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Abstract. We use a coin flipping model for the random partition and

Chebyshev’s inequality to prove the lower bound limn→∞
log p(n)√

n
≥ C

for the number of partitions p(n) of n, where C is an explicit constant.

A partition of size n ∈ N is a decreasing sequence of natural numbers
whose sum is n. Let p(n) be the number of partitions of n. For example,
p(5) = 7 counts the partitions (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1)
and (1, 1, 1, 1, 1) each of size 5. In this note we use a model for the random
partition to prove that for each ε > 0

(1)
log p(n)√

n
>

√
8 log 2

1 + ε
for all n sufficiently large.

(Throughout ‘log’ means ‘logarithm to base e’.) We end with an explicit
bound in which

√
8 log 2 is replaced with the slightly smaller constant 8

3 log 2.
The asymptotically correct result is

lim
n→∞

log p(n)√
n

= 2

√
π2

6
.

The upper bound log p(n) ≤ 2
√
π2/6

√
n is relatively easy to prove — see

for instance Theorem 15.7 in [6] — but getting a tight lower bound is more
challenging. A somewhat delicate proof using only real analysis was given
by Erdős in [2]. Our proof of (1) is motivated by the model for the random
partition in [1, §4.3], and by James’ abacus notation for partitions (see [3,
page 79]). The latter was used in [4] to prove the uniform lower bound

p(n) ≥ e2
√
n/14, and in [7] to prove the upper bound log p(n) ≤ A(ε)n

1
2
+ε

for all ε > 0. The novel feature here is to combine these motivations to give
a simple proof of (1), intended to be readable by anyone who has taken first
courses in analysis and probability. To illustrate the key ideas, we begin by
giving an informal overview of a particular case of the proof.

Informal overview. Let Ω be the probability space for 80 flips of a fair
coin. Below we describe a coin flipping model in which each sequence in Ω
defines a different partition. Let N be the size of this partition. Now N
is a random variable, so the size of the partition varies, but by (4) and (5)
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below, the expected value of N is 830 and its standard deviation is 104.32.
One may reasonably expect that at least 95% of partitions defined by the
coin flipping model have size within three standard deviations of the mean.
In mathematical notation,

(2) P
[
|N − 830| < 313

]
≥ 1− 1

20
.

The rigorous formulation of (2), see (6) in the proof below, is obtained using
Chebyshev’s inequality. The general theme is ‘concentration of measure’. A
rightly sceptical reader may be more immediately convinced by the results
from the simulation shown in Figure 1 overleaf: of one million random par-
titions, each defined by 80 coin flips, 99.8% had size strictly between 517
and 1143.

We now make the critical step, from probability to counting. In this ex-
ample, the probability space Ω consists of 280 coin flip sequences. By (2), at
least (1− 1

20)280 of these coin flip sequences define a partition of size strictly
between 517 and 1143. Since different coin flip sequences define different
partitions, we conclude that there are at least (1− 1

20)280 partitions whose
size is in {518, 519, . . . , 1142}. In mathematical notation,

(3)

1142∑
n=518

p(n) ≥ (1− 1
20)280.

Since p(n) is positive increasing, it follows that
∣∣{518, 519, . . . , 1142}

∣∣p(1142) ≥
(1 − 1

20)280, and so p(1142) ≥ 19
20×625280. The important feature is that

p(1142) is of roughly the same order as 280. See (7) for the general (and
rigorous) version, which leads quickly to (1).

Coin flipping model. We now begin the proof. We represent a partition
λ of length ` as the set of boxes {(i, j) : 1 ≤ i ≤ `, 1 ≤ j ≤ λi}, forming its
Young diagram. We draw Young diagrams in ‘French notation’, so that the
box (i, j) is geometrically a unit square with diagonal from (i− 1, j − 1) to
(i, j). For example, the Young diagram of the partition (6, 4, 2, 2) of size 14
and length 4 is shown in Figure 2 overleaf.

Fix m ∈ N and let Ω = {H,T}m be the probability space for m flips of an
unbiased coin in which each ω ∈ Ω has equal probability 1

2m . Given ω ∈ Ω
with exactly ` tails, we define the boundary of a corresponding partition
Q(ω) of length ` as follows. Start at (0, `) and step right to (1, `). Then
for each head, step one unit right, and for each tail, step one unit down.
For instance if m = 10 and ω = HTTHHTHHTH then Q(ω) = (6, 4, 2, 2)
as shown in Figure 2 overleaf; the final head corresponds to the step from
(6, 0) to (7, 0) that is not part of a geometric box. Let N(ω) be the size of
Q(ω). We emphasise that Q and N are random variables: formally Q is a
function from Ω to the set of partitions, and N : Ω→ N is a function from
Ω to the set of natural numbers.
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Figure 1. Histogram showing the sizes of 1 000 000 random
partitions each defined by 80 flips in the coin flipping model.
Equations (4) and (5) predict a mean size of 830 and a stan-
dard deviation of 104.320; in fact the mean is 829.967 and
the standard deviation is 104.319. The least size is 359, the
greatest size is 1320, and 997 659 of the partitions have size
in the set {518, 519, . . . , 1142}. The Mathematica [5] note-
book used for this simulation is available from the author’s
website: www.ma.rhul.ac.uk/~uvah099/.
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Figure 2. The coin flip sequence ω = HTTHHTHHTH de-
fines the partition Q(ω) = (6, 4, 2, 2) of size N(ω) = 14.

Let Xt(ω) be the number of heads up to and including flip t in a coin flip
sequence ω. Let Y (ω) = m−Xm(ω) be the total number of tails; this is the
length of the partition Q(ω). A move down at step t adds Xt−1 + 1 boxes
to the Young diagram. Therefore defining

Ct(ω) =

{
Xt−1(ω) if ωt = T

0 if ωt = H

we have N = Y +
∑m

t=1Ct.
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Expectation and variance. Since the random variable Xt is distributed
binomially as Bin(t, 12), we have E[Xt] = t/2 and VarXt = t/4. Since
Y = m−Xt it follows that E[Y ] = m/2 and VarY = m/4. Observe that Ct
is non-zero only if flip t is tails. Conditioning on this event by considering
the two possibilities for ωt we get

E[Ct] = P[ωt = T ]E[Xt−1] + P[ωt = H]0 =
1

2

t− 1

2
+

1

2
0 =

t− 1

4
.

Hence, by linearity of expectation,
(4)

E[N ] = E[Y ]+
m∑
t=1

E[Ct] =
m

2
+

1

4

m∑
t=1

(t−1) =
m

2
+
m(m− 1)

8
=
m(m+ 3)

8
.

Lemma 1. If t ≤ u then the random variables Ct and Xu are uncorrelated.

Proof. Again we condition on the event that flip t is tails. In this event,
Ct = Xt−1 and Xu = Xt−1 +W , where W is the number of heads between
flips t + 1 and u, inclusive. Otherwise Ct = 0. Since W is independent of
Xt−1, and W is distributed binomially as Bin(u− t, 12), it follows that

E[CtXu] =
1

2
E[Xt−1(Xt−1 +W )]

=
1

2

(
E[X2

t−1] + E[Xt−1W ]
)

=
1

2

(
VarXt−1 + E[Xt−1]

2 + E[Xt−1]E[W ]
)

=
1

2

(
t− 1

4
+
( t− 1

2

)2
+
( t− 1

2

)(u− t
2

))
=

1

2

( t− 1

4

)(
1 + (t− 1) + (u− t)

)
=
t− 1

4

u

2
= E[Ct−1]E[Xu]

as required. �

As a corollary, we find using the same conditioning argument that

E[CtCu] =
1

2
E[CtXu−1] =

1

2
E[Ct]E[Xu−1] = E[Ct]E[Cu]

whenever t < u. Hence Ct and Cu are uncorrelated for distinct t and u.
This is perhaps a little surprising, since the inequality Ct ≤ Cu, which
holds whenever t < u and Cu 6= 0, shows that they are not in general
independent. A final conditioning argument shows that VarCt = E[C2

t ] −
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E[Ct]
2 = 1

2E[X2
t−1]− 1

4E[Xt−1]
2, and so

VarCt =
1

2
VarXt−1 +

1

4
E[Xt−1]

2 =
1

2

( t− 1

4

)
+

1

4

( t− 1

2

)2
=
( t− 1

16

)(
2 + t− 1

)
=
t2 − 1

16
.

By Lemma 1, E[CtY ] = E[Ct(m−Xm)] = E[Ct]E[m−Xm] = E[Ct]E[Y ] for
all t. Hence Ct and Y are also uncorrelated. If Z and Z ′ are uncorrelated
random variables then, by a one-line calculation, Var(Z + Z ′) = VarZ +
VarZ ′. We therefore have VarN = VarY +

∑m
t=1 VarCt and so

(5)

VarN =
m

4
+

m∑
t=1

t2 − 1

16
=

3m

16
+
m(m+ 1)(2m+ 1)

96
=
m3

48
+
m2

32
+

19m

96
.

Critically VarN is cubic in m, not quartic as one might naively expect. To
simplify calculations, we use the upper bound m3/48 +m2/32 + 19m/96 ≤
m3/48 + 4m3/96 = m3/16 for m ≥ 3 to get VarN ≤ m3/16.

Lower bound. The concentration of measure estimate in Chebyshev’s in-
equality

P
[ ∣∣Z −E[Z]

∣∣ ≥ d√VarZ
]
≤ 1

d2

implies that

P
[ ∣∣N − m(m+ 3)

8

∣∣ ≥ dm3/2

4

]
≤ 1

d2

and so, taking the complementary event,

(6) P
[ ∣∣N − m(m+ 3)

8

∣∣ < d
m3/2

4

]
≥ 1− 1

d2

for m ≥ 3 and any d > 0. This is the rigorous version of (2) in the informal
overview.

We now make the critical step, from probability to counting. The proba-
bility space Ω consists of 2m coin flip sequences. Since different coin flip se-
quences define different partitions, (6) implies that the proportion of coin flip
sequences ω whose partition Q(ω) has size N(ω) with

∣∣N(ω)−m(m+3)/8
∣∣ <

dm3/2/4 is at least 1 − 1/d2. Hence we have the analogue of (3) in the in-
formal overview:

(7)
∑
n

p(n) ≥ 2m
(

1− 1

d2

)
where the sum is over all n ∈ N such that |n − m(m + 3)/8| < dm3/2/4.
Since p(n) is positive increasing, we deduce, by the same argument used in
the informal overview, that, for m ≥ 3,

2
dm3/2

4
p
(m(m+ 3)

8
+ d

m3/2

4

)
≥ 2m

(
1− 1

d2

)
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where we extend the domain of p to the real numbers R by setting p(x) =
p(bxc). Hence

p
(m(m+ 3)

8
+ d

m3/2

4

)
≥ 2m

dm3/2
2
(

1− 1

d2

)
,

The function d 7→ 1
d

(
1 − 1

d2

)
is maximized when d =

√
3, where it has

value 2
3
√
3
. Therefore we take d =

√
3. Let η > 0 be given. Provided m is

sufficiently large we have 3m/8 +
√

3m3/2/4 < ηm2/8. Hence

(8) p
(m2

8
(1 + η)

)
≥ 2m

4

3
√

3m3/2

for all m sufficiently large. Setting n = m2(1 + η)/8 and taking logs we
obtain

log p(n) ≥
√

8n

1 + η
log 2− 3

2
log

8n

1 + η
+ log

4

3
√

3
for all n sufficiently large. Since (log n)/

√
n → 0 as n → ∞ it follows that

for each ε > 0,
log p(n)√

n
>

√
8 log 2

1 + ε

for all n sufficiently large, as claimed in (1). The constant on the right-hand
side is approximately 1.961, somewhat lower than the asymptotically correct
2
√
π2/6 ≈ 2.565. For a concrete lower bound, take η = 1

8 and m = 8
√
n/3

in (8) to get p(n) ≥ 28
√
n/3/25/2n3/4 for all n sufficiently large. (It is easily

seen that n ≥ 106 suffices.) Using a computer to check small cases one can
show that in fact

p(n) ≥ 28
√
n/3

25/2n3/4
for all n ≥ 2.
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