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Part D: Probabilistic Methods

13. Revision of Discrete Probability

This section is intended to remind you of the definitions and language
of discrete probability theory, on the assumption that you have seen
most of the ideas before. These notes are based on earlier notes by
Dr Barnea and Dr Gerke; of course any errors are my responsibility.

For further background see any basic textbook on probability, for
example Sheldon Ross, A First Course in Probability, Prentice Hall.

Definition 13.1.

• A probability measure p on a finite set Ω assigns a real number
pω to each ω ∈ Ω so that 0 ≤ pω ≤ 1 for each ω and∑

ω∈Ω

pω = 1.

We say that pω is the probability of ω.

• A probability space is a finite set Ω equipped with a probability
measure. The elements of a probability space are sometimes
called outcomes.

• An event is a subset of Ω.

• The probability of an event A ⊆ Ω, denoted P[A] is the sum of
the probability of the outcomes in A; that is

P[A] =
∑
ω∈A

pω.

Note that it follows from this definition that P[{ω}] = pω for each
ω ∈ Ω. We also have P[∅] = 0 and P[Ω] = 1.

Example 13.2

(1) To model a throw of a single unbiased die, we take

Ω = {1, 2, 3, 4, 5, 6}
and put pω = 1/6 for each outcome ω ∈ Ω. The event that
we throw an even number is A = {2, 4, 6} and as expected,
P[A] = p2 + p4 + p6 = 1/6 + 1/6 + 1/6 = 1/2.

(2) To model a throw of a pair of dice we could take

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}
and give each element of Ω probability 1/36, so p(i,j) = 1/36 for
all (i, j) ∈ Ω. Alternatively, if we know that we only care about
the sum of the two dice, we could take Ω = {2, 3, . . . , 12} with
p2 = 1/36, p3 = 2/36, . . . , p6 = 5/36, p7 = 6/36, p8 = 5/36,
. . . , p12 = 1/36.
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(3) A suitable probability space for three flips of a coin is

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}
where H stands for heads and T for tails, and each outcome
has probability 1/8. To allow for a biased coin we fix 0 ≤ q ≤ 1
and instead give an outcome with exactly k heads probability
qk(1− q)3−k.

(4) Let n ∈ N and let Ω be the set of all permutations of {1, 2, . . . , n}.
Set pσ = 1/n! for each permutation σ ∈ Ω. This gives a suit-
able setup for Theorem 2.6. Later we shall use the language
of probability theory to give a shorter proof of part (ii) of this
theorem.

It will often be helpful to specify events (i.e. subsets of Ω) a little
informally. For example, in (3) above we might write P[at least two
heads], rather than P[{HHT,HTH, THH,HHH}].

Unions, intersections and complements. Let Ω be a probability
space. If A, B ⊆ Ω then

P[A ∪B] =
∑

ω∈A∪B

pω =
∑
ω∈A

pω +
∑
ω∈B

pω −
∑

ω∈A∩B

pω

= P[A] + P[B]−P[A ∩B].

In particular, if A and B are disjoint, i.e. A∩B = ∅, then P [A∪B] =
P[A] + P[B]. The complement of an event A ⊆ Ω is defined to be

Ā = {ω ∈ Ω : ω 6∈ A}.
Since

1 = P[Ω] = P[A ∪ Ā] = P[A] + P[Ā]

we have P[Ā] = 1−P[A].

Exercise: Restate the Principle of Inclusion and Exclusion (Theo-
rem 5.3) so that it becomes a result about probabilities.

Condition probability and independence.

Definition 13.3. Let Ω be a probability space, and let A, B ⊆ Ω be
events.

• If P[B] 6= 0 then we define the conditional probability of A
given B by

P[A|B] =
P[A ∩B]

P[B]
.

• The events A, B are said to be independent if P[A ∩ B] =
P[A]P[B].
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Suppose that each element of Ω has equal probability p. Then

P[A|B] =
|A ∩B|p
|B|p

=
|A ∩B|
|B|

is the proportion of elements of B that also lie in A; informally, if we
know that the event B has occurred, then the probability that A has
also occurred is P[A|B].

Exercise: Show that if A and B are events in a probability space such
that P[A], P[B] 6= 0, then P[A|B] = P[A] if and only if A and B are
independent.

Conditional probability can be quite subtle.

Exercise: Let Ω = {HH,HT, TH, TT} be the probability space for
two flips of a fair coin, as in Example 13.2(3). Let A be the event that
both flips are heads, and let B be the event that at least one flip is a
head. Write A and B as subsets of Ω and show that P[A|B] = 1/3.

Example 13.4 (The Monty Hall Problem). On a game show you are
offered the choice of three doors. Behind one door is a car, and behind
the other two are goats. You pick a door and then the host, who knows
where the car is, opens another door to reveal a goat. You may then
either open your original door, or change to the remaining unopened
door. Assuming you want the car, should you change?

Most people find the answer to the Monty Hall problem a little sur-
prising. The Sleeping Beauty Problem, stated below, is even more
controversial.

Example 13.5. Beauty is told that if a coin lands heads she will be
woken on Monday and Tuesday mornings, but after being woken on
Monday she will be given an amnesia inducing drug, so that she will
have no memory of what happened that day. If the coin lands tails she
will only be woken on Tuesday morning. At no point in the experiment
is Beauty told what day it is. Imagine that you are Beauty and are
awoken as part of the experiment and asked for your credence that the
coin landed heads. What is your answer?

The related statistical issue in the next example is also widely mis-
understood.

Example 13.6. Suppose that one in every 1000 people has disease X.
There is a new test for X that will always identify the disease in anyone
who has it. There is, unfortunately, a tiny probability of 1/250 that
the test will falsely report that a healthy person has the disease. What
is the probability that a person who tests positive for X actually has
the disease?
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Random variables.

Definition 13.7. Let Ω be a probability space. A random variable
on Ω is a function X : Ω→ R. If X, Y : Ω→ R are random variables
then we say that X and Y are independent if for all x, y ∈ R the events

A = {ω ∈ Ω : X(ω) = x} and

B = {ω ∈ Ω : Y (ω) = y}
are independent.

The following shorthand notation is very useful. If X : Ω → R is
a random variable, then ‘X = x’ is the event {ω ∈ Ω : X(ω) = x}.
Similarly ‘X ≥ x’ is the event {ω ∈ Ω : X(ω) ≥ x}. We mainly use
this shorthand in probabilities, so for instance

P[X = x] = P
[
{ω ∈ Ω : X(ω) = x}

]
.

Exercise: Show that X, Y : Ω→ R are independent if and only if

P[(X = x) ∩ (Y = y)] = P[X = x]P[Y = y]

for all x, y ∈ R. (This is just a trivial restatement of the definition.)

Example 13.8. Let Ω = {HH,HT, TH, TT} be the probability space
for two flips of a fair coin. Define X : Ω → R to be 1 if the first coin
is heads, and zero otherwise. So

X(HH) = X(HT ) = 1 and X(TH) = X(TT ) = 0.

Define Y : Ω→ R similarly for the second coin.

(i) The random variables X and Y are independent.
(ii) Let Z be 1 if exactly one flip is heads, and zero otherwise. Then

X and Z are independent, and Y and Z are independent.
(iii) There exist x, y, z ∈ {0, 1} such that

P[X = x, Y = y, Z = z] 6= P[X = x]P[Y = y]P[Z = z].

This shows that one has to be quite careful when defining indepen-
dence for a family of random variables. (Except in the Lovász Local
Lemma, we will be able to manage with the pairwise independence
defined above.)

Given random variables X, Y : Ω → R we can define new random
variables by taking functions such as X + Y , aX for a ∈ R and XY .
We notice that if z ∈ R then

{ω ∈ Ω : (X + Y )(ω) = z} =
⋃

x+y=z

{ω ∈ Ω : X(ω) = x, Y (ω) = y}.

The events above are disjoint for different x, y, so we get

P[X + Y = z] =
∑
x+y=z

P[(X = x) ∩ (Y = y)].



31

If X and Y are independent then

P[(X = x) ∩ (Y = y)] = P[X = x]P[Y = y]

and so
P[X + Y = z] =

∑
x+y=z

P[X = x]P[Y = y].

(Note that all of these sums have only finitely many non-zero sum-
mands, so they are well-defined.)

Exercise: Show similarly that if X, Y : Ω → R are independent ran-
dom variables then

P[XY = z] =
∑
xy=z

P[X = x]P[Y = y].

Expectation and linearity.

Definition 13.9. Let Ω be a probability space with probability mea-
sure p. The expectation E[X] of a random variable X : Ω → R is
defined to be

E[X] =
∑
ω∈Ω

X(ω)pw.

Intuitively, the expectation of X is the average value of X on ele-
ments of Ω, if we choose ω ∈ Ω with probability pω. Note that

E[X] =
∑
ω∈Ω

X(ω)pω =
∑
x∈R

∑
ω

X(ω)=x

xpω =
∑
x∈R

xP[X = x].

A critical property of expectation is that it is linear. Note that we do
not need to assume independence in this lemma.

Lemma 13.10. Let Ω be a probability space. If X1, X2, . . . , Xk : Ω→ R
are random variables then

E[a1X1 + a2X2 + · · ·+ akXk] = a1E[X1] + a2E[X2] + · · ·+ akE[Xk]

for any a1, a2, . . . , ak ∈ R.

Proof. By definition the left-hand side is∑
ω∈Ω

pω
(
a1X1 + · · ·+ akXk)(ω) =

∑
ω∈Ω

pω
(
a1X1(ω) + · · ·+ akXK(ω)

)
= a1

∑
ω∈Ω

pωX1(ω) + · · ·+ ak
∑
ω∈Ω

Xk(ω)

which is the right-hand side. �

When X, Y : Ω → R are independent random variables, there is a
very useful formula for E[XY ].
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Lemma 13.11. If X, Y : Ω → R are independent random variables
then E[XY ] = E[X]E[Y ].

Exercise: Prove Lemma 13.11 by arguing that

E[XY ] =
∑
z∈R

zP[XY = z] =
∑
z∈R

z
∑
xy=z

P[(X = x) ∩ (Y = y)]

and using independence.

Variance.

Definition 13.12. Let Ω be a probability space. The variance Var[X]
of a random variable X : Ω→ R is defined to be

Var[X] = E
[
(X − E[X])2

]
.

The variance measures how much X can be expected to depart from
its mean value E[X]. So it is a measure of the ‘spread’ of X.

It is tempting to define the variance as E
[
X−E[X]

]
, but by linearity

this expectation is E[X] − E[X] = 0. One might also consider the
quantity E

[ ∣∣X −E[X]
∣∣ ], but the absolute value turns out to be hard

to work with. The definition above works well in practice.

Lemma 13.13. Let Ω be a probability space.
(i) If X : Ω→ R is a random variable then

Var[X] = E[X2]− (E[X])2.

(ii) If X, Y : Ω→ R are independent random variables then

Var[X + Y ] = Var[X] + Var[Y ].

Exercise: Show that (ii) can fail if X and Y are not independent. [Hint:
usually a random variable is not independent of itself.]


