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Permutations

Definition 2.1
A permutation of a set X is a bijective function

σ : X → X .

A fixed point of a permutation σ of X is an element x ∈ X such
that σ(x) = x . A permutation is a derangement if it has no fixed
points.

Exercise: For n ∈ N0, how many permutations are there of
{1, 2, . . . , n}? How many of these permutations have 1 as a fixed
point?



Derangements

Problem 2.2 (Derangements)

Let X be a set of size n. How many permutations of X are

derangements?

Let dn be the number of permutations of {1, 2, . . . , n} that are
derangements. By definition, although you may regard this as a
convention, if you prefer, d0 = 1.

Exercise: Show that there are two derangements σ of {1, 2, 3, 4, 5}
such that σ(1) = 2 and σ(2) = 1, but there are three
derangements such that σ(1) = 2 and σ(2) = 3.

The number of choices we have for σ(3) depends on our choices of
σ(1) and σ(2). So counting derangements is (much!) harder than
counting all permutations.



Derangements

Problem 2.2 (Derangements)

Let X be a set of size n. How many permutations of X are

derangements?

Let dn be the number of permutations of {1, 2, . . . , n} that are
derangements. By definition, although you may regard this as a
convention, if you prefer, d0 = 1.

Exercise: Show that there are two derangements σ of {1, 2, 3, 4, 5}
such that σ(1) = 2 and σ(2) = 1, but there are three
derangements such that σ(1) = 2 and σ(2) = 3.

The number of choices we have for σ(3) depends on our choices of
σ(1) and σ(2). So counting derangements is (much!) harder than
counting all permutations.



Derangements: one solution

Lemma 2.3
If n ≥ 2, there are dn−2 + dn−1 derangements σ of {1, 2, . . . , n}
such that σ(1) = 2.

Theorem 2.4
If n ≥ 2 then dn = (n − 1)(dn−2 + dn−1).

Corollary 2.5
For all n ∈ N0,

dn = n!
�
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!

�
.



Two probabilistic results on derangements

Theorem 2.6

(i) The probability that a permutation of {1, 2, . . . , n}, chosen
uniformly at random, is a derangement tends to 1/e as

n → ∞.

(ii) The average number of fixed points of a permutation of

{1, 2, . . . , n} is 1.

We’ll prove more results like these in Part D of the course.



Part A: Enumeration

§2: Binomial Coefficients and Counting Problems

Notation 3.1

If Y is a set of size k then we say that Y is a k-set, and write

|Y | = k . To emphasise that Y is a subset of some other set X

then we may say that Y is a k-subset of X .

We shall define binomial coefficients combinatorially.

Definition 3.2

Let n, k ∈ N0. Let X = {1, 2, . . . , n}. The binomial coefficient
�n
k

�

is the number of k-subsets of X .



Bijective proofs

We should prove that the combinatorial definition agrees with the

usual one.

Lemma 3.3

If n, k ∈ N0 and k ≤ n then

�
n

k

�
=

n(n − 1) . . . (n − k + 1)

k!
=

n!

k!(n − k)!
.

Many of the basic properties of binomial coefficients can be given

combinatorial proofs involving explicit bijections. We shall say that

such proofs are bijective.

Lemma 3.4

If n, k ∈ N0 then �
n

k

�
=

�
n

n − k

�
.



Timetable change

The Tuesday lecture has been moved to Friday 9am in McCrea

336. For the full updated timetable see the Maths Department

Webpage.



More bijective proofs

Lemma 3.5 (Fundamental Recurrence)

If n, k ∈ N then

�
n

k

�
=

�
n − 1

k − 1

�
+

�
n − 1

k

�
.

Binomial coefficients are so-named because of the famous binomial

theorem. (A binomial is a term of the form x
r
y
s
.)

Theorem 3.6 (Binomial Theorem)

Let x, y ∈ C. If n ∈ N0 then

(x + y)
n
=

n�

k=0

�
n

k

�
x
k
y
n−k .



How not to expand (x + y)n



Recommended exercises

Exercise: give inductive or algebraic proofs of the previous three

results.

Exercise: in New York, how many ways can one start at a junction

and walk to another junction 4 blocks away to the east and 3

blocks away to the north?



Balls and urns

How many ways are there to put k balls into n numbered urns?

The answer depends on whether the balls are distinguishable. We

may consider urns of unlimited capacity, or urns that can only

contain one ball.

Numbered balls Indistinguishable balls

≤ 1 ball per urn

unlimited capacity
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Balls and urns

How many ways are there to put k balls into n numbered urns?
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Numbered balls Indistinguishable balls

≤ 1 ball per urn n(n − 1) . . . (n − k + 1)

�
n

k

�

unlimited capacity n
k

�
n + k − 1

k

�



Unnumbered balls, urns of unlimited capacity

Theorem 3.7

Let n ∈ N and let k ∈ N0. The number of ways to place k

indistinguishable balls into n urns of unlimited capacity is
�n+k−1

k

�
.

The following reinterpretation of this result can be useful.

Corollary 3.8

Let n ∈ N and let k ∈ N0. The number of solutions to the

equation

x1 + x2 + · · ·+ xn = k

with x1, x2, . . . , xn ∈ N0 is
�n+k−1

k

�
.



§4: Further Binomial Identities

Arguments with subsets

Lemma 4.1 (Subset of a subset)

If k, r , n ∈ N0 and k ≤ r ≤ n then

�
n

r

��
r

k

�
=

�
n

k

��
n − k

r − k

�
.

Lemma 4.2 (Vandermonde’s convolution)

If a, b ∈ N0 and m ∈ N0 then

m�

k=0

�
a

k

��
b

m − k

�
=

�
a+ b

m

�
.



Corollaries of the Binomial Theorem

Corollary 4.3

If n ∈ N0 then

�
n

0

�
+

�
n

1

�
+

�
n

2

�
+ · · ·+

�
n

n − 1

�
+

�
n

n

�
= 2

n,

�
n

0

�
−
�
n

1

�
+

�
n

2

�
− · · ·+ (−1)

n−1

�
n

n − 1

�
+ (−1)

n

�
n

n

�
= 0.

Corollary 4.4

For all n ∈ N there are equally many subsets of {1, 2, . . . , n} of

even size as there are of odd size.

Corollary 4.5

If n ∈ N0 then

�
n

0

�
+ 2

�
n

1

�
+ 2

2

�
n

2

�
+ · · ·+ 2

n−1

�
n

n − 1

�
+ 2

n

�
n

n

�
= 3

n.



Some Identities Visible in Pascal’s Triangle

Lemma 4.6 (Alternating row sums)

If n ∈ N, r ∈ N0 and r ≤ n then

r�

k=0

(−1)
k

�
n

k

�
= (−1)

r

�
n − 1

r

�
.

Perhaps surprisingly, there is no simple formula for the unsigned

row sums
�r

k=0

�n
k

�
.

Lemma 4.7 (Diagonal sums, a.k.a. parallel summation)

If n ∈ N, r ∈ N0 then

r�

k=0

�
n + k

k

�
=

�
n + r + 1

r

�



§5: Principle of Inclusion and Exclusion

Note: Principle, not Principal.

Example 5.1

If A, B , C are subsets of a finite set X then

|A ∪ B | = |A|+ |B | − |A ∩ B |
|A ∪ B | = |X | − |A| − |B |+ |A ∩ B |

and

|A ∪ B ∪ C | = |A|+ |B |+ |C |
− |A ∩ B | − |B ∩ C | − |C ∩ A|+ |A ∩ B ∩ C |

|A ∪ B ∪ C | = |X | − |A| − |B | − |C |
+ |A ∩ B |+ |B ∩ C |+ |C ∩ A| − |A ∩ B ∩ C |



Hexagonal Numbers

Example 5.2

The formula for |A ∪ B ∪ C | gives a nice way to find a formula for

the (centred) hexagonal numbers.

8

5. Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion (PIE) is an elementary way
to find the sizes of unions or intersections of finite sets.

If A is a subset of a universe set X, we denote by Ā the complement
of A in X; i.e.,

Ā = {x ∈ X : x �∈ A}.
We start with the two smallest non-trivial examples of the principle.

Example 5.1. If A,B,C are subsets of a set X then |A ∪B| = |A|+
|B|− |A ∩ B| and so

��A ∪ B
�� = |X|− |A|− |B|+ |A ∩ B|.

Similarly, |A∪B ∪C| = |A|+ |B|+ |C|− |A∩B|− |B ∩C|− |C ∩A|+
|A ∩ B ∩ C|, so

��A ∪ B ∪ C
�� = |X|− |A|− |B|− |C|

+|A ∩ B|+ |B ∩ C|+ |C ∩ A|− |A ∩ B ∩ C|.

Example 5.2. The formula for |A ∪ B ∪ C| gives one of the easiest
ways to find the hexagonal numbers.

, , . . .

In the general setting we have a set X and subsets A1, A2, . . . , An

of X. Let I ⊆ {1, 2, . . . , n} be a non-empty index set. We define

AI =
�

i∈I
Ai.

Thus AI is the set of elements of X which belong to all of the sets Ai

for i ∈ I. By convention we set

A∅ = X.

Theorem 5.3 (Principle of Inclusion Exclusion). If A1, A2, . . . , An are
subsets of a finite set X then

��A1 ∪ A2 ∪ · · · ∪ An

�� =
�

I⊆{1,2,...,n}

(−1)|I| |AI |.

, . . .

It is easier to find the sizes of the intersections of the three rhombi

making up each hexagon than it is to find the sizes of their unions.

Whenever this situation occurs, the PIE is likely to work well.



Principle of Inclusion and Exclusion

In general we have finite universe set X and subsets

A1,A2, . . . ,An ⊆ X . For each non-empty subset I ⊆ {1, 2, . . . , n}
we define

AI =
�

i∈I
Ai .

By convention we set A∅ = X .

Theorem 5.3 (Principle of Inclusion and Exclusion)

If A1,A2, . . . ,An are subsets of a finite set X then

|A1 ∪ A2 ∪ · · · ∪ An| =
�

I⊆{1,2,...,n}
(−1)

|I ||AI |.

Exercise: Check that Theorem 5.3 holds when n = 1 and check

that it agrees with Example 5.1 when n = 2 and n = 3.



Application: Counting Derangements

Let n ∈ N. Let X be the set of all permutations of {1, 2, . . . , n}
and let

Ai = {σ ∈ X : σ(i) = i}.

To apply the PIE to count derangements we need this lemma.

Lemma 5.4

(i) A permutation σ ∈ X is a derangement if and only if

σ ∈ A1 ∪ A2 ∪ · · · ∪ An.

(ii) If I ⊆ {1, 2, . . . , n} then AI consists of all permutations of

{1, 2, . . . , n} which fix the elements of I . If |I | = k then

|AI | = (n − k)!.



Application: Counting Prime Numbers

Example 5.5

Let X = {1, 2, . . . , 30}. We define three subsets of X :

B(2) = {m ∈ X , m is divisible by 2}
B(3) = {m ∈ X , m is divisible by 3}
B(5) = {m ∈ X , m is divisible by 5}

Any composite number ≤ 30 is divisible by either 2, 3 or 5. So

B(2) ∪ B(3) ∪ B(5) = {1} ∪ {p : 5 < p ≤ 30, p is prime}.



Counting Prime numbers

Lemma 5.6

Let r , M ∈ N. There are exactly �M/r� numbers in {1, 2, . . . ,M}
that are divisible by r .

Theorem 5.7

Let p1, . . . , pn be distinct prime numbers and let M ∈ N. The

number of natural numbers ≤ M that are not divisible by any of

primes p1, . . . , pn is

�

I⊆{1,2,...,n}
(−1)

|I |
�

M�
i∈I pi

�
.

Example 5.8

Let M = pqr where p, q, r are distinct prime numbers. The

numbers of natural numbers ≤ pqr that are coprime to M is

M

�
1− 1

p

��
1− 1

q

��
1− 1

r

�
.



§6: Rook polynomials

Definition 6.1

A board is a subset of the squares of an n × n grid. Given a board

B , we let rk(B) denote the number of ways to place k rooks on B ,

so that no two rooks are in the same row or column. Such rooks

are said to be non-attacking. The rook polynomial of B is defined

to be

fB(x) = r0(B) + r1(B)x + r2(B)x
2
+ · · ·+ rn(B)x

n.

Example 6.2

The rook polynomial of the board B below is 1 + 5x + 6x
2
+ x

3
.

7. (Problème des Ménages.) Let Bm denote the board with exactly m squares in the
sequence shown below.

, , , , , , . . .

(a) Prove that the rook polynomial of Bm is

�

k

�
m− k + 1

k

�
xk.

[Corrected from
�
m−k
k

�
on 3 November. Hint: there is a very short

proof using the result on lion caging in Problem 5 of Sheet 1. Alternatively
Lemma 7.6 can be used to give an inductive proof.]

(b) Find the number of ways to place 8 non-attacking rooks on the unshaded
squares of the board shown below.

(c) At a dinner party eight married couples are to be seated around a circular
table. Men and women must sit in alternate places, and no-one may sit next
to their spouse. In how many ways can this be done? [Hint: first seat the
women, then use (b) to count the number of ways to seat the men.]

(a) Number the squares in Bm from 1 in the top-left to m in the bottom-right. A
placement of k rooks on Bm is non-attacking if and only if no two rooks are put in
squares with consecutive numbers. The number of such placements is therefore given by
Question 5 on Sheet 1.

(b) Let B be the board formed from the shaded squares. The polynomial of B can be
found using Lemma 7.6, deleting the square in the bottom left: it is

rB(x) = rB15(x) + xrB13(x).

By (a) the coefficient of xk in rB(x) is
�
15 + 1− k

k

�
+

�
13 + 1− (k − 1)

k − 1

�
=

�
16− k

k

�
+

�
15− k

k − 1

�
.

By Problem 1, Sheet 1 we have (16− k)
�
15−k
k−1

�
= k

�
16
k

�
, hence

�
16− k

k

�
+

�
15− k

k − 1

�
=

�
16− k

k

�
+

k

16− k

�
16− k

k

�
=

�
16− k

k

�
16

16− k
.

7



Examples

Exercise: Let B be a board. Check that r0(B) = 1 and that r1(B)

is the number of squares in B .

Example 6.3

After the recent spate of cutbacks, only four professors remain at

the University of Erewhon. Prof. W can lecture courses 1 or 4;

Prof. X is an all-rounder and can lecture 2, 3 or 4; Prof. Y refuses

to lecture anything except 3; Prof. Z can lecture 1 or 2. If each

professor must lecture exactly one course, how many ways are

there to assign professors to courses?

Example 6.4

How many derangements σ of {1,2,3,4,5} have the property that

σ(i) �= i + 1 for 1 ≤ i ≤ 4?
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Square boards

Lemma 6.5

The rook polynomial of the n × n-board is

n�

k=0

k!

�
n

k

�2

x
k .



Lemmas for calculating rook polynomials

Lemma 6.6

Let B be a board. Suppose that the squares in B can be

partitioned into sets C and D so that no square in C lies in the

same row or column as a square of D. Then

fB(x) = fC (x)fD(x).

Lemma 6.7

Let B be a board and let s be a square in B. Let C be the board

obtained from B by deleting s and let D be the board obtained

from B by deleting the entire row and column containing s. Then

fB(x) = fC (x) + xfD(x).



Example of Lemma 6.7

Example 6.8

The rook-polynomial of the boards in Examples 6.3 and 6.4 can be

found using Lemma 6.7. For the board in Example 6.3 it works

well to apply the lemma first to the square marked 1, then to the

square marked 2 (in the new boards).

12

Rook polynomials are, in particular, generating functions. This is
the first of many times that multiplying generating functions will help
us to solve problems.

Lemma 7.6. Let B be a board and let s be a square in B. Let

• C be the board obtained from B by deleting s;
• D be the board obtained from B by deleting the entire row and
column containing s.

Then fB(x) = fC(x) + xfD(x).

Example 7.7. The rook polynomial for the board in Example 7.1 can
be found by applying Lemma 7.6 to the two squares indicated below.

1

2

Our final technique for finding rook polynomials is often the most
useful in practice. We need the lemma below.

Lemma 7.8. Let I ⊆ {1, 2, . . . , n} be a subset of size k. If g : I → I is
a permutation then there are (n− k)! permutations f : {1, 2, . . . , n} →
{1, 2, . . . , n} such that f(x) = g(x) if x ∈ I.

We used a special case of this lemma to prove the part of Lemma 6.1
which says that there are (n− k)! permutations of {1, 2, . . . , k} which
fix a subset of size k.

Theorem 7.9. Let B be part of the n × n chessboard with rook poly-
nomial

r0(B) + r1(B)x+ r2(B)x2 + · · ·+ rn(B)xn.

Let B̄ denote the board formed by all the squares in the n×n chessboard
that are not in B. The number of ways to place n non-attacking rooks
on B̄ is

n!− (n− 1)! r1(B) + (n− 2)! r2(B)− · · ·+ (−1)n r0(B).

As an easy corollary we get our third proof of the derangement for-
mula (Corollary 2.5), that

dn = n!− n!

1!
+

n!

2!
− · · ·+ (−1)n

n!

n!
.



Placements on the complement

Lemma 6.9

Let B be a board contained in an n × n grid and let 0 ≤ k ≤ n

The number of ways to place k red rooks on B and n − k blue

rooks anywhere on the grid, so that the n rooks are non-attacking,

is rk(B)(n − k)!.

Theorem 6.10

Let B be a board contained in an n × n grid. Let B̄ denote the

board formed by all the squares in the grid that are not in B. The

number of ways to place n non-attacking rooks on B̄ is

n!− (n − 1)!r1(B) + (n − 2)!r2(B)− · · ·+ (−1)
n
rn(B).



Part B: Generating Functions

§7: Introduction to Generating Functions

Definition 7.1
The ordinary generating function associated to the sequence

a0, a,a2, . . . is the power series

∞�

n=0

anx
n
= a0 + a1x + a2x

2
+ · · · .

Usually we shall drop the word ‘ordinary’ and just write ‘generating

function’. The sequences we deal with usually have integer entries,

and so the coefficients in generating functions will usually be

integers.



Analytic and formal interpretations.

We can think of a generating function
�∞

n=0 anx
n
in two ways.

Either:

• As a formal power series with x acting as a place-holder. This

is the ‘clothes-line’ interpretation (see Wilf

generatingfunctionology, page 4), in which we regard the

power-series merely as a convenient way to display the terms

in our sequence.

• As a function of a real or complex variable x convergent when

|x | < r , where r is the radius of convergence of
�∞

n=0 anx
n
.



Sums and Products of Formal Power Series

Let F (x) =
�∞

n=0 anx
n
and G (x) =

�∞
n=0 bnx

n
. Then

• F (x) + G (x) =
�∞

n=0(an + bn)x
n

• F (x)G (x) =
�∞

n=0 cnx
n
where cn =

�n
m=0 ambn−m.

• F
�
(x) =

�∞
n=0 nx

n−1
.

It is also possible to define the reciprocal 1/F (x) whenever a0 �= 0.

By far the most important case is the case F (x) = 1− x , when

1

1− x
=

∞�

n=0

x
n

is the usual formula for the sum of a geometric progression.



Examples

Example 7.2
How many ways are there to tile a 2× n path with bricks that are

either 1× 2 or 2× 1?

Example 7.3
Let k ∈ N. How many n-tuples (x1, . . . , xn) are there such that

xi ∈ N0 for each i and x1 + · · ·+ xn = k? (Such an n-tuple is

called a composition of k .)

This example suggests it would be useful to know the power series

for 1/(1− x)
m
, where m ∈ N.

Theorem 7.4
If m ∈ N then

1

(1− x)m
=

∞�

k=0

�
m + k − 1

k

�
x
k



General Binomial Theorem

Theorem 7.5
If α ∈ R then

(1 + x)
α
=

∞�

n=0

α(α− 1) . . . (α− (n − 1))

n!
x
n

for all x such that |x | < 1.

Please correct your handout!

Exercise: Check that if α ∈ N then Theorem 7.5 agrees with the

Binomial Theorem for integer exponents, proved in Theorem 3.6.

Exercise: By taking α = −m and substituting y = −x , show that

Theorem 7.5 implies Theorem 7.4.



§8: Recurrence Relations and Asymptotics

Three step programme for solving recurrences:

(a) Use the recurrence to write down an equation satisfied by the

generating function F (x) =
�∞

n=0 anx
n
;

(b) Solve the equation to get a closed form for the generating

function;

(c) Use the closed form for the generating function to find a

formula for the coefficients.

Example 8.1
Will solve (i) using generating functions and show step (a) of the

method on (ii).

(i) an = 5an−1 − 6an−2 for n ≥ 2;

(ii) an = nan−1 for n ≥ 1 and a0 = 1.



Partial Fractions

Theorem 8.2
Let f (x) and g(x) be polynomials with deg f < deg g.

(i) If g(x) = (x − β1)(x − β2) . . . (x − βk) where β1, β2, . . . , βk
are non-zero complex numbers, then there exist

C1, . . . ,Ck ∈ C such that

f (x)

g(x)
=

C1

1− x/β1
+ · · ·+ Ck

1− x/βk
.

� If g(x) = (x − β1)d1(x − β2)d2 . . . (x − βk)dk where

β1, β2, . . . , βk are non-zero complex numbers and d1, d2, . . . ,

dk ∈ N, then there exist polynomials P1, . . . , Pk such that

degPi < di and

f (x)

g(x)
=

P1(x − β1)

(x − β1)d1
+ · · ·+ Pk(x − βk)

(x − βk)dk



More examples

Example 8.3
As in Example 7.2, let an be the number of ways to tile a a 2× n

path with bricks that are either 1× 2 ( ) or 2× 1 ( ). Will

show that an = an−1 + an−2, and that the generating function

F (x) =
�∞

n=0 anx
n
satisfies (1− x − x

2
)F (x) = 1.

Example 8.4
As an example of Theorem 8.2(ii) will solve

bn = 4(bn−1 − bn−2) for n ≥ 2.



Derangements

Correction: Question 1(a) of Sheet 4: if you haven’t already done

it, please replace an = 6an−1 − an−2 with 2an = an−1 + an−2.

Theorem 8.5
Let pn = dn/n! be the probability that a permutation of

{1, 2, . . . , n}, chosen uniformly at random, is a derangement. Then

npn = (n − 1)pn−1 + pn−2

for all n ≥ 2 and

pn = 1− 1

1!
+

1

2!
− · · ·+ (−1)

n

n!
.



Asymptotics (non-examinable)

Definition 8.6
Given a sequence a0, a1, a2, . . . of real numbers and a function

t : R → R, we write an = O
�
t(n)

�
if there exists a constant B ∈ R

such that |an| < Bt(n) for all n ∈ N0.

Theorem 8.7
Let F (x) =

�∞
n=0 anx

n
be the generating function for the sequence

a0, a1, a2, . . .. Suppose that F (x) = f (x)/g(x) where f (x) and

g(x) are polynomials and deg f < deg g. If β is the root of g(x) of

minimum modulus then

an = O

�� 1

|β| + �
�n�

for all � > 0.
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§9: Convolutions and the Catalan Numbers

Definition 9.1
The convolution of the sequences a0, a1, a2, . . . and

b0, b1, b2, . . . is the sequence c0, c1, c2,... defined by

cn =

n�

m=0

ambn−m.

Lemma 9.2
Let a0, a1, a2, . . . and b0, b1, b2, . . . be sequences and let

c0, c1, c2, . . . be their convolution. Let F (x) =
�∞

n=0 anx
n
,

G (x) =
�∞

n=0 bnx
n
and H(x) =

�∞
n=0 cnx

n
. Then

F (x)G (x) = H(x).



Example 9.3
A resident of Flatland is given an enormous number of

indistinguishable 1× 1 square bricks for his birthday. How many

ways can he make a ‘T’ shape, using at least one brick for the

vertical section and at least two bricks for the horizontal section?

Exercise: suppose instead an ’C’ shape is required, made up out of

one vertical section of length ≥ 3, and two horizontal sections of

equal length ≥ 2. Let cn be the number of ’C’s made using n

bricks. Find a closed form for G (x) =
�∞

n=0 cnx
n
.

A: G (x) =
x
7

(1− x)3
B:

x
5

(1− x)3

C: G (x) =
x
7

(1− x)(1− x2)
D:

x
5

(1− x)(1− x2)
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Rooted binary trees

Definition 9.4
A rooted binary tree is either empty, or consists of a root vertex

together with a pair of rooted binary trees: a left subtree and a

right subtree. The Catalan number Cn is the number of rooted

binary trees on n vertices.

Lemma 9.5
For each n ∈ N0 we have

Cn+1 = C0Cn + C1Cn−1 + · · ·+ Cn−1C1 + CnC0.

Theorem 9.6
If n ∈ N0 then Cn =

1
n+1

�2n
n

�
.



Derangements by convolution

Lemma 9.7
If n ∈ N0 then

n�

k=0

�
n

k

�
dn−k = n!.

The sum in the lemma becomes a convolution after a small

amount of rearranging.

Theorem 9.8
If G (x) =

�∞
n=0 dnx

n/n! then

G (x)e
x
=

1

1− x
.



§10: Partitions

Definition 10.1
A partition of a number n ∈ N0 is a sequence of natural numbers

(λ1, λ2, . . . , λk) such that

(i) λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1.

(ii) λ1 + λ2 + · · ·+ λk = n.

The entries in a partition λ are called the parts of λ. Let p(n) be
the number of partitions of n.

Example 10.2
Let an be the number of ways to pay for an item costing n pence

using only 2p and 5p coins. Equivalently, an is the number of

partitions of n into parts of size 2 and size 5. Will find the

generating function for an.



Generating function

Theorem 10.3
The generating function for p(n) is

∞�

n=0

p(n)x
n
=

1

(1− x)(1− x2)(1− x3) . . .
.



Young diagrams

It is often useful to represent partitions by Young diagrams. The

Young diagram of (λ1, . . . , λk) has k rows of boxes, with λi boxes

in row i . For example, the Young diagram of (6, 3, 3, 1) is

.

Theorem 10.4
Let n ∈ N and let k ≤ n. The number of partitions of n into parts

of size ≤ k is equal to the number of partitions of n with at most

k parts.



A result from generating functions

While there are bijective proofs of the next theorem, it is much

easier to prove it using generating functions.

Theorem 10.5
Let n ∈ N. The number of partitions of n with at most one part of

any given size is equal to the number of partitions of n into odd

parts.



Part C: Ramsey Theory

§11: Introduction to Ramsey Theory

Definition 11.1

A graph consists of a set V of vertices together with a set E of

2-subsets of V called edges. The complete graph with vertex set V
is the graph whose edge set is all 2-subsets of V .

The complete graph on V = {1, 2, 3, 4, 5} is:

24

Part C: Ramsey Theory

13. Introduction to Ramsey Theory

The idea behind Ramsey theory is that any sufficiently large struc-
ture should contain a substructure with some regular pattern. For
example, any infinite sequence of real numbers contains either an in-
creasing or a decreasing subsequence (the Bolzano–Weierstrass theo-
rem).

Most of the results in this area concern graphs: we shall concentrate
on the finite case.

Definition 13.1. A graph is a set X of vertices together with a set E
of 2-subsets of X called edges. The complete graph on X is the graph
whose edge set is all 2-subsets of X.

For example, the complete graph on 5 vertices is drawn below. Its
edge set is

�
{1, 2}, {1, 3}, . . . , {4, 5}

�
.

1

2

3 4

5

We denote the complete graph with n vertices by Kn. The graph K3

is often called a triangle.

Exercise: Find the number of edges in Kn.

Definition 13.2. Let c ∈ N and let G be a complete graph, with edge
set E. A c-colouring of G is a function from E to {1, 2, . . . , c}. If Y is
an r-set of vertices of G such that all edges between vertices in Y have
the same colour, then we say that Y is a monochromatic Kr.

Note that it is the edges that are coloured, not the vertices.

In practice we shall specify graphs and colourings rather less formally.
It seems to be a standard convention that colour 1 is red, colour 2 is
blue and colour 3 (which we won’t need for a while) is green.

Example 13.3. In any two-colouring of the edges of K6, there is either
a red triangle, or a blue triangle.



Colourings

Definition 11.2

Let c , n ∈ N. A c-colouring of the complete graph Kn is a function

from the edge set of Kn to {1, 2, . . . , c}. If X is an r -subset of the
vertices of Kn such that all the edges between vertices in X have

the same colour, then we say that X is a monochromatic Kr

Exercise: find all red K3s and blue K4s in this colouring of K6:
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Colourings
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Let c , n ∈ N. A c-colouring of the complete graph Kn is a function

from the edge set of Kn to {1, 2, . . . , c}. If X is an r -subset of the
vertices of Kn such that all the edges between vertices in X have

the same colour, then we say that X is a monochromatic Kr
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In any room with six people . . .

Example 11.3

In any red-blue colouring of the edges of K6 there is either a red

triangle or a blue triangle.

Definition 11.4

Given s, t ∈ N, with s, t ≥ 2, we define the Ramsey number

R(s, t) to be the smallest n (if one exists) such that in any

red-blue colouring of the complete graph on n vertices, there is

either a red Ks or a blue Kt .

Exercise: Let s, t ≥ 2 and suppose that R(s, t) = n. Show that if

N ≥ n then in any red-blue colouring of KN there is either a red Ks

or a blue Kt .



In any room with six people . . .

Example 11.3

In any red-blue colouring of the edges of K6 there is either a red

triangle or a blue triangle.

Definition 11.4

Given s, t ∈ N, with s, t ≥ 2, we define the Ramsey number

R(s, t) to be the smallest n (if one exists) such that in any

red-blue colouring of the complete graph on n vertices, there is
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R(3, 4) ≤ 10

Lemma 11.5

For any s ∈ N we have R(s, 2) = R(2, s) = s.

The main idea need to prove the existence of all the Ramsey

Numbers R(s, t) appears in the next example.

Example 11.6

In any two-colouring of K10 there is either a red K3 or a blue K4.

Hence R(3, 4) ≤ 10.



R(3, 4) = 9

Lemma 11.7 (Hand-Shaking Lemma)

Let G be a graph with vertex set {1, 2, ..., n} and exactly e edges.
If di is the degree of vertex i then

2e = d1 + d2 + · · ·+ dn.

In particular, the number of vertices of odd degree is even.

Theorem 11.8

R(3, 4) = 9.

Theorem 11.9

R(4, 4) ≤ 18.



§12: Ramsey’s Theorem

We shall prove that R(s, t) exists, and get an upper bound for it,

by induction on s + t.

Lemma 12.1

Let s, t ∈ N with s, t ≥ 3. If R(s − 1, t) and R(s, t − 1) exist then
R(s, t) exists and

R(s, t) ≤ R(s − 1, t) + R(s, t − 1).

Theorem 12.2

For any s, t ∈ N with s, t ≥ 2, the Ramsey number R(s, t) exists
and

R(s, t) ≤
�
s + t − 2

s − 1

�
.



Inductive proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2

3

4

5

6

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.

Inductive step by Lemma 13.1



Inductive proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .

3 3

4 4

5 5

6 6

...
...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.

Inductive step by Lemma 13.1



Inductive proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .

3 3 6

4 4

5 5

6 6

...
...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.

Inductive step by Lemma 13.1



Inductive proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .

3 3 6 10

4 4 10

5 5

6 6

...
...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.

Inductive step by Lemma 13.1



Inductive proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .

3 3 6 10 15

4 4 10 20

5 5 15

6 6

...
...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.

Inductive step by Lemma 13.1



Inductive proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .

3 3 6 10 15 21

4 4 10 20 35

5 5 15 35

6 6 21

...
...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.

Inductive step by Lemma 13.1



Inductive proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .

3 3 6 10 15 21

4 4 10 20 35 56

5 5 15 35 70

6 6 21 56

...
...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.

Inductive step by Lemma 13.1



Inductive proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .

3 3 6 10 15 21

4 4 10 20 35 56

5 5 15 35 70 126

6 6 21 56 126

...
...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.

Inductive step by Lemma 13.1



Inductive proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .

3 3 6 10 15 21

4 4 10 20 35 56

5 5 15 35 70 126

6 6 21 56 126 252

...
...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.

Inductive step by Lemma 13.1



Diagonal Ramsey Numbers

Corollary 12.3

If s ∈ N and s ≥ 2 then

R(s, s) ≤
�
2s − 2

s − 1

�
≤ 4

s−1.



Games and multiple colours

Red and Blue play a game. Red starts by drawing a red line

between two corners of a hexagon, then Blue draws a blue line and

so on. A player loses if they makes a triangle of their colour.

Exercise: can the game end in a draw?

Theorem 12.4

There exists n ∈ N such that if the edges of Kn are coloured red,
blue and green then there exists a monochromatic triangle.
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Part D: Probabilistic Methods

§13: Revision of Discrete Probability

Definition 13.1

• A probability measure p on a finite set Ω assigns a real

number pω to each ω ∈ Ω so that 0 ≤ pω ≤ 1 for each ω and

�

ω∈Ω
pω = 1.

We say that pω is the probability of ω.

• A probability space is a finite set Ω equipped with a

probability measure. The elements of a probability space are

sometimes called outcomes.

• An event is a subset of Ω.

• The probability of an event A ⊆ Ω, denoted P[A] is the sum of

the probability of the outcomes in A; that is P[A] =
�

ω∈A pω.



Example 13.2: Probability spaces

(3) A suitable probability space for three flips of a coin is

Ω = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}

where H stands for heads and T for tails, and each outcome

has probability 1/8. To allow for a biased coin we fix

0 ≤ q ≤ 1 and instead give an outcome with exactly k heads

probability q
k(1− q)3−k .

(4) Let n ∈ N and let Ω be the set of all permutations of

{1, 2, . . . , n}. Set pσ = 1/n! for each permutation σ ∈ Ω.

This gives a suitable setup for Theorem 2.6.



Conditional probability

Definition 13.3

Let Ω be a probability space, and let A, B ⊆ Ω be events.

• If P[B] �= 0 then we define the conditional probability of A

given B by

P[A|B] = P[A ∩ B]

P[B]
.

• The events A, B are said to be independent if

P[A ∩ B] = P[A]P[B].

Exercise: Let Ω = {HH,HT ,TH,TT} be the probability space for

two flips of a fair coin. Let A be the event that both flips are

heads, and let B be the event that at least one flip is a head.

Write A and B as subsets of Ω and show that P[A|B] = 1/3.



The most misunderstood problem ever?

Example 13.4 (The Monty Hall Problem)

On a game show you are offered the choice of three doors. Behind

one door is a car, and behind the other two are goats. You pick a

door and then the host, who knows where the car is, opens another

door to reveal a goat. You may then either open your original

door, or change to the remaining unopened door. Assuming you

want the car, should you change?



Problem Sheet 7

I would like to run another peer-marking exercise using Question 3

on this sheet. This is optional, but encouraged.

Timetable: work in on Thursday, peer-marked on Thursday

evening, returned to me on Friday, return to you on Monday.



More examples of conditional probability

Example 13.5 (Sleeping Beauty)

Beauty is told that if a coin lands heads she will be woken on

Monday and Tuesday mornings, but after being woken on Monday

she will be given an amnesia inducing drug, so that she will have

no memory of what happened that day. If the coin lands tails she

will only be woken on Tuesday morning. Imagine that you are

Beauty and are awoken as part of the experiment and asked for

your credence that the coin landed heads. What is your answer?

Example 13.6

Suppose that one in every 1000 people has disease X . There is a

new test for X that will always identify the disease in anyone who

has it. There is, unfortunately, a tiny probability of 1/250 that the

test will falsely report that a healthy person has the disease. What

is the probability that a person who tests positive for X actually

has the disease?



Random variables

Definition 13.7

Let Ω be a probability space. A random variable on Ω is a function

X : Ω → R. If X , Y : Ω → R are random variables then we say

that X and Y are independent if for all x , y ∈ R the events

A = {ω ∈ Ω : X (ω) = x} and

B = {ω ∈ Ω : Y (ω) = y}

are independent.

If X : Ω → R is a random variable, then ‘X = x ’ is the event

{ω ∈ Ω : X (ω) = x}. We mainly use this shorthand in

probabilities, so for instance

P[X = x ] = P
�
{ω ∈ Ω : X (ω) = x}

�
.



Example of independence of random variables

Example 13.8

Let Ω = {HH,HT ,TH,TT} be the probability space for two flips

of a fair coin. Define X : Ω → R to be 1 if the first coin is heads,

and zero otherwise. So

X (HH) = X (HT ) = 1 and X (TH) = X (TT ) = 0.

Define Y : Ω → R similarly for the second coin.

(i) The random variables X and Y are independent.

(ii) Let Z be 1 if exactly one flip is heads, and zero otherwise.

Then X and Z are independent, and Y and Z are

independent.

(iii) There exist x , y , z ∈ {0, 1} such that

P[X = x ,Y = y ,Z = z ] �= P[X = x ]P[Y = y ]P[Z = z ].



Expectation

Definition 13.9

Let Ω be a probability space with probability measure p. The

expectation E[X ] of a random variable X : Ω → R is defined to be

E[X ] =

�

ω∈Ω
X (ω)pw .

Lemma 13.10

Let Ω be a probability space. If X1,X2, . . . ,Xk : Ω → R are

random variables then

E[a1X1 + a2X2 + · · ·+ akXk ] = a1E[X1] + a2E[X2] + · · ·+ akE[Xk ]

for any a1, a2, . . . , ak ∈ R.

Lemma 13.11

If X , Y : Ω → R are independent random variables then

E[XY ] = E[X ]E[Y ].



Variance

Definition 13.12

Let Ω be a probability space. The variance Var[X ] of a random

variable X : Ω → R is defined to be

Var[X ] = E
�
(X − E[X ])

2
�
.

Lemma 13.13

Let Ω be a probability space.

(i) If X : Ω → R is a random variable then

Var[X ] = E[X 2
]− (E[X ])

2.

(ii) If X , Y : Ω → R are independent random variables then

Var[X + Y ] = Var[X ] + Var[Y ].



§14: Introduction to Probabilistic Methods

Throughout this section we fix n ∈ N and let Ω be the set of all

permutations of the set {1, 2, . . . , n}. Define a probability measure

so that permutations are chosen uniformly at random.

Exercise: Let x ∈ {1, 2, . . . , n} and let Ax = {σ ∈ Ω : σ(x) = x}.
Then Ax is the event that a permutation fixes x . What is the

probability of Ax?

Theorem 14.1

Let X : Ω → N0 be defined so that X (σ) is the number of fixed

points of the permutation σ ∈ Ω. Then E[X ] = 1.



Cycles

Definition 14.2

A permutation σ of {1, 2, . . . , n} acts as a k-cycle on a k-subset

Y ⊆ {1, 2, . . . , n} if Y has distinct elements y1, y2, . . . , yk (change
in printed notes please!) such that

σ(y1) = y2, σ(y2) = y3, . . . , σ(yk) = y1.

If σ(x) = x for all x �∈ Y then we say that σ is a k-cycle, and write

σ = (y1, y2, . . . , yk).

Definition 14.3

We say that cycles (y1, y2, . . . , yk) and (z1, z2, . . . , z�) are disjoint if

{y1, y2, . . . , yk} ∩ {z1, z2, . . . , z�} = ∅.



Cycle decomposition of a permutation

Lemma 14.4

A permutation σ of {1, 2, . . . , n} can be written as a composition

of disjoint cycles. The cycles in this composition are uniquely

determined by σ.

Exercise: Write the permutation of {1, 2, 3, 4, 5, 6} defined by

σ(1) = 3, σ(2) = 4, σ(3) = 1, σ(4) = 6, σ(5) = 5, σ(6) = 2 as a

composition of disjoint cycles.

Theorem 14.5

Let 1 ≤ k ≤ n and let x ∈ {1, 2, . . . , n}. The probability that x lies

in a k-cycle of a permutation of {1, 2, . . . , n} chosen uniformly at

random is 1/n.



Application to derangements

Theorem 14.6

Let pn be the probability that a permutation of {1, 2, . . . , n}
chosen uniformly at random is a derangement. Then

pn =
pn−2

n
+

pn−3

n
+ · · ·+ p1

n
+

p0

n
.

Corollary 14.7

For all n ∈ N,

pn = 1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!
.



Counting cycles

We can also generalize Theorem 14.1.

Theorem 14.8

Let Ck : Ω → R be the random variable defined so that Ck(σ) is
the number of k-cycles in the permutation σ of {1, 2, . . . , n}.
Then E[Ck ] = 1/k for all k such that 1 ≤ k ≤ n.



Questionnaires

If you are doing MT454 the batch number is 865018.

If you are doing MT5454 the batch number is 865022.

The additional questions have changed from previous years:

17. For this course, Library study space met my needs.

18. The course books in the Library met my needs for this course.

19. The online Library resources met my needs for this course.

20. I was satisfied with the Moodle elements of this course.

21. I received feedback on my work within the 4 week norm

specified by College.

Please write any further comments on the back of the form. (In

particular, please answer the old Q17: whether you found the

speed too fast, too slow, or about right.)



§15: Ramsey Numbers and the First Moment

Method

Lemma 15.1 (First Moment Method)

Let Ω be a probability space and let S : Ω → N0 be a random

variable taking values in N0. If E[S ] = s then

(i) P[S ≥ s] > 0, so there exists ω ∈ Ω such that S(ω) ≥ s.

(ii) P[S ≤ s] > 0, so there exists ω� ∈ Ω such that S(ω�) ≤ s.

Exercise: Check that the lemma holds in the case when

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}

models the throw of two fair dice and S(x , y) = x + y .



Cut sets in graphs

Definition 15.2

Let G be a graph with vertex set V . A cut (A,B) of G is a

partition of V into two subsets A and B . The capacity of a cut

(A,B) is the number of edges of G that meet both A and B .
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18. Ramsey Numbers and the First Moment Method

The grandly named ‘First Moment Method’ is nothing more than
the following observation.

Lemma 18.1 (First Moment Method). Let Ω be a probability space
and let X : Ω → N0 be a random variable. If E[X] = x then

(i) P[X ≥ x] > 0, so there exists ω ∈ Ω such that X(ω) ≥ x.
(ii) P[X ≤ x] > 0, so there exists ω� ∈ Ω such that X(ω�) ≤ x.

Exercise: check that the lemma holds in the case where

Ω = {1, 2, 3, 4, 5, 6}× {1, 2, 3, 4, 5, 6}
models the throw of two fair dice and X(x, y) = x+ y.

More generally, the k-th moment of X is E[Xk]. Sometimes stronger
results can be obtained by considering these higher moments. We shall
concentrate on first moments, where the power is the method is closely
related to the linearity property of expectation (see Lemma 16.8).

Our applications will come from graph theory.

Definition 18.2. Let G be a graph with vertex set V . A cut of G is a
partition of V into two disjoint subsets A and B. The capacity of the
cut is the number of edges of G that meet both A and B.

Note that B = V \A and A = V \B, so a cut can be specified by
giving either of the sets in the partition.

For example, the diagram below shows the cut in the complete graph
on {1, 2, 3, 4, 5} where A = {1, 2, 3} and B = {4, 5}. The capacity of
this cut is 6, corresponding to the 6 edges {x, y} for x ∈ A, y ∈ B
shown with thicker lines.

1

2

3 4

5

Theorem 18.3. Let G be a graph with n vertices and m edges. There
is a cut of G with capacity ≥ m/2.

({1,2}, {3,4,5})

Theorem 15.3

Let G be a graph with vertex set {1, 2, . . . , n} and m edges. There

is a cut of G with capacity ≥ m/2.



Application to Ramsey Theory

Lemma 15.4

Let n ∈ N and let Ω be the set of all red-blue colourings of the

complete graph Kn. Let pω = 1/|Ω| for each ω ∈ Ω. Then

(i) each colouring in Ω has probability 1/2(
n
2);

(ii) given any m edges in G, the probability that all m of these

edges have the same colour is 21−m
.

Theorem 15.5

Let n, s ∈ N. If �
n

s

�
2
1−(s2) < 1

then there is a red-blue colouring of the complete graph on

{1, 2, . . . , n} with no red Ks or blue Ks .



Lower bound on R(s, s)

Corollary 15.6

For any s ∈ N we have

R(s, s) ≥ 2
(s−1)/2.

This result can be strengthened slightly using the Lovász Local

Lemma. See the final installment of the lecture notes, to appear

on Moodle (this material is non-examinable).


