
MT461/MT5461

Theory of Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

The extra content on the syllabus for MT5461 is on Reed–Solomon
codes and cyclic codes over finite fields. These codes are examples
of the linear codes that will be covered in Part C of the main
lectures.

The MSc/MSci lecture on Thursday 17 January will be
moved to Friday 18 January, at 2pm in C219.

mark.wildon@rhul.ac.uk

Fields

Definition 1.1
A field is a set of elements F with two operations, + (addition)
and × (multiplication), and two special elements 0, 1 ∈ F such
that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;

(2) 0 + a = a + 0 = a for all a ∈ F;

(3) for all a ∈ F there exists b ∈ F such that a + b = 0;

(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

(5) a× b = b × a for all a, b ∈ F;

(6) 1× a = a× 1 = a for all a ∈ F;

(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;

(8) a× (b × c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.

If F is finite, then we define its order to be its number of elements.

Exercise: Show, from the field axioms, that if x ∈ F, then x has a
unique additive inverse, and that if x 6= 0 then x has a unique
multiplicative inverse. Show also that if F is a field then a× 0 = 0
for all a ∈ F.

Exercise: show from the axioms for a field that if F is a field and a,
b ∈ F are such that a× b = 0, then either a = 0 or b = 0.

Theorem 1.2
Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition and
multiplication defined modulo p is a field.

Other finite fields

Example 1.3

The addition and multiplication tables for the finite field
F4 = {0, 1, α, 1 + α} of order 4 are shown below.

+ 0 1 α 1 + α

0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0

× 1 α 1 + α

1 1 α 1 + α
α α 1 + α 1

1 + α 1 + α 1 α

Probably the most important thing to realise is that F4 is not the
integers modulo 4.

Polynomials

Let F be a field. Let F[x] denote the set of all polynomials

f (x) = a0 + a1x + a2x
2 + · · ·+ amx

m

where m ∈ N0 and a0, a1, a2, . . . , am ∈ F.

Definition 1.4
If f (x) = a0 + a1x + a2x

2 + · · ·+ amx
m where am 6= 0, then we say

that m is the degree of the polynomial f (x), and write deg f = m.
We define the degree of the zero polynomial f (x) = 0 to be −1.

Lemma 1.5 (Division algorithm)

Let F be a field, let f (x) ∈ F[x] be a non-zero polynomial and let
g(x) ∈ F[x]. There exist polynomials s(x), r(x) ∈ F[x] such that

g(x) = s(x)f (x) + r(x)

and either r(x) = 0 or deg r(x) < deg f (x).

Other Results on Polynomials

For Reed–Solomon codes we shall need the following properties of
polynomials.

Lemma 1.6
Let F be a field.

(i) If f (x) ∈ F[x] has a ∈ F as a root, i.e. f (a) = 0, then there is
a polynomial g(x) ∈ F[x] such that f (x) = (x − a)g(x).

(ii) If f (x) ∈ F[x] has degree m ∈ N0 then f (x) has at most m
distinct roots in F.

(iii) Suppose that f , g ∈ F[x] are non-zero polynomials such that
deg f , deg g < k. If there exist distinct c1, . . . , ck ∈ F such
that f (ci) = g(ci) for each i ∈ {1, . . . , k} then f (x) = g(x).

Polynomial Interpolation

Lemma 1.7 (Polynomial interpolation)

Let F be a field. Let

c1, c2, . . . , ck ∈ F

be distinct and let y1, y2, . . . , yk ∈ F. The unique polynomial
f (x) ∈ F[x] of degree < k such that f (ci) = yi for all i is

f (x) =
k∑

i=1

yi

∏
j 6=i (x − cj)∏
j 6=i (ci − cj)

.

§2 Definition and Basic Properties of Reed–Solomon Codes

Definition 2.1
Let p be a prime and let k , n ∈ N be such that k ≤ n ≤ p. Let

a1, a2, . . . , an

be distinct elements of Fp. For each polynomial f (x) ∈ Fp[x] we
define a word u(f) ∈ Fn

p by

u(f) = (f (a1), f (a2), . . . , f (an)).

The Reed–Solomon code associated to the parameters p, n, k and
the field elements a1, a2, . . . , an is the length n code over Fp with
codewords

{u(f) : f ∈ Fp[x], deg f ≤ k − 1}.

Example 2.2

Let p = 5 and let k = 2.

(1) If n = 3 and we take a1 = 0, a2 = 1 and a3 = 2, then the
associated Reed–Solomon code has a codeword

(f (0), f (1), f (2))

for each f (x) ∈ Fp[x] of degree ≤ 1. If f (x) = bx + c then

u(f) = (c , b + c, 2b + c)

so the full set of codewords is

{(c , b + c, 2b + c) : b, c ∈ F5}.

(2) If n = 4 and we take a1, a2, a3 as before, and a4 = 3 then we
get an extension of the code in (1).

Instructive Exercise

Exercise: Let C = {(c , b + c , 2b + c , 3b + c) : b, c ∈ F5}. Show
that if u ∈ C is sent down a noisy channel, and v is received such
that d(u, v) ≤ 2 then either v = u or v 6∈ C . Can the receiver
guarantee to detect if three errors occur?

Basic Properties

Lemma 2.3
If f , g ∈ Fp[x] are distinct polynomials of degree ≤ k − 1 then

d(u(f), u(g)) ≥ n − k + 1.

Lemma 2.4
The Reed–Solomon code RSp,n,k has size pk .

By Lemma 2.3, the minimum distance (as defined in Definition 4.1
of the main notes) of RSp,n,k is at least n − k + 1.

Minimum Distance of Reed–Solomon Codes

Theorem 2.5
The minimum distance of RSp,n,k is n − k + 1.

The Singleton Bound (to be proved in Part B of the main course)
states that any p-ary code of length n and minimum distance d
has at most pn−d+1 codewords. By Theorem 2.5, the
Reed–Solomon codes meet this bound, and so have the largest
possible size for their length and minimum distance.

Corollary 2.6

Let p be a prime. If k, e ∈ N are such that k + 2e ≤ p then the
Reed–Solomon code RSp,k+2e,k is e-error correcting.

Decoding by Polynomial Interpolation

Example 2.7

Suppose we use the Reed–Solomon code with p = 5, n = 4 and
k = 2 evaluating at a1 = 0, a2 = 1, a3 = 2, a4 = 3, as in Example
2.2(2). By Corollary 2.6, this code is 1-error correcting. Suppose
we receive v = (4, 0, 3, 0).

Given any two positions i and j , it follows from Lemma 1.7 that
there is a unique polynomial g of degree < 2 such that g(ai) = vi
and g(aj) = vj .

The table on the next slide shows the interpolating polynomials for
each pair of positions and the corresponding codewords. For
example, to find f (x) such that f (0) = 4 and f (2) = 3, we use
Lemma 1.7 and get

f (x) = 4
x − 2

0− 2
+ 3

x − 0

2− 0
= 3(x − 2)− x = 2x + 4.

Conditions on f Solution Codeword u(f)

f (0) = 4, f (1) = 0 f (x) = 4 + x (4, 0, 1, 2)
f (0) = 4, f (2) = 3 f (x) = 4 + 2x (4, 1, 3, 0)
f (1) = 0, f (2) = 3 f (x) = 2 + 3x (2, 0, 3, 1)
f (0) = 4, f (3) = 0 f (x) = 4 + 2x (4, 1, 3, 0)
f (1) = 0, f (3) = 0 f (x) = 0 (0, 0, 0, 0)
f (2) = 3, f (3) = 0 f (x) = 4 + 2x (4, 1, 3, 0)

In practice, we would stop as soon as we found the codeword
(4, 1, 3, 0) since d(4130, 4030) = 1, and by Question 6 on Sheet 2,
there is at most one codeword within distance 1 of any received
word.

Administration:

I Next week: projects advice (mathematical writing, marking
scheme, getting started with LATEX, . . .).

As part of this we will discuss Hamming’s original paper Error
Detecting and Error Correcting Codes: see Question 5 on
Sheet 4.

§3 Efficient Decoding of Reed–Solomon Codes

In this section we shall see an efficient algorithm for decoding
Reed–Solomon codes invented by Berlekamp and Welch in 1983.

As usual we work with the Reed–Solomon code RSp,n,k where p is
prime and n, k ∈ N, and polynomials are evaluated at
a1, a2, . . . , an. Assume that n = k + 2e, so by Corollary 2.6 the
code is e-error correcting.

Definition 3.1 (Key Equation)

The Key Equation for the received word (v1, v2, . . . , vn) is

Q(ai) = viE (ai)

where Q(x), E (x) ∈ Fp[x] are polynomials such that

• degQ(x) ≤ k + e − 1

• deg E (x) ≤ e.

The polynomial E (x) is called the error locator polynomial.

Key Equation: Small Example

Here is a small observation that helps to motivate the Key
Equation.

Example 3.2

Suppose that u(f) is sent and that a single error occurs in
position j . Then f (ai) = vi at all i 6= j . If we put in an extra term
x − aj to ‘hide’ the error in position j , then the equation

f (x)(x − aj) = vi (x − aj)

holds when we replace x with any ai . So Q(x) = f (x)(x − aj),
E (x) = x − aj is a solution to the Key Equation. Note that
f (x) = Q(x)/E (x) and the root of E (x) tell us which position of v
is in error.

Main Theorem on Key Equation

Recall that we work with the Reed–Solomon code RSp,n,k where p
is prime and n, k ∈ N, n = k + 2e and polynomials are evaluated
at a1, a2, . . . , an.

Theorem 3.3
Suppose that u(f) is sent and that errors occur in positions
j1, j2, . . . , jt where t ≤ e. Let v be the received word. Then Q(x),
E (x) solve the Key Equation if and only if

(i) E (x) = (x − aj1)(x − aj2) . . . (x − ajt)s(x) for some polynomial
s(x) such that deg s(x) ≤ e − t, and

(ii) Q(x) = E (x)f (x).

Lemma 3.4
Suppose that the word (v1, . . . , vn) is received. The polynomials

Q(x) = Q0 + Q1x + · · ·+ Qk+e−1x
k+e−1

E (x) = E0 + E1x + · · ·+ Eex
e

in Fp[x] satisfy the Key Equation if and only if

Q0 + aiQ1 + a2i Q2 + · · ·+ ak+e−1
i Qk+e−1

= vi (E0 + aiE1 + a2i E2 + · · ·+ aei Ee)

for each i ∈ {1, . . . , n}. An equivalent condition is that:

1 a1 a21 · · · ak+e−1
1 −v1 −v1a1 · · · −v1ae1

1 a2 a22 · · · ak+e−1
2 −v2 −v2a2 · · · −v2ae2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 an a2n · · · ak+e−1

n −vn −vnan · · · −vnaen





Q0

Q1
...

Qk+e−1
E0

E1
...
Ee


= 0

Example of Lemma 3.4

The matrix in Lemma 3.4 has n rows and k + 2e + 1 = n + 1
columns. So we can solve the Key Equation by solving an
n × (n + 1) system of linear equations.

Example 3.5

We shall use the code of Example 2.2(2) and Example 2.7. Let
p = 5, let k = 2, let e = 1 (so n = 4) and let a1 = 0, a2 = 1,
a3 = 2, a4 = 3. With these parameters, the Key Equation for the
polynomials Q(x) = Q0 + Q1x + Q2x

2 and E (x) = E0 + E1x is


1 0 0 4v1 0
1 1 1 4v2 4v2
1 2 4 4v3 3v3
1 3 4 4v4 2v4



Q0

Q1

Q2

E0

E1

 = 0.

Example 3.5 [continued]

(1) Suppose we receive the word 4130. (This is the codeword for
f (x) = 4 + 2x .) Then v1 = 4, v2 = 1, v3 = 3, v4 = 0 and we must
solve 

1 0 0 1 0
1 1 1 4 4
1 2 4 2 4
1 3 4 0 0



Q0

Q1

Q2

E0

E1

 = 0.

The kernel is two dimensional, spanned by the vectors

(0, 4, 2, 0, 1)t , (4, 2, 0, 1, 0)t .

The first vector gives Q(x) = 4x + 2x2 and E (x) = x , so we
decode using f (x) = Q(x)/E (x) = 4 + 2x to get u(f) = 4130.
(The second vector gives the same answer even more quickly.)

Example 3.5 [continued]
(2) Suppose we receive the word 4030. Then v1 = 4, v2 = 0,
v3 = 3, v4 = 0 and we must solve

1 0 0 1 0
1 1 1 0 0
1 2 4 2 4
1 3 4 0 0



Q0

Q1

Q2

E0

E1

 = 0.

The kernel is one dimensional spanned by (1, 2, 2, 4, 1)t . So we take
Q(x) = 1 + 2x + 2x2 and E (x) = 4 + x . Polynomial division gives

Q(x)/E (x) = 2x + 4

so we decode using f (x) = 2x + 4 to get u(f) = 4130.

(3) Receive 4020. The kernel is one dimensional, spanned by
(4, 3, 3, 1, 0)t . So we take Q(x) = 4 + 3x + 3x2 and E (x) = 1, but
Q(x)/E (x) does not have degree ≤ 1, so we are unable to decode.
Since the Key Equation method always works when ≤ e errors
occur, we know that ≥ 2 errors have occurred, but we are unable
to correct them.

Final Remarks on Key Equation

When more than e errors occur it can also happen that the
received word is decoded incorrectly. For example, this would
happen in the setup of Example 3.4 if we received 4000. Another
possibility is that E (x) does not divide Q(x): in this case we
detect an error but are unable to correct it.

Final remarks:

(1) When preparing this section I used §4 of: math.berkeley.

edu/~mhaiman/math55/reed-solomon.pdf.

(2) A Mathematica notebook for solving the Key Equation is
available on Moodle. Unless you really want to do it by hand,
I suggest you use it (or another computer algebra program) to
do the computational questions on problem sheets.

math.berkeley.edu/~mhaiman/math55/reed-solomon.pdf
math.berkeley.edu/~mhaiman/math55/reed-solomon.pdf

Frameworks for “Intellectual Property”
It has become fashionable to toss copyright, patents, and
trademarks — three separate and different entities
involving three separate and different sets of laws — plus
a dozen other laws into one pot and call it “intellectual
property”. . . . The clearest way out of the confusion is to
reject the term entirely.

Richard M. Stallman
http://www.gnu.org/philosophy/not-ipr.html

I Government secrets (Confidential works)

I Trade secrets (Confidential works)

I Patents (Published works, decision to license and cost of
license usually up to patent holder)

I Copyright (Published works, no obligation on copyright holder
to distribute, even for a fee; basis of GPL)

I Trademarks (Published works)

I Academic good practice (Published works)

http://www.gnu.org/philosophy/not-ipr.html

§4 Cyclic Codes

Definition 4.1
Let p be prime. A code C over Fp is linear if

(i) for all u ∈ C and a ∈ Fp we have au ∈ C ;

(ii) for all u, w ∈ C we have u + w ∈ C .

Exercise: Show that any Reed–Solomon code is linear.

Definition 4.2
Let p be a prime. A code C over Fp is said to be cyclic if C is
linear and

(u0, u1, . . . , un−1) =⇒ (un−1, u0, . . . , un−2) ∈ C .

We say that (un−1, u0, . . . , un−2) is the cyclic shift of
(u0, u1, . . . , un−1).

Example 4.3

(1) Let p be prime and let n ∈ N. The repetition code of length n
over Fp is cyclic.

(2) Let C be the binary parity check code of length n consisting
of all binary words of length n with evenly many 1s. We may
define C using addition in F2 by

C = {(u0, . . . , un−1) : ui ∈ F2, u0 + · · ·+ un−1 = 0}.

Then C is a cyclic code.

(3) Let D be the binary code with codewords

{000000, 110110, 011011, 101101}.

Exercise: check that D is linear. The shift map acts on D by
fixing 000000 and cyclically permuting the other three
codewords. Hence D is cyclic.

Correspondence with Polynomials: First Attempt
There is a very helpful correspondence between codewords in a
cyclic code and polynomials. Consider the code D in Example
4.3(3). If we associate the polynomial

u0 + u1x + u2x
2 + u3x

3 + u4x
4 + u5x

5

to the codeword (u0, u1, u2, u3, u4, u5) then we have

000000←→ 0

110110←→ 1 + x + x3 + x4

011011←→ x + x2 + x4 + x5

101101←→ 1 + x2 + x3 + x5.

When we multiply 1 + x + x3 + x4 by x we get x + x2 + x4 + x5,
which is the polynomial corresponding to 011011. So far so good!
But when we multiply x + x2 + x4 + x5 we get x2 + x3 + x5 + x6,
which is not the polynomial we choose to correspond to 101101.
Somehow we need to make x2 + x3 + x5 + x6 correspond to
101101, as well.

Correspondence with Polynomials

Definition 4.4
Let n ∈ N and let p be prime. Let f (x) ∈ Fp[x]. We say that f (x)
corresponds to (u0, u1, . . . , un−1) ∈ Fn

p if, when f (x) is divided by
xn − 1, the remainder is

u0 + u1x + u2x
2 + . . .+ un−1x

n−1.

Note, in particular, that if

f (x) = u0 + u1x + u2x
2 + · · ·+ un−1x

n−1

then, when we divide f (x) by xn − 1, the quotient is 0 and the
remainder is f (x). So f (x) corresponds to the word
(u0, u1, . . . , un−1) ∈ Fn

p.

Exercise: Check that, when n = 6, the polynomial
x2 + x3 + x5 + x6 corresponds to (1, 0, 1, 1, 0, 1). Find the word
corresponding to the polynomial x(1 + x2 + x3 + x5).

Remark on Quotient Rings

Remark 4.5
Definition 4.4 defines a map from Fp[x] to words in Fn

p. Two
polynomials have the same image if and only if they have the same
remainder on division by xn − 1. So the polynomials that map to
the word (u0, u1, . . . , un−1) are exactly the elements of the coset

u0 + u1x + · · ·+ un−1x
n−1 + 〈xn − 1〉

in the quotient ring Fp[x]/ 〈xn − 1〉. Thus Definition 4.4 defines a
bijection Fp[x]/〈xn − 1〉 ←→ Fn

p.

Critical Lemma

Lemma 4.6
Let p be a prime and let C be a cyclic code over Fp. Let u ∈ C.

(i) Suppose that f (x) ∈ Fp[x] corresponds to u. Then xf (x)
corresponds to the cyclic shift of u, namely
(un−1, u0, . . . , un−2).

(ii) If s(x) ∈ Fp[x] then s(x)f (x) corresponds to a codeword in C.

It will often be useful to think of a cyclic code as a set of
polynomials of degree < n, by choosing the obvious polynomial
u0 + u1x + · · ·+ un−1x

n−1 to correspond to the codeword
(u0, u1, . . . , un−1).

Generator Polynomials

It will often be useful to think of a cyclic code as a set of
polynomials of degree < n, by choosing the obvious polynomial
u0 + u1x + · · ·+ un−1x

n−1 to correspond to the codeword
(u0, u1, . . . , un−1).

Definition 4.7
Let p be a prime. Let C be a cyclic code of length n over the finite
field Fp. Think of C as a set of polynomials of degree < n. A
generator polynomial for C is a polynomial g(x) ∈ Fp[x] of degree
k < n such that g(x) divides xn − 1 and

C =
{
f (x)g(x) : f (x) ∈ Fp[x], deg f (x) ≤ n − 1− k

}
.

Example 4.8

Let

C = {0, 1 + x + x3 + x4, x + x2 + x4 + x5, 1 + x2 + x3 + x5

be the polynomial version of the code in Example 4.2(3). We shall
show that g(x) = 1 + x + x3 + x4 is a generator polynomial for C .

Theorem 4.9
Let F be a finite field and let C ⊆ Fp[x] be a cyclic code of length
n, represented by polynomials of degree < n. Then C has a
generator polynomial.

From Generator Polynomial to Cyclic Code

Theorem 4.10
Let p be a prime, let n ∈ N and let g(x) ∈ Fp[x] be a divisor of
xn − 1. If g(x) has degree r < n then

{g(x), xg(x), . . . , xn−r−1g(x)}.

is a basis for a cyclic code C with generator polynomial g(x).

In particular, Theorem 4.10 implies that a cyclic code of length n
with a generator polynomial of degree r over the finite field Fp has
dimension n − r and size pn−r .

Binary cyclic Codes of Length 6.

Example 4.11

In F2[x] we have

x6 − 1 = (1 + x)2(1 + x + x2)2

where the factors 1 + x and 1 + x + x2 are irreducible, i.e. they
cannot be written as products of polynomials of smaller degree.
The polynomial divisors of x6 − 1 are therefore 1, 1 + x , 1 + x + x2

and

(1 + x)2 = 1 + x2,

(1 + x + x2)2 = 1 + x2 + x4,

(1 + x)(1 + x + x2) = 1 + x3,

(1 + x)2(1 + x + x2) = 1 + x + x3 + x4,

(1 + x)(1 + x + x2)2 = 1 + x + x2 + x3 + x4 + x5.

Generator Matrices

Theorem 4.12
Let p be prime and let C be a cyclic code of length n over Fp with
generator polynomial g(x) ∈ Fp[x] of degree r . If
g(x) = a0 + a1x + · · ·+ arx

r then the (n − r)× n matrix

G =


a0 a1 a2 . . . ar 0 . . . 0
0 a0 a1 . . . ar−1 ar . . . 0
...

...
...

. . .
...

...
. . .

...
0 0 0 a0 ar−1 ar


is a generator matrix for C .

Let k = n − r . Encoding using this generator matrix, we encode
the binary word (b0, b1, . . . , bk−1) of length k − 1 as
(b0, b1, . . . , bk−1)G As a polynomial, this codeword is

b0g(x) + b1xg(x) + · · ·+ bk−1x
k−1g(x)

= (b0 + b1x + · · ·+ bk−1x
k−1)g(x).

We end this section with a small result showing that most cyclic
binary codes are 1-error correcting.

Theorem 4.13
Let C be a cyclic binary code of length n with generator
polynomial g(x) = a0 + a1x + · · ·+ arx

r ∈ F2[x] of degree r ≥ 1.
Assume that a0 6= 0. If x s − 1 is not divisible by g(x) for any
i ∈ {2, 3, . . . , n − 1} then C has minimum distance at least 3.

In fact it is unnecessary to assume that a0 6= 0. If a0 = 0 then
g(x) is divisible by x . Since g(x) divides xn − 1, it follows that x
divides xn − 1, which is impossible.

§5 Reed–Solomon Codes as Cyclic Codes

Lemma 5.1
Let p be a prime. There exists an element a ∈ Fp such that the
non-zero elements of Fp are exactly aj for 0 ≤ j ≤ p − 2.

For example, in F7, one can take a = 3, since

30 = 1, 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5.

Such an element a is said to be a primitive root.

Throughout this section, fix a prime p and let k < p. We suppose
that p − 1− k is even and let p − 1− k = 2e. (This agrees with
notation in §3.) Let a ∈ Fp be a primitive root and let RSp,p−1,k
be the Reed–Solomon code where polynomials are evaluated at
ai = ai−1 for i ∈ {1, . . . , p − 1}.

Lemma 5.2
The code RSp,p−1,k is cyclic.

Parity Check Matrix for Reed–Solomon Codes

Theorem 5.3
A parity check matrix for the cyclic Reed–Solomon code RSp,p−1,k
is

H =


1 a a2 · · · ap−2

1 a2 a4 · · · a2(p−2)

...
...

...
. . .

...

1 a2e a4e · · · a2e(p−2)

 .

Corollary 5.4

The cyclic Reed–Solomon code RSp,p−1,k has generator polynomial

g(x) = (x − a)(x − a2) . . . (x − a2e).

Remark 5.5
Theorem 5.3 can be used, with Theorem 14.7 in the main notes, to
give an alternative proof that the minimum distance of the cyclic
Reed–Solomon code RSp,p−1,k is at least p − k.

Parity Check Matrix for Reed–Solomon Codes

Theorem 5.3
A parity check matrix for the cyclic Reed–Solomon code RSp,p−1,k
is

H =


1 a a2 · · · ap−2

1 a2 a4 · · · a2(p−2)

...
...

...
. . .

...

1 a2e a4e · · · a2e(p−2)

 .

Corollary 5.4

The cyclic Reed–Solomon code RSp,p−1,k has generator polynomial

g(x) = (x − a)(x − a2) . . . (x − a2e).

Remark 5.5
Theorem 5.3 can be used, with Theorem 14.7 in the main notes, to
give an alternative proof that the minimum distance of the cyclic
Reed–Solomon code RSp,p−1,k is at least p − k.

Fast Decoding

Theorem 5.6
Let v ∈ Fn

p be a received word with syndrome

vHtr = (S1, . . . ,S2e).

Suppose that at most e errors occurred. Then given any
A(x),B(x) ∈ Fp[x] with degA(x) ≤ e − 1 and degB(x) ≤ e such
that

B(x) = (S1 + S2x + · · ·+ S2ex
2e−1)A(x)

where we work modulo x2e , so all powers x2e and higher in
this equation are regarded as 0, the sent codeword can be
determined.

Provided at most e errors occurred, such polynomials A(x), B(x)
always exist. They can be found by linear algebra, in a similar way
to Lemma 3.4. (See Mathematica notebook on Moodle for an
example.)

