
MT361/MT461/MT5461
Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

Admin

From Monday 23rd, the Monday 3pm lecture will be in ABLT3.

From this Tuesday, the Tuesday 3pm lecture will be in ABLT1.

The Thursday 10am lecture will continue to be in BLT2.

Preliminary Sheet: Answers now available on Moodle.

Correction: Q1(c) should read ‘Using Scheme 2 [not 1], the
probability that Bob decodes Alice’s message wrongly was found to
be 3p2 − 2p3. How many bits does Alice send to Bob when this
scheme is used?’

mark.wildon@rhul.ac.uk

MT361/MT461/MT5461
Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

Admin

From Monday 23rd, the Monday 3pm lecture will be in ABLT3.

From this Tuesday, the Tuesday 3pm lecture will be in ABLT1.

The Thursday 10am lecture will continue to be in BLT2.

Preliminary Sheet: Answers now available on Moodle.

Correction: Q1(c) should read ‘Using Scheme 2 [not 1], the
probability that Bob decodes Alice’s message wrongly was found to
be 3p2 − 2p3. How many bits does Alice send to Bob when this
scheme is used?’

mark.wildon@rhul.ac.uk

Learning Objectives

(A) Examples of codes. Error detection and error correction and
connection with Hamming distance and Hamming balls.
Information rate and the binary symmetric channel.

(B) The Main Coding Theory Problem. Singleton bound and
codes based on Latin squares. Plotkin bound and Hadamard
codes. Hamming and Gilbert–Varshamov bounds.

(C) Linear codes. Generator matrices and encoding. Cosets and
decoding by standard arrays. Parity check matrices and
syndrome decoding. Hamming codes. Dual codes.

Recommended Reading

[1] Combinatorics: Topics, Techniques, Algorithms. Peter J.
Cameron, CUP, 1994. (Chapter 17 gives a concise account of
coding theory.)

[2] Coding and Information Theory. Richard W. Hamming,
Prentice-Hall, 1980. (Chapters 2, 3 and 11 are relevant to this
course.)

[3] A First Course in Coding Theory. Raymond Hill, OUP, 1986.
(Highly recommended. It is very clear, covers all the 3rd year
course, and the library has several copies.)

[4] Coding Theory: A First Course. San Ling and Chaoping Xing,
CUP, 2004.

[5] The Theory of Error-Correcting Codes. F. J. MacWilliams and
N. J. A. Sloane, North-Holland, 1977. (Mainly for reference.)

Prerequisites

• Basic discrete probability.

• Modular arithmetic in Zp where p is prime. If you are happy
with calculations such as 5 + 4 ≡ 2 mod 7, 5× 4 ≡ 6 mod 7
and 5−1 ≡ 3 mod 7, that should be enough.

• Some linear algebra: vector spaces, subspaces, matrices, image
and kernel, rank-nullity theorem, reduced row-echelon form. I
will issue a handout later in term to remind you of these ideas.

Main Problem.

Problem 1.1
Alice wants to send a message to Bob. She can communicate with
him by sending him a word formed from symbols taken from some
fixed set. But every time she sends a word, there is a chance that
some of its symbols will be corrupted, so the word that Bob
receives may not be the word that Alice sent. How can Alice and
Bob communicate reliably?

✲ ✲ ✲message
encoder

channel
decoder

decoded message
❄

noise

Example 1.2
Alice wants to send the message ‘Yes’ or ‘No’ to Bob. The
available symbols are 0 and 1.

Scheme 1. The two decide, in advance, that Alice will send

• 00 for ‘No’,

• 11 for ‘Yes’.

If Bob receives 00 or 11 then he will assume this is the word that
Alice sent, and decode her message. If he receives 01 or 10 then he
knows an error has occurred, but does not know which symbol is
wrong.

Scheme 2. Suppose instead they decide that Alice will send

• 000 for ‘No’,

• 111 for ‘Yes’.

Then Bob can decode Alice’s message correctly, provided at most
one error occurs, by assuming that the symbol in the majority is
correct.

Under either scheme, if two errors occur then when Bob decodes
the received word he gets the wrong message.

Example 1.2
Alice wants to send the message ‘Yes’ or ‘No’ to Bob. The
available symbols are 0 and 1.

Scheme 1. The two decide, in advance, that Alice will send

• 00 for ‘No’,

• 11 for ‘Yes’.

If Bob receives 00 or 11 then he will assume this is the word that
Alice sent, and decode her message. If he receives 01 or 10 then he
knows an error has occurred, but does not know which symbol is
wrong.

Scheme 2. Suppose instead they decide that Alice will send

• 000 for ‘No’,

• 111 for ‘Yes’.

Then Bob can decode Alice’s message correctly, provided at most
one error occurs, by assuming that the symbol in the majority is
correct.

Under either scheme, if two errors occur then when Bob decodes
the received word he gets the wrong message.

Definitions

Definition 1.3
Let q ∈ N. A q-ary alphabet is a set of q different elements, called
symbols. A word of length n over an alphabet A is a sequence
(x1, x2, . . . , xn) where xi ∈ A for each i .

Definition 1.4
Let A be an alphabet and let n ∈ N. A code over A of length n is
a subset C of An containing at least two words. The elements of C
are called codewords. The size of C is |C |.

Definition 1.5
The binary alphabet of binary digits, or bits, is {0, 1}. A binary
code is a code over {0, 1}.

Definitions

Definition 1.3
Let q ∈ N. A q-ary alphabet is a set of q different elements, called
symbols. A word of length n over an alphabet A is a sequence
(x1, x2, . . . , xn) where xi ∈ A for each i .

Definition 1.4
Let A be an alphabet and let n ∈ N. A code over A of length n is
a subset C of An containing at least two words. The elements of C
are called codewords. The size of C is |C |.

Definition 1.5
The binary alphabet of binary digits, or bits, is {0, 1}. A binary
code is a code over {0, 1}.

Definitions

Definition 1.3
Let q ∈ N. A q-ary alphabet is a set of q different elements, called
symbols. A word of length n over an alphabet A is a sequence
(x1, x2, . . . , xn) where xi ∈ A for each i .

Definition 1.4
Let A be an alphabet and let n ∈ N. A code over A of length n is
a subset C of An containing at least two words. The elements of C
are called codewords. The size of C is |C |.

Definition 1.5
The binary alphabet of binary digits, or bits, is {0, 1}. A binary
code is a code over {0, 1}.

Alice and Bob revisited

When writing words we will often omit the brackets and commas.
So e.g. (1, 1, 1) can be written as 111, and so on.

Example 1.2 (continued)

In Scheme 1, Alice and Bob use the binary code

C = {00, 11}

which has length 2 and size 2 and in Scheme 2 they use

D = {000, 111}

which has length 3 and size 2.

Alice and Bob revisited

Example 1.2 (concluded)

Suppose that whenever a bit 0 or 1 is sent down the channel used
by Alice and Bob, there is a probability p that it flips, so a 0
becomes a 1, and a 1 becomes a 0.

Exercise: Why is it reasonable to assume that p < 1/2?

For definiteness we shall suppose that Alice sends ‘Yes’ to Bob:
you should be able to check that we get the same behaviour if
Alice sends ‘No’. Using Scheme 2, Alice sends 111 and Bob
decodes wrongly if and only if he receives 000, 001, 010 or 100.
This event has probability

p3 + 3p2(1− p).

(This is misprinted as p3 + 3p(1− p)2 on page 6 of the handout:
please correct.) See the preliminary problem sheet for an analysis
of Scheme 1.

Remarks on the definition of codes

Remarks 1.6
The following remarks on Definition 1.4 should be noted.

(1) By Definition 1.4, all codewords in a code have the same
length.

(2) We assume that all our codes have size ≥ 2: if a code has no
codewords, or only one, then it’s useless for communication.

(3) It is very important to realise that the codes in this course are
not secret codes. The set of codewords, and how Alice and
Bob plan to use the code to communicate, should be assumed
to be known to everyone.

(4) The definition of a code does not mention the encoder or
decoder. This is deliberate: the same code might be used for
different sets of messages, and with different decoding
strategies: see Example 1.7.

Using the Same Code in Different Ways

Example 1.7
Suppose Alice wants to send Bob one of the messages ‘Launch
nukes’ or ‘Stand-down’. They decide to use the binary code
D = {000, 111} from Example 1.2, with the encoder

‘Stand-down’
encoded as

−−−−−−−→ 000

‘Launch nukes’
encoded as

−−−−−−−→ 111.

Erring on the side of safety, they decide that if Bob receives a
non-codeword (i.e. one of 001, 010, 100, 110, 101, 011), then he will
request retransmission. So the same code is used, but with a
different encoder and a different decoding strategy.

Guessing and Liar Games

Exercise: Alice thinks of a number between 0 and 15. Playing the
role of Bob, how many questions do you need to ask Alice to find
out her number?

Exercise: Now suppose that Alice is allowed to tell at most one lie
when she answers Bob’s questions; this corresponds to noise in the
channel. Repeat the game in the previous exercise: try not to use
too many questions!

Example 1.8
We will convert some of the possible questioning strategies for Bob
into binary codes of size 16.

Example 1.8: Codes from the Guessing and Liar Games
When playing the game as Bob, you could use the answers you had
heard so far to help choose the next question.

But to turn a questioning strategy into a code, we need to be able
to write down all the questions in advance.

(1) Binary search strategy:

full binary code of length 4, size 16

0 �→ 0000, 1 �→ 0001, 2 �→ 0010, . . . , 15 �→ 1111.

(2) Ask every question 3 times: length 12, size 16

0 �→ 0000 0000 0000

1 �→ 0001 0001 0001

2 �→ 0010 0010 0010
...

15 �→ 1111 1111 1111.

Example 1.8: Codes from the Guessing and Liar Games
When playing the game as Bob, you could use the answers you had
heard so far to help choose the next question.

But to turn a questioning strategy into a code, we need to be able
to write down all the questions in advance.

(1) Binary search strategy: full binary code of length 4, size 16

0 �→ 0000, 1 �→ 0001, 2 �→ 0010, . . . , 15 �→ 1111.

(2) Ask every question 3 times: length 12, size 16

0 �→ 0000 0000 0000

1 �→ 0001 0001 0001

2 �→ 0010 0010 0010
...

15 �→ 1111 1111 1111.

Example 1.8: Codes from the Guessing and Liar Games
When playing the game as Bob, you could use the answers you had
heard so far to help choose the next question.

But to turn a questioning strategy into a code, we need to be able
to write down all the questions in advance.

(1) Binary search strategy: full binary code of length 4, size 16

0 �→ 0000, 1 �→ 0001, 2 �→ 0010, . . . , 15 �→ 1111.

(2) Ask every question 3 times:

length 12, size 16

0 �→ 0000 0000 0000

1 �→ 0001 0001 0001

2 �→ 0010 0010 0010
...

15 �→ 1111 1111 1111.

Example 1.8: Codes from the Guessing and Liar Games
When playing the game as Bob, you could use the answers you had
heard so far to help choose the next question.

But to turn a questioning strategy into a code, we need to be able
to write down all the questions in advance.

(1) Binary search strategy: full binary code of length 4, size 16

0 �→ 0000, 1 �→ 0001, 2 �→ 0010, . . . , 15 �→ 1111.

(2) Ask every question 3 times: length 12, size 16

0 �→ 0000 0000 0000

1 �→ 0001 0001 0001

2 �→ 0010 0010 0010
...

15 �→ 1111 1111 1111.

A better code from the Liar Game

(3) Let Alice’s number be m = b323 + b222 + b12 + b0, so
m = b3b2b1b0 in binary. We will encode m as the length 9 word

(b3, b2, b1, b0, b3, b2, b1, b0, e)

where e = b3 + b2 + b1 + b0 mod 2. This corresponds to asking
about each bit in m twice, and then asking one final question
which will resolve any ambiguity caused by an earlier lie from Alice.

0 �→ 0000 0000 0

1 �→ 0001 0001 1

2 �→ 0010 0010 1

3 �→ 0011 0011 0
...

15 �→ 1111 1111 0.

The Square Code
The Square Code on Question 2 of the preliminary sheet is a binary
code of length 8. Its codewords are all binary words of the form

(u1, u2, u3, u4, u1 + u2, u3 + u4, u1 + u3, u2 + u4)

where u1, u2, u3, u4 ∈ {0, 1} and the addition is done modulo 2.

(a) Check that 11000011 is a codeword in the square code. Draw
it as a square diagram.

(b) Suppose Alice sends 11000011 and Bob receives 01000011.
How can Bob work out that Alice sent 11000011?

Exercise: Alice wants to send Bob a number m between 0 and 15.
She writes m in binary as m = 23u1 + 22u2 + 21u3 + 20u4 and then
sends Bob the codeword in the Square Code starting u1u2u3u4 . . .

Imagine you are Bob and you receive 10011001. What do you
think Alice’s number is?

(A) 8 (B) 9 (C) 11 (D) 13.

The Square Code
The Square Code on Question 2 of the preliminary sheet is a binary
code of length 8. Its codewords are all binary words of the form

(u1, u2, u3, u4, u1 + u2, u3 + u4, u1 + u3, u2 + u4)

where u1, u2, u3, u4 ∈ {0, 1} and the addition is done modulo 2.

(a) Check that 11000011 is a codeword in the square code. Draw
it as a square diagram.

(b) Suppose Alice sends 11000011 and Bob receives 01000011.
How can Bob work out that Alice sent 11000011?

Exercise: Alice wants to send Bob a number m between 0 and 15.
She writes m in binary as m = 23u1 + 22u2 + 21u3 + 20u4 and then
sends Bob the codeword in the Square Code starting u1u2u3u4 . . .

Imagine you are Bob and you receive 10011001. What do you
think Alice’s number is?

(A) 8 (B) 9 (C) 11 (D) 13.

The Square Code
The Square Code on Question 2 of the preliminary sheet is a binary
code of length 8. Its codewords are all binary words of the form

(u1, u2, u3, u4, u1 + u2, u3 + u4, u1 + u3, u2 + u4)

where u1, u2, u3, u4 ∈ {0, 1} and the addition is done modulo 2.

(a) Check that 11000011 is a codeword in the square code. Draw
it as a square diagram.

(b) Suppose Alice sends 11000011 and Bob receives 01000011.
How can Bob work out that Alice sent 11000011?

Exercise: Alice wants to send Bob a number m between 0 and 15.
She writes m in binary as m = 23u1 + 22u2 + 21u3 + 20u4 and then
sends Bob the codeword in the Square Code starting u1u2u3u4 . . .

Imagine you are Bob and you receive 10011001. What do you
think Alice’s number is?

(A) 8 (B) 9 (C) 11 (D) 13.

A 7 Question Strategy from the Hamming Code

It is known that no questioning strategy for the Liar Game with 16
possible numbers can guarantee to use fewer than 7 questions.
Remarkably there is a questioning strategy with fixed questions
that meets this bound. It comes from the Hamming [7, 4, 3]-code
that we will see in Part C of the course.

1. Is your number in {1, 3, 4, 6, 8, 10, 13, 15}?
2. Is it in {1, 2, 5, 6, 8, 11, 12, 15}?
3. Is it in {8, 9, 10, 11, 12, 13, 14, 15}?
4. Is it in {1, 2, 4, 7, 9, 10, 12, 15}?
5. Is it in {4, 5, 6, 7, 12, 13, 14, 15}?
6. Is it in {2, 3, 6, 7, 10, 11, 14, 15}?
7. Is it in {1, 3, 5, 7, 9, 11, 13, 15, 17}?

Example 1.9: Reed–Solomon CD code

A compact-disc contains information in the form of a sequence of
microscopic pits on a disc that are read by a laser. Here the
compact disc is the channel, and its main purpose is to transmit
information reliably through time, rather than through space.

The pits encode a long sequence of the bits 0 and 1. The encoding
and decoding scheme used will always correct up to 16 errors in a
block of 2048 consecutive bits. If, however, the errors occur in
adjacent bits, as is usual for a scratch, then at least 128
consecutive errors may be corrected.

Example 1.10: Australian Railways Telegraph Code

In this code the encoder encodes a message as a list of codewords,
and then each codeword is sent, separately, down the channel.

Ayah Provide locomotive to work

Aybu Return locomotive at once

Azaf Breakdown train left at . . .

Azor Arrange to provide assistance locomotive

Azub A second locomotive will be attached to . . .

In telegraph transmission only upper case were used. So a typical
message might be something like ‘Breakdown train left at Sydney,
provide locomotive to work’, encoded as AZAF SYDNEY AYAH.

Exercise: Most codewords are not English words, although a few
are: ‘Coma’ is an instruction about extra trucks, ‘Cosy’ is an
instruction about loading trucks. Why do you think English words
were usually avoided?

Example 1.11: Mariner 9

The Mariner 9 probe, launched in 1971, took the first pictures of
Mars, ultimately transmitting 7239 pictures at a resolution of
700× 832 pixels. The images were grey-scale, using 64 = 26

different shades of grey.

� The probe did not have the internal memory to store even one
image, so the image had to be transmitted as it was captured.

� The pictures were transmitted back to Earth by sending one
pixel at a time, so we can think of a message as a single
number between 0 and 63.

� The channel could send the two binary digits 0 and 1. The
probability of each bit being flipped in the channel was about
0.05.

� Had each pixel been encoded a 6 bit number, about 26% of
the image would have been wrong.

Codes for Mariner 9

It was acceptable for each pixel to be encoded by up to 32 bits, so
increasing the amount of data to be stored and transmitted by a
factor of 5.

A repetition code where each of the 6 bits needed to specify a grey
level was repeated 5 times would reduce the percentage of
incorrect pixels to less than 4%.

The Hadamard code of length 32 and size 64 actually used could
correct up to 7 errors in each transmitted word. This reduced the
percentage of incorrect pixels to about 0.014%.

The next two slides show one of the Mariner 9 transmissions, as it
might have been received had each shade been encoded as a 6 bit
binary word, and one of the actual images sent using the
Hadamard code.

Codes for Mariner 9

It was acceptable for each pixel to be encoded by up to 32 bits, so
increasing the amount of data to be stored and transmitted by a
factor of 5.

A repetition code where each of the 6 bits needed to specify a grey
level was repeated 5 times would reduce the percentage of
incorrect pixels to less than 4%.

The Hadamard code of length 32 and size 64 actually used could
correct up to 7 errors in each transmitted word. This reduced the
percentage of incorrect pixels to about 0.014%.

The next two slides show one of the Mariner 9 transmissions, as it
might have been received had each shade been encoded as a 6 bit
binary word, and one of the actual images sent using the
Hadamard code.

Mariner 9 image: improvement due to error correction

Mariner 9 image: improvement due to error correction

The Mariner 9 Code
32 of the 64 Mariner 9 codewords: � = 0 and � = 1. Suppose we
receive the word below. How should we decide which codeword
was sent? Comparing with all 64 codewords takes some time . . .

MT361/MT461/MT5461

Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

Admin

Answers to Sheet 1 on Moodle: answer to Question 2 corrected
after Monday’s lecture.

If you have the sign-up sheet at end of lecture, please give to the
lecturer.

mark.wildon@rhul.ac.uk

MT361/MT461/MT5461

Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

Admin

Answers to Sheet 1 on Moodle: answer to Question 2 corrected
after Monday’s lecture.

If you have the sign-up sheet at end of lecture, please give to the
lecturer.

mark.wildon@rhul.ac.uk

Part A: Hamming distance and nearest neighbour decoding

§2 Hamming Distance and Error

Detection/Correction

Definition 2.1

Let A be an alphabet. Let u, v ∈ A
n be words of length n. The

Hamming distance between u and v , denoted d(u, v), is the
number of positions in which u and v are different.

Example 2.2

Working with binary words of length 4, we have

d(0011, 1101) = 3

because the words 0011 and 1101 differ in their first three
positions, and are the same in their final position. Working with
words over the alphabet {A,B,C, . . . ,X,Y,Z} we have
d(TALE,TAKE) = 1 and d(TALE,TILT) = 2.

Hamming distance

Theorem 2.3

Let A be a q-ary alphabet and let u, v ,w be words over A of

length n.

(i) d(u, v) = 0 if and only if u = v;

(ii) d(u, v) = d(v , u);

(iii) d(u,w) ≤ d(u, v) + d(v ,w).

Exercise: Find all English words v such that

d(WARM, v) = d(COLD, v) = 2.

Check that the triangle inequality holds when u, v , w are WARM,
WALL and COLD, respectively. For the connection with Lewis
Carroll’s ‘Doublets Game’, see Question 9 on Sheet 1.

Repetition Codes

Definition 2.4 (Repetition codes)

Let n ∈ N and let A be a q-ary alphabet with q ≥ 2. The
repetition code of length n over A has as its codewords all words of
length n of the form

(s, s, . . . , s)

where s ∈ A. The binary repetition code of length n is the
repetition code of length n over the binary alphabet {0, 1}.

Example 2.5

Consider the ternary repetition code of length 7 over the alphabet
{0, 1, 2} with codewords

0000000, 1111111 2222222.

Any two distinct codewords are at distance 7.

Example 2.5 (continued)

Suppose the codeword 0000000 is sent and e errors occur in the
channel, so that we receive v where d(0000000, v) = e.

If 1 ≤ e ≤ 6 then the received word is not a codeword, since
d(0000000, 1111111) = d(0000000, 2222222) = 7. So we can
detect errors when ≤ 6 errors occur.

If 1 ≤ e ≤ 3 then d(0000000, v) ≤ 3, and d(1111111, v) ≥ 4 and
d(2222222, v) ≥ 4. Hence the nearest codeword to v is 0000000.

If e ≥ 4 then it is possible that the nearest codeword to v will be
either 1111111 or 2222222. For example, if e = 4 we may have

v = 1010110

and then d(1111111, v) = 3, d(0000000, v) = 4. So we can only
promise to decode reliably when ≤ 3 errors occur.

Example 2.5 (continued)

Suppose the codeword 0000000 is sent and e errors occur in the
channel, so that we receive v where d(0000000, v) = e.

If 1 ≤ e ≤ 6 then the received word is not a codeword, since
d(0000000, 1111111) = d(0000000, 2222222) = 7. So we can
detect errors when ≤ 6 errors occur.

If 1 ≤ e ≤ 3 then d(0000000, v) ≤ 3, and d(1111111, v) ≥ 4 and
d(2222222, v) ≥ 4. Hence the nearest codeword to v is 0000000.

If e ≥ 4 then it is possible that the nearest codeword to v will be
either 1111111 or 2222222. For example, if e = 4 we may have

v = 1010110

and then d(1111111, v) = 3, d(0000000, v) = 4. So we can only
promise to decode reliably when ≤ 3 errors occur.

Example 2.5 (continued)

Suppose the codeword 0000000 is sent and e errors occur in the
channel, so that we receive v where d(0000000, v) = e.

If 1 ≤ e ≤ 6 then the received word is not a codeword, since
d(0000000, 1111111) = d(0000000, 2222222) = 7. So we can
detect errors when ≤ 6 errors occur.

If 1 ≤ e ≤ 3 then d(0000000, v) ≤ 3, and d(1111111, v) ≥ 4 and
d(2222222, v) ≥ 4. Hence the nearest codeword to v is 0000000.

If e ≥ 4 then it is possible that the nearest codeword to v will be
either 1111111 or 2222222. For example, if e = 4 we may have

v = 1010110

and then d(1111111, v) = 3, d(0000000, v) = 4. So we can only
promise to decode reliably when ≤ 3 errors occur.

Quiz on Example 2.5

Let C be the ternary repetition code in Example 2.5 with
codewords 0000000, 1111111, 2222222. Using C as an error
correcting code, decode the following received words by choosing
a nearest codeword in C .

(a) 1100000 (b) 2211211 (c) 0122021 (d) 1112220

In each case write down how many errors you think occurred in the
channel, and a lower bound for the number of errors that must
have occurred if your answer is not the sent codeword.

(a)
0000000
2/5 errors

(b)
1111111
3/4 errors

(c)
2222222
4/5 errors

(d)
xxxxxxx

4/4 errors

where x = 1 or x = 2.

Quiz on Example 2.5

Let C be the ternary repetition code in Example 2.5 with
codewords 0000000, 1111111, 2222222. Using C as an error
correcting code, decode the following received words by choosing
a nearest codeword in C .

(a) 1100000 (b) 2211211 (c) 0122021 (d) 1112220

In each case write down how many errors you think occurred in the
channel, and a lower bound for the number of errors that must
have occurred if your answer is not the sent codeword.

(a)
0000000
2/5 errors

(b)
1111111
3/4 errors

(c)
2222222
4/5 errors

(d)
xxxxxxx

4/4 errors

where x = 1 or x = 2.

Binary Parity Check Codes

Example 2.6 (Parity check codes)

Let n ∈ N and let C be the binary code consisting of all binary
words of length n. Let Cext be the code of length n + 1 whose
codewords are obtained by appending an extra bit to each
codeword in C , so that the total number of 1s in each codeword is
even.

Suppose that a codeword u ∈ Cext is sent through the channel and
the word v is received. If a single bit is corrupted, so d(u, v) = 1,
then v must have an odd number of 1s. Hence v �∈ Cext and we
detect that an error has occurred. This shows that if u, u� ∈ Cext

are distinct codewords then d(u, u�) ≥ 2.

Quiz on Example 2.6.

Exercise: How would you use the length 5 code Cext of size 16 to
encode a number between 0 and 15?

Using Cext as an error detecting code (i.e. don’t try to correct any
errors) decide for each of the received words below whether you
would request retransmission. Decode the words you accept.

(a) 11000 (b) 11100 (c) 11011

How many errors must have occurred in the channel if any of your
decoded messages are wrong?

Quiz on Example 2.6.

Exercise: How would you use the length 5 code Cext of size 16 to
encode a number between 0 and 15?

Using Cext as an error detecting code (i.e. don’t try to correct any
errors) decide for each of the received words below whether you
would request retransmission. Decode the words you accept.

(a) 11000 (b) 11100 (c) 11011

How many errors must have occurred in the channel if any of your
decoded messages are wrong?

Key Definition

Definition 2.7

Let C be a code of length n over an alphabet A and let t ∈ N. We
say that C is

• t-error detecting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that v �= u and d(u, v) ≤ t,
then v �∈ C .

• t-error correcting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that d(u, v) ≤ t, then

d(u, v) < d(u�, v)

for all codewords u� ∈ C such that u� �= u.

Remarks 2.8 on Definition 2.7

(1) Equivalently, a code C is t-error detecting if making up to t

changes in a codeword does not give another codeword. It is
t-error correcting if whenever v is a word within distance t of
a codeword u ∈ C , then v is strictly nearer to u than to any
other codeword of C . (So d(u, v) < d(u�, v) for all u� ∈ C

such that u �= u
�.)

(2) In both definitions we have d(u, v) ≤ t, so v is obtained from
u by changing up to t positions. Thus if s < t then a t-error
detecting code is also s-error detecting, and a t-error
correcting code is also s-error correcting.

(3) It may seem a bit odd to say that a code is ‘t-error correcting’
when it is the decoder (be it human or computer) that has to
do all the work of decoding! A code that is t-error correcting
promises to be able to correct up to t-errors, provided a

suitable decoder is used.

Exercise from Thursday

Let C be the ternary repetition code in Example 2.5 with
codewords 0000000, 1111111, 2222222.

Exercise: show that C is 3-error correcting. Hint: show that if

u ∈ C and v ∈ {0, 1, 2}7 is such that d(u, v) ≤ 3, then
d(w , v) ≥ 4 for all codewords w ∈ C with w �= u.

Ternary Repetition Code and Definition 2.7

Lemma 2.9

Let n ∈ N. Let C be the repetition code of length n over a q-ary

alphabet A, where q ≥ 2.

(i) C is (n − 1)-error detecting but not n-error detecting.

(ii) If n = 2m + 1 then C is m-error correcting but not

(m + 1)-error correcting.

(iii) If n = 2m then C is (m − 1)-error correcting, but not m-error

correcting.

In Example 2.5 we agreed, informally, that the ternary repetition
code of length 7 can detect when up to 6 errors occur, and correct
reliably when up to 3 errors occur. And, by Lemma 2.8, this code
is 6-error detecting and 3-error correcting.

Ternary Repetition Code and Definition 2.7

Lemma 2.9

Let n ∈ N. Let C be the repetition code of length n over a q-ary

alphabet A, where q ≥ 2.

(i) C is (n − 1)-error detecting but not n-error detecting.

(ii) If n = 2m + 1 then C is m-error correcting but not

(m + 1)-error correcting.

(iii) If n = 2m then C is (m − 1)-error correcting, but not m-error

correcting.

In Example 2.5 we agreed, informally, that the ternary repetition
code of length 7 can detect when up to 6 errors occur, and correct
reliably when up to 3 errors occur. And, by Lemma 2.8, this code
is 6-error detecting and 3-error correcting.

Binary Parity Check Code and Definition 2.7

Lemma 2.10

Let n ∈ N and let Cext be the binary parity check code of length

n + 1 defined in Example 2.6. Then Cext is 1-error detecting but

not 2-error detecting. It is not 1-error correcting.

End Monday: let u = 000 . . . 0 ∈ Cext and let v = 110 . . . 0. Then
d(u, v) = 2 and v ∈ Cext, so Cext is not 2-error detecting.

(I twice wrote C rather than Cext: please correct.)

Exercise: show that Cext is not 1-error correcting.

In Example 2.6 we agreed, informally, that the length 5 binary
parity check code can detect when a single error occurs. We also
found that it cannot detect when 2 errors occur, and cannot
reliably be used as an error-correcting code. This agrees with the
lemma.

Binary Parity Check Code and Definition 2.7

Lemma 2.10

Let n ∈ N and let Cext be the binary parity check code of length

n + 1 defined in Example 2.6. Then Cext is 1-error detecting but

not 2-error detecting. It is not 1-error correcting.

End Monday: let u = 000 . . . 0 ∈ Cext and let v = 110 . . . 0. Then
d(u, v) = 2 and v ∈ Cext, so Cext is not 2-error detecting.

(I twice wrote C rather than Cext: please correct.)

Exercise: show that Cext is not 1-error correcting.

In Example 2.6 we agreed, informally, that the length 5 binary
parity check code can detect when a single error occurs. We also
found that it cannot detect when 2 errors occur, and cannot
reliably be used as an error-correcting code. This agrees with the
lemma.

Final Example of Definition 2.7

Lemma 2.11

Let C be the binary code of length 12 seen in Example 1.8 whose

codewords are all words of the form

u1u2u3u4 u1u2u3u4 u1u2u3u4

where u1, u2, u3, u4 ∈ {0, 1}. Then C is 2-error detecting and one

1-error correcting. It is not 3-error detecting or 2-error correcting.

Suppose that C is used to encode binary numbers between 0 and
15. Decode the following received words, first to codewords, then
to numbers between 0 and 15. In each case write down how many
errors you think occurred in the channel, and a lower bound for the
number of errors that must have occurred if your answer is not the
sent codeword.

(a) 0110 0110 0110 (b) 0110 0111 0110 (c) 0100 0111 0010

Final Example of Definition 2.7

Lemma 2.11

Let C be the binary code of length 12 seen in Example 1.8 whose

codewords are all words of the form

u1u2u3u4 u1u2u3u4 u1u2u3u4

where u1, u2, u3, u4 ∈ {0, 1}. Then C is 2-error detecting and one

1-error correcting. It is not 3-error detecting or 2-error correcting.

Suppose that C is used to encode binary numbers between 0 and
15. Decode the following received words, first to codewords, then
to numbers between 0 and 15. In each case write down how many
errors you think occurred in the channel, and a lower bound for the
number of errors that must have occurred if your answer is not the
sent codeword.

(a) 0110 0110 0110 (b) 0110 0111 0110 (c) 0100 0111 0010

Answers to Quiz on Lemma 2.11

(a) (b) (c)

Received word v 0110 0110 0110 0110 0111 0110 0100 0111 0010
Nearest codeword u 0110 0110 0110 0110 0110 0110 0110 0110 0110

Decode as 6 6 6
Errors expected 0 1 3

Min. errors if wrong 3 2 4

The values in the final row are the distances from the received
word to the second nearest codeword; in all cases
w = 0111 0111 0111 is one such codeword, and w has distances 3,
2 and 4, from the received word.

In (a) the received word is the codeword u = 0110 0110 0110 so
d(u,w) = 3; this shows that C is not 3-error detecting.

In (b) the received word is v = 0110 0111 0110 which is distance 1
from u and distance 2 from w . This shows that C is not 2-error
correcting.

Answers to Quiz on Lemma 2.11

(a) (b) (c)

Received word v 0110 0110 0110 0110 0111 0110 0100 0111 0010
Nearest codeword u 0110 0110 0110 0110 0110 0110 0110 0110 0110

Decode as 6 6 6
Errors expected 0 1 3

Min. errors if wrong 3 2 4

The values in the final row are the distances from the received
word to the second nearest codeword; in all cases
w = 0111 0111 0111 is one such codeword, and w has distances 3,
2 and 4, from the received word.

In (a) the received word is the codeword u = 0110 0110 0110 so
d(u,w) = 3; this shows that C is not 3-error detecting.

In (b) the received word is v = 0110 0111 0110 which is distance 1
from u and distance 2 from w . This shows that C is not 2-error
correcting.

Answers to Quiz on Lemma 2.11

(a) (b) (c)

Received word v 0110 0110 0110 0110 0111 0110 0100 0111 0010
Nearest codeword u 0110 0110 0110 0110 0110 0110 0110 0110 0110

Decode as 6 6 6
Errors expected 0 1 3

Min. errors if wrong 3 2 4

The values in the final row are the distances from the received
word to the second nearest codeword; in all cases
w = 0111 0111 0111 is one such codeword, and w has distances 3,
2 and 4, from the received word.

In (a) the received word is the codeword u = 0110 0110 0110 so
d(u,w) = 3; this shows that C is not 3-error detecting.

In (b) the received word is v = 0110 0111 0110 which is distance 1
from u and distance 2 from w . This shows that C is not 2-error
correcting.

Hamming’s Adversarial Approach

Note that, while the code C in Lemma 2.11 can be used to detect
some cases where 3 or more errors occur, it does not guarantee

to do so. The definitions of t-error detecting and t-error
correcting codes follow Hamming’s ‘adversarial’ approach, in which
we aim to decode reliably even if the adversary, who wants to
cause us the maximum inconvenience, is allowed to choose the
positions in which the (up to t) errors occur.

In practice the situation when using a t-error correcting code is

• better because random errors will not inconvenience the
decoder as much as errors carefully chosen by the adversary;

• worse because there will always be a chance that more than t

errors occur. (But we can choose a code with t large, so that
this is unlikely.)

Hamming’s Adversarial Approach

Note that, while the code C in Lemma 2.11 can be used to detect
some cases where 3 or more errors occur, it does not guarantee

to do so. The definitions of t-error detecting and t-error
correcting codes follow Hamming’s ‘adversarial’ approach, in which
we aim to decode reliably even if the adversary, who wants to
cause us the maximum inconvenience, is allowed to choose the
positions in which the (up to t) errors occur.

In practice the situation when using a t-error correcting code is

• better because random errors will not inconvenience the
decoder as much as errors carefully chosen by the adversary;

• worse because there will always be a chance that more than t

errors occur. (But we can choose a code with t large, so that
this is unlikely.)

Example 2.12 (ISBN-10 code)

All recent books have an International Standard Book Number
(ISBN) assigned by the publisher. In this scheme, each book is
assigned a codeword of length 10 over the 11-ary alphabet
{0, 1, 2, . . . , 9,X}.

All we need to know is that u1u2u3u4u5u6u7u8u9u10 is an ISBN if
and only if

10�

j=1

(11− j)uj = 10u1 + 9u2 + · · ·+ 2u9 + u10 ≡ 0 mod 11

where any symbol X in the ISBN is interpreted as 10. (In fact X
can only appear as the final ‘check digit’ u10.)

Lemma 2.13

The ISBN code is 1-error detecting but not 2-error detecting. It is
not even 1-error correcting.

§3 Minimum Distance

Question 4 on Sheet 1 shows that if C is a code such that
d(u, u�) ≥ 3 for all distinct u, u� ∈ C , then C is 2-error detecting
and 1-error correcting. This is a special case of a very useful
general result. We need the following definition.

Definition 3.1

Let C be a code. The minimum distance of C , denoted d(C), is
defined by d(C) = min{d(u,w) : u,w ∈ C , u �= w}.

Example 3.2

Here is an example from Hamming’s original paper. Let C be the
binary code of length 3 with codewords

001, 010, 100, 111

as seen on Sheet 1, Question 2. Then d(u,w) = 2 for all distinct u
and w in C , so d(C) = 2. If we adjoin 000 as another codeword
then the minimum distance goes down to 1 since d(000, 001) = 1.

Examples of Minimum Distance

Lemma 3.3

Let n ∈ N.

(i) The minimum distance of any length n repetition code is n.

(ii) The minimum distance of the length n + 1 binary parity check

code Cext in Example 2.6 is 2.

(iii) The minimum distance of the square code is 3.

Question 2 on Sheet 2 gives a step-by-step proof that the 1-error
correcting code of length 9 seen in Example 1.8 has minimum
distance 3.

Exercise: Let C be a code. What do you think is the relationship
between the maximum t for which C is t-error detecting / t-error
correcting and the minimum distance of C?

Code Maximum t s.t.
t-error detecting

Maximum t s.t.
t-error correcting

Minimum
distance

Binary parity check
code of length 5

1 0 2

Ternary repetition
code of length 7

6 3 7

Any code with
min. distance ≥ 3

≥ 2 ≥ 1 ≥ 3

Square code 2 1 3
Lemma 2.11 code 2 1 3

Code Maximum t s.t.
t-error detecting

Maximum t s.t.
t-error correcting

Minimum
distance

Binary parity check
code of length 5

1 0 2

Ternary repetition
code of length 7

6 3 7

Any code with
min. distance ≥ 3

≥ 2 ≥ 1 ≥ 3

Square code 2 1 3
Lemma 2.11 code 2 1 3

Main Theorem on Minimum Distance

Recall that, by Definition 3.1, the minimum distance of a code C is

d(C) = min{d(u,w) : u,w ∈ C , u �= w}.

Theorem 3.4

Let C be a code with minimum distance d. Let t ∈ N.

(i) C is t-error detecting ⇐⇒ t ≤ d − 1;

(ii) C is t-error correcting ⇐⇒ 2t ≤ d − 1.

On Monday we proved everything except the ‘⇐’ (‘if’) direction
of (ii). In Question 4 on Sheet 1 we saw the special case that if
d ≥ 3 then C is 1-error correcting

For example, let C be a repetition code of length 2m + 1. The
minimum distance of C is 2m + 1. By Theorem 3.4

C is t-error detecting ⇐⇒ t ≤ 2m

C is t-error correcting ⇐⇒ t ≤ m

Main Theorem on Minimum Distance

Recall that, by Definition 3.1, the minimum distance of a code C is

d(C) = min{d(u,w) : u,w ∈ C , u �= w}.

Theorem 3.4

Let C be a code with minimum distance d. Let t ∈ N.

(i) C is t-error detecting ⇐⇒ t ≤ d − 1;

(ii) C is t-error correcting ⇐⇒ 2t ≤ d − 1.

On Monday we proved everything except the ‘⇐’ (‘if’) direction
of (ii). In Question 4 on Sheet 1 we saw the special case that if
d ≥ 3 then C is 1-error correcting

For example, let C be a repetition code of length 2m + 1. The
minimum distance of C is 2m + 1. By Theorem 3.4

C is t-error detecting ⇐⇒ t ≤ 2m

C is t-error correcting ⇐⇒ t ≤ m

Corollary of Theorem 3.4

The table below (taken from Hamming’s original paper, see
reference on page 3) shows the number of errors a code of small
minimum distance can detect and correct.

d(C) error detection / correction

1 no detection possible
2 1-error detecting
3 2-error detecting / 1-error correcting
4 3-error detecting / 1-error correcting
5 4-error detecting / 2-error correcting

Corollary 3.5

A code of minimum distance d is (d − 1)-error detecting and

�d−1
2 �-error correcting.

Corollary of Theorem 3.4

The table below (taken from Hamming’s original paper, see
reference on page 3) shows the number of errors a code of small
minimum distance can detect and correct.

d(C) error detection / correction

1 no detection possible
2 1-error detecting
3 2-error detecting / 1-error correcting
4 3-error detecting / 1-error correcting
5 4-error detecting / 2-error correcting

Corollary 3.5

A code of minimum distance d is (d − 1)-error detecting and

�d−1
2 �-error correcting.

Notation

Notation 3.6

If C is a code of length n, size M and minimum distance d , then C

is said to be a (n,M, d)-code.

For example, a repetition code of length n over a q-ary alphabet is
a (n, q, n)-code, and the binary parity check code of length n + 1
in Example 2.6 is a (n, 2n, 2)-code. The square code is a
(8, 16, 3)-code.

Exercise: What are the parameters of the binary code in Example
1.8 and Lemma 2.11 with codewords

u1u2u3u4 u1u2u3u4 u1u2u3u4

for u1, u2, u3, u4 ∈ {0, 1}?

Sheet 1 Question 3

Let m ∈ N and let C be the repetition code of length 2m over a
q-ary alphabet A where q ≥ 2. Show that C is (m − 1)-error
correcting but not m-error correcting.

Most people gave a good proof that C was (m − 1)-error
correcting. (Some ‘model’ answers are on Moodle.)

To show that C is not m-error correcting:

� “C is (m− 1)-error correcting so can’t be m-error correcting”.
This is simply wrong.

� “If we change m positions in a codeword then can’t correct.”.
This is very vague. Improve to:

� “If we change m positions in a codeword u to get v then
d(u, v) = d(u�, v) = m.” This is nearly right, but it depends
how we change positions. So we need to be more specific.

Summary: to show that something does not have a certain
property, one example suffices. Be as specific as possible.

Sheet 1 Question 3

Let m ∈ N and let C be the repetition code of length 2m over a
q-ary alphabet A where q ≥ 2. Show that C is (m − 1)-error
correcting but not m-error correcting.

Most people gave a good proof that C was (m − 1)-error
correcting. (Some ‘model’ answers are on Moodle.)

To show that C is not m-error correcting:

� “C is (m− 1)-error correcting so can’t be m-error correcting”.
This is simply wrong.

� “If we change m positions in a codeword then can’t correct.”.
This is very vague. Improve to:

� “If we change m positions in a codeword u to get v then
d(u, v) = d(u�, v) = m.” This is nearly right, but it depends
how we change positions. So we need to be more specific.

Summary: to show that something does not have a certain
property, one example suffices. Be as specific as possible.

Sheet 1 Question 3

Let m ∈ N and let C be the repetition code of length 2m over a
q-ary alphabet A where q ≥ 2. Show that C is (m − 1)-error
correcting but not m-error correcting.

Most people gave a good proof that C was (m − 1)-error
correcting. (Some ‘model’ answers are on Moodle.)

To show that C is not m-error correcting:

� “C is (m− 1)-error correcting so can’t be m-error correcting”.
This is simply wrong.

� “If we change m positions in a codeword then can’t correct.”.
This is very vague. Improve to:

� “If we change m positions in a codeword u to get v then
d(u, v) = d(u�, v) = m.” This is nearly right, but it depends
how we change positions. So we need to be more specific.

Summary: to show that something does not have a certain
property, one example suffices. Be as specific as possible.

Sheet 1 Question 3

Let m ∈ N and let C be the repetition code of length 2m over a
q-ary alphabet A where q ≥ 2. Show that C is (m − 1)-error
correcting but not m-error correcting.

Most people gave a good proof that C was (m − 1)-error
correcting. (Some ‘model’ answers are on Moodle.)

To show that C is not m-error correcting:

� “C is (m− 1)-error correcting so can’t be m-error correcting”.
This is simply wrong.

� “If we change m positions in a codeword then can’t correct.”.
This is very vague. Improve to:

� “If we change m positions in a codeword u to get v then
d(u, v) = d(u�, v) = m.” This is nearly right, but it depends
how we change positions. So we need to be more specific.

Summary: to show that something does not have a certain
property, one example suffices. Be as specific as possible.

Sheet 1 Question 3

Let m ∈ N and let C be the repetition code of length 2m over a
q-ary alphabet A where q ≥ 2. Show that C is (m − 1)-error
correcting but not m-error correcting.

Most people gave a good proof that C was (m − 1)-error
correcting. (Some ‘model’ answers are on Moodle.)

To show that C is not m-error correcting:

� “C is (m− 1)-error correcting so can’t be m-error correcting”.
This is simply wrong.

� “If we change m positions in a codeword then can’t correct.”.
This is very vague. Improve to:

� “If we change m positions in a codeword u to get v then
d(u, v) = d(u�, v) = m.” This is nearly right, but it depends
how we change positions. So we need to be more specific.

Summary: to show that something does not have a certain
property, one example suffices. Be as specific as possible.

§4 Nearest Neighbour Decoding

Example 4.1

Let C = {00000, 11100, 00111, 11011}.
(i) Suppose v = 11111 is received. Then since
d(11011, 11111) = 1 and d(u�, 11111) ≥ 2 for all codewords
u
� �= 11011, we would decode v as 11011 using nearest neighbour

decoding.

(ii) Suppose v = 01110 is received. Then nearest neighbour
decoding fails because the nearest codewords to v are 11100 and
00111, both at distance 2.

Quiz on Nearest Neighbour Decoding

Let C be the ternary code of length 4 on Question 1 of Sheet 3
with codewords

0000 0111 0222 1012 1120 1201 2021 2102 2210

The construction of this code using orthogonal Latin squares will
be seen later in the course. It has many interesting properties: in
particular, if u, u� ∈ C are distinct then d(u, u�) = 3.

Please decode the received words (a) 2222, (b) 1201, (c) 2121
using nearest neighbour decoding. In each case write down one of
the next closest codewords, and determine the minimum number
of errors that must have occurred in the channel if your answer is
not the sent codeword.

(a) 0222, distance 2 from 2021, 2102, 2210, if wrong 2 errors;

(b) 1201, distance 3 from any other codeword, if wrong 3 errors;

(c) 2021, distance 2 from 0111, 1120, 2102, if wrong 2 errors.

Quiz on Nearest Neighbour Decoding

Let C be the ternary code of length 4 on Question 1 of Sheet 3
with codewords

0000 0111 0222 1012 1120 1201 2021 2102 2210

The construction of this code using orthogonal Latin squares will
be seen later in the course. It has many interesting properties: in
particular, if u, u� ∈ C are distinct then d(u, u�) = 3.

Please decode the received words (a) 2222, (b) 1201, (c) 2121
using nearest neighbour decoding. In each case write down one of
the next closest codewords, and determine the minimum number
of errors that must have occurred in the channel if your answer is
not the sent codeword.

(a) 0222, distance 2 from 2021, 2102, 2210, if wrong 2 errors;

(b) 1201, distance 3 from any other codeword, if wrong 3 errors;

(c) 2021, distance 2 from 0111, 1120, 2102, if wrong 2 errors.

Quiz on Nearest Neighbour Decoding

Let C be the ternary code of length 4 on Question 1 of Sheet 3
with codewords

0000 0111 0222 1012 1120 1201 2021 2102 2210

The construction of this code using orthogonal Latin squares will
be seen later in the course. It has many interesting properties: in
particular, if u, u� ∈ C are distinct then d(u, u�) = 3.

Please decode the received words (a) 2222, (b) 1201, (c) 2121
using nearest neighbour decoding. In each case write down one of
the next closest codewords, and determine the minimum number
of errors that must have occurred in the channel if your answer is
not the sent codeword.

(a) 0222, distance 2 from 2021, 2102, 2210, if wrong 2 errors;

(b) 1201, distance 3 from any other codeword, if wrong 3 errors;

(c) 2021, distance 2 from 0111, 1120, 2102, if wrong 2 errors.

Nearest Neighbour Decoding as Part of a Two-step Process

Nearest neighbour decoding is only one step in the decoding
process. To recover the sent word, the decoder must take the
codeword given by nearest neighbour decoding and then undo the
encoder by translating the codeword back into a message.

✲
u sent v received

channel
nearest
neighbour
decoder

✲
w

undo
encoder

decoded

message
✲

❄

noise

For earlier examples of this two-stage process, see quiz on
Lemma 2.11 or the square code example (Lecture 4).

Connection with t-Error Correcting Codes

In Remark 2.8(3) we remarked that a t-error correcting code
promises to correct up to t errors, provided a suitable decoder is

used. The nearest neighbour decoder is this suitable decoder.

Exercise: Let C be a code. Show that C is t-error correcting ⇐⇒
whenever at most t errors occur in the channel, decoding a received
word using nearest neighbour decoding gives the sent codeword.

Hamming balls

Definition 4.2

Let A be a q-ary alphabet and let u be a word of length n. The
Hamming ball of radius t about u is

Bt(u) = {v : v ∈ A
n and d(u, v) ≤ t}.

Example 4.3

The Hamming balls about the binary word 0000 are

B0(0000) = {0000}
B1(0000) = {0000, 1000, 0100, 0010, 0001},
B2(0000) = B1(0000) ∪ {1100, 1010, 1001, 0110, 0101, 0011}
B3(0000) = B2(0000) ∪ {1110, 1101, 1011, 0111}

and B4(0000) consists of all binary words of length 4.

Clarification of Question 3 on Sheet 3

(3) Let u and w be binary words of length n.

(a) Let 1 ≤ i ≤ n and let u� and w
� be the binary words obtained

by flipping the bit in position i of u and w , respectively. Show
that d(u,w) = d(u�,w �).

(b) Let 1 ≤ i < j ≤ n and let u� and w
� be the binary words

obtained by swapping the bits in positions i and j of u and w ,
respectively. Show that d(u,w) = d(u�,w �).

In (b) u� is obtained by swapping the bits in position i and j of u;
v
� is obtained by swapping the bits in position i and j of v .

For example if i = 1, j = 2 and u = 10101, v = 00101 then

u
� = 01101, v

� = 00101

(Also in Question 4, ‘Theorem 4.1’ should be replaced with
‘Theorem 4.6’.)

The Final Interpretation of ‘t-Error Correcting’

Lemma 4.4

Let C be a code. Then C is t-error correcting ⇐⇒ for all distinct

codewords u, u� ∈ C, the Hamming balls Bt(u) and Bt(u�) are
disjoint.

Exercise: Let C be a t-error correcting code. Suppose that you
receive a word v , and that after searching through some of the
codewords in C for its nearest neighbour, you find a codeword u

such that d(u, v) ≤ t. Explain why u must be the unique nearest
codeword to v .

Reminder of Key Definition

Definition 2.7

Let C be a code of length n over an alphabet A and let t ∈ N. We
say that C is

• t-error detecting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that v �= u and d(u, v) ≤ t,
then v �∈ C .

• t-error correcting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that d(u, v) ≤ t, then

d(u, v) < d(u�, v)

for all codewords u� ∈ C such that u� �= u.

The Mariner 9 Code

32 of the 64 Mariner 9 codewords: � = 0 and � = 1. Suppose we
receive the word below. Even with the speed-up in the exercise,
perfoming nearest neighbour decoding will take a while . . .

Binary Symmetric Channel

Consider the binary channel in which each transmitted bit flips, so
a 0 becomes a 1 and a 1 becomes a 0, independently with
probability p > 0. This channel is known as the binary symmetric

channel.

0 0

1 1

1− p

1− p

p

p

The Probabilistic Justification for Nearest Neighbour

Decoding

Theorem 4.5

Suppose that we use a binary code C to send messages through

the binary symmetric channel, and that each codeword in C is

equally likely to be sent. Suppose we receive a binary word v. For

each u ∈ C,

P[u sent | v received] = p
d(u,v)(1− p)n−d(u,v)

A(v)

where A(v) does not depend on u. Hence P[u sent | v received] is
maximized by choosing u to be the nearest codeword to v.

See Question 7 on Sheet 3 for an example of the problems that
arise if one codeword is much more likely to be sent than the
others.

Summary of Part A

In Part A we have seen the formal definition (Definition 2.7) of
t-error detecting/correcting codes. The examples in §2 and the
results in Lemmas 2.9 and 2.10 show that this definition is a
reasonable one.

We then saw other ways of thinking about t-error correcting codes,
using minimum distance (Definition 3.1) and nearest neighbour
decoding. These are summarised in the following theorem.

Theorem 4.6

Let C be a code. The following are equivalent

(a) C is t-error correcting;

(b) The minimum distance of C is at least 2t + 1;

(c) Nearest neighbour decoding always gives the sent codeword,

provided at most t errors occur;

(d) If u, u
� ∈ C are distinct codewords then the Hamming balls

Bt(u) and Bt(u�) are disjoint.

B0(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B1(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B2(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B3(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B4(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B0(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B1(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B2(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B3(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B4(1010)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

MT361/MT461/MT5461
Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

Admin

Correction to Question 3 on Sheet 5: minimum distance should
be n − 1, not 3. A corrected version of the sheet is on Moodle.

If you have the sign-up sheet at end of lecture, please give to the
lecturer.

mark.wildon@rhul.ac.uk

MT361/MT461/MT5461
Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

Admin

Correction to Question 3 on Sheet 5: minimum distance should
be n − 1, not 3. A corrected version of the sheet is on Moodle.

If you have the sign-up sheet at end of lecture, please give to the
lecturer.

mark.wildon@rhul.ac.uk

Part B: Main Coding Theory Problem

§5 Main Coding Theory Problem
and Hamming’s Bound

Problem 5.1
The Main Coding Theory Problem is to find codes over a given
alphabet with

(1) small length;

(2) large size;

(3) high minimum distance.

Equivalently, we want to find (n,M, d)-codes over the given
alphabet with small n, high M and high d .

The Mariner 9 Code
32 of the 64 Mariner 9 codewords: � = 0 and � = 1. Suppose we
receive the word below. Looking through all 64 codewords to find
the closest one will take some time.

B0(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B1(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B2(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B3(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

B4(0000)

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Hamming’s Packing Bounds

Lemma 5.3
Let u be a binary word of length n. The number of words in the
Hamming ball Bt(u) of radius t about u is

t�

k=0

�
n

k

�
.

We also need the result of Question 5 of Sheet 3, that if C has
minimum distance at least 2t + 1 then the Hamming balls of
radius t about distinct codewords are disjoint.

Theorem 5.4 (Hamming’s Packing Bound)

Let C be a binary (n,M, d)-code. If e = �d−1
2 � then

M ≤ 2n�e
k=0

�n
k

� .

Correction to Proof of Theorem 5.4

Plase change e = �(n − 1)/2� to e = �(d − 1)/2�. Then the
calculation that 2e + 1 ≤ d , and so the Hamming balls of radius e
about codewords are disjoint, should read

2�d − 1

2
�+ 1 ≤ 2

�d − 1

2

�
+ 1 = (d − 1) + 1 ≤ d .

My apologies for this error.

Examples of Hamming’s Packing Bound

Hamming’s Packing Bound for the maximum size of a binary
(n,M, 3)-code.

length n 3 4 5 6 7 8 9 10

bound on size M 2 3 5 9 16 28 51 93

Hamming’s bound is a necessary condition for a code to exist. It
is not sufficient.

For example, the table shows that a binary code
of length 5 and minimum distance 3 has size at most 5. But by
Question 5 on Sheet 3, such a code has size at most 4; one
example is

00000, 11100, 00111, 11011.

Examples of Hamming’s Packing Bound

Hamming’s Packing Bound for the maximum size of a binary
(n,M, 3)-code.

length n 3 4 5 6 7 8 9 10

bound on size M 2 3 5 9 16 28 51 93

Hamming’s bound is a necessary condition for a code to exist. It
is not sufficient. For example, the table shows that a binary code
of length 5 and minimum distance 3 has size at most 5. But by
Question 5 on Sheet 3, such a code has size at most 4; one
example is

00000, 11100, 00111, 11011.

§6 Equivalences of Codes and Aq(n, d)

Definition 6.1
Let q ≥ 2 and let n ∈ N, d ∈ N be such that n ≥ d . We denote
by Aq(n, d) the largest size of a code of length n and minimum
distance d over a q-ary alphabet.

Exercise: Convince yourself that the choice of which particular
q-ary alphabet to use makes no difference to Aq(n, d).

Exercise: Working over the q-ary alphabet {0, 1, . . . , q − 1}, show
that there is at least one code of length n and minimum distance d .

Lemma 6.2
Let q ≥ 2 and let n ∈ N. Then

(i) Aq(n, 1) = qn;

(ii) Aq(n, n) = q.

§6 Equivalences of Codes and Aq(n, d)

Definition 6.1
Let q ≥ 2 and let n ∈ N, d ∈ N be such that n ≥ d . We denote
by Aq(n, d) the largest size of a code of length n and minimum
distance d over a q-ary alphabet.

Exercise: Convince yourself that the choice of which particular
q-ary alphabet to use makes no difference to Aq(n, d).

Exercise: Working over the q-ary alphabet {0, 1, . . . , q − 1}, show
that there is at least one code of length n and minimum distance d .

Lemma 6.2
Let q ≥ 2 and let n ∈ N. Then

(i) Aq(n, 1) = qn;

(ii) Aq(n, n) = q.

§6 Equivalences of Codes and Aq(n, d)

Definition 6.1
Let q ≥ 2 and let n ∈ N, d ∈ N be such that n ≥ d . We denote
by Aq(n, d) the largest size of a code of length n and minimum
distance d over a q-ary alphabet.

Exercise: Convince yourself that the choice of which particular
q-ary alphabet to use makes no difference to Aq(n, d).

Exercise: Working over the q-ary alphabet {0, 1, . . . , q − 1}, show
that there is at least one code of length n and minimum distance d .

Lemma 6.2
Let q ≥ 2 and let n ∈ N. Then

(i) Aq(n, 1) = qn;

(ii) Aq(n, n) = q.

§6 Equivalences of Codes and Aq(n, d)

Definition 6.1
Let q ≥ 2 and let n ∈ N, d ∈ N be such that n ≥ d . We denote
by Aq(n, d) the largest size of a code of length n and minimum
distance d over a q-ary alphabet.

Exercise: Convince yourself that the choice of which particular
q-ary alphabet to use makes no difference to Aq(n, d).

Exercise: Working over the q-ary alphabet {0, 1, . . . , q − 1}, show
that there is at least one code of length n and minimum distance d .

Lemma 6.2
Let q ≥ 2 and let n ∈ N. Then

(i) Aq(n, 1) = qn;

(ii) Aq(n, n) = q.

Equivalences

Definition 6.3
Let C and C � be codes over a q-ary alphabet A. We say that C
and C � are equivalent if one can be obtained from the other by
repeatedly applying the following two operations to all the
codewords:

(a) relabelling the symbols appearing in a fixed position;

(b) shuffling the positions within each codeword.

Lemma 6.4
If u and w are codewords in a code C, and u� and w � are the
corresponding codewords in an equivalent code C � obtained by
relabelling (a) and/or shuffling positions (b) then
d(u,w) = d(u�,w �).

Example of Equivalences

Example 6.5
Consider the four binary codes

C = {0000, 1100, 1010, 0110}
C � = {1010, 0110, 0011, 1111}
D = {0000, 1100, 0011, 1111}
E = {1000, 0100, 0010, 0001}

All four codes have minimum distance 2. By applying operations
(a) and (b) we will show that C and C � are equivalent. No other
two of these codes are equivalent.

For C and D this can be shown quite easily: there are codewords
in D that are distance 4 apart, for example d(0000, 1111) = 4, but
all codewords in C are distance 2 apart.

For C and E we need another argument, because all codewords in
both codes are distance 2 apart. (See Sheet 4: C = C1, E = C3.)

Example 6.5: C = {0000, 1100, 1010, 0110}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Example 6.5: C � = {1010, 0110, 0011, 1111}.

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Example 6.5: C = {0000, 1100, 1010, 0110}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Example 6.5: C � = {1010, 0110, 0011, 1111}.

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Example 6.5: D = {0000, 1100, 0011, 1111}.

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Example 6.5: D = {0000, 1100, 0011, 1111}.

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Example 6.5: E = {1000, 0100, 0010, 0001}.

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Using Equivalences to Find Largest Sizes of Codes

We will use equivalences of codes to find A2(8, 5).

In the next lemma, we say that a binary word u has weight r , and
write wt(u) = r , if exactly r positions of u are equal to 1, and the
rest are equal to 0.

Lemma 6.6
Let u and w be binary codewords of length n. Suppose that
wt(u) ≥ r and wt(w) ≥ s. If r + s ≥ n then

d(u,w) ≤ 2n − (r + s).

Theorem 6.7
A2(8, 5) = 4.

Other values of An(n, d) for small n.

For background, the table below shows some other values of
A2(n, d). One result visible in the table is that

A2(n, d) = A2(n + 1, d + 1)

whenever d is odd: see the optional questions on Sheet 4.

d A2(2, d) A2(3, d) A2(4, d) A2(5, d) A2(6, d) A2(7, d) A2(8, d)

1 4 8 16 32 64 128 256
2 2 4 8 16 32 64 128
3 2 2 4 8 16 20
4 2 2 4 8 16
5 2 2 2 4
6 2 2 2
7 2 2
8 2

§7 Codes from Mutually Orthogonal Latin Squares

Definition 7.1
Let q ∈ N and let A be a q-ary alphabet. A Latin square with
entries from A is a q × q array in which every row and column
contains each symbol in A exactly once. We say that q is the order
of the square.

Note that since there are q symbols and each row and column has
length q, it is equivalent to require either

(i) each row and column contains every symbol in A; or

(ii) no symbol appears twice in any row or column of A.

Definition 7.3
Let X and Y be Latin squares over an alphabet A. We say that X
and Y are orthogonal if for each each a, b ∈ A there exist unique
i , j ∈ A such that Xij = a and Yij = b.

Example 7.4
Two mutually orthogonal Latin squares (MOLs) over the alphabet
{0, 1, 2, 3} are shown below.

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

To show that these squares are orthogonal we form a new square
whose entries are pairs of entries from the two squares,

00 11 22 33
12 03 30 21
23 32 01 10
31 20 13 02

and then check that each of the 16 pairs 00, 01, . . . , 33 appears
exactly once.

Hunting for MOLs

Exercise: Show that there is no pair of MOLs of order 2.

Remark 7.5
There are no MOLs of order 6. This was conjectured by Euler, but
not proved until 1900.

Lemma 7.6
Let q ≥ 3 be prime and let A = {0, 1, . . . , q − 1}. For i , j ∈ A let

Xij = i + j mod q

Yij = 2i + j mod q

Then X and Y are mutually orthogonal Latin squares.

Connection between MOLs and codes

We now show how to use MOLs to construct a family of 1-error
correcting codes. These codes all have length 4 and minimum
distance 3.

Theorem 7.7
Let A be the alphabet {0, 1, . . . , q − 1}. There is a pair of MOLs
over A of order q ⇐⇒ there is a (4, q2, 3)-code over A.

Example 7.8
(Variation on example in notes.) Given the 4-ary (4, 16, 3)-code
with codewords

0030 0101 0212 0323 1002 1133 1220 1311

2013 2122 2231 2300 3021 3110 3203 3332

construct a pair of MOLs of order 4. Conversely, given this pair of
MOLs we can recover the code.

Sheet 4: Question 1 on Equivalences of Codes

It is very tempting to argue that if C and C � are codes and u ∈ C
is a codeword such that u ∈ C �, then any equivalence of C with C �

must send u to itself.

However this is false in general.

For example, consider the binary (4, 3, 2)-codes

C = {0000, 1100, 1111}
C � = {0000, 1100, 0011}.

Then C and C � are equivalent.

In C the unique pair of codewords
at distance 4 is 0000 and 1111, and in C � the unique such pair is
1100 and 0011. So any equivalence must send 0000 to either 1100
or 0011.

Sheet 4: Question 1 on Equivalences of Codes

It is very tempting to argue that if C and C � are codes and u ∈ C
is a codeword such that u ∈ C �, then any equivalence of C with C �

must send u to itself.

However this is false in general.

For example, consider the binary (4, 3, 2)-codes

C = {0000, 1100, 1111}
C � = {0000, 1100, 0011}.

Then C and C � are equivalent. In C the unique pair of codewords
at distance 4 is 0000 and 1111, and in C � the unique such pair is
1100 and 0011. So any equivalence must send 0000 to either 1100
or 0011.

C = {0000, 1100, 1111}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

C � = {0000, 1100, 0011}

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Sheet 4, Question 1: C4 = {0000, 1100, 0110, 0011}.

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Sheet 4, Question 1: C5 = {0110, 1100, 1001, 0011}.

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

§8 The Singleton bound and puncturing a code

Definition 8.1
Let C be a code of length n ≥ 2 and minimum distance ≥ 2. Let
C � be the code whose codewords are obtained by removing the
final position from each codeword in C . We say that C � is
obtained by puncturing C in its final position.

Example 8.2
Let D be the binary code whose codewords are all binary words of
length 4 with an even number of 1s. Let D� be the code obtained
by puncturing C in its final position. Then

C = {0000, 1100, 1010, 0110, 1001, 0101, 0011, 1111}
C � = {000, 110, 101, 011, 100, 010, 001, 111}

Thus C has minimum distance 2 and C � has minimum distance 1.

Singleton Bound

Lemma 8.3
Let C be a code of length n and minimum distance d. The
punctured code C � has length n − 1 and minimum distance
≥ d − 1.

Theorem 8.4 (Singleton Bound)

If C is a q-ary code of length n and minimum distance d then
|C | ≤ qn−d+1. Hence Aq(n, d) ≤ qn−d+1.

Remarks on Theorem 8.4

Remarks 8.5

(1) If n = 4 and d = 3 then the Singleton bound gives
Aq(4, 3) ≤ q4−3+1 = q2. The codes constructed by MOLs
achieve the bound. So whenever there is a pair of MOLs of
order q we have Aq(4, 3) = q2.

(2) The Reed–Solomon codes constructed in the MSc/MSci
course achieve the Singleton bound. They show that
Aq(n, d) = qn−d+1 whenever q is a prime power and q ≥ n.

(3) The special case of the Singleton bound when d = n is

Aq(n, n) ≤ q.

This was proved in Lemma 4.3 using the Pigeonhole Principle.
The Pigeonhole Principle can be used to prove the general
Singleton bound: see Questions 3 and 5 on Sheet 5.

§9 Hadamard Codes and the Plotkin Bound

Definition 9.1
Let n ∈ N. A Hadamard matrix of order n is an n × n matrix H
such that each entry of H is either +1 or −1 and HHtr = nI . Here
I is the n× n identity matrix and Htr is the transpose matrix of H.

Example 9.2

If H =

�
1 1
1 −1

�
then H is a Hadamard matrix of order 2. Two

Hadamard matrices of order 4 are shown below; in these matrices
we write + for 1 and − for −1.





+ + + +
+ − + −
+ + − −
+ − − +



 ,





+ + + −
+ + − +
+ − + +
− + + +



 .

Connection with Coding Theory

Lemma 9.3
Suppose H is a Hadamard matrix of order n where n ≥ 2. If i ,
k ∈ {1, 2, . . . , n} and i �= k then row i and row k of H are equal in
exactly n/2 positions.

Theorem 9.4
Suppose that H is a Hadamard matrix of order n ≥ 2. Let B be
the 2n × n matrix defined by

B =

�
H
−H

�
.

The rows of B are the codewords in a (n, 2n, n/2)-code over the
alphabet {+,−}.

Example of Theorem 9.4

Example 9.5
Let

H =





+ + + −
+ + − +
+ − + +
− + + +



 .

The construction in Theorem 9.4 gives the binary code with
codewords

0001 0010 0100 1000

1110 1101 1011 0111.

Plotkin Bound

Theorem 9.6 (Plotkin bound)

Let n, d ∈ N be such that 2d > n. Then

A2(n, d) ≤
2d

2d − n
.

For example, taking n = 8 and d = 5 we get

A2(8, 5) ≤ 10/(10− 8) = 5.

By Theorem 6.7, A2(8, 5) = 4 so the Plotkin bound comes close to
the strongest possible result.

Exercise: Use the Plotkin bound to give an alternative proof of the
result of Question 2(b) on Sheet 4, that A2(9, 6) = 4.

Hadamard Codes are as Large as Possible

Corollary 9.7 (Another Plotkin bound)

If d ∈ N then
A2(2d , d) ≤ 4d .

If there is a Hadamard matrix of order 2d then

A2(2d , d) = 4d .

It is quite easy to show that if there is a Hadamard matrix of
order n then either n = 1, or n = 2 or n is divisible by 4: see
Question 4 on Sheet 6.

It is a major open problem to show that there are Hadamard
matrices of all orders divisible by 4.

Hadamard Codes are as Large as Possible

Corollary 9.7 (Another Plotkin bound)

If d ∈ N then
A2(2d , d) ≤ 4d .

If there is a Hadamard matrix of order 2d then

A2(2d , d) = 4d .

It is quite easy to show that if there is a Hadamard matrix of
order n then either n = 1, or n = 2 or n is divisible by 4: see
Question 4 on Sheet 6.

It is a major open problem to show that there are Hadamard
matrices of all orders divisible by 4.

Example of Corollary 9.7

To see how the argument works we take the Hadamard matrix of
order 8 shown below. (This comes from the ‘doubling’
construction on Question 2 Sheet 6.) Recall that black squares
show +1 and white squares show −1.

Example of Corollary 9.7

To see how the argument works we take the Hadamard matrix of
order 8 shown below. (This comes from the ‘doubling’
construction on Question 2 Sheet 6.) Recall that black squares
show +1 and white squares show −1.

Example of Corollary 9.7

To see how the argument works we take the Hadamard matrix of
order 8 shown below. (This comes from the ‘doubling’
construction on Question 2 Sheet 6.) Recall that black squares
show +1 and white squares show −1.

Example of Corollary 9.7

The corresponding code has 16 codewords and minimum
distance 4.

There are 8 codewords ending in +1 (black) and 8 codewords
ending −1 (white) so we can take either subset.

Example of Corollary 9.7

The corresponding code has 16 codewords and minimum
distance 4.

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

There are 8 codewords ending in +1 (black) and 8 codewords
ending −1 (white) so we can take either subset.

Example of Corollary 9.7

Taking the 8 codewords ending +1 (black) gives this code:

We then puncture to remove the final constant position. In the
last step of the proof we applied the Plotkin bound to the resulting
code of length 7 and minimum distance 4.

Example of Corollary 9.7

Taking the 8 codewords ending +1 (black) gives this code:

We then puncture to remove the final constant position. In the
last step of the proof we applied the Plotkin bound to the resulting
code of length 7 and minimum distance 4.

§10 Gilbert–Varshamov Bound and Summary

Recall from Definition 4.2 that the Hamming ball of radius t about
a binary word u ∈ {0, 1}n

Bt(u) = {v : v ∈ An and d(u, v) ≤ t}.

The idea in the next theorem is to construct a large binary code of
length n and minimum distance d in the most näıve way possible:
we just keep on adding codewords until the Hamming balls of
radius (d − 1) cover {0, 1}n, and so every word is distance
≤ (d − 1) from some codeword.

Theorem 10.1 (Gilbert–Varshamov bound)

If n, d ∈ N then

A2(n, d) ≥
2n

�d−1
k=0

�n
k

� .

Comparison of Bounds

32

We have seen the Hamming, Plotkin and Singleton upper bounds on
Aq(n, d). In some cases these bounds are achieved by certain ‘best pos-
sible’ codes: by Remark 8.5(1) the MOLs codes in §7 achieve the Sin-
gleton bound, and by Corollary 9.7 the Hadamard codes in §9 achieve
the Plotkin bound. In these cases the Main Coding Theory Problem is
completely solved.

These upper bounds and the Gilbert–Varshamov lower bound are
compared in the diagram below for binary codes of length 1000. (The
Mathematica notebook used to draw this graph is available from
Moodle.) The Plotkin bound used is the ‘asymptotic bound’ mentioned
after Corollary 9.7. Note that the graph shows log2 of each bound.

The Plotkin bound is stronger than the Hamming Packing Bound
for d ≥ 320. For most d there is a wide gap between the Gilbert–
Varshamov lower bound and the Hamming and Plotkin upper bounds,
and all we know is that A2(1000, d) is somewhere in between. Deter-
mining the true value of A2(n, d) for large n and d is one of the main
open problems in coding theory.

Comparison of bounds for binary codes of length 1000

Singleton
bound

Hamming
bound

Plotkin
bound

Gilbert–
Varshamov
bound

0 200 400 600 800 1000
0

200

400

600

800

1000
lo
g 2

b
ou

n
d

minimum distance d

Question 3 on Sheet 4

A binary code C of length n is said to be perfect if there exists
e ∈ N such that

{0, 1}n =
�

u∈C
Be(u)

where the union is disjoint. (In words: the Hamming balls of radius
e about codewords are disjoint, and every binary word of length n
is in one of these balls.)

(a) Show that if n is odd then the binary repetition code of length
n is perfect.

(b) Show that if C is a perfect binary code of length n with e = 1
then C is 1-error correcting and n = 2m − 1 for some m ∈ N.
Express |C | in terms of m. [You may use any general results
proved earlier in the course.]

(c) (MSc, MSci) Show that a perfect binary code has odd
minimum distance.

Question 1 on Sheet 5

Theorem 7.7
Let A be the alphabet {0, 1, . . . , q − 1}. There is a pair of MOLs
over A of order q ⇐⇒ there is a (4, q2, 3)-code over A.

The point of Question 1 on Sheet 5 is to show that given any
(4, q2, 3)-code over the alphabet {0, 1, . . . , q− 1} we can construct
a pair of MOLs, proving ‘⇐’. (See Example 7.8 for an example.)

Suppose that C is a (4, q2, 3)-code over the alphabet
A = {0, 1, . . . , q − 1}.
(a) Show that if u = (u1, u2, u3, u4) and u� = (u�1, u

�
2, u

�
3, u

�
4) ∈ C

are distinct codewords then (u1, u2) �= (u�1, u
�
2).

(b) Deduce that for all i , j ∈ A there is a unique codeword, say
(i , j ,Xij ,Yij), whose first two positions are (i , j). [Hint: C has
size q2.]

(c) Explain in one sentence why it follows that

C = {(i , j ,Xij ,Yij) : i , j ∈ A}

MT361/MT461/MT5461
Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

Admin

If you have the sign-up sheet at end of lecture, please give to the

lecturer.

Please collect your marked work.

mark.wildon@rhul.ac.uk

MT361/MT461/MT5461
Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

Admin

If you have the sign-up sheet at end of lecture, please give to the

lecturer.

Please collect your marked work.

mark.wildon@rhul.ac.uk

Part C: Linear Codes

§11 Linear codes and weights

From now on the alphabet of of bits {0, 1} should be thought of

as Z2, that is, the integers modulo 2. So we have

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0.

Given u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) ∈ Zn
2, we define

(u1, u2, . . . , un) + (v1, v2, . . . , vn) = (u1 + v1, u2 + v2, . . . , un + vn).

Definition 11.1

Let C be a binary code of length n. We say that C is linear if for

all u,w ∈ C we have u + w ∈ C .

Example 11.2

Let n ∈ N.

(1) The length 5 code C = {00000, 11100, 00111, 11011} is linear.

(2) The binary repetition code of length n is a linear

(n, 2, n)-code.

(3) The code of size 2
n
consisting of all binary words of length n

is a linear (n, 2n, 1)-code.

(4) Let C be all binary words of length 4. As in Example 2.6,

let Cext be the code obtained by adding an extra bit at the

end of each codeword to make the total number of 1s in each

codeword even. Then, Cext is a (5, 16, 2)-code and

Cext = {(u1, u2, u3, u4, u5) ∈ Z5
2 : u1 + u2 + u3 + u4 + u5 = 0}

We will show that Cext is linear.

Exercise: Show that the square code (see Question 2 on

Preliminary Problem Sheet) is linear.

Hamming Distances for Linear Codes

The next lemma shows that Hamming distance behaves well under

addition.

Lemma 11.3

Let u, w be binary words of length n ∈ N. For any binary word

v ∈ Zn
2 we have

d(u,w) = d(u + v ,w + v).

Recall that the weight of a binary word u was defined (just before

Lemma 6.6 [not 8.6]) to be the number of positions of u equal

to 1. For example, wt(11100) = 3 and wt(11011) = 4.

Lemma 11.4

Let C be a linear binary code. The minimum distance of C is equal

to the minimum weight of a non-zero codeword of C.

Quiz on Lemma 11.4

To find the minimum distance of a code C we have to think about

d(u,w) for all distinct u,w ∈ C . If C is linear it is easier to find

min{wt(u) : u ∈ C , u �= 0}

and then to use Lemma 11.4.

Recall that the square code has codewords

(u1, u2, u3, u4, u1 + u2, u3 + u4, u1 + u3, u2 + u4)

for u1, u2, u3, u4 ∈ Z2 represented by

u1 u2 u1 + u2

u3 u4 u3 + u4

u1 + u3 u2 + u4

for u1, u2, u3, u4 ∈ Z2. What is the minimum weight of a non-zero

codeword?

(a) 1 (b) 2 (c) 3 (d) 4

Parity Check Extensions

The last result in this section generalises the parity check extension

codes seen in Example 2.6 and Example 11.2(2). (For a related

result see Questions 5 and 6 on Sheet 4.)

Definition 11.5

Let C be a binary code of length n. The parity check extension of

C is the code Cext of length n + 1 defined by

Cext = {(u1, . . . , un, un+1) : (u1, . . . , un) ∈ C , u1+· · ·+un+un+1 = 0.}

Theorem 11.6

Suppose that C be a linear binary (n,M, d)-code. If d is odd then

the parity check extension Cext of C is a linear binary

(n + 1,M, d + 1)-code.

Example of Theorem 11.6

Suppose we start with the binary square code C , which is a

(8, 16, 3)-code. To form the parity check extension we take a

codeword

(u1, u2, u3, u4, u1 + u2, u3 + u4, u1 + u3, u2 + u4)

and append a final bit to make the weight even.

u1 u2 u1 + u2

u3 u4 u3 + u4

u1 + u3 u2 + u4

The appended bit is equal to the sum of the first 8 bits, so is

u1 + u2 + u3 + u4. The codewords in Cext can be represented by

u1 u2 u1 + u2

u3 u4 u3 + u4

u1 + u3 u2 + u4 u1 + u2 + u3 + u4

The minimum distance of Cext is 4.

Example of Theorem 11.6

Suppose we start with the binary square code C , which is a

(8, 16, 3)-code. To form the parity check extension we take a

codeword

(u1, u2, u3, u4, u1 + u2, u3 + u4, u1 + u3, u2 + u4)

and append a final bit to make the weight even.

u1 u2 u1 + u2

u3 u4 u3 + u4

u1 + u3 u2 + u4

The appended bit is equal to the sum of the first 8 bits, so is

u1 + u2 + u3 + u4. The codewords in Cext can be represented by

u1 u2 u1 + u2

u3 u4 u3 + u4

u1 + u3 u2 + u4 u1 + u2 + u3 + u4

The minimum distance of Cext is 4.

Example of Theorem 11.6

Suppose we start with the binary square code C , which is a

(8, 16, 3)-code. To form the parity check extension we take a

codeword

(u1, u2, u3, u4, u1 + u2, u3 + u4, u1 + u3, u2 + u4)

and append a final bit to make the weight even.

u1 u2 u1 + u2

u3 u4 u3 + u4

u1 + u3 u2 + u4

The appended bit is equal to the sum of the first 8 bits, so is

u1 + u2 + u3 + u4. The codewords in Cext can be represented by

u1 u2 u1 + u2

u3 u4 u3 + u4

u1 + u3 u2 + u4 u1 + u2 + u3 + u4

The minimum distance of Cext is 4.

Quiz on Linear Codes

Let

C = {000, 011, 110, 101}
D = {100, 010, 001, 111}
E = {000, 011}
F = {000, 011, 110}

Which are the linear binary codes?

(a) C only (b) E and F only (c) C and E only (d) E only

§12 Bases, generator matrices and encoding

To proceed any further we need to think of binary words as vectors

and linear binary codes as subspaces of Zn
2.

Definition 12.1

Let C be a linear code. We say that codewords

u(1), . . . , u(m) ∈ C are:

(a) linearly independent if the only solution to the equation

x(1)u(1) + · · ·+ x(m)u(m) = 0

with x(1), . . . , x(m) ∈ Z2 is x(1) = . . . = x(m) = 0.

(b) span C if for every w ∈ C there exist x(1), . . . , x(m) ∈ Z2

such that

w = x(1)u(1) + · · ·+ x(m)u(m).

(c) a basis of C if they are linearly independent and span C .

Examples of bases

Example 12.2

(1) Let C = {00000, 11100, 00111, 11011} be as in Example

11.2(1) Then a basis for C is {11100, 00111}.

(2) Let Cext be the parity check extension of all binary words of

length 4, considered in Example 11.2(4). Then

{10001, 01001, 00101, 00011}

is a basis for C .

Note that a linear binary code may have several different bases. So

it is correct to write ‘a basis of C ’ rather than ‘the basis of C ’.

Exercise: Find another basis for the code Cext in Example 12.2(2).

What Good is a Basis?

Lemma 12.3

Let C be a linear code. The codewords

u(1), . . . , u(m) ∈ C

are a basis for C ⇐⇒ for all w ∈ C there exist unique

x(1), . . . , x(m), such that

w = x(1)u(1) + · · ·+ x(m)u(m).

Definition 12.4

Suppose that C is a linear binary code of length n and minimum

distance d . If u(1), . . . , u(m) is a basis of C then we say that C

has dimension m and that C is a [n,m, d]-code.

Correction: the codes in Example 12.2 are [5, 1, 3] and
[5, 2, 4]-codes, respectively.

Generator Matrices

Definition 12.5

Suppose that C is a linear binary code of length n having

u(1), . . . , u(m) ∈ Zn
2 as a basis. The m × n matrix G with rows

u(1), . . . , u(m) is said to be a generator matrix for C .

Example 12.6

(1) Let C = {00000, 11100, 00111, 11011}. Then a generator

matrix for C is

G =

�
1 1 1 0 0

0 0 1 1 1

�
.

Example 12.6 continued

(2) Let C be the linear code of length 7 spanned by the

codewords 1100110, 1011010, 0110011, 0001111. These

codewords are not linearly independent. We can demonstrate

this, and find a basis and generator matrix for C , by applying

row operations to the matrix





1 1 0 0 1 1 0

1 0 1 1 0 1 0

0 1 1 0 0 1 1

0 0 0 1 1 1 1



 .

(3) The parity check code Cext in Example 12.2(2) has as a

generator matrix





1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1



 .

Encoding for Linear Codes

Let C be a linear code of dimension m with generator matrix G .

We have seen that C has size 2
m
, so C can encode 2

m
different

messages. We will assume that the messages are numbers between

0 and 2
m − 1.

To encode a message, write its number in binary, say as

b1b2, . . . bm, and encode it as

(b1, b2, . . . , bm)G .

If G has rows u(1), u(2), . . . , u(m) then the message is encoded as

b1u(1) + b2u(2) + · · ·+ bmu(m) ∈ C .

Example of Encoding

Example 12.7

Let C be the linear code in Example 12.6(2). In this example we

saw that C has generator matrix

G =




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1





so C has dimension 3 and size 2
3
. To encode the number 6 we

write 6 in binary as 110 and take the codeword

(1, 1, 0)




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1



 = (0, 1, 1, 1, 1, 0, 0)

In general, the binary number b1b2b3 is encoded as

(b1, b2, b1 + b2, b3, b1 + b3, b2 + b3, b1 + b2 + b3).

Quiz on Generator Matrices

As in Example 12.7, let C be the linear binary code with generator

matrix

G =




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1





So C has 8 codewords, namely

0000000, 1010101, 0110011, 1100110

0001111, 1011010, 0111100, 1101001.

What is the minimum distance of C?

(a) 2 (b) 3 (c) 4 (d) 5

How is 3 encoded using G?

(a) 1100110 (b) 0111100 (c) 1011010 (d) 1110000

Suppose you receive 1010010. Decode the message using nearest

neighbour decoding.

(a) 3 (b) 5 (c) 6 (d) 7

Quiz on Generator Matrices

As in Example 12.7, let C be the linear binary code with generator

matrix

G =




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1





So C has 8 codewords, namely

0000000, 1010101, 0110011, 1100110

0001111, 1011010, 0111100, 1101001.

What is the minimum distance of C? Answer (c): 4

(a) 2 (b) 3 (c) 4 (d) 5

How is 3 encoded using G? Answer (b): 0110011 + 0001111

(a) 1100110 (b) 0111100 (c) 1011010 (d) 1110000

Suppose you receive 1010010. Decode the message using nearest

neighbour decoding. Answer (b): Nearest to 1011010, encoding 5.

(a) 3 (b) 5 (c) 6 (d) 7

Clarification of Example 12.6(2)

By row operations we reached the matrix




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

0 0 0 0 0 0 0



 .

Let u(1), u(2), u(3) be the first three rows. I claimed that u(1),

u(2), u(3) are linearly independent: i.e. if

x(1)(1, 0, 1, 0, 1, 0, 1)+x(2)(0, 1, 1, 0, 0, 1, 1)+x(3)(0, 0, 0, 1, 1, 1, 1) = 0

then x(1) = x(2) = x(3) = 0. We found that

x(1)(1, 0, 1, 0, 1, 0, 1) + x(2)(0, 1, 1, 0, 0, 1, 1) + x(3)(0, 0, 0, 1, 1, 1, 1)

= (x(1), x(2), ?, x(3), ?, ?, ?)

where ? indicates a position not computed in the lecture.

Clarification of Example 12.6(2)

By row operations we reached the matrix




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

0 0 0 0 0 0 0



 .

Let u(1), u(2), u(3) be the first three rows. I claimed that u(1),

u(2), u(3) are linearly independent: i.e. if

x(1)(1, 0, 1, 0, 1, 0, 1)+x(2)(0, 1, 1, 0, 0, 1, 1)+x(3)(0, 0, 0, 1, 1, 1, 1) = 0

then x(1) = x(2) = x(3) = 0. We found that

x(1)(1, 0, 1, 0, 1, 0, 1) + x(2)(0, 1, 1, 0, 0, 1, 1) + x(3)(0, 0, 0, 1, 1, 1, 1)

= (x(1), x(2), ?, x(3), ?, ?, ?)

where ? indicates a position not computed in the lecture. So if

the left-hand side is 0 = (0, 0, 0, 0, 0, 0, 0) then, just from this
calculation, we have x(1) = x(2) = x(3) = 0.

Clarification of Example 12.6(2)

By row operations we reached the matrix




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

0 0 0 0 0 0 0



 .

Let u(1), u(2), u(3) be the first three rows. I claimed that u(1),

u(2), u(3) are linearly independent: i.e. if

x(1)(1, 0, 1, 0, 1, 0, 1)+x(2)(0, 1, 1, 0, 0, 1, 1)+x(3)(0, 0, 0, 1, 1, 1, 1) = 0

then x(1) = x(2) = x(3) = 0. We found that

x(1)(1, 0, 1, 0, 1, 0, 1) + x(2)(0, 1, 1, 0, 0, 1, 1) + x(3)(0, 0, 0, 1, 1, 1, 1)

= (x(1), x(2), ?, x(3), ?, ?, ?)

where ? indicates a position not computed in the lecture. All the

positions are shown below:

(x(1), x(2), x(1) + x(2), x(3),

x(1) + x(3), x(2) + x(3), x(1) + x(2) + x(3))

Standard Form for Generator Matrices

Definition 12.8

A generator matrix G for a linear binary [n,m, d]-code is said to be

in standard form if

G =
�
Im A

�

where Im is the m ×m identity matrix and A is a m × (n −m)

matrix.

Theorem 12.9

Let C be a linear binary code of length n and dimension m. Then

C is equivalent, by a permutation of the positions in the

codewords, to a code with a generator matrix in standard form

�
Im A

�

where A is an m × (n −m)-matrix.

Encoding with Standard Form Generator Matrices

If G =
�
Im A

�
is a generator matrix for a code C in standard

form then the message labelled (b1, b2, . . . , bm) is encoded as

(b1, b2, . . . , bm)G = (b1, b2, . . . , bm, c1, . . . , cn−m)

for some c1, . . . , cn−m ∈ Z2. This is convenient because if no

errors occur in transmission, then the message can be easily read

off from the received word.

Definition 12.10

Let C be a code of length n and size M. We define the rate of C

to be (log2M)/n.

Thus if C is a linear binary [n,m, d]-code then C has 2
m

codewords and the rate of C is m/n. Roughly put, the rate of a

code measures the proportion of bits that give direct information

about the encoded message.

Questionnaires

The batch number is 865037.

The additional questions have changed from previous years:

17. For this course, Library study space met my needs.

18. The course books in the Library met my needs for this course.

19. The online Library resources met my needs for this course.

20. I was satisfied with the Moodle elements of this course.

21. I received feedback on my work within the 4 week norm

specified by College.

Please write any further comments on the back of the form. (In

particular, please answer the old Q17: whether you found the

speed too fast, too slow, or about right.)

§13 Decoding by standard arrays

In this section we shall see a way to implement nearest neighbour

decoding for linear codes.

Definition 13.1

Let C be a linear binary code of length n. A coset of C is a set of

the form

C + v = {u + v : u ∈ C}

where v ∈ Zn
2.

Note that if v ∈ Zn
2 then v = 0+ v so v ∈ C + v .

Example 13.2

Let C be the linear binary code

C = {0000, 1110, 0011, 1101}

obtained by puncturing the code in Example 12.2(1) in its final

position. If we send the codewords through a channel that corrupts

position 1 every time, then the received words are

C + 1000 = {1000, 0110, 1011, 0101}.

The other possible one bit errors give cosets

C + 0100 = {0100, 1010, 0111, 1001},
C + 0010 = {0010, 1100, 0001, 1111},
C + 0001 = {0001, 1111, 0010, 1100}.

We also have the coset C + 0000 = C .

Exercises on Cosets

Exercise: Taking C as in Example 13.2, show that

C + 1001 = C + 0100 = {0100, 1010, 0111, 1001}.

Show that if v is a word in this coset then using nearest neighbour

decoding, v is decoded as v + 0100 ∈ C .

It is very important to bear in mind that cosets are sets, and that

the same coset can be written as C + v for many different words v .

Exercise: Let C be a linear binary code of length n. Show that if

v ∈ Zn
2 then C + v = C + (u + v) for all u ∈ C .

Lemma 13.3

Let C be a linear binary code of length n. If C + v and C + v
�
are

cosets of C then either C + v = C + v
�
or the cosets C + v and

C + v
�
are disjoint. (Minor notation change from notes.)

Standard arrays

Definition 13.4

Let C be a linear binary code. A standard array for C is a table in

which each row consists of the codewords in a coset of C , arranged

so that

(i) the first row is C ;

(ii) if the word x appears in the first column then wt(x) ≤ wt(v)

for all v in the row of x .

The first word in each row is said to be a coset leader.

Example 13.5

A standard array for the code C in Example 10.2 is

0000 1110 0011 1101

1000 0110 1011 0101

0100 1010 0111 1001

0010 1100 0001 1111

Note that we could also taken the fourth row to be [please
correct handout]

0001 1111 0010 1100

with 0001 as the coset leader. (Both 0010 and 0001 have

weight 1.) The other coset leaders 0000, 1000 and 0100 are

uniquely determined by their cosets.

Decoding using a standard array

Theorem 13.6

Let C be a linear binary code of length n. Let v ∈ Zn
2. Suppose

that the row containing v has coset leader x. Then v + x ∈ C and

d(v + x , v) ≤ d(u, v)

for all u ∈ C.

If C is e-error correcting and the coset leader x in the theorem
above has weight ≤ e then

d(v + x , v) = d(x , 0) = wt(x) ≤ e.

So v + x must be the unique nearest codeword to v , and decoding

using the standard array finds this codeword. This shows that

standard arrays give an efficient way to implement nearest

neighbour decoding.

§14 Parity check matrices and syndrome decoding

The square code can be defined by

S =

�
(u1, u2, u3, u4, u5, u6, u7, u8) :

u1 + u2 = u5, u3 + u4 = u6

u1 + u3 = u7, u2 + u4 = u8

�

To perform the decoding algorithm for the square code seen earlier

in the course, we record which linear equations are not satisfied,

and then try to flip a single bit to make all of them hold.

Exercise: For each of the following received words, decide which of

the four defining equations for the square code fail to hold.

Decode each word using nearest neighbour decoding.

(i) 10001100 (ii) 11001011 (iii) 11000000 (iv) 10000001

Give an example of a received word for which all four equations fail.

Quiz on square code

Exercise: For each of the following received words, decide which of

the four defining equations for the square code fail to hold.

Decode each word using nearest neighbour decoding.

(i) 10001100 (ii) 11001011 (iii) 11000000 (iv) 10000001

Give an example of a received word for which all four equations fail.

(i) Equations u3 + u4 = u6 and u1 + u3 = u7 fail. Decoding by

flipping bit 3 to get 10101100.

(ii) Equation u1 + u2 = u5 is the only one that fails. Flip bit 5 to

get 11000011.

(iii) Equations u1 + u3 = u7 and u2 + u4 = u8 fail. Nearest

neighbour decoding fails, since 11000000 is equidistance from

00000000 and 11000011.

(iv) All equations except u3 + u4 = u6 fail. Nearest neighbour

decoding fails.

Quiz on square code

Exercise: For each of the following received words, decide which of

the four defining equations for the square code fail to hold.

Decode each word using nearest neighbour decoding.

(i) 10001100 (ii) 11001011 (iii) 11000000 (iv) 10000001

Give an example of a received word for which all four equations fail.

(i) Equations u3 + u4 = u6 and u1 + u3 = u7 fail. Decoding by

flipping bit 3 to get 10101100.

(ii) Equation u1 + u2 = u5 is the only one that fails. Flip bit 5 to

get 11000011.

(iii) Equations u1 + u3 = u7 and u2 + u4 = u8 fail. Nearest

neighbour decoding fails, since 11000000 is equidistance from

00000000 and 11000011.

(iv) All equations except u3 + u4 = u6 fail. Nearest neighbour

decoding fails.

Quiz on square code

Exercise: For each of the following received words, decide which of

the four defining equations for the square code fail to hold.

Decode each word using nearest neighbour decoding.

(i) 10001100 (ii) 11001011 (iii) 11000000 (iv) 10000001

Give an example of a received word for which all four equations fail.

(i) Equations u3 + u4 = u6 and u1 + u3 = u7 fail. Decoding by

flipping bit 3 to get 10101100.

(ii) Equation u1 + u2 = u5 is the only one that fails. Flip bit 5 to

get 11000011.

(iii) Equations u1 + u3 = u7 and u2 + u4 = u8 fail. Nearest

neighbour decoding fails, since 11000000 is equidistance from

00000000 and 11000011.

(iv) All equations except u3 + u4 = u6 fail. Nearest neighbour

decoding fails.

Quiz on square code

Exercise: For each of the following received words, decide which of

the four defining equations for the square code fail to hold.

Decode each word using nearest neighbour decoding.

(i) 10001100 (ii) 11001011 (iii) 11000000 (iv) 10000001

Give an example of a received word for which all four equations fail.

(i) Equations u3 + u4 = u6 and u1 + u3 = u7 fail. Decoding by

flipping bit 3 to get 10101100.

(ii) Equation u1 + u2 = u5 is the only one that fails. Flip bit 5 to

get 11000011.

(iii) Equations u1 + u3 = u7 and u2 + u4 = u8 fail. Nearest

neighbour decoding fails, since 11000000 is equidistance from

00000000 and 11000011.

(iv) All equations except u3 + u4 = u6 fail. Nearest neighbour

decoding fails.

Quiz on square code

Exercise: For each of the following received words, decide which of

the four defining equations for the square code fail to hold.

Decode each word using nearest neighbour decoding.

(i) 10001100 (ii) 11001011 (iii) 11000000 (iv) 10000001

Give an example of a received word for which all four equations fail.

(i) Equations u3 + u4 = u6 and u1 + u3 = u7 fail. Decoding by

flipping bit 3 to get 10101100.

(ii) Equation u1 + u2 = u5 is the only one that fails. Flip bit 5 to

get 11000011.

(iii) Equations u1 + u3 = u7 and u2 + u4 = u8 fail. Nearest

neighbour decoding fails, since 11000000 is equidistance from

00000000 and 11000011.

(iv) All equations except u3 + u4 = u6 fail. Nearest neighbour

decoding fails.

Parity Check Matrices

Definition 14.1

Let C be a linear binary code of length n and dimension m. A

parity check matrix for C is an (n −m)× n matrix H with linearly

independent rows such that for each u ∈ Zn
2 we have

u ∈ C ⇐⇒ uH
tr
= 0.

Example 14.2

(1) The code Cext defined above has parity check matrix

�
1 1 1 1 1

�
.

(2) Let S be the square code. Then S has as a parity check matrix





1 1 0 0 1 0 0 0

0 0 1 1 0 1 0 0

1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1



 .

Parity Check Matrices

Theorem 14.3

Let C be a linear binary code of length n and dimension m.

Then C has a parity check matrix. Moreover, if C has a generator

matrix G in standard form G =
�
Im A

�
then

�
A
tr

In−m
�

is a parity check matrix for C .

I claimed that Example 14.6 would show how to reduce to the case

where G has generator matrix in standard form. I’d rather not do

this today: instead see Question 1 on Sheet 9.

Dual Codes

Definition 14.4

Let C be a linear binary code of length n and let H be a parity

check matrix for C . The dual code C
⊥
is the linear binary code of

length n and dimension n −m with generator matrix H.

Example 14.5

Let Cext be as in Example 14.2(1). Then

C
⊥
ext = {00000, 11111}

is the binary repetition code of length 5, and

{00000, 11111}⊥ = Cext.

Hamming [7, 4, 3]-code

Example 14.6

Let

H =




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1





and let C = {u ∈ Z7
2 : uH

tr
= 0}. Then C is a linear binary code

with parity check matrix H and generator matrix

G =





1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 1 0 1 0 0 1



 .

By Lemma 11.4, the minimum distance of C is equal to the

minimum weight of a non-zero codeword. Clearly there are

codewords of weight 3, so to show C has minimum distance 3, it

suffices to show there are no codewords of weight 1 or 2.

Quiz on Linear Codes

Decide which of the following statements are true, and which are

false.

(1) There is a linear binary code of size 5.

(2) There is a linear binary code of size 4.

(3) The code with generator matrix G =

�
1 1 1 0

0 0 1 1

�
has

size 2.

(4) The binary code

C =
�
(x1, x2, x3) ∈ Z3

2 : x1(x1 + 1) + x2 + x3 = 0
�

is linear.

Common Mistake on Sheet 8

It is not possible to read off the minimum distance (or minimum

weight) of a linear binary code from its generator matrix in any

easy way.

For example, let C = {0000, 1110, 0001, 1111}. Then C has as as

a basis 1110, 1111, and so a generator matrix for C is

�
1 1 1 0

1 1 1 1

�
.

The codewords in the generator matrix have weight ≥ 3, but C has

minimum distance 1.

Note also that the generator matrix of a linear binary code is

usually not unique. For instance, another generator matrix for C is

�
1 1 1 0

0 0 0 1

�
.

Common Mistake on Sheet 8

It is not possible to read off the minimum distance (or minimum

weight) of a linear binary code from its generator matrix in any

easy way.

For example, let C = {0000, 1110, 0001, 1111}. Then C has as as

a basis 1110, 1111, and so a generator matrix for C is

�
1 1 1 0

1 1 1 1

�
.

The codewords in the generator matrix have weight ≥ 3, but C has

minimum distance 1.

Note also that the generator matrix of a linear binary code is

usually not unique. For instance, another generator matrix for C is

�
1 1 1 0

0 0 0 1

�
.

Syndromes

In standard array decoding one has to hunt through the entire

standard array to find the coset of the code in which a received

word lies. We end with an improved method that uses parity check

matrices.

Theorem 14.7

Let C be a linear binary code of length n and dimension m with

parity check matrix H and let v , v � ∈ Zn
2. Then v and v

�
are in the

same coset of C ⇐⇒ vH
tr
= v

�
H

tr
.

Definition 14.8

Let C be a linear binary code of length n and dimension m with

parity check matrix H. The syndrome of a word v ∈ Zn
2 is defined

to be vH
tr ∈ Zn−m

2 .

Example 14.9

Let C = {0000, 1110, 0011, 1101} be the code used as an example

in §13. Then C has parity check matrix

H =

�
1 1 0 0

0 1 1 1

�
.

By Theorem 14.7, any two words in the same coset of C have the

same syndrome. The map from cosets of C to syndromes is

C �→ (0, 0, 0, 0)Htr
= (0, 0)

C + (1, 0, 0, 0) �→ (1, 0, 0, 0)Htr
= (1, 0)

C + (0, 1, 0, 0) �→ (0, 1, 0, 0)Htr
= (1, 1)

C + (0, 0, 1, 0) �→ (0, 0, 1, 0)Htr
= (0, 1).

Thus all words in C + 1000 = {1000, 0110, 1011, 0101} have

syndrome (1, 0), and if any of the words 1000, 0110, 1011, 0101 is

received, it will be decoded by adding 1000, since this is the unique

coset leader in C + 1000.

Example 14.9 [continued]

Using syndrome decoding we can replace the standard array in

Example 13.5 with the more concise table below.

syndrome chosen coset leader

00 0000

10 1000

01 0010

11 0100

A defect of the code C is that C + 0010 = C + 0001 and so the

single bit errors 0010 and 0001 have the same syndrome. If C had

to be used in practice, one possibility would be to use incomplete

decoding and request retransmission whenever a received word has

syndrome 01.

Syndrome decoding for Hamming [7, 4, 3]-code

Example 14.10

Let C , G and H be as in Example 14.6. Let e(i) be the word with

a 1 in position i and 0 in all other positions. The syndrome of e(i)

is e(i)H
tr
, which is the ith row of H

tr
.

The columns of H are distinct, so by Lemma 13.3 and Theorem

14.7 we have

Z7
2 = C ∪

�
C + e(1)

�
∪ · · · ∪

�
C + e(7)

�

where the union is disjoint.

To decode a received word v , we calculate its syndrome vH
tr
. If

vH
tr

is the ith row of H
tr

then vH = e(i)H
tr

and so we decode v

as v + e(i).

A 7 Question Strategy from the Hamming Code

Recall the Liar Game, in which the questioner must discover a

secret number by asking questions to someone who is allowed to lie

at most once.

The Hamming code gives a questioning strategy with fixed

questions that is optimal. Question i can be stated more concisely

as ‘when your number is encoded in the Hamming [7, 4, 3]-code, is
the ith bit of the codeword equal to 1?’

1. Is your number in {1, 3, 4, 6, 8, 10, 13, 15}?
2. Is it in {1, 2, 5, 6, 8, 11, 12, 15}?
3. Is it in {8, 9, 10, 11, 12, 13, 14, 15}?
4. Is it in {1, 2, 4, 7, 9, 10, 12, 15}?
5. Is it in {4, 5, 6, 7, 12, 13, 14, 15}?
6. Is it in {2, 3, 6, 7, 10, 11, 14, 15}?
7. Is it in {1, 3, 5, 7, 9, 11, 13, 15, 17}?

