
MT4540 Combinatorics: Sheet 1

Do questions 3 and 4 and at least three other questions.
To be returned to McCrea 280 by 6pm on Monday 11th October 2010, or handed in at
the Monday lecture.

Parts of questions marked (�) are optional and slightly harder than the average.

1. Prove that

r

�
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r

�
= n

�
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�

for n, r ∈ N in two ways:

(a) using the formula for a binomial number;

(b) by reasoning with subsets.

2. Prove that
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[Hint: use Question 1 and then aim to apply Vandermonde’s convolution.]

3. Prove that
�
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�
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+ · · · +
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�
=
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in two ways:

(a) by induction on n (for an arbitrary but fixed r);

(b) by reasoning with subsets of {1, 2, . . . , n + 1}.

4. Read up to the end of Section 1.2 from generatingfunctionology by Wilf and do a
selection from problems 1, 3, 5 at the end of Chapter 1. Hand in your answer to
problem 6(b).

5. A lion-tamer has n cages in a row. Let g(n, k) be the number of ways in which she
may accommodate k indistinguishable lions so that no cage contains more than
one lion, and no two lions are housed in adjacent cages.

(a) Show that g(n, k) = g(n− 2, k − 1) + g(n− 1, k) if n ≥ 2 and k ≥ 1.

(b) Prove by induction that g(n, k) =
�

n−k+1
k

�
for all n, k ∈ N.

(�) Is there a bijective proof of the formula for g(n, k)?

6. Let n ∈ N. How many solutions with xi ∈ N for each i are there to the equation
x1 + x2 + · · · + xn = k?



7. Let

bn =

�
n

0

�
+

�
n− 1

1

�
+

�
n− 2

2

�
+ · · ·

for n ∈ N0.

(a) Find the first members of the sequence b0, b1, b2, . . ..

(b) State and prove a recurrence relating bn+2 to bn+1 and bn.

8. (a) What is 114? Explain the connection to binomial coefficients.

(b) By considering a suitable binomial expansion, prove that

4n

n + 1
≤

�
2n

n

�
≤ 4n.

9. Here are some further results on derangements.

(a) Let an(k) be the number of permutations of {1, 2, . . . , n} with exactly k fixed
points. Note that dn = an(0). Use results from lectures to prove that

an(k) =
n!

k!

�
1− 1

1!
+

1

2!
− . . . +

(−1)n−k

(n− k)!

�
.

Hence, or otherwise, give a simple expression for an(0)− an(1).

(b) Use part (a) to give an alternative proof of Theorem 2.6(ii), that the average
number of fixed points of a permutation of {1, 2, . . . , n} is 1.

(c) (�) Let en be the number of derangements of {1, 2, . . . , n} which are even
permutations, and on the number which are odd permutations. By evaluating
the determinant of the matrix





0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0





in two different ways, show that en− on = (−1)n−1(n− 1). [Hint: find a basis

of eigenvectors for this matrix, and hence work out its determinant.]

10. Assume that any two people are either friends or enemies. Show that in any
room containing six people there are either three mutual friends, or three mutual
enemies.

[This is the standard example of a problem in Ramsey Theory.]
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MT4540 Combinatorics: Sheet 2

Do questions 2, 3 and 4 and at least two other questions.

To be returned to McCrea 280 by 6pm on Monday 18th October 2010, or handed in at
the Monday lecture.

Parts of questions marked (�) are optional and slightly harder than the average.

1. How many integers between 1 and 2010 are not divisible by either 2 or 3? Illustrate
your answer with a Venn diagram.

2. How many numbers in the interval {1, 2, . . . , 100} are not divisible by either 2, 3,
5 or 7? (Use the PIE, making it clear what sets you are considering.) Hence find
the number of primes ≤ 100.

3. Read §1.3 from Wilf generatingfunctionology and do question 11 at the end of
Chapter 1.

4. Euler’s ϕ-function is important in number theory. It is defined by

ϕ(n) =
��{a ∈ N : 1 ≤ a ≤ n, gcd(a, n) = 1}

��.

For example, when n = 10, the integers a such that 1 ≤ a ≤ 10 and gcd(a, n) = 1
are exactly 1, 3, 7, 9, so ϕ(10) = 4. Show that

(a) ϕ(p) = p− 1 if p is prime.

(b) Let p, q, r denote distinct primes. Give a formula for ϕ(pq) and one for ϕ(pqr),
using the PIE. (Define the sets Ai precisely).

(c) Give a formula for prime powers ϕ(pe).

(d) Let gcd(n1, n2) = 1. Give a formula for ϕ(n1n2) in terms of ϕ(n1) and ϕ(n2).

(e) Recall that each integer n has a unique prime factorization n = pe1
1 pe2

2 · · · per
r ,

where p1 < p2 < · · · < pr are primes. Give a formula for ϕ(n).

5. How many increasing sequences of length 3 can one create from the set
{1, 2, . . . , 8}? [Hint: one approach is to count first the sequences with 3 distinct

elements, then the sequences like (1, 1, 2) with 2 distinct elements, and finally the

sequences like (1, 1, 1). A quicker solution uses Theorem 3.6 on indistinguishable

balls in urns of unlimited capacity.]

6. (a) Explain why there are �
11

4

��
7

4

��
3

2

�

different ways to arrange the letters of the word ‘mississippi’.

(b) How many ways are there to misspell ‘abracadabra’?



7. Let k, n ∈ N. Let X denote the set of all functions from {1, 2, . . . , k} to
{1, 2, . . . , n}. For i ∈ {1, 2, . . . , n}, define

Ai =
�
f ∈ X : f(x) �= i for any x ∈ {1, 2, . . . , k}

�
.

(a) What is |X|? What is |Ai|?
(b) Let I ⊆ {1, 2, . . . , n}. What property must a function f : {1, 2, . . . , k} →

{1, 2, . . . , n} satisfy to lie in the set AI =
�

i∈I Ai? Hence find |AI |.
(c) Use the Principle of Inclusion and Exclusion to show that the number of

surjective functions from {1, 2, . . . , k} to {1, 2, . . . , n} is

n�

r=0

�
n

r

�
(−1)r(n− r)k.

(d) Explain why the expression above is the number of ways to put k numbered
balls into n urns, so that each urn receives at least one ball.

8. Given k, n ∈ N0, the Stirling number of the second kind
�

k
n

�
is defined to be

the number of set partitions of {1, 2, . . . , k} into n disjoint subsets. For example,�
4
3

�
= 6; one of the relevant set partitions is

�
{1}, {2}, {3, 4}

�
.

(a) Prove that
�

k
1

�
= 1,

�
k
2

�
= 2k−1 − 1 and

�
k

k−1

�
=

�
k
2

�
for all k ∈ N.

(b) Explain why
�

k
n

�
is the number of ways to put k numbered balls into n

indistinguishable urns, so that each urn receives at least one ball. [Corrected

on 15 October.]

(c) (�) Deduce from question 7 that
�

k
n

�
= 1

n!

�n
r=0

�
n
r

�
(−1)r(n − r)k and prove

that

nk =
n�

r=0

�
n

r

�
r!

�
k

r

�
.

9. Let a, b ∈ N0 and let m ∈ N0. By considering the coefficient of xm in

(1 + x)a(1 + x)b = (1 + x)a+b,

give a generating function proof of Vandermonde’s convolution identity

m�

k=0

�
a

k

��
b

m− k

�
=

�
a + b

m

�
.

10. Give a bijective proof of the identity
�n

k=0

�
n
k

�
2k = 3n. [Hint: Interpret the left-

hand side as the number of ways to choose a subset X of {1, 2, . . . , n}, and then to

choose a further subset Y such that Y ⊆ X. An element of {1, 2, . . . , n} is either

in Y , or in X but not in Y , or not in X . . . ]



MT4540 Combinatorics: Sheet 3

Do questions 1 and 2 and at least two other questions.
To be returned to McCrea 240 by 6pm on Monday 25th October 2010, or handed in at
the Monday lecture.

1. Find the rook polynomials of the boards below. For (ii) and (iii) use Lemma 7.6.

(i) (ii) (iii)

2. (a) Let T be the set of all derangements σ of {1, 2, 3, 4, 5} such that

• σ(i) �= i + 1 if 1 ≤ i ≤ 4;

• σ(i) �= i− 1 if 2 ≤ i ≤ 5.

Explain why |T | is the number of ways to place 5 non-attacking rooks on the
board formed by the unshaded squares below. (Give an explicit example of
how a permutation corresponds to a rook placement.)

�

�

(b) Find the rook polynomial of this board, and hence find |T |. [Hint: consider

the four possibilities for the starred squares. For example, if both are occupied,

the contribution to the rook polynomial is x2f1(x)f2(x) where fn(x) is the rook

polynomial of the n× n square board.]

(c) Use Theorem 7.9 to find the number of ways to place 5 non-attacking rooks
on the shaded squares.

3. Let B be the board in Example 7.1. Show that the complement of B in the
4× 4 chessboard has the same rook polynomial as B. [Hint: for a calculation-free

proof, argue that permuting the rows or columns of a board does not change its

rook polynomial.]

4. Find the number of permutations σ of {1, 2, 3, 4, 5, 6} such that σ(m) �= m for any
even number m.

5. How many numbers between 100 and 300 can be formed from the digits 1, 2, 3, 4
if (i) repetition of digits is not allowed, (ii) repetition of digits is allowed?



6. Use Theorem 7.9 to find the number of ways that eight
non-attacking rooks can be placed on the unshaded part
of the board shown to the right. It may well be helpful
to note that

(1+4x+2x2)4 = 1+16x+104x2 +352x3 +664x4 +704x5 +416x6 +128x7 +16x8.

7. This question gives an alternative proof of the Principle of Inclusion and Exclusion
(Theorem 5.3). Fix a set X. For each A ⊆ X, define a function 1A : X → {0, 1}
by

1A(x) =

�
1 if x ∈ A

0 if x �∈ A.

We say that 1A is the indicator function of A.

(a) Show that if B, C ⊆ X then 1B∩C(x) = 1B(x)1C(x) for all x ∈ X, and so
1B∩C = 1B1C .

(b) Let A1, A2, . . . , An be subsets of X. Show that

1A1∪A2∪···∪An
= (1X − 1A1)(1X − 1A2) . . . (1X − 1An).

(c) By multiplying out the right-hand side and using (a), show that

1A1∪A2∪···∪An
=

�

I⊆{1,2,...,n}

(−1)|I|1AI

where, as usual, AI =
�

i∈I Ai if I �= ∅ and A∅ = X. [Hint: it may be helpful

to see how it works when n = 3.]

(d) Deduce the Principle of Inclusion and Exclusion by summing the previous
equation over all x ∈ X.

8. (For those who know about group homomorphisms.) Let G denote the set of
all permutations of {1, 2, . . . , n}, thought of as the symmetric group of degree n.
Given σ ∈ G, define an n× n matrix A(σ) by

A(σ)ij =

�
1 if σ(j) = i

0 otherwise.

Show that the map σ �→ A(σ) is an injective group homomorphism from G into
the group of all invertible n× n real matrices.

9. Recall that dn is the number of derangements of {1, 2, . . . , n}. Use the formula
for dn to prove that if n > 0 then dn is the nearest integer to n! / e.
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MT4540 Combinatorics: Sheet 4

Do questions 2 and 3 and at least two other questions.
To be returned to McCrea 240 by 6pm on Monday 8th November 2010, or handed in at

the Monday lecture.

1. Find with proof the generating function for the number of ways to pay n pence

using only 5p, 10p and 50p coins.

2. Find an explicit formula for the n-th term of the sequences defined by the following

recurrence relations:

(a) an = 6an−2 − an−1;

(b) mbm = (m + 2)bm−1, b0 = 1.

Using the outline given in lectures, write out a complete proof of Theorem 9.7.

3. (a) What is the convolution of the sequence a0, a1, a2, . . . with the constant se-

quence 1, 1, 1, . . .?

(b) Let u0, u1, u2, . . . denote the sequence of Fibonacci numbers, as defined by

u0 = 0, u1 = 1 and un = un−1 + un−2 for n ≥ 2. Let vn =
�n

k=0 uk. Show

that
∞�

n=0

vnx
n

=
x

(1− x− x2)(1− x)
.

(c) Find constants A, B, C such that

x

(1− x− x2)(1− x)
=

Ax + B

1− x− x2
+

C

1− x
.

(d) Hence, or otherwise, prove that vn = un+2 − 1.

4. Let a, b ∈ N0 and let m ∈ N0. By considering the coefficient of xm
in

(1 + x)
a
(1 + x)

b
= (1 + x)

a+b,

give a generating function proof of Vandermonde’s convolution identity

m�

k=0

�
a

k

��
b

m− k

�
=

�
a + b

m

�
.

5. Let c, d ∈ N be coprime.

(a) Show that every sufficiently large natural number can be expressed in the

form rc + sd with r, s ∈ N0.

(b) (�) What is the greatest natural number that cannot be expressed in this

form?



6. A Latin square is an n×n square in which every row and column contains each of

the numbers 1, 2, . . . , n exactly once. Use rook polynomials to find the number

of ways to complete the third row of the incomplete Latin square shown below.

1 2 3 4 5

2 3 1 5 4

7. (Problème des Ménages.) Let Bm denote the board with exactly m squares in the

sequence shown below.

, , , , , , . . .

(a) Prove that the rook polynomial of Bm is

�

k

�
m− k + 1

k

�
xk.

[Corrected from
�

m−k
k

�
on 3 November. Hint: there is a very short

proof using the result on lion caging in Problem 5 of Sheet 1. Alternatively

Lemma 7.6 can be used to give an inductive proof.]

(b) Find the number of ways to place 8 non-attacking rooks on the unshaded

squares of the board shown below.

(c) At a dinner party eight married couples are to be seated around a circular

table. Men and women must sit in alternate places, and no-one may sit next

to their spouse. In how many ways can this be done? [Hint: first seat the

women, then use (b) to count the number of ways to seat the men.]

8. In an election there are two candidates A and B, each of whom gets exactly n
votes. If the votes are counted one at a time, what is the probability that A is

never behind B? [Hint: to get a recurrence relation, try splitting ballot counting

sequences such as ABAABB at the first point (after the count starts) when the

candidates are tied.]

2



MT4540 Combinatorics: Sheet 5

Do questions 1 and 6 and at least two other questions.
To be returned to McCrea 240 by 6pm on Monday 15th November 2010, or handed in

at the Monday lecture.

1. Complete the last stage of the proof of Theorem 10.5 by using Theorem 8.5 to

show that the coefficient of xn+1
in

−1
2

√
1− 4x is

�
2n
n

�
/(n + 1). Corrected sign

10th November.

2. Solve the following recurrence relations:

(a) an = an−1 − an−2 + an+3;

(b) an = b +
�n−1

k=0 ak where b ∈ N0 and a0 = 0.

[Hint: to prove (b) using generating functions, try taking a convolution of

a0, a1, a2, . . . with the constant sequence 1, 1, 1, . . .. What is the generating function

of the resulting sequence? ]

3. Let r ∈ N and let ζ = exp(2πi/r). Show that if F (x) =
�∞

n=0 anxn
then

F (x) + F (ζx) + F (ζ2x) + · · · + F (ζr−1x) = r
∞�

n=0

anrx
nr.

4. Prove that

1√
1− 4x

=

∞�

n=0

�
2n

n

�
xn.

By squaring both sides prove that

n�

m=0

�
2m

m

��
2n− 2m

n−m

�
= 4

n.

5. For each n ≥ 3, let Tn denote the number of ways in which a regular n-gon

can be divided into triangles. For example, four of the 14 possible divisions of

a hexagon are shown below. (Note that the n-gon sits in a fixed position in the

plane: rotations and reflections should not be considered in this question.)

(a) Find T3, T4 and T5.

(b) Prove that

Tn+1 = Tn + Tn−1T3 + Tn−2T4 + · · · + T3Tn−1 + Tn

for all n ≥ 3. Hence prove that Tn = Cn−2.



6. Which of the 12 partitions of 11 with distinct parts are thick, and which are thin?

Check that the maps defined in §12 are mutually inverse bijections between the

two classes of partition. What changes for partitions of 12?

7. The conjugate of a partition is obtained by reflecting its Young diagram in its

major diagonal. For example (4, 2, 2, 1) has conjugate (4, 3, 1, 1) since

reflects to .

It is usual to write λ�
for the conjugate of λ.

(a) Show that λ has exactly k parts if and only if k is the the largest part of λ�
.

(b) Show that the number of self-conjugate partitions of n is equal to the number

of partitions of n into distinct odd parts. [Hint: There is a bijective proof

based on straightening ‘hooks’:

9

7

3

1

←→ .]

(c) Find a closed form for the generating function for the number of partitions

of n that are equal to their conjugate.

8. Show that the number of dots in the n-th figure in the sequence below is n(3n−1)/2.

. . .

Show that if the sequence an = n(3n − 1)/2 is defined for all n ∈ Z then every

pentagonal number is obtained.

2



9. Given a non-empty partition λ, let r(λ) denote the greatest r such that λr ≥ r.
The Durfee square of λ consists of all boxes in the Young diagram of λ that are

in both the first r(λ) rows and in the first r(λ) columns of λ. For example, if

λ = (7, 5, 3, 3, 2) then r(λ) = 3 and the Durfee square consists of the shaded boxes

in the Young diagram below.

(a) What is the generating function for the number of partitions with largest part

of size ≤ r?

(b) Prove the identity

1

(1− q)(1− q2)(1− q3) . . .
= 1 +

∞�

n=1

qn2

(1− q)2(1− q2)2 . . . (1− qn)2
.

10. A set partition of a set X is collection of non-empty disjoint subsets of X whose

union is X. The Bell number Bn is defined to be the number of set parti-

tions of {1, 2, . . . , n}. For example, one of the set partitions counted by B5 is�
{1, 4}, {2, 5}, {3}

�
. There is no simple formula for the Bell numbers, but their

exponential generating function has a simple form.

(a) Show by listing set partitions that B0 = 1, B1 = 1, B2 = 2, B3 = 5. Show

that B4 = 15.

(b) By consider the subset containing n in a set partition of {1, 2, . . . , n}, prove

that

Bn =

n�

r=1

�
n− 1

r − 1

�
Bn−r

for all n ∈ N. Deduce that

Bn

(n− 1)!
=

n�

r=1

1

(r − 1)!

Bn−r

(n− r)!

for all n ∈ N.

(c) Let F (x) =
�∞

n=0 Bnxn/n! be the exponential generating function for the Bell

numbers. Show that F �
(x) =

�∞
n=1 Bnxn/(n − 1)! and hence that F (x) =

exp(exp(x)− 1).

3



11. This question gives an example of Wilf’s ‘snake-oil’ method for proving identities

involving binomial coefficients. For an alternative way to do this problem and

more examples, see §4.3 of generatingfunctionology.

(a) Use Theorem 8.4 to show that

xr

(1− x)r+1
=

∞�

m=0

�
m

r

�
xm

and deduce that
∞�

m=r

�
m− r

r

�
xm

=
x2r

(1− x)r+1

for all r ∈ N0.

(b) Let

bm =

�
m

0

�
+

�
m− 1

1

�
+

�
m− 2

2

�
+ · · ·

for m ∈ N0. Show that

∞�

m=0

bmxm
=

1

1− x− x2
.

(c) Hence relate the sequence b0, b1, b2, . . . to the sequence of Fibonaaci numbers,

as defined in Question 3(b) of Sheet 4.

4



MT4540 Combinatorics: Sheet 6

Do questions 2 and 6 and at least two other questions.
To be returned to McCrea 240 by 6pm on Tuesday 22th November 2010, or handed in

at the Tuesday lecture.

Parts of questions marked (�) are optional and slightly harder than the average.

1. Show that there is a two-colouring of K5 with no monochromatic triangle.

2. Prove that R(4, 4) ≤ 18. You may assume that R(4, 3) ≤ 9.

3. Let X = {0, 1, 2, . . . , 16} be the set of residues mod 17 and let G be the complete

graph on X. Given x, y ∈ X with x < y, colour the edge {x, y} red if y − x is

equal to a square number modulo 17, and blue otherwise. (For example, {2, 10} is

red because 10− 2 ≡ 5
2

mod 17.)

(a) Find all square numbers modulo 17.

(b) Show that if x, y, u ∈ X then {x, y}, {x + u, y + u} and {xu2, yu2} all have

the same colour.

(c) Prove that G has no monochromatic 4-set. [Hint: use (b) to reduce the number

of cases that have to be considered.]

(d) What does this imply about R(4, 4)?

4. Let G be a graph with vertex set {1, 2, . . . , n} and edge set E(G). Let G�
be the

graph on {1, 2, . . . , n} with edge set E(G�
) defined by

{i, j} ∈ E(G�
) if and only if {i, j} �∈ E(G).

(a) Show that at least one of G and G�
is connected.

(b) Deduce that in any red-blue colouring of a complete graph, either the red

edges form a connected graph, or the blue edges form a connected graph.

(c) Can both G and G�
be connected?

5. By comparing
� n

1 log x dx with log n!, prove that there exist constants A, B ∈ R
such that

A
�n

e

�n
≤ n! ≤ B

�n

e

�n+1

for all n ∈ N.

6. Let s, t ∈ N. By constructing a suitable red-blue colouring of K(s−1)(t−1), prove

that

R(s, t) > (s− 1)(t− 1).



7. Three applications of the Pigeonhole Principle.

(a) Making any reasonable assumptions, prove that there are two students at

British universities whose bank balances agree to the nearest penny.

(b) Prove that if five points are chosen inside an equilateral triangle of size 1 then

there is a pair of points whose distance is ≤ 1/2.

(c) (�) Show that in any sequence of n integers, there is a consecutive subsequence

whose sum is divisible by n. (For example, in 1, 4, 5, 1, 2, 2, 1, the sum of

4, 5, 1, 2, 2 is divisible by 7.)

8. Let x1, x2, x3, . . . , xN be a sequence of distinct integers. Prove that provided N
is sufficiently large, there is either an increasing subsequence of length 2010 or a

decreasing subsequence of length 2010. [Hint: given i and j such that 1 ≤ i < j ≤
n, colour the edge {i, j} of KN red if xi < xj and blue if xi > xj.]

9. Let � ∈ N. Say that a partition is �-regular if it has at most � − 1 parts of any

given size. For example the partition (6, 3, 3, 2, 2, 1) is 3-regular, but not 2-regular.

(a) Show that the generating function for �-regular partitions is

∞�

k=1

(1 + xk
+ x2k

+ · · · + x(�−1)k
).

(b) Find the generating function for partitions with no part divisible by �.

(c) Use (a) and (b) to prove a generalization of Theorem 11.6.

10. (�) Here is an elegant way to obtain a fairly strong upper bound on p(n), due to

the Dutch mathematician van Lint. Let P (x) =
�∞

n=0 p(n)xn
.

(a) Show that

log P (x) =

∞�

r=1

xr

r(1− xr)
.

(b) By replacing x with e
−y

prove that log P (e
−y

) ≤ π2

6y .

(c) Hence show that if n ∈ N then log p(n) ≤ ny +
π2

6y . By making a strategic

choice of y, prove that

log p(n) ≤ 2

�
π2

6

√
n

for all n ∈ N.
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MT4540 Combinatorics: Sheet 7

Do question 3 and at least three other questions.
To be returned to McCrea 240 by 6pm on Tuesday 30th November 2010, or handed in
at the Tuesday lecture.

Parts of questions marked (�) are optional and slightly harder than the average.

1. Find an explicit n such that if the edges of the complete graph on {1, 2, . . . , n} are
coloured red, blue, green, and yellow then there exists a monochromatic K4.

2. Let s ∈ N. Let G(s) denote the complete graph on {1, 2, . . . , 3(s−1)−1} coloured
so that the edge {x, y} is red if |x − y| ≡ 1 mod 3, and blue if |x − y| ≡ 0 or 2
mod 3.

(a) Draw diagrams showing the red and blue edges in G(2) and G(3).

(b) Prove that G(s) has no red K3.

(c) Suppose that X ⊆ {1, 2, . . . , n} is a blue Ks in G(s). Let X = {x1, . . . , xs}
where x1 < x2 < . . . < xs. By considering the differences xi+1 − xi, or
otherwise, get a contradiction.

(d) Deduce that R(3, s) ≥ 3(s− 1).

3. Suppose that the edges of the complete graph on {1, 2, . . . , 17} are coloured red,
blue and green. By looking at the edges coming out of vertex 1 and adapting the
argument used several times in lectures, show that there must exist a monochro-
matic triangle. (This is the alternative way to prove Theorem 15.4.)

4. (a) Use Lemma 15.1 to prove that R(3, s) ≤ s(s + 1)/2 for all s ∈ N.

(b) Use part (a) together with the result of question 2 to give upper and lower
bound for R(3, 6) and R(3, R(3, 6)).

5. Given s, t ∈ N, let T (s, t) denote the smallest n (if one exists) such that whenever
the 3-subsets of {1, 2, . . . , n} are coloured red and blue, then either

• there is an s-subset X ⊆ {1, 2, . . . , n} such that all 3-subsets of X are red, or

• there is a t-subset Y ⊆ {1, 2, . . . , n} such that all 3-subsets of Y are blue.

(a) Prove that T (3, r) = T (r, 3) = r for all r ∈ N

(b) Prove that T (4, 4) ≤ R(4, 4) + 1 = 19. [Hint: to mimic the usual argument,

consider the colouring induced on the 2-subsets of {2, 3, . . . , 19} by giving

{x, y} the colour of {1, x, y}.]
(c) (�) Prove that T (4, 5) ≤ R(5, 19) + 1.

(d) (�) Give an explicit upper bound for T (5, 5).



6. Let m, n ∈ N. A platoon of mn soldiers is arranged in m rows of n soldiers. The
sergeant rearranges the soldiers in each row in decreasing order of height, and then
does the same to the columns.

(a) Show that the tallest soldier is now in the first row and the first column.

(b) Show that the rows are still arranged in decreasing order of height. [Hint:

there is an argument using the pigeonhole principle.]

7. Prove Lemma 15.6. [Hint: colour the edge {x, y} of the complete graph on

{1, 2, 3, 4, 5, 6} red if |x− y| ∈ Y , and blue if |x− y| ∈ Z.]

8. Suppose that we independently roll two fair dice. Let X and Y be the numbers of
the two dice, and let S = X + Y . Let Z = |X − Y |. Find

(i) E[S] and E[Z],

(ii) E[X|S = 10] and E[Z|S = 7].

9. At the University of Erewhon, whenever any of its n employees has a birthday,
the university closes and everyone takes the day off. Apart from this there are no
holidays whatsoever. Local laws require that people are appointed without regard
to their date of birth (and there are no leap years).

(a) Show that the probability that the university is open on 25th December is�
1− 1

365

�n
.

(b) Prove, using linearity of expectation, that the expected number of days of the
year when the university is open is

365
�
1− 1

365

�n
.

(c) The Pro-Vice Chancellor for Administrative Affairs is keen to maximize the
number of person-days worked over the year. Advise him on an optimal choice
for n.

10. Let p ∈ R and let n ∈ N. Suppose that a coin biased to land heads with proba-
bility p is tossed n times. Let X be the number of times the coin lands heads.

(a) Describe a suitable probability space Ω and define X as a function Ω→ R.

(b) Show that P[X = k] =
�

n
k

�
pk(1− p)n−k.

(c) Find E[X] and Var [X]. [Hint: the calculations can be simplified using lin-

earity of expectation.]

11. Show that if m ∈ N then
�

2m

m

�
=

4m

m!

�1

2
× 3

2
× · · · × 2m− 1

2

�
.

Deduce that
�
2(s−1)

s−1

�
≤ 4s−1 for all s ∈ N, as required by Corollary 15.3.



MT4540 Combinatorics: Sheet 8

Do question 1 and at least one other question.
To be returned to McCrea 240 by 6pm on Tuesday 7th December 2010, or handed in at
the Tuesday lecture.

The question marked (�) is slightly harder than the average.

1. (a) Show, by counting permutations, that the probability that 1 and 2 lie in the
same cycle of a random permutation of {1, 2, 3, 4} is 1/2.

(b) Let σ = (1, 2, 3, 4, 5, 6) and let τ = (3, 5). Write the composition τ ◦ σ as a
product of disjoint cycles.

2. (a) Let n ∈ N and let 1 ≤ x < y ≤ n. Let τ be the transposition (x, y). Show
that if σ is a permutation of {1, 2, . . . , n} then x and y lie in the same cycle
of σ if and only if x and y lie in different cycles of τ ◦ σ.

(b) Hence, or otherwise, find the probability that 1 and n lie in the same cycle
of a randomly chosen permutation of {1, 2, . . . , n}.

3. A lion-tamer has n numbered cages, arranged in a line, and k indistinguishable
lions. Each cage can accommodate at most one lion.

(a) Let 1 ≤ r < n. If the lion-tamer puts the lions into the cages at random,
what is the probability that both cages r and r + 1 are occupied?

(b) On average, how many pairs of adjacent cages will both contain lions? [Hint:

use linearity of expectation.]

4. Let Ω be the probability space of all permutations of {1, 2, 3, 4, 5, 6}, in which each
permutation has probability 1/6!. Define

A = {σ ∈ Ω : σ(2) < σ(1) < σ(4)}
B = {σ ∈ Ω : σ(6) < σ(1) < σ(2)}
C = {σ ∈ Ω : σ(6) < σ(1) < σ(4)}.

(a) Show that P[A] = P[B] = P[C] = 1/3!. [Hint: in a permutation of

{1, 2, . . . , 6}, there are 3! possible relative orders for σ(2), σ(1), σ(4).]

(b) Show that P[A ∩B] = 0 and that P[A ∩ C] = P[B ∩ C] = 2/4!.

(c) Using the Principle of Inclusion and Exclusion, find the number of ways in
which the letters A, B, C, D, E, F may be arranged so that none of the words
BAD, FAB, FAD can be obtained by crossing out some of the letters.



5. Let Ω be a probability space and let X : Ω → N0 be a random variable. Prove,
using the formula after Definition 16.7, that

E[X] =
∞�

k=1

P[X ≥ k].

Deduce Markov’s inequality, that P[X ≥ k] ≤ E[X]
k for each k ∈ N.

6. An aircraft has exactly 100 seats for passengers, and 100 people are due to travel
on it. The first person in the queue to get on the plane has forgotten their seat
number, and so sits in one of the seats at random. The remaining 99 people all
know their seat numbers and so if their seat is not taken they sit in it. If their seat
is taken, they are too shy to complain and so they sit in a free seat which they
choose at random.

Find the probability that person 100 sits in their own seat. [Hint: Question 2 is

relevant.]

7. (�) In a room there are 100 numbered lockers. Each locker contains a piece of
paper numbered between 1 and 100 so that each number is used exactly once. A
team of 100 numbered people are let into the room, one at a time in numerical
order. Each person is allowed to open up to 50 lockers before leaving the room.
If every team members finds the piece of paper with their number on it, the team
succeeds, otherwise they fail.

(After each visit the room is returned to its original state, and once someone has
visited the room, they cannot communicate with their colleagues.)

Find a good strategy for the team. What is its chance of success?

8. (a) Give a list of all the proofs you have seen that the number of derangements
of {1, 2, . . . , n} is

n!− n!

1!
+

n!

2!
− n!

3!
+ · · · + (−1)n n!

n!
.

(A one- or two-line description of each proof will suffice.)

(b) Which proof would you use if a keen first year undergraduate asked you to
prove the result? Is this also your favourite proof?
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MT4540 Combinatorics: Sheet 9

Do questions 2 and 5 and at least two other questions.
To be returned by Wednesday on the first week of Spring term.

1. Suppose that a permutation of {1, 2, . . . , n} is chosen uniformly at random. Use
Theorem 17.4 to find the average length of the cycle containing 1.

2. Let Ω be the probability space of all permutations of {1, 2, . . . , n}, where each
permutation is equally probable. Fix k such that 1 ≤ k ≤ n. For each x ∈
{1, 2, . . . , n}, let

Zx(σ) =

�
1 if x is in a k-cycle of σ

0 otherwise.

Let Z =
�n

x=1 Zx.

(a) If k = 3 and τ = (13)(245)(789) find the set of x such that Zx(τ) = 1. What
is Z(τ)?

(b) Show that if σ ∈ Ω then Z(σ)/k is the number of k-cycles in σ.

(c) Use Theorem 17.4 to show that E[Zx] = 1/n for each x ∈ {1, 2, . . . , n}. Hence
show that E[Z] = 1.

(d) Use (b) and (c) to prove Theorem 17.7, i.e. if 1 ≤ k ≤ n then the average
number of k-cycles in a permutation of {1, 2, . . . , n} is 1/k.

3. Let Hn = 1 + 1/2 + 1/3 + · · · + 1/n. Use Theorem 17.7 to show that the average
number of cycles in a permutation of {1, 2, . . . , n} is Hn. [Hint: use linearity of

expectation.] Check your answer directly for some small values of n.

4. Let Ω be a probability space. The probability generating function for a random
variable X : Ω→ N0 is defined by

fX(t) =
∞�

n=0

P[X = n]tn.

(a) Show that E[X] = f
�
X(1) and that Var[X] = f

��
X(1) + f

�
X(1)− f

�
X(1)2.

(b) Show that if X, Y : Ω→ N0 are random variables then fX+Y = fXfY .

(c) Suppose that an coin biased to land heads with probability p is flipped n

times. Let Z be the number of heads obtained. Show that the probability
generating function of Z is ((1− p) + pt)n. Hence find E[Z] and Var[Z].



5. Suppose that the edges of the complete graph on {1, 2, . . . , n} are coloured red,
blue and green. Adapt the proof of Theorem 18.5 to show that if

�
n

s

�
31−(s

2) < 1

then there is a colouring with no monochromatic Ks. If s = 10, what is the
largest n that can be taken?

6. Let n ∈ N and let G be the complete graph on {1, 2, . . . , n}. Suppose that a
subset A of {1, 2, . . . , n} is chosen uniformly at random. What is the probability
that the cut given by A and {1, 2, . . . , n}\A has capacity ≥ n(n−1)

4 ?

7. Let pn be the probability that a permutation of {1, 2, . . . , n} chosen uniformly at
random is a derangement. Assuming the recurrence

pn =
pn−1

n
+

pn−2

n
+ · · · + p1

n
+

p0

n

proved in Lemma 17.5, write out a careful proof, following the usual three step
plan, that

pn = 1− 1

1!
+

1

2!
− 1

3!
+ · · · + (−1)n

n!
.

8. Prove Theorem 14.3. [For many further applications of the Pigeonhole Principle,
see www.cut-the-knot.org/do you know/pigeon.shtml.]

9. Let n, s ∈ N. Prove that
�

n

s

�
21−(s

2) ≤
�

n

2(s−1)/2

�s 2

s!
.

Hence deduce Corollary 18.6 from Theorem 18.5. [Corrected = to ≤ 21 De-
cember.]

10. There are 10 pirates who have recently acquired a bag with 100 coins. The leader,
number 1, must propose a way to divide up the loot. For instance he might say
‘I’ll take 91 coins and the rest of you can have one each’. A vote is then taken.
If the leader gets half or more of the votes (the leader getting one vote himself),
the loot is so divided. Otherwise he is made to walk the plank by his dissatisfied
subordinates, and number 2 takes over, with the same responsibility to propose an
acceptable division.

Assuming that the pirates are all greedy, untrustworthy, and capable mathemati-
cians, what happens?

[Hint: try thinking about a smaller 2 or 3 pirate problem to get started.]
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