
ERROR CORRECTING CODES MT361/MT461/MT5461

MARK WILDON

These notes are intended to give the logical structure of the course;
proofs and further remarks will be given in lectures. Further install-
ments will be issued as they are ready. All handouts and problem sheets
will be put on Moodle.

I would very much appreciate being told of any corrections or possible
improvements to these notes.

You are warmly encouraged to ask questions in lectures, and to talk to
me after lectures and in my office hours. I am also happy to answer
questions about the lectures or problem sheets by email. My email ad-
dress is mark.wildon@rhul.ac.uk.

Lecture times: Monday 3pm (MFLEC), Tuesday 3pm (BLT2) and Thurs-
day 10am (BLT2).

Extra lecture for MT461/MT5461: Thursday noon (ABLT3).

Office hours in McCrea 240: Tuesday 11am, Thursday 2pm and Fri-
day 11am.

Date: Second term 2012/13.

2

PRELIMINARIES

Error correcting codes were invented in the late 1940s and have since
become an essential part of the modern electronic world. Compact
discs, satellites, space probes and mobile phone networks all depend
on ideas we will develop in this course. Many of these ideas are due to
Richard W. Hamming (1915–1998).

“Mathematics is not merely an idle art form, it is an essential
part of our society.”

R. W. Hamming1.

Learning Objectives. This course will give a straightforward introduc-
tion to error detecting and error correcting codes. We will begin with
some basic definitions and examples of codes. There will then be three
main parts.

(A) Further examples of codes. Error detection and error correction
and connection with Hamming distance and Hamming balls. In-
formation rate and the binary symmetric channel.

(B) The Main Coding Theory Problem. Singleton bound and codes
based on Latin squares. Plotkin bound and Hadamard codes.
Hamming and Gilbert–Varshamov bounds.

(C) Linear codes. Generator matrices and encoding. Cosets and de-
coding by standard arrays. Parity check matrices and syndrome
decoding. Hamming codes. Dual codes.

The MT461/MT5461 course has extra material on Reed–Solomon codes
and cyclic codes. Questions on problem sheets and handouts on Moo-
dle labelled MSc/MSci are on this extra material and can safely be ig-
nored if you are doing MT361.

Recommended Reading.
[1] Combinatorics: Topics, Techniques, Algorithms. Peter J. Cameron,

CUP, 1994. (Chapter 17 gives a concise account of coding theory.)

[2] Coding and Information Theory. Richard W. Hamming, Prentice-
Hall, 1980. (Chapters 2, 3 and 11 are relevant to this course.)

[3] A First Course in Coding Theory. Raymond Hill, OUP, 1986. (Highly
recommended. It is very clear, covers all the 3rd year course, and
the library has several copies.)

1Mathematics on a Distant Planet, Amer. Math. Monthly, 105 (1998) 640–650, bot-
tom of page 640.

3

[4] Coding Theory: A First Course. San Ling and Chaoping Xing, CUP,
2004.

[5] The Theory of Error-Correcting Codes. F. J. MacWilliams and N. J. A.
Sloane, North-Holland, 1977. (For reference.)

Hamming’s original paper, Error Detecting and Error Correcting Codes,
Bell Systems Technical Journal, 2 (1950) 147–160, is beautifully written
and, for a mathematics paper, very easy to read. It is available from
www.lee.eng.uerj.br/~gil/redesII/hamming.pdf.

Prerequisites.
• Basic discrete probability.

• Modular arithmetic in Zp where p is prime. If you are happy
with calculations such as 5 + 4 ≡ 2 mod 7, 5× 4 ≡ 6 mod 7 and
5−1 ≡ 3 mod 7, that should be enough.

• Some basic linear algebra: matrices, vector spaces, subspaces,
row-reduced echelon form. This will be reviewed when we need
it in Part C of the course.

Problem sheets and exercises. There will be eight marked problem
sheets, one sheet for the vacation, and one preliminary sheet that you
can mark for yourself. Exercises set in these notes are intended to be ba-
sic tests that you are following the material. Some will be gone through
in lectures: please attempt all the rest yourself.

Note on optional questions. Optional questions on problem sheets are
included for interest and to give extra practice. Harder optional ques-
tions are marked (?). If you can do the compulsory questions and
know the bookwork, i.e. the definitions, main theorems, and their
proofs, as set out in the handouts and lectures, you should do very
well in the exam.

www.lee.eng.uerj.br/~gil/redesII/hamming.pdf

4

1. INTRODUCTION

The basic problem we will consider in this course is as follows.

Problem 1.1. Alice wants to send a message to Bob. She can communi-
cate with him by sending him a word formed from symbols taken from
some fixed set. But every time she sends a word, there is a chance that
some of its symbols will be corrupted, so the word that Bob receives
may not be the word that Alice sent. How can Alice and Bob commu-
nicate reliably?

The symbols are sent through a channel. The channel could be a
phone line, a fibre-optic cable, the air in a room (the medium through
which sound-waves travel), a compact-disc, and so on. The errors could
come from human error, imperfections in the equipment, aeroplanes
flying overhead, scratches on the disc, and so on. These unwanted phe-
nomena are called noise.

Our basic setup is shown in the diagram below.

- - -
message

encoder
channel

decoder
decoded message

?

noise

Example 1.2. Alice wants to send the message ‘Yes’ or ‘No’ to Bob. The
available symbols are 0 and 1, and we will imagine that the channel is a
noisy phone-line to which Alice and Bob have connected their respec-
tive computers.

Scheme 1. The two decide, in advance, that Alice will send
• 00 for ‘No’,
• 11 for ‘Yes’.

If Bob receives 00 or 11 then he will assume this is the word that Alice
sent, and decode her message. If he receives 01 or 10 then he knows an
error has occurred, but he does not know which symbol is wrong. If he
can get in touch with Alice to ask her to resend the message, this may
be acceptable.

5

Scheme 2. Suppose instead they decide that Alice will send
• 000 for ‘No’,
• 111 for ‘Yes’.

Then Bob can decode Alice’s message correctly, provided at most one
error occurs, by assuming that the symbol in the majority is correct.

Under either scheme, if two errors occur then, when Bob decodes the
received word, he gets the wrong message.

Like all mathematical subjects, coding theory has its own technical
vocabulary. Fortunately most of the words have fairly intuitive mean-
ings, but as always, you will need to think carefully about the defini-
tions, and refer to them often when doing questions.

Definition 1.3. Let q ∈ N. A q-ary alphabet is a set of q different el-
ements, called symbols. A word of length n over an alphabet A is a se-
quence (x1, x2, . . . , xn) where xi ∈ A for each i.

Equivalently, a word is an element of An = A× A× · · · × A. We will
usually omit the round brackets and commas when writing words. For
example, in Example 1.2 the alphabet is {0, 1} and the word (1, 1, 1) of
length 3, corresponding to ‘Yes’ in Scheme 2, is 111.

Definition 1.4. Let A be an alphabet and let n ∈ N. A code over A of
length n is a subset C of An containing at least two words. The elements
of C are called codewords. The size of C is |C|.

See Remarks 1.7 for some discussion of this definition.

Exercise: Why is it reasonable to require that a code always has at least
two codewords?

Definition 1.5. The binary alphabet of binary digits, or bits, is {0, 1}. A
binary code is a code over {0, 1}.

The binary alphabet and binary codes are particularly important be-
cause modern computers store and send data as sequences of bits.

We will now see how Example 1.2 is described using the language of
coding theory.

6

Example 1.2 (continued). In Scheme 1, Alice and Bob use the binary
code

C = {00, 11}
which has length 2 and size 2. The encoder is defined by

‘No’
encoded as7−−−−−−→ 00

‘Yes’
encoded as7−−−−−−→ 11.

The decoder decodes 00 as ‘No’ and 11 as ‘Yes’. If 01 or 10 is received
then rather than take a blind guess, Bob requests retransmission.

In Scheme 2, Alice and Bob use the binary code

D = {000, 111}
which has length 3 and size 2. The encoder encodes ‘No’ as 000 and
‘Yes’ as 111. The decoder decodes a received word according to its ma-
jority symbol, so if Bob receives

000, 001, 010, 100 he assumes Alice sent 000 and decodes as ‘No’.

111, 110, 101, 011 he assumes Alice sent 111 and decodes as ‘Yes’.

In Section 2 we will define the Hamming distance between two words
of the same length and use this to generalize the decoding strategy in
Scheme 2. You may be able to guess the definition of Hamming dis-
tance (for binary words) from the diagrams showing {0, 1}2 and {0, 1}3

below.

00 10

01 11

000 100

001 101

010 110

011 111

Example 1.2 (concluded). Suppose that whenever a bit 0 or 1 is sent
down the channel used by Alice and Bob, there is a probability p that it
flips, so a 0 becomes a 1, and a 1 becomes a 0.

Exercise: Why is it reasonable to assume that p < 1/2?

For definiteness we shall suppose that Alice sends ‘Yes’ to Bob: you
should be able to check that we get the same behaviour if Alice sends

7

‘No’. Using Scheme 2, Alice sends 111 and Bob decodes wrongly if and
only if he receives 000, 001, 010 or 100. This event has probability

p3 + 3p2(1− p).

The preliminary problem sheet leads you through a step-by-step anal-
ysis of Scheme 1 and asks you to compare it with Scheme 2.

The channel used in this example is a good model for a number of
physically different channels.

Definition 1.6. The binary channel in which each transmitted bit flips,
so a 0 becomes a 1 and a 1 becomes a 0, independently with probabil-
ity p, is called the binary symmetric channel with cross-over probability p.

The transition probabilities for the binary symmetric channel are shown
in the diagram below. Question 4 on Problem Sheet 1 asks you to work
out the analogous definition of a q-ary symmetric channel.

1 1

0 0

1 − p

1 − p

p

p

More general channels, in which symbols can be erased, as well as
flipped into other symbols, are also studied, but we shall not look at
them in this course.

Remarks 1.7. The following features of Definition 1.4 should be noted.

(1) By Definition 1.4, all the codewords in a code have the same
length. This is true for all modern codes, and is a helpful simpli-
fying assumption.

(2) We assume that all our codes have size≥ 2, because if a code has
no codewords, or only one, then it is useless for communication.

8

(3) It is very important to realise that the codes in this course are
not secret codes. The set of codewords, and how Alice and Bob
plan to use the code to communicate, should be assumed to be
known to everyone.2

(4) The definition of a code does not mention the encoder or de-
coder. This is deliberate: the same code might be used for differ-
ent sets of messages, and with different decoding strategies: see
Example 1.8.

Example 1.8. Suppose ALICE wants to send BOB one of the messages
‘Stand-down’ or ‘Launch nukes’. They decide to use the binary code
D = {000, 111} from Example 1.2, with the encoder

‘Stand-down’
encoded as7−−−−−−→ 000

‘Launch nukes’
encoded as7−−−−−−→ 111.

Erring on the side of safety, they decide that if BOB receives a non-
codeword (i.e. one of 001, 010, 100, 110, 101, 011), then he will request
retransmission. So the same code is used as Example 1.2, but with dif-
ferent messages, a different encoder and a different decoding strategy.

The following two exercises will be discussed in lectures.

Exercise: Alice thinks of a number between 0 and 15. Playing the role of
Bob, how many yes/no questions do you need to ask Alice to find out
her number?

Exercise: Now suppose that Alice is allowed to tell at most one lie when
she answers Bob’s questions. (Or, corresponding more closely to noise
in the channel, suppose that Alice can choose to mumble in one of her
answers so that Bob mishears her answer.) Repeat the game in the pre-
vious exercise. How many questions do you need?

Example 1.9. We will convert some of the possible questioning strate-
gies for Bob into binary codes of size 16.

2Of course there is nothing to stop Alice encrypting her message to Bob before
it is encoded for the channel. In addition, we will see that it is often important
that Alice is roughly equally likely to send each of her possible messages: this is
achieved by source encoding, which is the subject of MT441 Channels. This course
is about the innermost step in the chain of communication.

9

At the end of the course we will see the Hamming code of length 7
and size 16. This gives Bob an optimal questioning strategy with the
surprising property that he can write down all his questions in ad-
vance.3 (So the questions he asks do not depend on how Alice replies.)

Definition 1.10. Let C be a code of length n and size M. We define the
rate of C to be (log2 M)/n.

Roughly put, the rate of a binary code measures the proportion of the
bits of the codewords that give direct information about the encoded
message. For example, the binary codes {00, 11} and {000, 111} used
by Alice and Bob in Example 1.2 have rates 1/2 and 1/3, respectively.
A code of length n used for the guessing game has size 16, so has rate
(log2 16)/n = 4/n.

We end with four examples of codes that are, or were, important in
real life. I hope you will find these examples interesting, but you are
not expected to know anything about them for examination purposes.
Exercise: read the examples and think about how each fits into our setup
of encoder, code, channel and decoder.

Example 1.11. A Quick-Response code, or QR-code is a 21 × 21 grid of
small black and white squares. The squares represent a binary sequence
(black is 1 and white is 0) encoding a short message. If your mobile
phone has a camera, you might be able to use it to decode the QR-code
below.4

Each QR-code has a 15-bit format string, repeated twice in the grid. The
format string in this example is 111011111000100. (One place to find it
is in 15 of the 17 bits anticlockwise around the top-left square, as shown
in the margin.) The first 5 bits of the format string specify the coding

1 1 1 0 1 1 X 1 1

1
X
0
0
0
1
0
0

scheme used for the main message. The remaining 10 bits are used for
error correction. After a fixed masking pattern is added, the format
string becomes a single codeword in the binary BCH [15, 5, 7]-code of

3Try searching for ‘Ulam’s Liar Game’ on the web to find some general results.
4Free decoding apps are available for most phones, or you could use zxing.

org/w/decode.jspx.

zxing.org/w/decode.jspx
zxing.org/w/decode.jspx

10

length 15 and size 32. This code will be seen at the end of the MSc/MSci
course.

The remaining data in this QR-code consists of 26× 8 = 208 bits which
correspond to a single codeword in a Reed–Solomon code of length 26
over an alphabet of size 28. This codeword encodes a message of upper-
case characters and some limited punctuation, suitable for transmitting
web addresses.

The encoder begins by converting each character in the message into a
number between 0 and 44: for example, ‘C’ is sent to 12, ‘D’ to 13, and so
on. Each pair of numbers is then converted into an 11 bit binary word.
(This is possible because 452 = 2025 ≤ 211 = 2048.) These words are
then concatenated into a string of 19× 8 = 152 bits which is encoded
using the Reed–Solomon code.

This describes QR-codes with the lowest degree of error correction. The
decoder will always be able to correct up to three errors, in which a
black square is read as a white square, or vice versa. For reasons that
will be mentioned in the MSc/MSci course, many more errors can often
be corrected, but this is not guaranteed.

Exercise: The QR-code below encodes a very short message with a higher
degree of error correction. Try shading in some little squares (or ran-
domly writing on the code). You should be able to inflict quite a lot of
damage before decoding fails.

Exercise: Why do you think the format string is repeated twice? What is
the point of the three squares in the corners? (Including the white bor-
der, these squares occupy 82 × 3 = 192 of the 212 = 441 little squares,
so they must be important for some reason!)

A MATHEMATICA notebook that implements a basic QR-encoder is avail-
able from Moodle.5

5Although it is not the most exciting read, it is clear from the official specifica-
tion that a lot of thought went into the design of the QR-code. The hard way to ob-
tain this document is to pay ISO (International Standards Organization) 210 Swiss
Francs and wait one month.

11

Example 1.12. A compact disc contains information in the form of a
sequence of microscopic pits on a disc that are read by a laser. Here
the compact disc is the channel, and its primary purpose is to transmit
information reliably through time.

The pits encode a long sequence of the bits 0 and 1. The encoding
scheme combines two different Reed–Solomon codes. The first code
alone guarantees to correct one error in each block of 128 consecutive
bits. If, however, the errors occur in adjacent bits, as is usual for a
scratch then, mainly because of the clever way in which the two codes
are combined, many more errors can be corrected. Up to 16× 32× 8 =
4096 adjacent bits can be corrupted in a block of 124× 28× 8 = 27776
bits and the compact disc will still be decoded successfully.6

Example 1.13. The Australian railway company ‘Victorian Railways’
used a telegraph system and codebook. The entire codebook, as used
in 1972, can be read online at www.railpage.org.au/telecode/tc01.
gif. Here is an extract from near the start.

Ayah Provide locomotive to work
Aybu Return locomotive at once
Azaf Breakdown train left at . . .
Azor Arrange to provide assistance locomotive

Azub A second locomotive will be attached to . . .

In telegraph transmission only upper case were used. So a typical mes-
sage might be something like ‘Breakdown train left at Sydney, provide
locomotive to work’, encoded as AZAF SYDNEY AYAH. The code has
these properties.

(1) All codewords are of length 4 and are words over the alphabet
{A, B, C, . . . , X, Y, Z}. (Except for place names such as SYDNEY,
which break our rule that all codewords must have the same
length.)

(2) The codewords are easily pronounceable. Most, but not all, have
the pattern vowel–consonant–vowel–consonant. Probably this
reduced operator error when encoding messages.

6Larger numbers of errors on audio compact discs are hidden by interpolating
the music on either side of the error. Compact discs used to store data are physi-
cally the same as audio discs, but have a further layer of coding that enables even
more errors to be corrected. See Chapter 5 of Error Correcting Codes: Classification
by Isometry and Applications, Anton Betten et al, Algorithms and Computation in
Mathematics Volume 18, Springer 2006 for a nice account.

www.railpage.org.au/telecode/tc01.gif
www.railpage.org.au/telecode/tc01.gif

12

(3) Most codewords differ from one another in at least two letters.
So if I mean to send ‘Ayah’, but because of human error, or a
problem with the line, ‘Ayam’ is received, then it will be clear
an error has occurred.

Exercise: Most codewords are not English words, although a few are:
‘Coma’ is an instruction about extra trucks, ‘Cosy’ is an instruction
about loading trucks. Why do you think English words were usually
avoided?

Exercise: Related instructions often start with the same letter: is this a
good feature of the coding scheme?

The high degree of redundancy in normal English text means that a
native speaker can detect and correct many errors. For example, even
though the sentence

‘Tae mext hrxin tb Lxnton kas &e*n oznce!Hed’
has many errors, you can probably work out what it says. Here it is
worth bearing in mind that what is easy for a human may be very hard
to program on a computer.

The Australian telegraph code removes much of the redundancy from
English, in the interests of efficient use of the telegraph lines. However,
it is still the case that only a tiny number of all four letter strings are
used, so the code can still detect errors. The encoding process, which
turns long sentences about train manoeuvers into four letter codewords,
replaces the complicated (and poorly understood) redundancy of Eng-
lish with redundancy over which we have more control.

Example 1.14. The Mariner 9 probe, launched in 1971, took the first
pictures of Mars, ultimately transmitting 7239 pictures at a resolution of
700× 832 pixels. The images were grey-scale, using 64 different shades
of grey. The pictures were transmitted back to Earth by sending one
pixel at a time, so we can think of a message as a single number between
0 and 63. The channel of radio waves can be modelled by the binary
symmetric channel in Definition 1.6.

The naı̈ve approach of just encoding each pixel as a string of 6 bits
would not have worked well. One survey article7 gives the cross-over
probability as 0.05. So about 5% of all bits were flipped by the channel
(with a 0 becoming a 1, and a 1 becoming a 0). With this scheme, the
probability that any particular pixel would be correctly transmitted is
then 0.956 ≈ 0.74. So about 26% of the image would have been wrong.

7Van Lint, Coding, decoding and combinatorics, available from alexandria.tue.

nl/repository/freearticles/593591.pdf.

alexandria.tue.nl/repository/freearticles/593591.pdf
alexandria.tue.nl/repository/freearticles/593591.pdf

13

The matrix shows 32 of the 64 codewords in the binary Hadamard
code used in Mariner 9. A black square represents 0 and a white
square represents 1. The other 32 codewords are obtained by flip-
ping each bit in the 32 codewords shown. For example, the first
row shows the codeword 00 . . . 0, which flips to 11 . . . 1. Please
don’t confuse this diagram with a QR-code!

It was acceptable for each pixel to be encoded by up to 32 bits, so in-
creasing the amount of data to be stored and transmitted by a factor
of 5. A code in which each bit was repeated 5 times, along the lines of
the codes C and D in Example 1.2, would have reduced the probability
that a pixel was incorrectly decoded to about 0.8%.

The code actually used was a binary Hadamard code of length 32 and
size 64. (Half of the codewords are shown in the diagram above.) We
will study these codes in Part B. This code is capable of correcting any 7
errors in a received word. So of the 32 bits sent for each pixel, even
if 7 of them are corrupted by the channel, the pixel will still be correctly
decoded. This reduces the probability of incorrect decoding a pixel to
less than 0.014%. Most images could be expected to have fewer than
100 incorrect pixels.

When working with codes of long length and large size, it is no longer
at all obvious how to decode a received word. For example, suppose
you receive the word (0, 0, 1, 1, 1, 0, . . . , 1, 0, 1, 1), represented by

.

It is far from obvious which codeword in the Mariner 9 code it is nearest
to. In fact the received word differs from the bottom row in the matrix
above in 7 positions, and from all other rows in at least 11 positions, so

14

would be decoded as (0, 1, 1, 0, 1, 0 . . . , 1, 0, 0, 1). (And then this code-
word would be converted back into the corresponding shade of grey.)

There is a very elegant decoding algorithm for the Mariner 9 code,
based on the Discrete Fourier Transform. Critically, this algorithm was
easy to implement on the relatively primitive computers available to
NASA in 1971. See Van Lint’s survey article for an outline of how this
was done. Finding fast and accurate decoders for large codes, such as
Hadamard codes and the Reed–Solomon codes used on compact discs,
is a central problem in coding theory and has motivated much work in
the subject.

15

Part A: Hamming distance and error detection and correction

2. HAMMING DISTANCE AND NEAREST NEIGHBOUR DECODING

In this section we define Hamming distance and use it to give a pre-
cise statement of what it means to decode by choosing the ‘closest code-
word’ to a received word. We will also see some more examples of
codes used for error detection and correction.

In the rest of Part A we will use Hamming distance to make precise
our intuitive idea that a code has a maximum number of errors it can
hope to detect and correct reliably, and see different ways to calculate
this number.

Definition 2.1. Let A be an alphabet. Let u, v ∈ An be words of length n.
The Hamming distance between u and v, denoted d(u, v), is the number
of positions in which u and v are different.

In mathematical notation, d(u, v) =
∣∣{i ∈ {1, 2, . . . , n} : ui 6= vi

}∣∣.
We will often abbreviate ‘Hamming distance’ to ‘distance’.

Example 2.2. Working with binary words of length 4, we have

d(0011, 1101) = 3

because the words 0011 and 1101 differ in their first three positions,
and are the same in their final position. Working with words over
the alphabet {A, B, C, . . . , X, Y, Z} we have d(TALE, TAKE) = 1 and
d(TALE, TILT) = 2.

Exercise: Check that d(1010, 1001) = 2. Find the number of binary
words v of length 4 such that d(1010, v) = r for each r ∈ {0, 1, 2, 3, 4}.
Do you recognize the sequence you get?8

The next theorem shows that Hamming distance has the expected
properties of a distance. Part (iii) is the triangle inequality for Hamming
distance: it will be used in Sections 3 and 4 later.

Theorem 2.3. Let A be a q-ary alphabet and let u, v, w be words over A of
length n.

(i) d(u, v) = 0 if and only if u = v;
(ii) d(u, v) = d(v, u);
(iii) d(u, w) ≤ d(u, v) + d(v, w).

8If not, try typing it into Google.

16

Exercise: Find all English words v such that

d(WARM, v) = d(COLD, v) = 2.

Check that the triangle inequality holds when u, v, w are WARM, WALL
and COLD, respectively. For a connection with a Victorian word game,
see Question 9 on Sheet 1.

The following important family of codes will be useful examples for
nearest neighbour decoding.

Definition 2.4 (Repetition codes). Let n ∈ N and let A be a q-ary al-
phabet with q ≥ 2. The repetition code of length n over A has as its
codewords all words of length n of the form

(s, s, . . . , s)

where s ∈ A. The binary repetition code of length n is the repetition code
of length n over the binary alphabet {0, 1}.

Note that if u and v are distinct codewords in a repetition code of
length n then d(u, v) = n.

In Scheme 2 in Example 1.2, Alice and Bob used the binary repetition
code of length 3, with codewords {000, 111}, Bob decoded a received
word by its majority symbol, so for example, 101 is decoded as 111
(meaning ‘Yes’). Equivalently, Bob decoded a received word by choosing
the closest codeword in the Hamming distance.

Definition 2.5 (Nearest neighbour decoding). Let C be a code. Suppose
that a codeword is sent through the channel and we receive the word v.
To decide v using nearest neighbour decoding look at all the codewords
of C and pick the one that is nearest, in Hamming distance to v. If there
is no unique nearest codeword to v, then we say that nearest neighbour
decoding fails.

Note that the word ‘fail’ has a technical meaning in Definition 2.5. It
does not mean that the decoded codeword is not the send codeword.
This is illustrated in the next example.

17

Example 2.6. An internal review of the code in Example 1.8 has uncov-
ered several deficiencies. The new proposal uses a ternary repetition
code of length 6 over the alphabet {0, 1, 2}. The new encoder is

‘Stand-down’
encoded as7−−−−−−→ 000000

‘Stay on your toes’
encoded as7−−−−−−→ 111111

‘Launch nukes’
encoded as7−−−−−−→ 222222.

Suppose ALICE sends ‘Stand-down’. If BOB receives 001102, then

d(001102, 000000) = 3, d(001102, 111111) = 4, d(001102, 222222) = 5,

so under nearest neighbour decoding, 001102 is decoded as 000000,
which in turn BOB will decode as ‘Stand-down’.

Now suppose 000111 is received. Then

d(000111, 000000) = 3, d(000111, 111111) = 3, d(000000, 222222) = 6,

so there is no unique codeword closest to 000111. Hence nearest neigh-
bour decoding fails.

Finally suppose four errors occur in the channel and 020222 is received.
Then nearest neighbour decoding gives 222222, which BOB will decode
as ‘Launch nukes’. In the technical sense, nearest neighbour decoding
has not failed. However, the outcome will probably not be what ALICE
was hoping for.

This example shows that the ternary repetition code of length 6 can
be used to correct 2 errors in a reliable way. If more errors occur than it
seems that reliable decoding is impossible.

Example 2.6 shows that nearest neighbour decoding is only one step
in the decoding process. The diagram below extends our model of de-
coding to a two-step process. We suppose that the codeword u is sent,
the word v is received, and that nearest neighbour decoding gives the
codeword w, which is then decoded into the message.

-
u sent v received

channel
nearest
neighbour
decoder

-
w

undo
encoder

decoded
message

-

?

noise

18

The decoded message is correct if and only if w = u. This is the case if
and only if u is the unique nearest codeword to v, i.e.

d(u, v) < d(u′, v)

for all codewords u′.

Nearest neighbour decoding should seem like the intuitively obvious
way to decode. However, it is still interesting to give it a probabilistic
justification. We shall do this in the case of binary codes, using the
binary symmetric channel defined in Definition 1.6.

Lemma 2.7. Let C be a binary code of length n used to communicate on a bi-
nary symmetric channel with cross-over probability p. Suppose that the code-
word u ∈ C is sent. If v is a word of length n, then the probability that v is
received pd(u,v)(1− p)n−d(u,v).

In symbols, we write P[v received | u sent] = pd(u,v)(1− p)n−d(u,v).
For example, if C is the binary repetition code of length 3, then accord-
ing to Lemma 2.7,

P[001 received | 111 sent] = p2(1− p)

P[000 received | 111 sent] = p3.

These agree with the calculations in Example 1.2.

Theorem 2.8. Suppose that we use a binary code C of length n to send mes-
sages through the binary symmetric channel, and that each codeword in C is
equally likely to be sent. Suppose we receive a binary word v. For each u ∈ C,

P[u sent | v received] = pd(u,v)(1− p)n−d(u,v)C(v)

where C(v) does not depend on u. Hence P[u sent | v received] is maximized
by choosing u to be the nearest codeword to v.

Thus, provided we accept that maximizing P[u sent | v received] is
a good idea, we are inevitably led to nearest neighbour decoding. The
syllabus talks only about ‘probability calculations’, so while interesting,
Theorem 2.8 may be regarded as non-examinable.

The assumption in Theorem 2.8 that each codeword is equally likely
to be transmitted is critical. See Question 9 on Sheet 2 for a case where

19

nearest neighbour decoding no longer works well because one code-
word is much more likely to be sent than another.9

One final remark about nearest neighbour decoding. In practice it
might be essential that the decoder always gives some result, even if
nearest neighbour decoding has failed. Then the decoder will have
to make an arbitrary choice between two or more codewords that are
equally likely to be the sent word. Mathematically it is much better just
to report that nearest neighbour decoding has failed.

We end this section with two important examples of codes that are
used only for error detection, not error correction.

Example 2.9 (Parity check codes). Let n ∈ N and let C be the binary
code consisting of all binary words of length n. Let Cext be the code of
length n + 1 whose codewords are obtained by appending an extra bit
to each codeword in C, so that the total number of 1s in each codeword
is even.

For instance, if n = 4 then C is the binary code of size 16 consisting of
all binary words of length 4. The extended code Cext has length 5 and
the same size as C, namely 16. Its codewords are

00000, 00011, 00101, 00110, . . . , 11101, 11110.

Suppose that a codeword u ∈ Cext is sent through the channel and the
word v is received. If a single bit is corrupted, so d(u, v) = 1, then v
must have an odd number of 1s. Hence v 6∈ Cext and we detect that an
error has occurred.

Exercise: How would you use the length 5 code Cext to encode a number
between 0 and 15? Try to specify an encoding algorithm that is easy to
perform in practice!

9This is related to a famous statistical paradox: suppose there is an illness that
infects one person in a thousand. If a test for the illness always identifies infected
people, but gives a false positive with probability 1/500, then, when 1000 people
are tested, there will, on average, be one infected person, and two false positives.
So any particular person who tests positive for the illness still has a 2/3 chance
of being healthy. To translate this into a coding problem, imagine that we send
‘healthy’ with probability 999/1000 and ‘ill’ with probability 1/1000, but when-
ever ‘healthy’ is sent, it has a 1/500 chance of being corrupted into ‘ill’. Then
when we receive ‘ill’ it is still more likely than not that ‘healthy’ was sent.

20

Example 2.10 (ISBN-10 code). All recent books have an International
Standard Book Number (ISBN) assigned by the publisher. The cod-
ing system changed in 2007 because the old scheme was running out
of space. However, the older ISBN-10 code is mathematically more in-
teresting, so we will use it. In this scheme, each book is assigned a
codeword of length 10 over the 11-ary alphabet {0, 1, 2, . . . , 9, X}.
For example, [5] in the list of recommended reading has ISBN

0-444-85193-3.
Here

• 0 identifies the country of publication;
• 444 identifies the publisher;
• 85193 is the item number assigned by the publisher;
• 3 is the check digit.

The hyphens are put in to make the ISBN more readable; they are not
part of the code. For us, the important feature is the check digit. It is
chosen so that if u1u2u3u4u5u6u7u8u9u10 is an ISBN then

10

∑
j=1

(11− j)uj = 10u1 + 9u2 + · · ·+ 2u9 + u10 ≡ 0 mod 11.

There is one technical point: it might be necessary to take 10 as a check-
digit. In this case the letter X is used to stand for 10 (it is never used in
the main part of an ISBN).

We will say that u1u2u3u4u5u6u7u8u9u10 is an ISBN if it satisfies the
check condition above, ignoring the question of whether it was ever
assigned to a book.

Lemma 2.11. If a single error is made when writing down an ISBN, the result
is not an ISBN.

The ISBN code also detects when two unequal adjacent symbols are
swapped. (See Question 5 on Sheet 2.) This is a sort of error likely to be
made by a busy person. However it does not detect all errors involving
two symbols. For example, starting from 0000000000 we can change
two symbols to get 1000000001, which is also an ISBN.

Exercise: In the next section we will see the accepted definitions of what
it means for a code C to be t-error detecting or t-error correcting. From
the examples you have seen so far, how would you define these terms?

21

3. t-ERROR DETECTING AND t-ERROR CORRECTING CODES

Here is the accepted answer to the exercise on the previous page.

Definition 3.1. Let C be a code of length n over an alphabet A and let
t ∈ N. We say that C is

• t-error detecting if whenever u ∈ C is a codeword, and v is a word
of length n over A such that v 6= u and d(u, v) ≤ t, then v 6∈ C.

• t-error correcting if whenever u ∈ C is a codeword, and v is a
word of length n over A such that d(u, v) ≤ t, then v is decoded
to u using nearest neighbour decoding.

Equivalently, a code C is t-error detecting if whenever a codeword
is sent, and between 1 and t errors occur, the received word is not a
codeword. So the receiver will know that something has gone wrong in
the channel.

Some further remarks intended to clarify Definition 3.1 are below.

Remarks 3.2.
(1) Recall that when there is no unique nearest codeword to u then

nearest neighbour decoding fails. So a code C is t-error correct-
ing if and only if whenever v is a word within distance t of a
codeword u ∈ C then

d(u, v) < d(u′, v) for all u′ ∈ C with u′ 6= u.

This gives a more abstract way to state the definition of t-error
correcting that does not mention nearest neighbour decoding.

(2) It may seem a bit odd to say that a code is ‘t-error correcting’
when it is the decoder (be it a human or a computer) that has to
do all the work of decoding. Moreover, we have seen in Exam-
ple 1.6 that the same code can reasonably be used with different
decoders. A code that is t-error correcting promises to be able to
correct up to t-errors provided nearest neighbour decoding is used.

(3) In both definitions we have d(u, v) ≤ t, so v is obtained from
u by changing up to t positions. Hence if s < t then a t-error
detecting code is also s-error detecting, and a t-error correcting
code is also s-error correcting.

If instead we required exactly t changes then, by Question 11
on Sheet 1, there would be codes that are 2-error detecting but

22

not 1-error detecting. This could be confusing in practical appli-
cations. Mathematically, it would lead to theorems with long-
winded hypotheses of the form ‘Suppose C is a code that is t-
error detecting for all t ≤ c, . . . ’. Both are undesirable.

We will now show that Definition 3.1 agrees with our findings in Ex-
amples 2.6 and 2.9.

Lemma 3.3. Let n ∈ N. Let C be the repetition code of length n over a q-ary
alphabet A, where q ≥ 2.

(i) C is (n− 1)-error detecting but not n-error detecting.
(ii) If n = 2m + 1 then C is m-error correcting but not (m + 1)-error

correcting.
(iii) If n = 2m then C is (m− 1)-error correcting, but not m-error correct-

ing.

The proof of part (iii) is left to you in Question 2 of Sheet 2.

Lemma 3.4. Let n ∈ N and let Cext be the binary parity check code of length
n + 1 defined in Example 2.9. Then Cext is 1-error detecting but not 2-error
detecting. It is not 1-error correcting.

We saw in Lemma 2.11 that if a single error is made when writing
down an ISBN, the resulting word is not an ISBN. So the ISBN code is
1-error detecting. By Question 5 on Sheet 2, some double errors can be
detected, but as the example on page 20 shows, this is not guaranteed.
So, according to Definition 3.1, the ISBN code is not 2-error detecting.

Lemma 3.5. The ISBN code is 1-error detecting but not 2-error detecting. It
is not even 1-error correcting.

4. MINIMUM DISTANCE AND HAMMING BALLS

Question 1 on Sheet 2 shows that if C is a code such that d(u, u′) ≥ 3
for all distinct u, u′ ∈ C, then C is 2-error detecting and 1-error correct-
ing. This is a special case of a very useful general result. We need the
following definition.

Definition 4.1. Let C be a code. The minimum distance of C, denoted d(C),
is defined by d(C) = min{d(u, w) : u, w ∈ C, u 6= w}.

23

By Definition 1.4, any code has at least two codewords, so the mini-
mum distance of a code is always well-defined.

Example 4.2. Here is an example from Hamming’s original paper (see
reference on page 3). Let C be the binary code of length 3 with code-
words

001, 010, 100, 111

as seen on Sheet 1, Question 2. Then d(u, w) = 2 for all distinct u and
w in C, so d(C) = 2. If we adjoin 000 as another codeword then the
minimum distance goes down to 1 since d(000, 001) = 1.

It is not hard to find the minimum distance of the codes seen in the
examples so far.

Lemma 4.3. Let n ∈ N.
(i) The minimum distance of any length n repetition code is n.

(ii) The minimum distance of the length n + 1 binary parity check code
Cext in Example 2.9 is 2.

(iii) The minimum distance of the square code is 3.

To add to the results in the lemma above, Question 3 on Sheet 2 gives
a step-by-step proof that the 1-error correcting code of length 9 seen in
Example 1.9 has minimum distance 3.

There is a special notation for recording the most important parame-
ters of a code.

Notation 4.4. If C is a code of length n, size M and minimum distance d,
then C is said to be a (n, M, d)-code.

For example, a repetition code of length n over a q-ary alphabet is a
(n, q, n)-code, and the binary parity check code of length n+ 1 in Exam-
ple 2.6 is a (n, 2n, 2)-code. The square code is a (8, 16, 3)-code.

Exercise: Let C be a code. Bearing in mind all the examples seen so
far, what do you think is the relationship between the maximum t for
which C is t-error detecting and the minimum distance of C? Now think
about the same question with ‘error detecting’ replaced with ‘error cor-
recting’.

24

The solution to this exercise is revealed in the next theorem. The
proof of forwards ‘=⇒’ direction in (ii) will be postponed to the end of
this section.10

Theorem 4.5. Let C be a code with minimum distance d. Let t ∈ N.
(i) C is t-error detecting ⇐⇒ t ≤ d− 1;

(ii) C is t-error correcting ⇐⇒ 2t ≤ d− 1.

It is usually easier to compute the minimum distance of a code than
it is to determine (without using any other results) the maximum t for
which it is t-error detecting or correcting. This makes the ‘⇐=’ direc-
tions in Theorem 4.5 very useful.

Recall that if x ∈ R then bxc is the greatest integer n such that n ≤ x.
For instance b2c = b2 1

2c = 2.

Corollary 4.6. A code of minimum distance d is (d− 1)-error detecting and
b d−1

2 c-error correcting.

The table below (taken from Hamming’s original paper) shows the
maximum number of errors a code of small minimum distance can de-
tect and correct.

d(C) error detection / correction

1 no detection possible
2 1-error detecting
3 2-error detecting / 1-error correcting
4 3-error detecting / 1-error correcting
5 4-error detecting / 2-error correcting

We end Part A with a more geometric way of looking at Hamming
distance and t-error correcting codes.

Definition 4.7. Let A be a q-ary alphabet and let u be a word of length n.
The Hamming ball of radius t about u is

Bt(u) = {v ∈ An : d(u, v) ≤ t}.
10Remember that if P and Q are mathematical statements then P =⇒ Q means

‘if P is true, then Q is true’ and P ⇐= Q means ‘if Q is true, then P is true’. You
can think of P =⇒ Q as a sort of promise or contract: ‘if you tell me that P is true,
then I promise you that Q is true’. The double arrow P⇐⇒ Q, read as ‘if and only
if’ means that both P =⇒ Q and P⇐= Q are true.]

25

An equivalent definition is that Bt(u) consists of all words that can
be obtained from u by changing up to t of its positions. The diagram
below shows the Hamming ball of radius 1 about 000.

000

100 001

101

010

110 011

111

Grey dots show
elements of B1(000)

Example 4.8. The Hamming balls about the binary word 0000 are

B0(0000) = {0000}
B1(0000) = {0000, 1000, 0100, 0010, 0001},
B2(0000) = B1(0000) ∪ {1100, 1010, 1001, 0110, 0101, 0011}
B3(0000) = B2(0000) ∪ {1110, 1101, 1011, 0111}

and B4(0000) is the set of all binary words of length 4.

(ii) If u = 1010 then

B0(1010) = {1010},
B1(1010) = {1010, 0010, 1110, 1000, 1011},
B2(1010) = B1(1010) ∪ {0110, 0000, 0011, 1100, 1111, 1001}.

Also B3(1010) consists of all binary words of length 4 except 0101, and
B4(1010) is the set of all binary words of length 4.

In §5 we will use the lemma below to prove the remarkable Hamming
Packing Bound on the maximum size of a t-error correcting code of
length n. (The converse to Lemma 4.9 also holds, as will be seen at the
end of this section.)

Lemma 4.9. Let C be a code. If C is t-error correcting then for all distinct
codewords u, u′ ∈ C, the Hamming balls Bt(u) and Bt(u′) are disjoint.

26

In lectures we will use Lemma 4.9 to complete the proof of Theo-
rem 4.5(ii) by showing that if C is a t-error correcting code of minimum
distance d then 2t ≤ d− 1.

SUMMARY OF PART A. In Part A we have seen the formal definition
(Definition 3.1) of t-error detecting and correcting codes. The examples
in §2 and the results in Lemmas 3.3 and 3.4 show that this definition is a
reasonable one. We then saw other ways of thinking about t-error cor-
recting codes, using minimum distance (Definition 4.1) and Hamming
balls (Lemma 4.9). These are summarised in the following theorem.

Theorem 4.10. Let C be a code. The following are equivalent
(a) C is t-error correcting;
(b) Nearest neighbour decoding always gives the sent codeword (without

failing), provided at most t errors occur;
(c) If u ∈ C and d(u, v) ≤ t then d(u, v) < d(u′, v) for all u′ ∈ C such

that u′ 6= u;
(d) If u, u′ ∈ C are distinct codewords then the Hamming balls Bt(u) and

Bt(u′) are disjoint;
(e) The minimum distance of C is at least 2t + 1.

Proof. Part (b) is a slightly more informal way to state Definition 3.1,
and (c) is the equivalent restatement mentioned in Remarks 3.2(1). So
(a), (b) and (c) are all equivalent. For (d) and (e) we use results already
proved:

• (a) =⇒ (d): see Lemma 4.9.
• (d) =⇒ (e): this was proved immediately after Lemma 4.9.
• (e) =⇒ (a): see the part of Theorem 4.5(ii) proved in lectures. �

Exercise: What would you say to someone who objected: ‘this proof is
incomplete: the argument given has no part showing that (e) =⇒ (d)’?

The idea of a t-error correcting code, as defined in Definition 3.1, is
fundamental in coding theory. Depending on the context, it is useful to
think about it in different ways. Doing this also helps one to understand
what it means.

The original definition uses nearest neighbour decoding. It shows the
algorithmic side of the subject and is informed by probabilistic ideas.
Parts (d) and (e) show the geometric side of the subject. We have seen,
for example in Lemma 4.3, that (e) is often the easier condition to work
with; we will use it throughout Parts B and C.

27

Part B: Main Coding Theory Problem

5. MAIN CODING THEORY PROBLEM AND HAMMING’S BOUND

Theorem 4.5 and Corollary 4.6 show that the maximum number of er-
rors a code can detect or correct is determined by its minimum distance.
Intuitively it should seem reasonable that if a code has large minimum
distance then it cannot have too many codewords. In this part of the
course, we shall prove a number of bounds that make this precise.

Problem 5.1. The Main Coding Theory Problem is to find codes over a
given alphabet with

(1) small length;
(2) large size;
(3) high minimum distance.

Equivalently, we want to find (n, M, d)-codes over the given alphabet
with small n, high M and high d.

Remark 5.2. Another desirable property is that there should be an ef-
ficient way to perform nearest neighbour decoding on received words.
For example, the Reed–Solomon code used on compact discs has the
largest possible size for its length and minimum distance. There are
now efficient decoding algorithms, but when it was first invented, it
was impractical because there was no good way to decode received
words.

The Main Coding Theory Problem is hard because the requirements
are conflicting. We shall begin by proving Hamming’s Packing Bound
which gives an upper bound on the size of a binary code with specified
length and minimum distance.11

In the next lemma we need binomial coefficients. Recall that the bi-
nomial coefficient (n

k) is the number of ways to choose k objects from a
set of size n. It is given by the formula(

n
k

)
=

n!
k!(n− k)!

for 0 ≤ k ≤ n.

11This bound can be extended easily to codes over a general q-ary alphabet: see
Question 8 on Sheet 4. Only the binary case is examinable.

28

Lemma 5.3. Let u be a binary word of length n. The number of words in the
Hamming ball Bt(u) of radius t about u is

t

∑
k=0

(
n
k

)
.

We also need (e) =⇒ (d) from Theorem 4.10: if C has minimum dis-
tance at least 2t + 1 then the Hamming balls of radius t about distinct
codewords are disjoint.

Theorem 5.4 (Hamming’s Packing Bound). Let C be a binary (n, M, d)-
code. If e = b d−1

2 c then

M ≤ 2n

∑e
k=0 (

n
k)

.

By Theorem 4.5(ii) that a 1-error correcting code has minimum dis-
tance at least 3. Hamming’s bound therefore implies that a 1-error cor-
recting binary code of length n has size at most 2n/(1 + n). For exam-
ple, if n = 7 we get M ≤ 27/(1 + 7) = 24 = 16 and if n = 5 we get
M ≤ 25/(1 + 5) = 5 1

3 . Since it is impossible to have 1
3 of a codeword,

we can tighten this bound to M ≤ 5.

The table below shows some other values of Hamming’s bound for a
1-error correcting binary code.

length n 3 4 5 6 7 8 9 10
bound on size M 2 3 5 9 16 28 51 93

It is very important to realise that while Hamming’s bound is
a necessary condition for a binary code of specified length, size
and minimum distance to exist, it is not in general sufficient.

Exercise: According to Hamming’s Packing Bound, the largest possible
size of a binary code of length 4 and minimum distance 3 is 3. Show
that in fact the largest size of a binary code of length 4 and minimum
distance 3 is 2.

The following definition gives a more concise way to state Ham-
ming’s Packing Bound, and the other bounds we shall see in Part B.

Definition 5.5. Let q ≥ 2 and let n ∈ N, d ∈ N be such that n ≥ d. We
denote by Aq(n, d) the largest size of a code of length n and minimum
distance d over a q-ary alphabet.

29

Exercise: Convince yourself that Aq(n, d) does not depend on which q-
ary alphabet is used. Working over the q-ary alphabet {0, 1, . . . , q− 1},
show that there is at least one code of length n and minimum distance d.

The previous exercise implies that Aq(n, d) is well-defined.12 We can
now restate Hamming’s Packing Bound as A2(n, d) ≤ 2n/∑e

k=0 (
n
k),

where e = b(d− 1)/2c.

The table below shows some values of A2(n, d); some of these will
be proved in the following sections. (You are not expected to memorize
any part of this table!) One result visible in the table is that A2(n, d) =
A2(n+ 1, d+ 1) whenever d is odd: see the optional questions on Sheet 4.

d A2(2, d) A2(3, d) A2(4, d) A2(5, d) A2(6, d) A2(7, d) A2(8, d)

1 4 8 16 32 64 128 256
2 2 4 8 16 32 64 128
3 2 2 4 8 16 20
4 2 2 4 8 16
5 2 2 2 4
6 2 2 2
7 2 2
8 2

The values of A2(n, d) are often powers of 2 because many good
codes are linear (see Part C), and all linear binary codes have size a
power of 2. But A2(n, d) is not always a power of 2. For example,
A2(8, 3) = 20; equivalently (by Theorem 4.5) the largest 1-error cor-
recting of length 8 has 20 codewords.

6. BOUNDS FROM EQUIVALENCES OF CODES

Looking at the first row and the main diagonal in the table on the
previous page you might conjecture that the following lemma holds.

Lemma 6.1. Let q ≥ 2 and let n ∈ N. Then
(i) Aq(n, 1) = qn;

(ii) Aq(n, n) = q.

12To say that a definition is ‘well-defined’ means that the quantity being defined
does not depend on any of the choices allowed in the definition. Here, as well as
checking that the choice of alphabet is irrelevant, we also have to check that there
is at least one code of length n and minimum distance d, since if there were none,
it would make no sense to talk of the maximum size of such a code.

30

To get some further results, we need the idea of equivalences of codes.

Definition 6.2. Let C and C′ be codes over a q-ary alphabet A. We say
that C and C′ are equivalent if one can be obtained from the other by
repeatedly applying the following two operations to all the codewords:

(a) relabelling the symbols appearing in a fixed position;
(b) shuffling the positions within each codeword.

Exercise: Are {0000, 1100, 1111} and {0000, 1100, 0011} equivalent?

We are interested in equivalences because, by the following lemma,
equivalent codes have the same distances between codewords.

Lemma 6.3. If u and w are codewords in a code C, and u′ and w′ are the cor-
responding codewords in an equivalent code C′ obtained by relabelling and/or
shuffling positions then d(u, w) = d(u′, w′).

Proof. For binary words this was proved in Question 4 on Sheet 3. The
only shuffles allowed in this question were swaps on two positions, but
any shuffle can be obtained by repeated swaps, so this suffices. The
extension to a general alphabet is routine. �

In particular, if C and C′ are equivalent then C and C′ have the same
minimum distance. However the converse does not hold.

Example 6.4. Consider the four binary codes

C = {0000, 1100, 1010, 0110}
C′ = {1010, 0110, 0011, 1111}
D = {0000, 1100, 0011, 1111}
E = {1000, 0100, 0010, 0001}.

All four codes have minimum distance 2. By applying operations (a)
and (b) we will show that C and C′ are equivalent. No other two of
these codes are equivalent.

For C and D this can be shown quite easily: there are codewords in D
that are distance 4 apart, for example d(0000, 1111) = 4, but all code-
words in C are distance 2 apart.

For C and E this argument does not apply, because all codewords in
both codes are distance 2 apart. But despite this C and E are not equiv-
alent: you are asked to prove this in Question 1(b) on Sheet 4.

31

As an example of how to use Lemma 6.3 we shall solve Question 6
on Sheet 1.

Lemma 6.5. A2(5, 3) = 4.

The proof of Lemma 6.5 actually shows something stronger: up to
equivalence there is a unique binary (5, 4, 3)-code, namely the code
{00000, 11100, 00111, 11011} first seen in Question 3 on Sheet 1.

Using similar ideas it is possible to find A2(8, 5). The next lemma
isolates one critical step. In it, we say that a binary word u has weight r,
and write wt(u) = r, if exactly r positions of u are equal to 1, and the
rest are equal to 0.

Lemma 6.6. Let u and w be binary codewords of length n. Suppose that
wt(u) = r and wt(w) = s. If r + s ≥ n then d(u, w) ≤ 2n− (r + s).

In Question 2 of Sheet 4 you are asked to fill in the details of the proof
of the following theorem.

Theorem 6.7. A2(8, 5) = 4.

7. CODES FROM MUTUALLY ORTHOGONAL LATIN SQUARES

Definition 7.1. Let q ∈ N and let A be a q-ary alphabet. A Latin square
with entries from A is a q× q array in which every row and column con-
tains each symbol in A exactly once. We say that q is the order of the
square.

Note that since there are q symbols and each row and column has
length q, it is equivalent to require either

(i) each row and column contains every symbol in A; or
(ii) no symbol appears twice in any row or column of A.

For a large number of examples of Latin squares, see the Sudoku an-
swers in the newspaper of your choice. A completed Sudoku grid is
a Latin square of order 9 over the alphabet {1, 2, . . . , 9}, satisfying the
extra condition that each of its 3× 3 subsquares contains each number
exactly once.

32

Example 7.2. A Latin square of order 4 over the alphabet {0, 1, 2, 3},
constructed using the addition table for the integers modulo 4, is shown
below.

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Convention: It will be convenient to number the rows and columns of
a Latin square over the alphabet A = {0, 1, . . . , q− 1} by the numbers
in A. So if X is the Latin square in Example 7.2 then X00 = 0, X12 = 3
and X33 = 2.

Definition 7.3. Let X and Y be Latin squares over an alphabet A. We
say that X and Y are orthogonal if for each each a, b ∈ A there exist
unique i, j ∈ A such that Xij = a and Yij = b.

Equivalently, X and Y are orthogonal if for all a, b ∈ A there is a
unique position in which X contains a and Y contains b. We shall ab-
breviate ‘X and Y are a pair of mutually orthogonal Latin squares’, as
‘X and Y are MOLs’.

Example 7.4. Two MOLs over the alphabet {0, 1, 2, 3} are shown below.

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

To show that these squares are orthogonal we form a new square whose
entries are pairs of entries from the two squares,

00 11 22 33
12 03 30 21
23 32 01 10
31 20 13 02

and then check that each of the 16 pairs 00, 01, . . . , 33 appears exactly
once.

Exercise: Show that there is no pair of MOLs of order 2.

33

Remark 7.5. In 1782 Euler posed the following problem: 36 officers be-
long to six regiments and hold six different ranks, so that each combi-
nation of rank and regiment corresponds to a unique officer. Can be the
officers be paraded on a 6× 6 parade ground so that in any line each
regiment and rank occurs precisely once? Equivalently, does there exist
a pair of MOLs of order 6? Euler conjectured that the answer was no,
but this was not proved until 1900.

In fact there are pairs of MOLs of all orders other than 2 and 6. The
existence of MOLs of orders 10, 14, 18, . . . is quite tricky, and was only
proved in 1960. Here we will only prove existence for odd prime orders.
Note that there are other pairs of MOLs of odd prime order that do not
come from this construction.

Lemma 7.6. Let q ≥ 3 be prime and let A = {0, 1, . . . , q− 1}. For i, j ∈ A
let

Xij = i + j mod q

Yij = 2i + j mod q

Then X and Y are mutually orthogonal Latin squares.

We now show how to use MOLs to construct a family of 1-error cor-
recting codes. These codes all have length 4 and minimum distance 3.

Theorem 7.7. Let A be the alphabet {0, 1, . . . , q− 1}. There is a pair of MOLs
over A of order q ⇐⇒ there is a (4, q2, 3)-code over A.

In lectures we will prove the ‘=⇒’ direction. See Question 1 on Sheet 5
for the ‘⇐=’ direction.

Example 7.8. Let X and Y be the MOLs in Example 7.4. The correspond-
ing code has a codeword (i, j, Xij, Yij) for every i, j such that 0 ≤ i, j ≤
q− 1. So the codewords are

0000 0111 0222 0333 1012 1103 1230 1321

2023 2132 2201 2310 3031 3120 3213 3302

Conversely given this list of codewords we can reconstruct X and Y.

The questions on Sheet 5 will help you to practice these constructions.

34

8. THE SINGLETON BOUND AND PUNCTURING A CODE

In this section we shall prove another bound on the maximum size of
a code of length n and minimum distance d over a q-ary alphabet. This
bound is often stronger than Hamming’s bound when q is large.

Definition 8.1. Let C be a code of length n ≥ 2 and minimum distance
≥ 2. Let C? be the code whose codewords are obtained by removing
the final position from each codeword in C. We say that C? is obtained
by puncturing C in its final position.

Note that since C has minimum distance ≥ 2, it is impossible for two
codewords in C to become equal when their final position is removed.
So C? has the same size as C.

Example 8.2. Let C be the binary code whose codewords are all binary
words of length 4 with an even number of 1s. Let C? be the code ob-
tained by puncturing C in its final position. Then

C = {0000, 1100, 1010, 0110, 1001, 0101, 0011, 1111}
C? = {000, 110, 101, 011, 100, 010, 001, 111}

Thus C has minimum distance 2 and C? has minimum distance 1.

Lemma 8.3. Let C be a code of length n and minimum distance d. The punc-
tured code C? has length n− 1 and minimum distance ≥ d− 1.

Theorem 8.4 (Singleton Bound). If C is a q-ary code of length n and mini-
mum distance d then |C| ≤ qn−d+1. Hence Aq(n, d) ≤ qn−d+1.

Remarks 8.5. We make the following remarks on Theorem 8.4.

(1) If n = 4 and d = 3 then the Singleton bound gives Aq(4, 3) ≤
q4−3+1 = q2. The codes constructed by MOLs achieve the bound.
So there is a pair of MOLs of order q if and only if Aq(4, 3) = q2.

(2) The Reed–Solomon codes constructed in the MSc/MSci course
achieve the Singleton bound. They show that Aq(n, d) = qn−d+1

whenever q is a prime power and q ≥ n.

35

(3) The special case of the Singleton bound when d = n is

Aq(n, n) ≤ q.

This was proved in Lemma 6.1(ii) by putting codewords into pi-
geonholes according to their first position. A similar argument
can be used to prove the general Singleton bound: see Ques-
tions 3 and 6 on Sheet 5.

9. HADAMARD CODES AND THE PLOTKIN BOUND

Hadamard codes are a family of binary codes that have high mini-
mum distance and so can detect and correct many errors. We shall see
that, like the codes constructed from MOLs, Hadamard codes have the
largest possible size for their length and minimum distance.

The Hadamard (32, 64, 16)-code used in the 1971 Mariner 9 mission
to Mars was discussed in Example 1.14. Since the code has minimum
distance 16, it follows from Theorem 4.5(ii) that it is 7-error correcting,
as claimed (informally) in this example.

Hadamard codes are constructed using certain matrices with entries
+1 and −1.

Definition 9.1. Let n ∈ N. A Hadamard matrix of order n is an n × n
matrix H such that each entry of H is either +1 or −1 and HHtr = nI.
Here I is the n× n identity matrix and Htr is the transpose matrix of H.

Example 9.2. If H =

(
1 1
1 −1

)
then H is a Hadamard matrix of order 2.

Two Hadamard matrices of order 4 are shown below; in these matrices
we write + for 1 and − for −1.

+ + + +
+ − + −
+ + − −
+ − − +

 ,


+ + + −
+ + − +
+ − + +
− + + +

 .

Except for the 1× 1 matrices (+1) and (−1), all Hadamard matrices
have even order. This result follows from the following lemma.

Lemma 9.3. Suppose H is a Hadamard matrix of order n where n ≥ 2. If i,
k ∈ {1, 2, . . . , n} and i 6= k then row i and row k of H are equal in exactly
n/2 positions.

36

The connection with coding theory is as follows.

Theorem 9.4. Suppose that H is a Hadamard matrix of order n ≥ 2. Let B
be the 2n× n matrix defined by

B =

(
H
−H

)
.

The rows of B are the codewords in a (n, 2n, n/2)-code over the alphabet {+,−}.

We say that any code given by the construction in Theorem 9.4 is a
Hadamard code. These codes can be converted into binary codes over
the usual alphabet of bits {0, 1} by replacing each + with 0 and each −
with 1.

Example 9.5. Let

H =


+ + + −
+ + − +
+ − + +
− + + +

 .

The construction in Theorem 9.4 gives the binary code with codewords

0001 0010 0100 1000

1110 1101 1011 0111.

The Singleton bound is often the strongest bound for codes over a
large alphabet, but for a binary (2d, M, d)-code it only gives the bound
M ≤ 2d+1. The following result leads to a stronger bound on A2(2d, d).

Theorem 9.6 (Plotkin bound). Let n, d ∈ N be such that 2d > n. Then

A2(n, d) ≤ 2d
2d− n

.

The proof of this bound is non-examinable: see the optional questions
on Sheet 6 for an outline proof. For example, taking n = 8 and d = 5
we get

A2(8, 5) ≤ 10/(10− 8) = 5.

By Theorem 6.7, A2(8, 5) = 4 so the Plotkin bound comes close to the
strongest possible result. In other cases the Plotkin bound is sharp.

Exercise: Use the Plotkin bound to prove that A2(9, 6) = 4.

A related bound is attained by Hadamard codes.

37

Corollary 9.7 (Another Plotkin bound). If d ∈ N then

A2(2d, d) ≤ 4d.

If there is a Hadamard matrix of order 2d then

A2(2d, d) = 4d.

It is quite easy to show that if there is a Hadamard matrix of order n
then either n = 1, or n = 2 or n is divisible by 4. The construction
in Question 2 of Sheet 6 shows that if there is a Hadamard matrix of
order n then there is a Hadamard matrix of order 2am for all a ∈ N0. It
is a major open problem to show that there are Hadamard matrices of
all orders divisible by 4.

There is also a related ‘asymptotic’ Plotkin bound, which states that
A2(n, d) ≤ 2n−2d+1n for all n and d. (See optional questions on Sheet 6.
The asymptotic Plotkin bound is non-examinable.)

10. GILBERT–VARSHAMOV BOUND

Recall that, stated using the A2(n, d) notation, Hamming Packing
Bound (Theorem 5.4) becomes

A2(n, d) ≤ 2n

∑e
k=0 (

n
k)

where e = b(d − 1)/2c. In the proof of this bound, we argued that if
C is a binary (n, M, d)-code then the Hamming balls of radius e about
codewords in C are disjoint.

A related argument using Hamming balls of radius d − 1 gives a
lower bound on A2(n, d). The idea is to construct a code of minimum
distance d in the most naı̈ve way possible: we put in new codewords
until the Hamming balls of radius (d− 1) about codewords cover {0, 1}n,
and so every word is distance ≤ (d− 1) from some codeword.

Theorem 10.1 (Gilbert–Varshamov bound). If n, d ∈ N then

A2(n, d) ≥ 2n

∑d−1
k=0 (

n
k)

.

Summary of Part B. The Main Coding Theory Problem asks for codes
over a given q-ary alphabet with small length n, high size M and high
minimum distance d. To study these conflicting requirements, we de-
fined Aq(n, d) to be the largest size M of a q-ary code of length n and
minimum distance d.

38

We have seen the Hamming, Plotkin and Singleton upper bounds
on Aq(n, d). In some cases these bounds are achieved by certain ‘best
possible’ codes: by Remark 8.5(1) the MOLs codes in §7 achieve the Sin-
gleton bound, and by Corollary 9.7 the Hadamard codes in §9 achieve
the Plotkin bound. In these cases the Main Coding Theory Problem is
completely solved.

Taking log2 of a bound gives a bound on the rate of a code, as de-
fined in Definition 1.10. Doing this makes it easier to compare different
bounds. The graph below compares all the bounds seen so far for bi-
nary codes of length 1000. (The MATHEMATICA notebook used to draw
this graph is available from Moodle.) The Plotkin bound used is the
‘asymptotic bound’ mentioned after Corollary 9.7.

The Plotkin bound is stronger than the Hamming Packing Bound for
d ≥ 320. For most d there is a wide gap between the Gilbert–Varshamov
lower bound and the minimum of the Hamming and Plotkin upper
bounds, and all we know is that A2(1000, d) is somewhere in between.
Determining the true value of A2(n, d) for large n and d is one of the
main open problems in coding theory.

Comparison of bounds for binary codes of length 1000

Singleton
bound

Hamming
bound

Plotkin
bound

Gilbert–
Varshamov
bound

0 200 400 600 800 1000
0

200

400

600

800

1000

bo
un

d
on

ra
te

minimum distance d

39

Part C: Linear Codes

11. LINEAR CODES AND WEIGHTS

In the final part of the course we shall look at linear codes. We shall
develop the theory for binary codes only; this shows all the main ideas.
The extension to larger alphabets of prime or prime power degree is not
difficult, and may be found in any of the recommended textbooks.

From now on the alphabet of of bits {0, 1} should be thought of as Z2,
that is, the integers modulo 2. So we have

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0.

Binary words of length n are elements of Zn
2 . Given u = (u1, u2, . . . , un)

and v = (v1, v2, . . . , vn) ∈ Zn
2 , we define

(u1, u2, . . . , un) + (v1, v2, . . . , vn) = (u1 + v1, u2 + v2, . . . , un + vn).

Definition 11.1. Let C be a binary code of length n. We say that C is
linear if for all u, w ∈ C we have u + w ∈ C.

If C is a linear binary code and u ∈ C then u + u = (0, 0, . . . , 0). So
it follows from Definitions 1.4 and 11.1 that any binary code contains
the all-zeros word (0, 0, . . . , 0). We will write this word as 0 (or 0 on the
board).

We have already seen many examples of linear codes.

Example 11.2.
(1) The length 5 code {00000, 11100, 00111, 11011} is linear.
(2) For any n ∈ N, the binary repetition code of length n is a linear

(n, 2, n)-code.
(3) For any n ∈ N, the code of size 2n consisting of all binary words

of length n is a linear (n, 2n, 1)-code.
(4) Let C be all binary words of length 4. As in Example 2.9, let Cext

be the code obtained by adding an extra bit at the end of each
codeword to make the total number of 1s in each codeword
even. Then, Cext is a (5, 16, 2)-code and

Cext = {(u1, u2, u3, u4, u5) ∈ Z5
2 : u1 + u2 + u3 + u4 + u5 = 0}.

We will show that Cext is linear.

40

The codes in Example 11.2 have sizes 4, 2, 2n and 16 respectively. This
is explained by Theorem 12.5, which implies that any linear binary code
has size a power of 2.

It is curious that many codes that meet the bounds proved in Part B
are linear, or if not linear, at least equivalent to linear codes. For ex-
ample, we saw in Lemma 6.5 that A2(5, 3) = 4, and that any binary
(5, 4, 3)-code is equivalent to

{00000, 11100, 00111, 11011}.
By Example 11.2(1) this code is linear.

The next lemma shows that Hamming distance behaves well under
addition.

Lemma 11.3. Let u, w be binary words of length n ∈ N. For any binary word
v ∈ Zn

2 we have
d(u, w) = d(u + v, w + v).

This lemma leads to an easy way to find the minimum distance of a
linear code. Recall that the weight of a binary word u was defined just
before Lemma 6.6 to be the number of positions of u equal to 1. For
example, wt(11100) = 3 and wt(11011) = 4.

Lemma 11.4. Let C be a linear binary code. The minimum distance of C is
equal to the minimum weight of a non-zero codeword of C.

Exercise: Use Lemma 11.4 to find the minimum distances of the codes
in Example 11.2 and check that the results are as expected.

The last result in this section generalises the parity check extension
codes seen in Example 2.9 and Example 11.2(2). For an optional related
result see Questions 6 and 7 on Sheet 4.

Definition 11.5. Let C be a binary code of length n. The parity check
extension of C is the code Cext of length n + 1 defined by

Cext = {(u1, . . . , un, un+1) : (u1, . . . , un) ∈ C, u1 + · · ·+ un + un+1 = 0.}

Theorem 11.6. Let C be a linear binary (n, M, d)-code. Then Cext is a linear
binary code of length n + 1 and size M. The minimum distance of Cext is d if
d is even and d + 1 if d is odd.

41

12. BASES, GENERATOR MATRICES AND ENCODING

In this section we will see an efficient way to encode using a linear
binary code. The next exercise shows the basic idea.

Exercise: Suppose that u(1), . . . , u(k) are codewords in a linear binary
code C. Show that if c1, c2, . . . , ck ∈ Z2, then c1u(1) + · · ·+ cku(k) is a
codeword in C and

c1u(1) + · · ·+ cku(k) =
(
c1, . . . , ck

) u(1)
...

u(k)

 .

This suggests an encoding strategy where we first convert messages
to binary words of length k, and then encode the binary word (c1, . . . , ck)
as the codeword c1u(1) + · · ·+ cku(k) ∈ C.

Example 12.1. (For interest only.) The binary (32, 64, 16)-Hadamard
code used by Mariner 9 is linear. The encoder used the idea just out-
lined, with the matrix G shown below.

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1


To encode a pixel whose blackness is represented by the number m ∈
{0, 1, . . . , 63}, write m in binary as b5b4b3b2b1b0 and then encode it as

(b5, . . . , b1, b0)G.

For example, since 34 is 100010 in binary, 34 is encoded as the codeword
(1, 0, 0, 0, 1, 0)G = 01010101010101011010101010101010.

To make this encoding scheme work, it is essential to make a careful
choice of u(1), . . . , u(k). For instance, suppose there are c1, . . . , ck ∈ Z2,
not all equal to 0, such that

c1u(1) + · · ·+ cku(k) = 0

where 0 is the all-zeros word of length n. Then we will encode both
(c1, . . . , ck) and (0, . . . , 0) as 0. This is clearly undesirable!

To understand how to avoid this problem, we need to think of binary
words as vectors and linear binary codes as subspaces of Zn

2 . Then the
condition we need is that u(1), . . . , u(k) form a basis for C. The defini-
tion below reminds you of this and related terms.

42

Definition 12.2. Let C be a linear binary code of length n. We say that
words u(1), . . . , u(k) ∈ Zn

2 are
(a) linearly independent if the only solution to the equation

c1u(1) + · · ·+ cku(k) = 0

with c1, . . . , ck ∈ Z2 is c1 = c2 = . . . = ck = 0.

(b) span C if for every w ∈ C there exist c1, . . . , ck ∈ Z2 such that

w = c1u(1) + · · ·+ cku(k).

(c) a basis of C if they are linearly independent and span C.

Example 12.3.
(1) Let C = {00000, 11100, 00111, 11011}, as in Example 11.2(1) Then

a basis for C is 11100, 00111. If we take

G =

(
1 1 1 0 0
0 0 1 1 1

)
then the codewords in C are (0, 0)G, (0, 1)G, (1, 0)G and (1, 1)G.

(2) Let Cext be the parity check extension of all binary words of
length 4, considered in Example 11.2(4). Then

10001, 01001, 00101, 00011

is a basis for Cext. If we take

G =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


then we would encode the message (c1, c2, c3, c4) by

(c1, c2, c3, c4)G = (c1, c2, c3, c4, c1 + c2 + c3 + c4) ∈ Cext.

It is very important to note that a linear binary code usually
does not have a unique basis.

For example, another basis for the code {00000, 11100, 00111, 11011}
is 11100, 11011. So if C is a linear binary code, then it is correct to write
‘a basis of C’ rather than ‘the basis of C’. We will see a systematic way to
find a basis from a set of codewords spanning a code in Example 12.7.

Exercise: Find a different basis for the code Cext in Example 12.3(2).

43

Definition 12.4. Suppose that C is a linear binary code of length n and
minimum distance d. If u(1), . . . , u(k) is a basis of C then we say that C
has dimension k and that C is a [n, k, d]-code.

Thus a linear binary (n, 2k, d)-code is a [n, k, d]-code. The codes in
Example 12.3 have parameters [5, 2, 3] and [5, 4, 2], respectively.

The next result connects dimension with the rate of a binary code, as
defined in Definition 1.10.

Theorem 12.5. Let C be a linear binary code having u(1), . . . , u(k) as a basis.
For each w ∈ C there exist unique c1, . . . , ck ∈ Z2 such that

w = c1u(1) + · · ·+ cku(k).

Hence |C| = 2k and the rate of C is k/n.

In particular, it follows from Theorem 12.5 that any linear binary code
has size 2k for some k ∈ N. Moreover, any two bases of a linear binary
code C of length n and size 2k have the same number of elements13,
namely k.

Exercise: Find a basis for the square code. (See Question 1 on Sheet 7
for a hint.)

The matrices used in Example 12.3 are generator matrices, as defined
in the following definition.

Definition 12.6. Suppose that C is a linear binary code of length n hav-
ing u(1), . . . , u(k) ∈ Zn

2 as a basis. The k× n matrix u(1)
...

u(k)


is said to be a generator matrix for C.

13It is a standard result from linear algebra that any two bases of a vector space
have the same number of elements. The quick proof indicated here depends on
the size of C being finite, so only works over finite fields, such as Z2.

44

Example 12.7. Let C be the linear code of length 7 spanned by the code-
words 1100110, 1011010, 0110011, 0001111. These codewords are not
linearly independent. We can demonstrate this, and find a basis and
generator matrix for C, by applying row operations to the matrix

1 1 0 0 1 1 0
1 0 1 1 0 1 0
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

Suppose we want to encode a number between 0 and 2k − 1 using
a linear binary code of dimension k with generator matrix G. To do
this, write the number in binary, say as bk−1 . . . b1b0, and then, as in
Examples 12.1 and 12.3, encode the resulting binary word of length k as
the codeword

(bk−1, . . . , b1, b0)G.

Example 12.8. Let C be the linear code in Example 12.7. We saw that C
has generator matrix

G =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


so C has dimension 3 and size 23. To encode the number 7 we write 7 in
binary as 111 and take the codeword

(1, 1, 1)

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 = (1, 1, 0, 1, 0, 0, 1)

In general, the number 4b2 + 2b1 + b0, written in binary as b2b1b0, is
encoded as

(b2, b1, b2 + b1, b0, b2 + b0, b1 + b0, b0 + b1 + b2).

Note that if no errors occur when a codeword is transmitted through
the channel, then the message can be read off from bits 1, 2 and 4 of the
received word.

We end by defining a class of generator matrices that are convenient
for use when encoding, and also of theoretical importance.

Definition 12.9. A generator matrix(
Ik A

)
where Ik is the k× k identity matrix and A is a k× (n− k) matrix is said
to be in standard form.

45

The generator matrix in Example 12.3(2) is in standard form. If we
swap positions 3 and 4 in all the codewords in the code C in Exam-
ple 12.8 we get an equivalent code C′ with generator matrix

G′ =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


in standard form. This is a special case of the following theorem.

Theorem 12.10. Let C be a linear binary code of length n and dimension k.
Then C is equivalent, by a permutation of the positions in the codewords, to a
code with a generator matrix in standard form(

Ik A
)

where A is an k× (n− k)-matrix.

If G =
(

Ik A
)

is a generator matrix for a code C in standard form
then the binary word (c1, c2, . . . , ck) is encoded as

(c1, c2, . . . , ck)G = (c1, c2, . . . , ck, a1, . . . , an−k) ∈ C

for some a1, . . . , an−k ∈ Z2. This is convenient because if no errors occur
in transmission, then the message can be easily read off from the first k
positions in the received word.

13. DECODING BY STANDARD ARRAYS

In this section we shall see a way to implement nearest neighbour
decoding for linear codes that exploits their special structure.

Definition 13.1. Let C be a linear binary code of length n. A coset of C
is a set of the form

C + v = {u + v : u ∈ C}
where v ∈ Zn

2 .

Note that if v ∈ Zn
2 then, since 0 ∈ C, we have v = 0 + v and so

v ∈ C + v. Hence the coset containing v is C + v.

Example 13.2. Let C be the linear binary code

C = {0000, 1110, 0011, 1101}
obtained by puncturing (see Definition 8.1) the code in Example 12.3(1)
in its final position. If we send the codewords through a channel that
corrupts position 1 every time, then the received words are

C + 1000 = {1000, 0110, 1011, 0101}.

46

The other possible one bit errors give cosets

C + 0100 = {0100, 1010, 0111, 1001},
C + 0010 = {0010, 1100, 0001, 1111},
C + 0001 = {0001, 1111, 0010, 1100}.

We also have the coset C + 0000 = C.

Note that the cosets C + 0010 and C + 0001 are equal. Each word v
in this coset is distance 1 from two codewords, namely v + 0010 and
v + 0001, so nearest neighbour decoding fails whenever such a word is
received. For example, if we receive 1111, the transmitted word could
be either 1101 or 1110.

Exercise: Taking C as in Example 13.2, show that

C + 1001 = C + 0100 = {0100, 1010, 0111, 1001}.
Show that if v is a word in this coset then using nearest neighbour de-
coding, v is decoded as v + 0100 ∈ C.

It is very important to bear in mind that cosets are sets, and
that the same coset can be written as C + v for many different
words v.

Exercise: Let C be a linear binary code of length n. Show that if v ∈ Zn
2

then C + v = C + (u + v) for all u ∈ C.

Lemma 13.3. Let C be a linear binary code of length n. If C + v and C + v′

are cosets of C then either C + v = C + v′ or the cosets C + v and C + v′ are
disjoint.

Exercise: Check that each binary word of length 4 is in a unique coset of
the code in Example 13.2.

Definition 13.4. Let C be a linear binary code of length n. A standard
array for C is a table in which each row consists of the codewords in a
coset of C, arranged so that

(i) the first row is C;
(ii) if the word x appears in the first column then wt(x) ≤ wt(v) for

all v in the row of x.
The first word in each row is said to be a coset leader. To decode a re-
ceived word v ∈ Zn

2 by standard array decoding, decode v as v+ x where x
is the coset leader for the row containing v.

47

Example 13.5. A standard array for the code C in Example 13.2 is

0000 1110 0011 1101
1000 0110 1011 0101
0100 1010 0111 1001
0010 1100 0001 1111

Note that we could also taken the fourth row to be

0001 1111 0010 1100

with 0001 as the coset leader, since both 0010 and 0001 have weight 1.
The other coset leaders 0000, 1000 and 0100 are uniquely determined by
their cosets.

Exercise: Decode the received words 0011, 0111 and 1111 using standard
array decoding with the standard array in Example 13.5.

There are 2n binary words of length n, and each row in a standard
array for a linear binary code of dimension k has 2k words in it. So a
standard array for a linear binary [n, k, d]-code should have 2n−k rows.
If you check this holds, you will avoid two common errors: putting in
too many rows, or too few.

The next theorem shows that standard array decoding always gives
one of the closest codewords to a received word.

Theorem 13.6. Let C be a linear binary code of length n. Let v ∈ Zn
2 . Suppose

that the row containing v has coset leader x. Then v + x ∈ C and

d(v + x, v) ≤ d(u, v)

for all u ∈ C.

In the proof we used that d(v+ x, v) = wt(x) and d(u, v) = wt(u + v).
So v+ x is the unique nearest codeword to v if and only if x is the unique
word of minimum weight in the coset C + v.

This gives a way to use a standard array to perform nearest neigh-
bour decoding. Suppose v ∈ Zn

2 is received and that x is the chosen
coset leader in the row of the standard array containing v. If x is the
unique word of minimum weight in its row then x is decoded to x + v
using nearest neighbour decoding. If there are other words of the same
weight as x in the row of x then nearest neighbour decoding fails.

In the latter case, we can either use standard array decoding and de-
code v as v + x, or request retransmission. Any decoding strategy in
which some received words are decoded, but for others retransmission
is requested, is called incomplete decoding.

48

14. PARITY CHECK MATRICES AND SYNDROME DECODING

All the linear codes we have seen so far can be defined by linear
equations. For instance, the code Cext consisting of all binary words
of length 5 with evenly many 1s can be defined by

Cext = {(u1, u2, u3, u4, u5) ∈ Z5
2 : u1 + u2 + u3 + u4 + u5 = 0}

and the square code can be defined by

S =

{
(u1, u2, u3, u4, u5, u6, u7, u8) ∈ Z8

2 :
u1 + u2 = u5, u3 + u4 = u6

u1 + u3 = u7, u2 + u4 = u8

}
To perform the decoding algorithm for the square code seen earlier in
the course, we record which linear equations are not satisfied, and then
try to flip a single bit to make all of them hold.14

Exercise: For each of the following received words, decide which of the
four defining equations for the square code fail to hold. Decode each
word using nearest neighbour decoding.

(i) 10001100 (ii) 11001011 (iii) 11000000 (iv) 10000001

Observe that Cext has length 5, dimension 4 and is defined by one
equation, and S has length 8, dimension 4 and is defined by four equa-
tions. In Theorem 14.3 we will prove that any linear binary code of
length n and dimension k can be defined by n− k linear equations.

Definition 14.1. Let C be a linear binary code of length n and dimen-
sion k. A parity check matrix for C is an (n− k)× n matrix H with linearly
independent rows such that for each u ∈ Zn

2 we have

u ∈ C ⇐⇒ uHtr = 0.

Here 0 is the all-zeros word of length n− k.

Example 14.2.

(1) The code Cext defined above has parity check matrix(
1 1 1 1 1

)
.

14If two or more errors occur then we might not decode to the sent word, or it
might not be possible to satisfy all the equations by flipping a single bit. Since the
square code has minimum distance 3 it is only 1-error correcting, and so we do not
expect to be able to decode reliably if two or more errors occur.

49

(2) Let S be the square code. Then S has as a parity check matrix
1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1

 .

In fact the condition in Definition 14.1 that H has linearly indepen-
dent rows is logically unnecessary: it is implied by the other conditions
in the definition. So it is no accident that just writing down the right
number of equations gave us a parity check matrix in both examples
above.

The next theorem gives a more systematic way to find a parity check
matrix.

Theorem 14.3. Let C be a linear binary code of length n and dimension k.
Then C has a parity check matrix. Moreover, if C has a generator matrix G in
standard form G =

(
Ik A

)
then(

Atr In−k
)

is a parity check matrix for C.

For example, if G =
(

Ik A
)

is the standard form generator matrix
for the square code, then applying Theorem 14.3 to G, we get the parity
check matrix already found in Example 14.2(2).

Definition 14.4. Let C be a linear binary code of length n and dimen-
sion k and let H be a parity check matrix for C. The dual code C⊥ is
the linear binary code of length n and dimension n− k with generator
matrix H.

Note that, by Definition 14.1, H has linearly independent rows, so we
can use H as a generator matrix.

We will assume that the dual code is well-defined, i.e. that it does not
depend on the choice of parity check matrix H. For a proof of this, and
some further (non-examinable) results on parity check matrices, see the
optional questions on Sheet 9.

Example 14.5. Let Cext be as in Example 14.2(1). Then

C⊥ext = {00000, 11111}
is the binary repetition code of length 5, and

{00000, 11111}⊥ = Cext.

50

We can also start with an (n − k) × n matrix H with linearly inde-
pendent rows, and use it to define a code C having H as its parity check
matrix. In the following extended example we use this idea to construct
the [7, 4, 3]-Hamming code.

Example 14.6. Let

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


and let C = {u ∈ Z7

2 : uHtr = 0}. Then C is a linear binary code with
parity check matrix H and generator matrix

G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 .

By Lemma 11.4, the minimum distance of C is equal to the minimum
weight of a non-zero codeword. Clearly there are codewords of weight 3
in C, so to show C has minimum distance 3, it suffices to show there are
no codewords of weight 1 or 2. This can be done using H.

The method used in Example 14.6 to find the minimum distance of C
has an important generalization. This theorem is non-examinable, and
will be skipped if time is pressing.

Theorem 14.7. Let C be a linear binary code of length n and dimension k.
Let H be a parity check matrix for C. The minimum distance of C is equal to
the minimum r ∈ N such that there exist r linearly dependent columns of H.

In standard array decoding one has to hunt through the entire stan-
dard array to find the coset of the code in which a received word lies.
We end with an improved method that uses parity check matrices.15

Theorem 14.8. Let C be a linear binary code of length n and dimension k with
parity check matrix H and let v, v′ ∈ Zn

2 . Then v and v′ are in the same coset
of C ⇐⇒ vHtr = v′Htr.

This theorem motivates the following definition.

15Algebraically inclined readers will notice that since C = ker Htr, Theo-
rem 14.8 follows from the first isomorphism theorem for the linear map Zn

2 →
Zn−k

2 defined by v 7→ vHtr. Everyone else should ignore this remark.

51

Definition 14.9. Let C be a linear binary code of length n and dimen-
sion k with parity check matrix H. The syndrome of a word v ∈ Zn

2 is
defined to be vHtr ∈ Zn−k

2 .

By Theorem 14.8 we can identify the coset of C containing a word
v ∈ Zn

2 from its syndrome vHtr. So to decode a received word v, calcu-
late its syndrome vHtr, and then decode v as v+ x where x is the chosen
coset leader for the coset C + v containing v.

Example 14.10. Let C = {0000, 1110, 0011, 1101} be the code used in
Examples 13.2 and 13.5. Then C has parity check matrix

H =

(
1 1 0 0
0 1 1 1

)
.

By Theorem 14.8, any two words in the same coset of C have the same
syndrome. The map from cosets of C to syndromes is

C 7→ (0, 0, 0, 0)Htr = (0, 0)

C + (1, 0, 0, 0) 7→ (1, 0, 0, 0)Htr = (1, 0)

C + (0, 1, 0, 0) 7→ (0, 1, 0, 0)Htr = (1, 1)

C + (0, 0, 1, 0) 7→ (0, 0, 1, 0)Htr = (0, 1).

Thus all words in C + 1000 = {1000, 0110, 1011, 0101} have syndrome
(1, 0), and if any of the words 1000, 0110, 1011, 0101 is received, it will
be decoded by adding 1000, since this is the unique coset leader in the
coset C + 1000.

Using syndrome decoding we can replace the standard array in Exam-
ple 13.5 with the more concise table below.

syndrome chosen coset leader

00 0000
10 1000
01 0010
11 0100

Syndrome decoding is ideally suited to the Hamming [7, 4, 3]-code
seen in Example 14.6.

Example 14.11. Let C, G and H be as in Example 14.6. Let e(i) be the
word with a 1 in position i and 0 in all other positions. The syndrome
of e(i) is e(i)Htr, which is the ith row of Htr.

52

The columns of H are distinct and non-zero, so by Lemma 13.3 and
Theorem 14.8 we have

Z7
2 = C ∪

(
C + e(1)

)
∪ · · · ∪

(
C + e(7)

)
where the union is disjoint.

To decode a received word v, we calculate its syndrome vHtr. If vHtr is
the ith row of Htr then vH = e(i)Htr and, by Theorem 14.8, v ∈ C+ e(i).
So we decode v as v + e(i).

For example, to use C to send the number 13, we would write 13 as 1101
in binary, and encode it as

(1, 1, 0, 1)G = (1, 0, 1, 0, 1, 0, 1).

Suppose that when we transmit 1010101, an error occurs in position 6,
so 1010111 is received. Then the syndrome of the received word is

(1, 0, 1, 0, 1, 1, 1)Htr = (0, 1, 1)

which is row 6 of Htr. So we decode by flipping the bit in position 6 to
get 1010101. We then read off 1101 from positions 3, 5, 6 and 7.

More generally, let C be a linear binary code of length n and dimen-
sion k. To use syndrome decoding on C we need to choose a coset leader
for each coset. This can be done by constructing a standard array. But
it is more efficient to take a parity check matrix H for C and compute
vHtr for words of low weight until all elements of Zn−k

2 have appeared.
Then, by Theorem 14.8, we have a coset leader for every coset.

Exercise: Make a table of syndromes and chosen coset leaders for the
square code using the parity check matrix given in Example 14.2(2).

A suitable table for incomplete decoding, where we request retrans-
mission if it appears that two or more errors have occurred will have 9
rows: one corresponding to the code C, and one for each of 8 possible
one bit errors. Since |C| = 16 and |Z8

2| = 28 = 256, there are 16 dis-
tinct cosets of C and so the full table has 16 rows, one for each possible
syndrome in Z4

2.

53

Summary of Part C. In this section we looked at codes satisfying the
linearity property that if u, w are codewords then u + w is also a code-
word. In Lemma 11.4 we saw that the minimum distance of a linear
binary code is the minimum weight of a non-zero codeword.

In §12 we saw that a linear binary code of length n and dimension k
has a k × n generator matrix. This gives a concise way to specify the
code: rather than having to write down 2k codewords we can just spec-
ify k basis elements. We also saw how to use a generator matrix to
encode.

In §13 we saw standard array decoding, and in §14 we saw a more
efficient way to implement standard array decoding using syndromes
and parity check matrices. In Example 14.6 we defined the Hamming
[7, 4, 3] code and saw how to use syndrome decoding to correct a single
error in a sent word.

Hamming’s construction generalises (see the optional questions on
Sheet 9) to gives a linear binary [2r − 1, 2r − r− 1, 3]-code for any r ∈ N.
These codes achieve Hamming’s packing bound, and so the ideas in
Part C give a complete solution to the Main Coding Theory Problem
for 1-error correcting codes. The problem of finding linear binary codes
of large size that can correct more errors has motivated much of the
subsequent work in this subject.

