write 6
in binary as 110 and take the codeword

(1, 1, 0)

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 = (1, 1, 0, 0, 1, 1, 0)

In general, the binary number b1b2b3 is encoded as

(b1, b2, b1 + b2, b3, b1 + b3, b2 + b3, b1 + b2 + b3).

Note that in Example 12.7, if no errors occur when a codeword is
transmitted through the channel, then the message can be read off from
bits 1, 2 and 4.

Definition 12.8. A generator matrix G for a linear binary [n,m, d]-
code is said to be in standard form if

G =
�
Im A

�

where Im is the m×m identity matrix and A is a m× (n−m) matrix.

38

The generator matrix in Example 12.6(3) is in standard form. If we
swap positions 3 and 4 in all the codewords in the code C in Exam-
ple 12.6(2) and Example 12.7 then we get an equivalent code C

� with
generator matrix

G
� =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

in standard form. This is a special case of the following theorem.

Theorem 12.9. Let C be a linear binary code of length n and dimen-
sion m. Then C is equivalent, by a permutation of the positions in the
codewords, to a code with a generator matrix in standard form

�
Im A

�

where A is an m× (n−m)-matrix.

In general, if G =
�
Im A

�
is a generator matrix for a code C in

standard form then the message labelled (b1, b2, . . . , bm) is encoded as

(b1, b2, . . . , bm)G = (b1, b2, . . . , bm, c1, . . . , cn−m)

for some c1, . . . , cn−m ∈ Z2. This is convenient because if no errors
occur in transmission, then the message can be easily read off from the
received word. We end with a related definition.

Definition 12.10. Let C be a code of length n and size M . We define
the rate of C to be (log2 M)/n.

Thus if C is a linear binary [n,m, d]-code then C has 2m codewords
and the rate of C is m/n. Roughly put, the rate of a code measures
the proportion of bits that give direct information about the encoded
message.

13. Decoding by standard arrays

In this section we shall see a way to implement nearest neighbour
decoding for linear codes.

Definition 13.1. Let C be a linear binary code of length n. A coset
of C is a set of the form

C + v = {u+ v : u ∈ C}
where v ∈ Zn

2 .

Note that if v ∈ Zn
2 then v = 0+ v so v ∈ C + v.

39

Example 13.2. Let C be the linear binary code

C = {0000, 1110, 0011, 1101}

obtained by puncturing the code in Example 12.2(1) in its final posi-
tion. If we send the codewords through a channel that corrupts posi-
tion 1 every time, then the received words are

C + 1000 = {1000, 0110, 1011, 0101}.

The other possible one bit errors give cosets

C + 0100 = {0100, 1010, 0111, 1001},
C + 0010 = {0010, 1100, 0001, 1111},
C + 0001 = {0001, 1111, 0010, 1100}.

We also have the coset C + 0000 = C.

Note that the cosets C + 0010 and C + 0001 are equal. Each word
in this coset is distance 1 from two codewords, so nearest neighbour
decoding fails whenever such a word is received. For example, if we
receive 1111, the transmitted word could be either 1101 or 1110.

Exercise: Taking C as in Example 13.2, show that

C + 1001 = C + 0100 = {0100, 1010, 0111, 1001}.

Show that if v is a word in this coset then using nearest neighbour
decoding, v is decoded as v + 0100 ∈ C.

It is very important to bear in mind that cosets are sets, and that
the same coset can be written as C + v for many different words v.

Exercise: Let C be a linear binary code of length n. Show that if
v ∈ Zn

2 then C + v = C + (u+ v) for all u ∈ C.

Lemma 13.3. Let C be a linear binary code of length n. If C + v and
C + w are cosets of C then either C + v = C + w or the cosets C + v

and C + w are disjoint.

Exercise: Check that each binary word of length 4 is in a unique coset
of the code in Example 13.2.

40

Definition 13.4. Let C be a linear binary code. A standard array
for C is a table in which each row consists of the codewords in a coset
of C, arranged so that

(i) the first row is C;

(ii) if the word x appears in the first column then wt(x) ≤ wt(v)
for all v in the row of x.

The first word in each row is said to be a coset leader.

Example 13.5. A standard array for the code C in Example 10.2 is

0000 1110 0011 1101
1000 0110 1011 0101
0100 1010 0111 1001
0010 1100 0001 1111

Note that we could also taken the fourth row to be

0001 1111 0010 1100

with 0001 as the coset leader. (Both 0010 and 0001 have weight 1.)
The other coset leaders 0000, 1000 and 0100 are uniquely determined
by their cosets.

Theorem 13.6. Let C be a linear binary code of length n. Let v ∈ Zn
2 .

Suppose that the row containing v has coset leader x. Then v + x ∈ C

and

d(v + x, v) ≤ d(u, v)

for all u ∈ C.

If C is e-error correcting and the coset leader x in the lemma above
has weight ≤ e then

d(v + x, v) = d(x, 0) = wt(x) ≤ e.

So v+x must be the unique nearest codeword to v, and decoding using
the standard array finds this codeword. This shows that the standard
array gives an efficient way to implement nearest neighbour decoding.

41

14. Parity check matrices and syndrome decoding

All the linear codes we have seen so far can be defined by linear
equations. For instance, the code Cext consisting of all binary words of
length 5 of even weight can be defined by

Cext = {(u1, u2, u3, u4, u5) ∈ Z5
2 : u1 + u2 + u3 + u4 + u5 = 0}.

Similarly, the square code can be defined by

S =

�
(u1, u2, u3, u4, u5, u6, u7, u8) :

u1 + u2 = u5, u3 + u4 = u6

u1 + u3 = u7, u2 + u4 = u8

�

To perform the decoding algorithm for the square code seen earlier in
the course, we record which linear equations are not satisfied, and then
try to flip a single bit to make all of them hold.13

Exercise: For each of the following received words, decide which of the
four defining equations for the square code fail to hold. Decode each
word using nearest neighbour decoding.

(i) 10001100 (ii) 11001011 (iii) 11000000 (iv) 10000001

Observe that Cext has length 5, dimension 4 and is defined by one
equation, and S has length 8, dimension 4 and is defined by four equa-
tions. In Theorem 14.3 we will prove that any linear binary code of
length n and dimension m can be defined by n−m linear equations.

Definition 14.1. Let C be a linear binary code of length n and di-
mension m. A parity check matrix for C is an (n −m) × n matrix H

with linearly independent rows such that for each u ∈ Zn
2 we have

u ∈ C ⇐⇒ uH
tr = 0.

Example 14.2.

(1) The code Cext defined above has parity check matrix
�
1 1 1 1 1

�
.

(2) Let S be the square code. Then S has as a parity check matrix

1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1

 .

13If two or more errors occur then we might not decode to the sent word, or it
might not be possible to satisfy all the equations by flipping a single bit. Since the
square code has minimum distance 3 it is only 1-error correcting (by Theorem 3.4),
and so we do not expect to be able to decode reliably in this case.

42

We now show that any linear binary code can be defined by a suitable
parity check matrix.

Theorem 14.3. Let C be a linear binary code of length n and dimen-
sion m. Then C has a parity check matrix. Moreover, if C has a
generator matrix G in standard form G =

�
Im A

�
then

�
A

tr
In−m

�

is a parity check matrix for C.

For example, if G =
�
Im A

�
is the standard form generator matrix

for the square code, then applying Theorem 14.3 to G, we get the parity
check matrix already found in Example 14.2(2).

This is a convenient place to make the following definition.

Definition 14.4. Let C be a linear binary code of length n and let H
be a parity check matrix for C. The dual code C

⊥ is the linear binary
code of length n and dimension n−m with generator matrix H.

We will assume that the dual code is well-defined, i.e. that it does
not depend on the choice of parity check matrix H. For a proof of this,
and some further (non-examinable) results on parity check matrices,
see the optional questions on Sheet 9.

Example 14.5. Let Cext be as in Example 14.2(1). Then

C
⊥
ext = {00000, 11111}

is the binary repetition code of length 5, and

{00000, 11111}⊥ = Cext.

It is also possible to start with a (n−m)×n matrix H with linearly
independent rows, and use it to define a code C having H as its parity
check matrix. In the following extended example we use this idea to
construct the [7, 4, 3]-Hamming code.

Example 14.6. Let

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

43

and let C = {u ∈ Z7
2 : uH

tr = 0}. Then C is a linear binary code with
parity check matrix H and generator matrix

G =

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 .

By Lemma 11.4, the minimum distance of C is equal to the minimum
weight of a non-zero codeword. Clearly there are codewords of weight 3,
so to show C has minimum distance 3, it suffices to show there are no
codewords of weight 1 or 2: we will show this using H.

In standard array decoding one has to hunt through the entire stan-
dard array to find the coset of the code in which a received word lies.
We end with an improved method that uses parity check matrices.14

Theorem 14.7. Let C be a linear binary code of length n and dimen-
sion m with parity check matrix H and let v, v� ∈ Zn

2 . Then v and v
�

are in the same coset of C ⇐⇒ vH
tr = v

�
H

tr.

This theorem motivates the following definition.

Definition 14.8. Let C be a linear binary code of length n and dimen-
sion m with parity check matrix H. The syndrome of a word v ∈ Zn

2

is defined to be vH
tr ∈ Zn−m

2 .

By Theorem 14.7 we can identify the coset of C containing a word
v ∈ Zn

2 from its syndrome vH
tr. So to decode a received word v,

calculate its syndrome vH tr, and then decode v as v+x where x is the
chosen coset leader for the coset C + v containing v.

Example 14.9. Let C = {0000, 1110, 0011, 1101} be the code used as
an example in §13. Then C has parity check matrix

H =

�
1 1 0 0
0 1 1 1

�
.

14Algebraically inclined readers will notice that since C = kerHtr, Theorem 14.7
follows from the first isomorphism theorem for the linear map Zn

2 → Zn−m
2 defined

by v �→ vH
tr. Everyone else may ignore this remark.

44

By Theorem 14.7, any two words in the same coset of C have the same
syndrome. The map from cosets of C to syndromes is

C �→ (0, 0, 0, 0)H tr = (0, 0)

C + (1, 0, 0, 0) �→ (1, 0, 0, 0)H tr = (1, 0)

C + (0, 1, 0, 0) �→ (0, 1, 0, 0)H tr = (1, 1)

C + (0, 0, 1, 0) �→ (0, 0, 1, 0)H tr = (0, 1).

Thus all words in C + 1000 = {1000, 0110, 1011, 0101} have syndrome
(1, 0), and if any of the words 1000, 0110, 1011, 0101 is received, it
will be decoded by adding 1000, since this is the unique coset leader in
C + 1000.

Using syndrome decoding we can replace the standard array in Exam-
ple 13.5 with the more concise table below.

syndrome chosen coset leader

00 0000
10 1000
01 0010
11 0100

A defect of the code C is that C + 0010 = C + 0001 and so the single
bit errors 0010 and 0001 have the same syndrome. If C had to be used
in practice, one possibility would be to use incomplete decoding and
request retransmission whenever a received word has syndrome 01.

Syndrome decoding is ideally suited to the Hamming [7, 4, 3]-code
seen in Example 14.6.

Example 14.10. Let C, G and H be as in Example 14.6. Let e(i)
be the word with a 1 in position i and 0 in all other positions. The
syndrome of e(i) is e(i)H tr, which is the ith row of H tr.

The columns of H are distinct, so by Lemma 13.3 and Theorem 14.7
we have

Z7
2 = C ∪

�
C + e(1)

�
∪ · · · ∪

�
C + e(7)

�

where the union is disjoint.

To decode a received word v, we calculate its syndrome vH
tr. If vH tr

is the ith row of H tr then vH = e(i)H tr and so we decode v as v+e(i).

For example, to use C to send the number 9, we would write 9 as 1001
in binary, and encode it as

(1, 0, 0, 1)G = (0, 0, 1, 1, 0, 0, 1).

45

Suppose that when we transmit 0011001, an error occurs in position 6,
so 0011011 is received. Then the syndrome of the received word is

(0, 0, 1, 1, 0, 1, 1)H tr = (0, 1, 1)

which is row 6 of H tr. So we decode by changing the bit in position 6
to get 0011001.

More generally, let C be a linear binary code of length n and dimen-
sion m. To use syndrome decoding on C we need to choose a coset
leader for each coset. This can be done by constructing a standard
array. But it is more efficient to take a parity check matrix H for C

and compute vH
tr for words of low weight until all elements of Zn−m

2

have appeared. Then, by Theorem 14.7, we have a coset leader for
every coset.

Exercise: Make a table of syndromes and chosen coset leaders for the
square code using the parity check matrix given in Example 14.2(2).

A suitable table for incomplete decoding will have 9 rows: one cor-
responding to the code C, and one for each of 8 possible one bit errors.
Since |C| = 16 and |Z8

2| = 28 = 256, there are 16 distinct cosets of C
and so the full table has 16 rows, one for each possible syndrome in Z4

2.

Summary of Part C. In this section we looked at codes satisfying
the linearity property that if u, w are codewords then u + w is also
a codeword. In Lemma 11.4 we saw that the minimum distance of a
linear binary code is the minimum weight of a non-zero codeword.

In §12 we saw that a linear binary code of length n and dimension m

has a m× n generator matrix. This gives a concise way to specify the
code: rather than give 2m codewords we can specify m basis elements.
Generator matrices are also useful for encoding: see page 37, and in
proofs.

In §13 we saw standard array decoding, and in §14 we saw a more
efficient way to implement standard array decoding using syndromes
and parity check matrices. In Example 14.6 we defined the Hamming
[7, 4, 3] code and saw how to use syndrome decoding to correct a single
error in a sent word.

Hamming’s construction generalises (see the optional questions on
Sheet 9) to gives a linear binary [2r − 1, 2r − r − 1, 3]-code for any
r ∈ N. These codes achieve Hamming’s packing bound, and so the
ideas in Part C give a complete solution to the Main Coding Theory
Problem for 1-error correcting codes. The problem of finding linear
binary codes of large size that can correct more errors has motivated
much of the subsequent work in this subject.

