These notes are intended to give the logical structure of the course; proofs and further remarks will be given in lectures. Further installments will be issued as they are ready. All handouts and problem sheets will be put on Moodle.

I would very much appreciate being told of any corrections or possible improvements to these notes.

You are warmly encouraged to ask questions in lectures, and to talk to me after lectures and in my office hours. I am also happy to answer questions about the lectures or problem sheets by email. My email address is mark.wildon@rhul.ac.uk.

Lectures: Tuesday 11am in C201, Wednesday 12 noon in ABLT3 and Thursday 3pm in C336.

Office hours in McCrea 240: Monday 4pm, Wednesday 10am and Friday 4pm.
1. Introduction

Combinatorial arguments may be found lurking in all branches of mathematics. Many people first become interested in mathematics by a combinatorial problem. But, strangely enough, at first many mathematicians tended to sneer at combinatorics. Thus one finds:

“Combinatorics is the slums of topology.”

J. H. C. Whitehead (early 1900s, attr.)

Fortunately attitudes have changed, and the importance of combinatorial arguments is now widely recognised:

“The older I get, the more I believe that at the bottom of most deep mathematical problems there is a combinatorial problem.”

I. M. Gelfand (1990)

Combinatorics is a very broad subject. It will often be useful to prove the same result in different ways, in order to see different combinatorial techniques at work. There is no shortage of interesting and easily understood motivating problems.

Overview. This course will give a straightforward introduction to four related areas of combinatorics. Each is the subject of current research, and taken together, they give a good idea of what the subject is about.

(B) Generating Functions: Ordinary generating functions and recurrence relations. Partitions and compositions. Catalan Numbers. Derangements.

(C) Ramsey Theory: “Complete disorder is impossible”. Pigeonhole Principle. Graph colouring.

Recommended Reading.

In parallel with the first few weeks of lectures, you will be asked to do some reading from *generatingfunctionology*: the problem sheets will make clear what is expected.

Prerequisites.

- Permutations and their decomposition into disjoint cycles. (Required for derangements and for some applications in Part D.)
- Basic definitions of graph theory: vertices, edges and complete graphs. (Required for Part C on Ramsey Theory.)
- Basic knowledge of discrete probability. This will be reviewed in lectures when we get to part D of the course. A handout with all the background results needed from probability theory will be issued later in term.

Problem sheets and exercises. There will be weekly problem sheets; the first will be due in on Tuesday 15th October. Exercises set in these notes are intended to be simple tests that you are following the material. Some will be done in lectures. Doing the others will help you to review the lectures.

Moodle. Provided you have an RHUL account, you have access to the Moodle page for this course: moodle.rhul.ac.uk/course/view.php?id=371. If you are registered for the course then it will appear under ‘My Courses’ on Moodle.

Note on optional questions. Optional questions on problem sheets are included for interest and to give extra practice. Harder optional questions are marked (⋆). If you can do the compulsory questions and know the bookwork, i.e. the definitions, main theorems, and their proofs, as set out in the handouts and lectures, you should do very well in the exam.
2. BASIC COUNTING PRINCIPLES AND DERANGEMENTS

In the first two lectures we will see the Derangements Problem and one way to solve it by ad-hoc methods. Later in the course we will develop techniques that can be used to solve this problem more easily.

Definition 2.1. A permutation of a set X is a bijective function

$$\sigma : X \rightarrow X.$$

A fixed point of a permutation σ of X is an element $x \in X$ such that $\sigma(x) = x$. A permutation is a derangement if it has no fixed points.

Usually we will consider permutations of $\{1, 2, \ldots, n\}$ for some natural number $n \in \mathbb{N}$. It is often useful to represent permutations by diagrams. For example, the diagram below shows the permutation $\sigma : \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}$ defined by

$$\sigma(1) = 2, \sigma(2) = 1, \sigma(3) = 4, \sigma(4) = 5, \sigma(5) = 3.$$

Note that σ is a derangement.

```
1 2 3 4 5
1 2 3 4 5
```

Exercise: For $n \in \mathbb{N}$, how many permutations are there of $\{1, 2, \ldots, n\}$? How many of these permutations have 1 as a fixed point?

The principle used to solve this exercise, that when one choice is made after another, the number of choices should be multiplied, will be used many times in this course. In the case where one choice does not affect the next, so we first choose an element of a set A, then an element of a set B, the principle simply says that $|A \times B| = |A||B|$.

More generally, if an object can be specified uniquely by a sequence of n choices so that, when making the ith choice, we always have exactly c_i possibilities to choose from, then there are exactly $c_1c_2\ldots c_n$ objects.

Problem 2.2 (Derangements). How many permutations of $\{1, 2, \ldots, n\}$ are derangements?

Let d_n be the number of permutations of $\{1, 2, \ldots, n\}$ that are derangements. By definition, although you may regard this as a convention if you prefer, $d_0 = 1$.

Exercise: Check, by listing permutations, that $d_1 = 0, d_2 = 1, d_3 = 2$ and $d_4 = 9$.

Exercise: Suppose we try to construct a derangement of \{1, 2, 3, 4, 5\} such that \(\sigma(1) = 2\). Show that there are two derangements such that \(\sigma(1) = 2, \sigma(2) = 1\), and three derangements such that \(\sigma(1) = 2, \sigma(2) = 3\). How many choices are there for \(\sigma(3)\) in each case?

The previous exercise shows that we can’t hope to solve the derangements problem just by multiplying numbers of choices. Instead we shall find a recurrence for the numbers \(d_n\).

Lemma 2.3. If \(n \geq 2\) then the number of derangements \(\sigma\) of \(\{1, 2, \ldots, n\}\) such that \(\sigma(1) = 2\) is \(d_{n-2} + d_{n-1}\).

Notice the use of another basic counting principle in Lemma 2.3: if we can partition the objects we are counting into two disjoint sets \(A\) and \(B\), then the total number of objects is \(|A| + |B|\).

Theorem 2.4. If \(n \geq 2\) then \(d_n = (n-1)(d_{n-2} + d_{n-1})\).

Using this recurrence relation it is easy to find values of \(d_n\) for much larger \(n\). Whenever one meets a new combinatorial sequence it is a good idea to look it up in N. J. A. Sloane’s Online Encyclopedia of Integer Sequences: see www.research.att.com/~njas/sequences/. You will usually find it in there, along with references and often other combinatorial interpretations.

Corollary 2.5. For all \(n \in \mathbb{N}_0\),

\[
d_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^n}{n!} \right)
\]

Exercise: Check directly that the right-hand side is an integer.

A more systematic way to derive Corollary 2.5 from Theorem 2.4 will be seen in Part B of the course. Question 9 on Sheet 1 gives an alternative proof that does not require knowing the answer in advance.

The proof of Corollary 2.5 and Question 9 show that it is helpful to consider the probability \(d_n / n!\) that a permutation of \(\{1, 2, \ldots, n\}\), chosen uniformly at random, is a derangement. Here ‘uniformly at random’ means that each of the \(n!\) permutations of \(\{1, 2, \ldots, n\}\) is equally likely to be chosen.

Theorem 2.6. Two probabilistic results on derangements.

(i) The probability that a permutation of \(\{1, 2, \ldots, n\}\), chosen uniformly at random, is a derangement tends to \(1/e\) as \(n \to \infty\).

(ii) The average number of fixed points of a permutation of \(\{1, 2, \ldots, n\}\) is 1.

We shall prove more results like this in Part D of the course.
Part A: Enumeration

3. BINOMIAL COEFFICIENTS AND COUNTING PROBLEMS

The following notation is probably already familiar to you.

Notation 3.1. If Y is a set of size k then we say that Y is a k-set, and write $|Y| = k$. To emphasise that Y is a subset of some other set X then we may say that Y is a k-subset of X.

We shall define binomial coefficients combinatorially.

Definition 3.2. Let $n, k \in \mathbb{N}_0$. Let $X = \{1, 2, \ldots, n\}$. The binomial coefficient $\binom{n}{k}$ is the number of k-subsets of X.

By this definition, if $k \not\in \mathbb{N}_0$ then $\binom{n}{k} = 0$. Similarly if $k > n$ then $\binom{n}{k} = 0$. It should be clear that we could replace X with any other set of size n and we would define the same numbers $\binom{n}{k}$.

We should check that the combinatorial definition agrees with the usual definition.

Lemma 3.3. If $n, k \in \mathbb{N}_0$ and $k \leq n$ then

$$\binom{n}{k} = \frac{n(n-1) \ldots (n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$

The double-counting technique used to prove Lemma 3.3 is often useful in combinatorial problems.

Many of the basic properties of binomial coefficients can be given combinatorial proofs involving explicit bijections. We say that such proofs are bijective.

Lemma 3.4. If $n, k \in \mathbb{N}_0$ then

$$\binom{n}{k} = \binom{n}{n-k}.$$

Lemma 3.5 (Fundamental Recurrence). If $n, k \in \mathbb{N}$ then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

reasoning with subsets, do $(n-r)(\binom{n}{r}) = (r+1)(\binom{n}{r+1})$ as example.

Note $r(\binom{n}{r}) = n(\binom{n-1}{r-1})$ is on Sheet 1. Binomial coefficients are so-named because of the famous binomial theorem. (A binomial is a product of the form x^iy^j.)
Theorem 3.6 (Binomial Theorem). Let \(x, y \in \mathbb{C} \). If \(n \in \mathbb{N}_0 \) then
\[
(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}.
\]

Exercise: give inductive or algebraic proofs of the previous three results.

Exercise: in New York, how many ways can one start at a junction and walk to another junction 4 blocks away to the east and 3 blocks away to the north?

We can now answer a basic combinatorial question: How many ways are there to put \(k \) balls into \(n \) numbered urns? The answer depends on whether the balls are distinguishable. We may consider urns of unlimited capacity, or urns that can only contain one ball.

<table>
<thead>
<tr>
<th>Numbered balls</th>
<th>Indistinguishable balls</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 1) ball per urn</td>
<td></td>
</tr>
<tr>
<td>unlimited capacity</td>
<td></td>
</tr>
</tbody>
</table>

Three of the entries can be found fairly easily. The entry in the bottom-right can be found in many different ways: two will be demonstrated in this lecture.

Theorem 3.7. Let \(n \in \mathbb{N} \) and let \(k \in \mathbb{N}_0 \). The number of ways to place \(k \) indistinguishable balls into \(n \) numbered urns of unlimited capacity is \(\binom{n+k-1}{k} \).

The following reinterpretation of Theorem 3.7 can be useful.

Corollary 3.8. Let \(n \in \mathbb{N} \) and let \(k \in \mathbb{N}_0 \). The number of \(n \)-tuples \(\{t_1, \ldots, t_n\} \) such that \(t_1, t_2, \ldots, t_n \in \mathbb{N}_0 \) and \(t_1 + t_2 + \cdots + t_n = k \) is \(\binom{n+k-1}{k} \).

4. Further Binomial Identities

This is a vast subject and we shall only cover a few aspects. Particularly recommended for further reading is Chapter 5 of Concrete Mathematics, [4] in the list on page 2.
Arguments with subsets. The two identities below are among the most useful in practice.

Lemma 4.1 (Subset of a subset). If \(k, r, n \in \mathbb{N}_0 \) and \(k \leq r \leq n \) then
\[
\binom{n}{r} \binom{r}{k} = \binom{n}{k} \binom{n-k}{r-k}.
\]

Lemma 4.2 (Vandermonde’s convolution). If \(a, b \in \mathbb{N}_0 \) and \(m \in \mathbb{N}_0 \) then
\[
\sum_{k=0}^{m} \binom{a}{k} \binom{b}{m-k} = \binom{a+b}{m}.
\]

Corollaries of the Binomial Theorem. The following results can be obtained by making a strategic choice of \(x \) and \(y \) in the Binomial Theorem.

Corollary 4.3. If \(n \in \mathbb{N} \) then
\[
\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n-1} + \binom{n}{n} = 2^n,
\]
\[
\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \cdots + (-1)^{n-1} \binom{n}{n-1} + (-1)^n \binom{n}{n} = 0.
\]

Corollary 4.4. For all \(n \in \mathbb{N} \) there are equally many subsets of \(\{1, 2, \ldots, n\} \) of even size as there are of odd size.

Corollary 4.5. If \(n \in \mathbb{N}_0 \) and \(b \in \mathbb{N} \) then
\[
\binom{n}{0} b^n + \binom{n}{1} b^{n-1} + \cdots + \binom{n}{n-1} b + \binom{n}{n} = (1 + b)^n.
\]

There is a nice bijective proof of Corollary 4.5; it will appear as a question with hints on Sheet 2.

Some identities visible in Pascal’s Triangle. There are a number of nice identities that express row, column or diagonal sums in Pascal’s Triangle.

Lemma 4.6 (Alternating row sums). If \(n \in \mathbb{N} \), \(r \in \mathbb{N}_0 \) and \(r \leq n \) then
\[
\sum_{k=0}^{r} (-1)^k \binom{n}{k} = (-1)^r \binom{n-1}{r}.
\]

Perhaps surprisingly, there is no simple formula for the unsigned row sums \(\sum_{k=0}^{r} \binom{n}{k} \).
Lemma 4.7 (Diagonal sums, a.k.a. parallel summation). If \(n \in \mathbb{N}, r \in \mathbb{N}_0 \) then
\[
\sum_{k=0}^{r} \binom{n + k}{k} = \binom{n + r + 1}{r}.
\]

For the column sums on Pascal’s Triangle, see Sheet 1, Question 3. For the other diagonal sum, see Sheet 1, Question 7.

5. Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion (PIE) is an elementary way to find the size of a union of a finite collection of subsets of a finite universe set \(X \). The universe set we take will depend on the problem we are solving. If \(A \) is a subset of \(X \), we denote by \(\overline{A} \) the complement of \(A \) in \(X \); i.e.,
\[
\overline{A} = X \setminus A = \{ x \in X : x \notin A \}.
\]

We start with the two smallest non-trivial examples of the Principle of Inclusion and Exclusion.

Example 5.1. If \(A, B, C \) are subsets of a finite set \(X \) then
\[
|A \cup B| = |A| + |B| - |A \cap B|
\]
\[
|\overline{A} \cup B| = |X| - |A| - |B| + |A \cap B|
\]
and
\[
|A \cup B \cup C| = |A| + |B| + |C|
- |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|
\]
\[
|\overline{A} \cup B \cup C| = |X| - |A| - |B| - |C|
+ |A \cap B| + |B \cap C| + |C \cap A| - |A \cap B \cap C|
\]

Example 5.2. The \(n \)-th (centred) hexagonal number is the number of dots in the \(n \)-th digure below. The formula for \(|A \cup B \cup C| \) gives a nice way a formula for these numbers.

\[
\begin{array}{cccccccc}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{array}
\]

It is easier to find the sizes of the intersections of the three rhombi making up each hexagon than it is to find the sizes of their unions. Whenever intersections are easier to think about than unions, the PIE is likely to work well.
In the general setting we have a finite universe set \(X \) and subsets \(A_1, A_2, \ldots, A_n \subseteq X \). For each non-empty subset \(I \subseteq \{1, 2, \ldots, n\} \) we define
\[
A_I = \bigcap_{i \in I} A_i.
\]
Thus \(A_I \) is the set of elements which belong to all the sets \(A_i \) for \(i \in I \).
For example, if \(i, j \in \{1, 2, \ldots, n\} \) then \(A_{\{i\}} = A_i \) and \(A_{\{i,j\}} = A_i \cap A_j \).
By convention we set \(A_\emptyset = X \).

Theorem 5.3 (Principle of Inclusion and Exclusion). If \(A_1, A_2, \ldots, A_n \) are subsets of a finite set \(X \) then
\[
|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum_{I \subseteq \{1, 2, \ldots, n\}} (-1)^{|I|} |A_I|.
\]

Exercise: Check that Theorem 5.3 holds when \(n = 1 \) and check that it agrees with Example 5.1 when \(n = 2 \) and \(n = 3 \).

Exercise: Deduce from Theorem 5.3 that
\[
|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum_{I \subseteq \{1, 2, \ldots, n\}, \ I \neq \emptyset} (-1)^{|I|-1} |A_I|.
\]

Application to Derangements. The Principle of Inclusion and Exclusion gives a particularly elegant proof of the formula for the derangement numbers \(d_n \) first proved in Corollary 2.5:
\[
d_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \cdots + \frac{(-1)^n}{n!} \right).
\]

Recall from Definition 2.1 that a permutation \(\sigma : \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\} \) is a derangement if and only if it has no fixed points. Let \(X \) be the set of all permutations of \(\{1, 2, \ldots, n\} \) and let
\[
A_i = \{ \sigma \in X : \sigma(i) = i \}
\]
be the set of permutations which have \(i \) as a fixed point. To apply the PIE we need the results in the following lemma.

Lemma 5.4. (i) A permutation \(\sigma \in X \) is a derangement if and only if \(\sigma \in A_1 \cup A_2 \cup \cdots \cup A_n \).

(ii) If \(I \subseteq \{1, 2, \ldots, n\} \) then \(A_I \) consists of all permutations of \(\{1, 2, \ldots, n\} \) which fix the elements of \(I \). If \(|I| = k \) then
\[
|A_I| = (n - k)!.
\]
It is often helpful to think of each A_i as the set of all objects in X satisfying a property P_i. Then the Principle of Inclusion and Exclusion counts all the objects in X that satisfy none of the properties P_1, \ldots, P_n. In the derangements example

$$P_i(\sigma) = \text{`\sigma has } i \text{ as a fixed point''}$$

and we count the permutations σ such that $P_i(\sigma)$ is false for all $i \in \{1, 2, \ldots, n\}$.

Prime Numbers and Euler’s ϕ Function. Suppose we want to find the number of primes less than some number M. One approach, which is related to the Sieve of Eratosthenes, uses the Principle of Inclusion and Exclusion.

Example 5.5. Let $X = \{1, 2, \ldots, 48\}$. We define three subsets of X:

- $B(2) = \{m \in X : m \text{ is divisible by 2}\}$
- $B(3) = \{m \in X : m \text{ is divisible by 3}\}$
- $B(5) = \{m \in X : m \text{ is divisible by 5}\}$.

Any composite number ≤ 48 is divisible by either 2, 3 or 5. So

$$B(2) \cup B(3) \cup B(5) = \{1\} \cup \{p : 5 < p \leq 48, \ p \text{ is prime}\}.$$

We will find the size of the left-hand side using the PIE, and hence count the number of primes ≤ 48.

The example can be generalized to count numbers not divisible by any of a specified set of primes. Recall that if $x \in \mathbb{R}$ then $\lfloor x \rfloor$ denotes the largest natural number $\leq x$.

Lemma 5.6. Let $r, M \in \mathbb{N}$. There are exactly $\lfloor M/r \rfloor$ numbers in $\{1, 2, \ldots, M\}$ that are divisible by r.

Theorem 5.7. Let p_1, \ldots, p_n be distinct prime numbers and let $M \in \mathbb{N}$. The number of natural numbers $\leq M$ that are not divisible by any of primes p_1, \ldots, p_n is

$$\sum_{I \subseteq \{1, 2, \ldots, n\}} (-1)^{|I|} \left\lfloor \frac{M}{\prod_{i \in I} p_i} \right\rfloor.$$

For $M \in \mathbb{N}$, let $\pi(M)$ be the number of prime numbers $\leq M$. It is possible to use Theorem 5.7 to show that there is a constant C such that

$$\pi(M) \leq \frac{CM}{\log \log M}$$

for all $M \in \mathbb{N}$. This is beyond the scope of this course, but I would be happy to go through the proof in an office-hour or supply a reference.
The next example will be helpful for the questions on Sheet 2. In it, we say that numbers \(n, M\) are coprime if \(n\) and \(M\) have no common prime divisors. For example, 12 and 35 are coprime, but 7 and 14 are not.

Example 5.8. Let \(M = pqr\) where \(p, q, r\) are distinct prime numbers. The numbers of natural numbers less than or equal to \(pqr\) that are coprime to \(M\) is

\[
M \left(1 - \frac{1}{p}\right) \left(1 - \frac{1}{q}\right) \left(1 - \frac{1}{r}\right).
\]

There are many other applications of the Principle of Inclusion and Exclusion. For example, it can be used to count the number of irreducible polynomials of a given degree over a finite field. Such polynomials are important in coding theory and cryptography.

See Question 9 on Sheet 2 for an application of the Principle of Inclusion and Exclusion to counting the number of surjective functions from \(\{1, \ldots, k\}\) to \(\{1, \ldots, n\}\).

6. ROOK POLYNOMIALS

Many enumerative problems can be expressed as problems about counting permutations with some restriction on their structure. The derangements problem is a typical example. In this section we shall see a unified way to solve this sort of problem.

Definition 6.1. A board is a subset of the squares of an \(n \times n\) grid. Given a board \(B\), we let \(r_k(B)\) denote the number of ways to place \(k\) rooks on \(B\), so that no two rooks are in the same row or column. Such rooks are said to be non-attacking. The rook polynomial of \(B\) is defined to be

\[
f_B(x) = r_0(B) + r_1(B)x + r_2(B)x^2 + \cdots + r_n(B)x^n.
\]

Note that \(f_B(x)\) is the generating function of the sequence

\[r_0(B), r_1(B), r_2(B), \ldots\]

Since \(r_k(B) = 0\) if \(k > n\), the power series \(\sum_{k=0}^{n} r_k(B)x^k\) is a polynomial.

Example 6.2. Let \(B\) be the board shown below.
The rook polynomial of B is $1 + 5x + 6x^2 + x^3$.

Exercise: Let B be a board. Show that $r_0(B) = 1$ and that $r_1(B)$ is the number of squares in B.

Example 6.3. After the recent spate of cutbacks, only four professors remain at the University of Erewhon. Prof. X is an all-rounder and can lecture courses 1 or 4; Prof. W can lecture courses 2, 3 or 4; Prof. Y refuses to lecture anything except 3; Prof. Z can lecture 1 or 2. If each professor must lecture exactly one course, how many ways are there to assign professors to courses?

Example 6.4. How many derangements σ of $\{1, 2, 3, 4, 5\}$ have the property that $\sigma(i) \neq i + 1$ for $1 \leq i \leq 4$?

Lemma 6.5. The rook polynomial of the $n \times n$ board is

$$\sum_{k=0}^{n} k! \binom{n}{k} x^k.$$

The two following lemmas are very useful when calculating rook polynomials. Lemma 6.6 will be illustrated with an example in lectures, and proved later using Theorem 9.1 on convolutions of generating functions (see Example 9.3).

Lemma 6.6. Let C be a board. Suppose that the squares in C can be partitioned into sets A and B so that no square in A lies in the same row or column as a square of B. Then

$$f_C(x) = f_A(x)f_B(x).$$

This is the first of many times that multiplying generating functions will help us to solve combinatorial problems.

Lemma 6.7. Let C be a board and let s be a square in C. Let D be the board obtained from B by deleting s and let E be the board obtained from B by deleting the entire row and column containing s. Then

$$f_C(x) = f_D(x) + xf_E(x).$$

Example 6.8. The rook-polynomial of the boards in Examples 6.3 and 6.4 can be found using Lemma 6.7. For the board in Example 6.3 it works well to apply the lemma first to the square marked 1, then to the square marked 2 (in the new boards).
Our final result on rook polynomials is often the most useful in practice. The proof uses the Principle of Inclusion and Exclusion. The following lemma isolates the key idea. Its proof needs the same idea we used in Lemma 5.4(ii) to count permutations with a specified set of fixed points.

Lemma 6.9. Let B be a board contained in an $n \times n$ grid and let $0 \leq k \leq n$. The number of ways to place k red rooks on B and $n - k$ blue rooks anywhere on the grid, so that the n rooks are non-attacking, is $r_k(B)(n - k)!$.

Theorem 6.10. Let B be a board contained in an $n \times n$ grid. Let \bar{B} denote the board formed by all the squares in the grid that are not in B. The number of ways to place n non-attacking rooks on \bar{B} is

$$n! - (n - 1)!r_1(B) + (n - 2)!r_2(B) - \cdots + (-1)^n r_n(B).$$

As an easy corollary we get our third proof of the derangements formula (Corollary 2.5), that

$$d_n = n!(1 - \frac{1}{1!} + \frac{1}{2!} - \cdots + \frac{(-1)^{n}}{n!}).$$

See Problem Sheet 3 for some other applications of Theorem 6.10.

Theorem 6.10 is one of the harder results in the course. If you find the proof difficult, you may find the following exercise helpful.

Exercise: Let $n = 3$ and let B be the board formed by the shaded squares below.

Draw the rook placements lying in each of the sets $A_\emptyset, A_{\{1\}}, A_{\{2\}}, A_{\{3\}}, A_{\{1,2\}}, A_{\{1,3\}}, A_{\{2,3\}}, A_{\{1,2,3\}}$ defined in the proof of Theorem 6.10, and check the main claim in the proof for $k = 0, 1, 2, 3$. For instance, for $k = 1$, you should find that $|A_{\{1\}}| + |A_{\{2\}}| + |A_{\{3\}}|$ is the number of non-attacking placements with one red rook on B and two blue rooks anywhere on the grid; according to Lemma 6.9 there are $r_1(B)(3 - 1)!$ such placements.
Part B: Generating Functions

7. INTRODUCTION TO GENERATING FUNCTIONS

Generating functions can be used to solve the sort of recurrence relations that often arise in combinatorial problems. But better still, they can help us to think about combinatorial problems in new ways and suggest new results.

Definition 7.1. The ordinary generating function associated to the sequence \(a_0, a_1, a_2, \ldots\) is the power series

\[
\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots.
\]

To indicate that \(F(x)\) is the ordinary generating function of the sequence \(a_0, a_1, a_2, \ldots\) we may use the notation in §2.2 of Wilf generating-functionology and write

\[(a_n) \leftrightarrow F(x)\].

Usually we shall drop the word ‘ordinary’ and just write ‘generating function’.

If there exists \(N \in \mathbb{N}\) such that \(a_n = 0\) if \(n > N\), then the generating function of the sequence \(a_0, a_1, a_2, \ldots\) is a polynomial. Rook polynomials (see Definition 6.1) are therefore generating functions.

Operations on generating functions. Let \(F(x) = \sum_{n=0}^{\infty} a_n x^n\) and \(G(x) = \sum_{n=0}^{\infty} b_n x^n\) be generating functions. From

\[F(x) + G(x) = \sum_{n=0}^{\infty} (a_n + b_n) x^n\]

and

\[F(x)G(x) = \sum_{n=0}^{\infty} c_n x^n\]

where \(c_n = \sum_{m=0}^{n} a_m b_{n-m}\). The derivative of \(F(x)\) is

\[F'(x) = \sum_{n=0}^{\infty} n x^{n-1}\].

Note that if \((a_n) \leftrightarrow F(x)\) and \((b_n) \leftrightarrow G(x)\) then

\[(a_n + b_n) \leftrightarrow F(x) + G(x)\].

The sequence \((c_n)\) such that \((c_n) \leftrightarrow F(x)G(x)\) often arises in combinatorial problems. This was seen for rook polynomials in Lemma 6.6, and will be studied in §9.
It is also possible to define $1/F(x)$ whenever $a_0 \neq 0$. By far the most important case is the case $F(x) = 1 - x$, when

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

is the usual formula for the sum of a geometric progression.

Analytic and Formal Interpretations. There are at least two ways to think of a generating function $\sum_{n=0}^{\infty} a_n x^n$. Either:

- As a formal power series with x acting as a place-holder. This is the ‘clothes-line’ interpretation (see the first page of Wilf *generatingfunctionology*), in which we regard the power-series as a convenient way to display the terms in our sequence.

- As a function of a real or complex variable x convergent when $|x| < r$, where r is the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$.

The formal point of view is often the most convenient because it allows us to define and manipulate power series by the operations on the previous page without worrying about convergence. From this point of view,

$$0! + 1!x + 2!x^2 + 3!x^3 + \cdots$$

is a perfectly respectable formal power series, even though it only converges when $x = 0$. The analytic point of view is useful for proving asymptotic results.\(^1\)

All the generating functions one normally encounters have positive radius of convergence, so in practice, the two approaches are equivalent. For a more careful discussion of these issues and the general definition of $1/F(x)$, see §2.1 of Wilf *generatingfunctionology*.

Two Examples of Generating Functions.

Example 7.2. What is the generating function for the number of ways to tile a $2 \times n$ path with bricks that are either 1×2 (□) or 2×1 (□)?

See the exercise on page 19 for how to extract a formula for the number of tilings from the generating function.

\(^1\)From the analytic perspective, the formula for the derivative $F'(x)$ on the previous page expresses a non-trivial theorem, namely that power series are differentiable functions, with derivatives given by term-by-term differentiation. A similar remark applies to the formulae for the sum $F(x) + G(x)$ and product $F(x)G(x)$.
In the second example we shall use products of power series to give a proof of Corollary 3.8 [corrected from Corollary 3.7, 5th November] that is logically independent of Part A. (We assume \(n = 3 \), to make the notation simpler, but once you understand this case, you should see that the general case is no harder.)

Example 7.3. Let \(k \in \mathbb{N}_0 \). Let \(b_k \) be the number of 3-tuples \((t_1, t_2, t_3)\) such that \(t_1, t_2, t_3 \in \mathbb{N}_0 \) and \(t_1 + t_2 + t_3 = k \). Then

\[
\sum_{k=0}^{\infty} b_k x^k = \frac{1}{(1 - x)^3}
\]

and so \(b_k = \binom{k+2}{2} \).

Useful Power Series. To complete Example 7.3 we needed a special case of the result below, which was proved on Question 4 of Sheet 3.

Theorem 7.4. If \(n \in \mathbb{N} \) then

\[
\frac{1}{(1 - x)^n} = \sum_{k=0}^{\infty} \binom{n+k-1}{k} x^k
\]

A more general result is stated below.

Theorem 7.5 (Binomial Theorem for general exponent). If \(\alpha \in \mathbb{R} \) then

\[
(1 + y)^\alpha = \sum_{k=0}^{\infty} \frac{\alpha(\alpha-1)\ldots(\alpha-(k-1))}{k!} y^k
\]

for all \(y \) such that \(|y| < 1 \).

Exercise: Let \(\alpha \in \mathbb{Z} \).

(i) Show that if \(\alpha \geq 0 \) then Theorem 7.4 agrees with the Binomial Theorem for integer exponents, proved in Theorem 3.6, and with Theorem 7.5.

(ii) Show that if \(\alpha < 0 \) then Theorem 7.4 agrees with Question 5 on Sheet 3. (Substitute \(-x\) for \(y \).)

We shall need the case \(\alpha = 1/2 \) of the general Binomial Theorem to find the Catalan Numbers in §9.

As we saw in Example 7.3, geometric series often arise in generating functions problem. So you need to get used to spotting either side of the identity \(1/(1 - rx) = \sum_{n=0}^{\infty} r^n x^n \). The exponential series, \(\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \), is also often useful.
We have seen that combinatorial problems often lead to recurrence relations. For example, in §2 we found the derangement numbers \(d_n\) by solving the recurrence relation in Theorem 2.4. See also Questions 5 and 7 on Sheet 1 for other examples.

Generating functions are very useful for solving recurrence relations. The method is clearly explained at the end of §1.2 of Wilf generating-functionology. Given a recurrence satisfied by the sequence \(a_0, a_1, a_2, \ldots\) proceed as follows:

(a) Use the recurrence to write down an equation satisfied by the generating function \(F(x) = \sum_{n=0}^{\infty} a_n x^n\);

(b) Solve the equation to get a closed form for the generating function;

(c) Use the closed form for the generating function to find a formula for the coefficients.

Step (a) will become routine with practice. To obtain terms like \(na_n-1\), try differentiating \(F(x)\). Powers of \(x\) will usually be needed to get everything to match up correctly. In Step (c) it is often necessary to use partial fractions.

Example 8.1. Solve \(a_{n+2} = 5a_{n+1} - 6a_n\) for \(n \in \mathbb{N}_0\) subject to the initial conditions \(a_0 = A, a_1 = B\).

Another way to proceed is to first rewrite the recurrence as \(a_n = 5a_{n-1} - 6a_{n-2}\) for \(n \geq 2\); then the shifts are done by multiplication by \(x\) and \(x^2\) rather than division.

The next theorem gives a general form for the partial fraction expressions needed to solve these recurrences. Recall that if

\[
f(x) = c_d x^d + c_{d-1} x^{d-1} + \cdots + c_0
\]

and \(c_d \neq 0\) then \(f\) is said to have degree \(d\); we write this as \(\deg f = d\). This theorem will not be proved in lectures: see instead Chapter 25 of Biggs Discrete Mathematics ([2] in the list of recommended reading).

Theorem 8.2. Let \(f(x)\) and \(g(x)\) be polynomials with \(\deg f < \deg g\). If

\[
g(x) = \alpha (x - 1/\beta_1)^{d_1} \cdots (x - 1/\beta_k)^{d_k}
\]

where \(\alpha, \beta_1, \beta_2, \ldots, \beta_k\) are distinct non-zero complex numbers and \(d_1, d_2, \ldots, d_k \in \mathbb{N}\), then there exist polynomials \(P_1, \ldots, P_k\) such that \(\deg P_i < d_i\) and

\[
\frac{f(x)}{g(x)} = \frac{P_1(1-\beta_1x)}{(1-\beta_1x)^{d_1}} + \cdots + \frac{P_k(1-\beta_kx)}{(1-\beta_kx)^{d_k}}
\]

where \(P_i(1-\beta_ix)\) is \(P_i\) evaluated at \(1 - \beta_i x\).
Theorem 7.4 can then be used to find the coefficient of \(x^n \) in \(f(x)/g(x) \). If \(d_i = 1 \) for all \(i \) then each polynomial \(P_i \) is just a constant \(B_i \in \mathbb{C} \) and Theorem 8.2 states that
\[
\frac{f(x)}{g(x)} = \frac{B_1}{1 - \beta_1 x} + \cdots + \frac{B_k}{1 - \beta_k x}.
\]
In this case the coefficient of \(x^n \) in \(f(x)/g(x) \) is \(B_1 \beta_1^n + \cdots + B_k \beta_k^n \).

When \(f(x)/g(x) \) is a generating function for a sequence \(a_0, a_1, a_2, \ldots \) it is usually easiest to use values of the sequence to determine any unknown constants.

Example 8.3. Will solve \(b_n = 3b_{n-1} - 4b_{n-3} \) for \(n \geq 3 \).

The next exercise completes the solution to Example 7.2.

Exercise: In Example 7.2 we saw that if \(a_n \) is the number of ways to tile a \(2 \times n \) path with bricks that are either \(1 \times 2 \) (□) or \(2 \times 1 \) (▌), then \(a_n = a_{n-1} + a_{n-2} \), and that the generating function
\[
F(x) = \sum_{n=0}^{\infty} a_n x^n
\]
satisfies \((1 - x - x^2)F(x) = 1\). Show that \(x^2 + x - 1 = (x - \phi)(x - \psi) \) where \(\phi = \frac{-1+\sqrt{5}}{2} \) and \(\psi = \frac{-1-\sqrt{5}}{2} \). Show that \(1/\phi = -\psi \) and \(1/\psi = -\phi \) and deduce from Theorem 8.2 that
\[
a_n = C\left(\frac{1 + \sqrt{5}}{2}\right)^n + D\left(\frac{1 - \sqrt{5}}{2}\right)^n
\]
for some \(C, D \in \mathbb{C} \). Find \(C \) and \(D \) by using the values \(a_0 = a_1 = 1 \) and solving a pair of simultaneous equations. (Or by some other method for finding partial fractions, if we prefer.) You should get
\[
C = \frac{1}{2} + \frac{1}{2\sqrt{5}} \quad \text{and} \quad D = \frac{1}{2} - \frac{1}{2\sqrt{5}}.
\]

In §2 we used the recurrence \(d_n = (n-1)(d_{n-1} + d_{n-2}) \) for the derangement numbers to prove Theorem 2.5 by induction on \(n \). This required us to already know the formula. Generating functions give a more systematic approach. (You are asked to fill in the details in this proof in Question 2 on Sheet 4.)

Theorem 8.4. Let \(p_n = d_n/n! \) be the probability that a permutation of the set \(\{1, 2, \ldots, n\} \), chosen uniformly at random, is a derangement. Then
\[
np_n = (n-1)p_{n-1} + p_{n-2}
\]
for all \(n \geq 2 \) and
\[
p_n = 1 - \frac{1}{1!} + \frac{1}{2!} - \cdots + \frac{(-1)^n}{n!}.
\]
The steps needed in this proof can readily be performed using computer algebra packages. Indeed, Mathematica implements a more refined version of our three step programme for solving recurrences in its RSolve command. (See the discussion in Appendix A of Wilf generatingfunctionology.)

It is usually possible to get some information about the asymptotic growth of a sequence from its generating function. For this, it is essential to use the analytic interpretation, and think of the generating function as a function defined on the complex numbers.

In the theorem below, a singularity of G is a point where G is undefined. (This is a bit loose, but will do for this overview.) For example, if $G(z) = 1/(1 - z)$ then the unique singularity of G is at $z = 1$.

Theorem 8.5. Let $F(z) = \sum_{n=0}^{\infty} a_n z^n$ be the generating function for the sequence a_0, a_1, a_2, \ldots. Let z_0 be the singularity of $F(z)$ of smallest modulus and let $R = |z_0|$. For any $\epsilon > 0$ we have

$$|a_n| \leq \left(\frac{1}{R} + \epsilon \right)^n$$

for all sufficiently large $n \in \mathbb{N}$.

See §2.4 in Wilf generatingfunctionology for a proof of Theorem 8.4. The proofs of this theorem, and Theorem 8.2, are non-examinable, but you might be asked to apply these results in simple cases.

Example 8.6. Let a_n be the number of tilings defined in Example 8.1. We saw that the generating function for a_n is $F(x) = 1/(1 - x - x^2)$. The singularity of $F(x)$ of least modulus is at $z_0 = \frac{-1 + \sqrt{5}}{2}$. Since $1/z_0 = 1/2 + \sqrt{5}/2$, it follows from Theorem 8.5 that given any $\epsilon > 0$, we have

$$a_n \leq \left(\frac{1 + \sqrt{5}}{2} + \epsilon \right)^n$$

for all sufficiently large $n \in \mathbb{N}$. From the exact formula for a_n, it is possible to get a more precise result: a_n is always the closest integer to $C \left(\frac{1 + \sqrt{5}}{2} \right)^n$, where C is as defined in the exercise after Example 8.3.

If $F(z)$ has no singularities then the conclusion of Theorem 8.5 holds for any $R \in \mathbb{R}_{\geq 0}$.

Example 8.7. Let $G(z) = \sum_{n=0}^{\infty} p_n z^n$ be the generating function for the proportion of permutations of $\{1, 2, \ldots, n\}$ that are derangements. We saw that

$$G(z) = \frac{\exp(-z)}{1 - z}.$$
A direct application of Theorem 8.5 gives only that $p_n \leq 1/(1 - \epsilon)^n$ for all sufficiently large n. (Why is this uninteresting?) In such cases, it is a good idea to take out the part of the function that causes $G(z)$ to blow up. Define $g(z)$ by

$$G(z) = \frac{e^{-1}}{1 - z} + g(z).$$

Then we can extend g to a function defined on all of C. Using the extension to Theorem 8.5 just mentioned, it follows that $|p_n - e^{-1}| < 1/10^n$ for all sufficiently large n. (Here 10 is just one possible choice of R.)

Note that we got this result in Example 8.6 without using the exact formula for the p_n. This is important because in trickier problems we might know the generating function, but not have an exact formula for its coefficients.

9. Convolutions and the Catalan Numbers

The problems in this section fit into the following pattern: suppose that A, B and C are classes of combinatorial objects and that each object has a size in N_0. Write $\text{size}(X)$ for the size of X. Suppose that there are finitely many objects of any given size.

Let a_n, b_n and c_n denote the number of objects of size n in A, B, C, respectively.

Theorem 9.1. Suppose there is a bijection between objects $Z \in C$ of size n and pairs of objects (X, Y) such that $X \in A$ and $Y \in B$ and $\text{size}(X) + \text{size}(Y) = n$. Then

$$\sum_{n=0}^{\infty} c_n x^n = \left(\sum_{n=0}^{\infty} a_n x^n \right) \left(\sum_{n=0}^{\infty} b_n x^n \right)$$

The critical step in the proof is to show that

$$c_n = a_0 b_n + a_1 b_{n-1} + \cdots + a_{n-1} b_1 + a_n b_0 = \sum_{m=0}^{n} a_m b_{n-m}.$$

If sequences (a_n), (b_n) and (c_n) satisfy this relation then we say that (c_n) is the convolution of (a_n) and (b_n).

Example 9.2. The grocer sells indistinguishable apples and bananas in unlimited quantities.

(a) What is the generating function for the number of ways to buy n pieces of fruit if bananas are only sold in bunches of three?

(b) How would your answer to (a) change if dates are also sold?

(c) What if dates are unavailable, but apples come in two varieties?
It would also be possible to do (b) directly, by using a more general version of Theorem 9.1 where the objects are decomposed into three (or more) subobjects.

Example 9.3. Lemma 6.6 on rook placements states that if C is a board that A and B where no square in A lies in the same row or column as a square in B has a very short proof using Theorem 9.1.

Exercise: Show that splitting a non-attacking placement of rooks on C into the placements on the sub-boards A and B gives a bijection satisfying the hypotheses of Theorem 9.1. (Define the size of a rook placement and the sets A, B, C.) Hence prove Lemma 6.6.

The canonical application of convolutions is to the Catalan numbers. These numbers have many different combinatorial interpretations; we shall define them using rooted binary trees drawn in the plane.

Definition 9.4. A rooted binary tree is either empty, or consists of a root vertex together with a pair of rooted binary trees: a left subtree and a right subtree. The Catalan number C_n is the number of rooted binary trees on n vertices.

For example, there are five rooted binary trees with three vertices, so $C_3 = 5$. Three of them are shown below, with the root vertex circled. The other two can be obtained by reflecting the two asymmetric diagrams.

\[Catalan number C_n \]

\[\begin{array}{c}
\quad \\
\quad \\
\quad \\
\quad \\
\quad \\
\end{array} \]

Theorem 9.5. If $n \in \mathbb{N}_0$ then $C_n = \frac{1}{n+1} \binom{2n}{n}$.

We shall prove Theorem 9.6 using our usual three-step programme. Let $F(x) = \sum_{n=0}^{\infty} C_n x^n$ be the generating function for the Catalan numbers. In outline the steps are:

(a) Use Theorem 9.1 (or an ad-hoc argument, see Question 4 on Sheet 5) to show that $F(x)$ satisfies the quadratic equation

\[xF(x)^2 = F(x) - 1. \]

(b) Solve the quadratic equation to get the closed form

\[xF(x) = \frac{1 - \sqrt{1 - 4x}}{2}. \]
(c) Use the general version of the Binomial Theorem in Theorem 7.5 to deduce the formula for C_n.

The Catalan Numbers have a vast number of combinatorial interpretations. See Question 4 on Sheet 6 for one more. A further 64 (and counting) are given in Exercise 6.19 in Stanley *Enumerative Combinatorics II*, CUP 2001.

Exercise: Explain the unusual structure of the decimal expansion

\[\frac{1}{2} - \sqrt{\frac{1}{4} - \frac{1}{1000}} = 0.001 \ 001 \ 002 \ 005 \ 014 \ 042 \ldots \]

As a further application of convolutions we will give yet another proof (probably the shortest yet!) of the formula for the derangement numbers d_n.

Lemma 9.6. If $n \in \mathbb{N}_0$ then

\[\sum_{k=0}^{n} \binom{n}{k} d_{n-k} = n! \]

The sum in the lemma becomes a convolution after a small amount of rearranging.

Theorem 9.7. If $G(x) = \sum_{n=0}^{\infty} d_n x^n / n!$ then

\[G(x) \exp(x) = \frac{1}{1 - x} \]

It is now easy to deduce the formula for d_n; the argument needed is the same as the final step in the proof of Theorem 8.4. The generating function G used above is an example of an exponential generating function.

10. **Partitions**

Definition 10.1. A partition of a number $n \in \mathbb{N}_0$ is a sequence of natural numbers $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ such that

(i) $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k \geq 1$.
(ii) $\lambda_1 + \lambda_2 + \cdots + \lambda_k = n$.

The entries in a partition λ are called the parts of λ. Let $p(n)$ be the number of partitions of n.

By this definition the unique partition of 0 is the empty partition \emptyset, and so $p(0) = 1$. The sequence of partition numbers begins

1, 1, 2, 3, 5, 7, 11, 15, \ldots
Example 10.2. Let a_n be the number of ways to pay for an item costing n pence using only 2p and 5p coins. Equivalently, a_n is the number of partitions of n into parts of size 2 and size 5. Will find the generating function for a_n.

The next theorem can be proved using a generalized version of Theorem 9.1 in which a partition of n decomposes into subobjects consisting of its parts of size 1, its parts of size 2, and so on.

Instead we will give a direct proof that repeats the main idea in Theorem 9.1.

Theorem 10.3. The generating function for $p(n)$ is

$$
\sum_{n=0}^{\infty} p(n)x^n = \frac{1}{(1-x)(1-x^2)(1-x^3)\ldots}.
$$

It is often useful to represent partitions by Young diagrams. The Young diagram of $(\lambda_1, \ldots, \lambda_k)$ has k rows of boxes, with λ_i boxes in row i. For example, the Young diagram of $(6,3,3,1)$ is

```
+---+---+---+---+---+
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
```

The next theorem has a very simple proof using Young diagrams. (See also Question 9 on Sheet 5.)

Theorem 10.4. Let $n \in \mathbb{N}$ and let $k \leq n$. The number of partitions of n into parts of size \(\leq k \) is equal to the number of partitions of n with at most k parts.

While there are bijective proofs of the next theorem using Young diagrams, it is much easier to prove it using generating functions. Note how we adapt the proof of Theorem 10.3 to get the generating functions for two special types of partitions.

Theorem 10.5. Let $n \in \mathbb{N}$. The number of partitions of n with at most one part of any given size is equal to the number of partitions of n into odd parts.

For a generalization of this result see Question 9 on Sheet 6.

There are many deep combinatorial and number-theoretic properties of the partition numbers. For example, in 1919 Ramanujan used analytic arguments with generating functions to prove that

$$p(4), p(9), p(14), p(19), \ldots, p(5m + 4), \ldots$$
are all divisible by 5. In 1944 Freeman Dyson found a bijective proof of this result while still an undergraduate. A number of deep generalizations of Ramanujan’s congruences have since been proved, most recently by Mahlburg in 2005.

Many easily stated problems remain open: for example, is \(p(n) \) even about half the time?

The problem of finding an estimate for the size of the partition number \(p(n) \) was solved in 1919 by Hardy and Ramanujan as the original application of the circle method. The crudest version of their result is

\[
p(n) \sim \frac{e^{c \sqrt{n}}}{4n \sqrt{3}}
\]

where \(c = 2 \sqrt{\frac{\pi}{6}} \), and \(\sim \) means that the ratio of the two sides tends to 1 as \(n \to \infty \). For a more elementary result, that helps to explain the constant \(c \) in the Hardy–Ramanujan theorem, see Question 10 on Sheet 6. It is an open problem to find an entirely combinatorial proof that there is a constant \(A \) such that \(p(n) < A \sqrt{n} \) for all \(n \in \mathbb{N} \).
Part C: Ramsey Theory

11. Introduction to Ramsey Theory

A typical result in Ramsey Theory says that any sufficiently large combinatorial structure always contain a substructure with some regular pattern. For example, any infinite sequence of real numbers contains either an increasing or a decreasing subsequence (the Bolzano–Weierstrass theorem). The finite version of this result will appear on Problem Sheet 7.

Most of the results in Ramsey Theory are naturally stated in terms of graphs. In this course we will concentrate on the finite case.

Definition 11.1. A graph consists of a set V of vertices together with a set E of 2-subsets of V called edges. The complete graph with vertex set V is the graph whose edge set is all 2-subsets of V.

For example, the complete graph on $V = \{1, 2, 3, 4, 5\}$ is drawn below. Its edge set is $\{\{1, 2\}, \{1, 3\}, \ldots, \{4, 5\}\}$.

We denote the complete graph on $\{1, 2, \ldots, n\}$ by K_n.

Definition 11.2. Let $c, n \in \mathbb{N}$. A c-colouring of the complete graph K_n is a function from the edge set of K_n to $\{1, 2, \ldots, c\}$. If S is an s-subset of the vertices of K_n such that all the edges between vertices in S have the same colour, then we say that S is a monochromatic K_s.

A monochromatic K_3 is usually said to be a monochromatic triangle. Note that it is the edges of the complete graph K_n that are coloured, not the vertices.

In practice we shall specify graphs and colours rather less formally. It seems to be a standard convention that colour 1 is red and colour 2 is blue. In these notes, red will be indicated by solid lines and blue by dashed lines.
Exercise: Show that in the colouring of K_6 below there is a unique blue (dashed) K_4 and exactly two red (solid) triangles. Find all the blue triangles.

![Graph with blue and red triangles](image)

Example 11.3. In any red-blue colouring of the edges of K_6 there is either a red triangle or a blue triangle.

Definition 11.4. Given $s, t \in \mathbb{N}$, with $s, t \geq 2$, we define the Ramsey number $R(s, t)$ to be the smallest n (if one exists) such that in any red-blue colouring of the complete graph on n vertices, there is either a red K_s or a blue K_t.

For example, we know from Example 11.3 that $R(3, 3) \leq 6$.

Lemma 11.5. Let $s, t \in \mathbb{N}$ with $s, t \geq 2$. Let $N \in \mathbb{N}$. Assume that $R(s, t)$ exists.

(i) If $N \geq R(s, t)$ then in any red-blue colouring of K_N there is either a red K_s or a blue K_t.

(ii) If $N < R(s, t)$ there exist colourings of K_N with no red K_s or blue K_t.

By Question 2 on Sheet 6 there is a red-blue colouring of K_5 with no monochromatic triangle. Hence, Lemma 11.5(i), $R(3, 3) > 5$. It now follows from Example 11.3 that $R(3, 3) = 6$.

Exercise: Let $s, t \in \mathbb{N}$ with $s, t \geq 2$. Show that $R(s, t) = R(t, s)$.

We will prove in Theorem 12.3 that all the two-colour Ramsey numbers $R(s, t)$ exist, and that $R(s, t) \leq \binom{s+t-2}{s-1}$. (Please do not assume this result when doing Sheet 6.)

One family of Ramsey numbers is easily found.

Lemma 11.6. If $s \geq 2$ then $R(s, 2) = R(2, s) = s$.

The main idea need to prove Theorem 12.3 appears in the next example.

Example 11.7. In any two-colouring of K_{10} there is either a red K_3 or a blue K_4. Hence $R(3,4) \leq 10$.

This bound can be improved using a result from graph theory. Recall that if v is a vertex of a graph G then the **degree** of v is the number of edges of G that meet v.

Lemma 11.8 (Hand-Shaking Lemma). Let G be a graph with vertex set \{1, 2, ..., n\} and exactly e edges. If d_i is the degree of vertex i then

$$2e = d_1 + d_2 + \cdots + d_n.$$

Theorem 11.9. $R(3,4) = 9$.

The proof of the final theorem is left to you: see Question 1 on Sheet 7.

Theorem 11.10. $R(4,4) \leq 18$.

There is a red-blue colouring of K_{17} with no red K_4 or blue K_4 so $R(4,4) = 18$. A construction is given in Question 8 of Sheet 7.

It is a very hard problem to find the exact values of Ramsey numbers for larger s and t. For a survey of other known results on $R(s,t)$ for small s and t, see Stanislaw Radziszowski, *Small Ramsey Numbers*, Electronic Journal of Combinatorics, available at www.combinatorics.org/Surveys. For example, it was shown in 1965 that $R(4,5) = 25$, but all that is known about $R(5,5)$ is that it lies between 43 and 49. It is probable that no-one will ever know the exact value of $R(6,6)$.

12. **Ramsey’s Theorem**

Since finding the Ramsey numbers $R(s,t)$ exactly is so difficult, we settle for proving that they exist, by proving an upper bound for $R(s,t)$. We work by induction on $s + t$. The following lemma gives the critical inductive step.

Lemma 12.1. Let $s,t \in \mathbb{N}$ with $s,t \geq 3$. If $R(s-1,t)$ and $R(s,t-1)$ exist then $R(s,t)$ exists and

$$R(s,t) \leq R(s-1,t) + R(s,t-1).$$

Theorem 12.2. For any $s,t \in \mathbb{N}$ with $s,t \geq 2$, the Ramsey number $R(s,t)$ exists and

$$R(s,t) \leq \binom{s + t - 2}{s - 1}.$$
We now get a bound on the diagonal Ramsey numbers $R(s,s)$. Note that because of the use of induction on $s + t$, we could not have obtained this result without first bounding all the Ramsey numbers $R(s,t)$.

Corollary 12.3. If $s \in \mathbb{N}$ and $s \geq 2$ then

$$R(s,s) \leq \left(\frac{2s - 2}{s - 1}\right) \leq 4^{s-1}.$$

One version of Stirling’s Formula states that if $m \in \mathbb{N}$ then

$$\sqrt{2\pi m} \left(\frac{m}{e}\right)^m \leq m! \leq \sqrt{2\pi m} \left(\frac{m}{e}\right)^m e^{1/12m}.$$

These bounds lead to the asymptotically stronger result that

$$R(s,s) \leq \frac{4^s}{\sqrt{s}} \text{ for all } s \in \mathbb{N}.$$

Corollary 12.3 was proved by Erdős and Szekeres in 1935. We have followed their proof above. The strongest improvement known to date is due to David Conlon, who showed in 2004 that, up to a rather technical error term, $R(s,s) \leq 4^s/s$. In 1947 Erdős proved the lower bound $R(s,s) \geq 2^{(s-1)/2}$. His argument becomes clearest when stated in probabilistic language: we will see it in Part D of the course.

To end this introduction to Ramsey Theory we give some related results.

Pigeonhole Principle. The Pigeonhole Principle states that if n pigeons are put into $n-1$ holes, then some hole must contain two or more pigeons. See Question 8 on Sheet 6 for some applications of the Pigeonhole Principle.

In Examples 11.3 and 11.6, and Lemma 12.1, we used a similar result: if $r + s - 1$ objects (in these cases, edges) are coloured red and blue, then either there are r red objects, or s blue objects. This is probably the simplest result that has some of the general flavour of Ramsey theory.

Multiple colours. It is possible to generalize all the results proved so far to three or more colours.

Theorem 12.4. There exists $n \in \mathbb{N}$ such that if the edges of K_n are coloured red, blue and yellow then there exists a monochromatic triangle.

There are (at least) two ways to prove Theorem 12.4. The first adapts our usual argument, looking at the edges coming out of vertex 1 and concentrating on those vertices joined by edges of the majority colour. The second uses a neat trick to reduce to the two-colour case.
Part D: Probabilistic Methods

13. Revision of Discrete Probability

This section is intended to remind you of the definitions and language of discrete probability theory, on the assumption that you have seen most of the ideas before. These notes are based on earlier notes by Dr Barnea and Dr Gerke; of course any errors are my responsibility.

For further background see any basic textbook on probability, for example Sheldon Ross, *A First Course in Probability*, Prentice Hall 2001.

Definition 13.1.

- A probability measure p on a finite set Ω assigns a real number p_ω to each $\omega \in \Omega$ so that $0 \leq p_\omega \leq 1$ for each ω and
 $$\sum_{\omega \in \Omega} p_\omega = 1.$$
 We say that p_ω is the probability of ω.
- A probability space is a finite set Ω equipped with a probability measure. The elements of a probability space are sometimes called outcomes.
- An event is a subset of Ω.
- The probability of an event $A \subseteq \Omega$, denoted $P[A]$ is the sum of the probability of the outcomes in A; that is
 $$P[A] = \sum_{\omega \in A} p_\omega.$$
 It follows at once from this definition that $P[\{\omega\}] = p_\omega$ for each $\omega \in \Omega$. We also have $P[\emptyset] = 0$ and $P[\Omega] = 1$.

Example 13.2

(1) To model a throw of a single unbiased die, we take
 $$\Omega = \{1, 2, 3, 4, 5, 6\}$$
 and put $p_\omega = 1/6$ for each outcome $\omega \in \Omega$. The event that we throw an even number is $A = \{2, 4, 6\}$ and as expected, $P[A] = p_2 + p_4 + p_6 = 1/6 + 1/6 + 1/6 = 1/2$.

(2) To model a throw of a pair of dice we could take
 $$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$
 and give each element of Ω probability $1/36$, so $p_{(i,j)} = 1/36$ for all $(i, j) \in \Omega$. Alternatively, if we know we only care about the sum of the two dice, we could take $\Omega = \{2, 3, \ldots, 12\}$ with $p_2 = 1/36$, $p_3 = 2/36$, \ldots, $p_6 = 5/36$, $p_7 = 6/36$, $p_8 = 5/36$, \ldots, $p_{12} = 1/36$. The former is natural and more flexible.
(3) A suitable probability space for three flips of a coin is
\[\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \]
where \(H\) stands for heads and \(T\) for tails, and each outcome has probability \(1/8\). To allow for a biased coin we fix \(0 \leq q \leq 1\) and instead give an outcome with exactly \(k\) heads probability \(q^k(1-q)^{3-k}\).

(4) Let \(n \in \mathbb{N}\) and let \(\Omega\) be the set of all permutations of \(\{1, 2, \ldots, n\}\). Set \(p_\sigma = 1/n!\) for each permutation \(\sigma \in \Omega\). This gives a suitable setup for Theorem 2.6. Later we shall use the language of probability theory to give a shorter proof of part (ii) of this theorem.

It will often be helpful to specify events (i.e. subsets of \(\Omega\)) a little informally. For example, in (3) above we might write \(P[\text{at least two heads}]\), rather than \(P[\{HHT, HTH, THH, HHH\}]\).

UNIONS, INTERSECTIONS AND COMPLEMENTS. Let \(\Omega\) be a probability space. If \(A, B \subseteq \Omega\) then
\[
P[A \cup B] = \sum_{\omega \in A \cup B} p_\omega = \sum_{\omega \in A} p_\omega + \sum_{\omega \in B \setminus A} p_\omega - \sum_{\omega \in A \cap B} p_\omega = P[A] + P[B] - P[A \cap B].
\]
In particular, if \(A\) and \(B\) are disjoint, i.e. \(A \cap B = \emptyset\), then \(P[A \cup B] = P[A] + P[B]\). The complement of an event \(A \subseteq \Omega\) is defined to be \(\bar{A} = \{\omega \in \Omega : \omega \notin A\}\).

Since
\[1 = P[\Omega] = P[A \cup \bar{A}] = P[A] + P[\bar{A}]\]
we have \(P[\bar{A}] = 1 - P[A]\).

Exercise: Show that if \(A_1, \ldots, A_n \subseteq \Omega\) then
\[P[A_1 \cup \cdots \cup A_n] \leq P[A_1] + \cdots + P[A_n].\]

CONDITION PROBABILITY AND INDEPENDENCE.

Definition 13.3. Let \(\Omega\) be a probability space, and let \(A, B \subseteq \Omega\) be events.

- If \(P[B] \neq 0\) then we define the conditional probability of \(A\) given \(B\) by
 \[P[A|B] = \frac{P[A \cap B]}{P[B]}\]
- The events \(A, B\) are said to be independent if \(P[A \cap B] = P[A]P[B]\).
Suppose that each element of Ω has equal probability p. Then

$$P[A|B] = \frac{|A \cap B|}{|B|} = \frac{|A \cap B|}{p |B|}$$

is the proportion of elements of B that also lie in A; informally, if we know that the event B has occurred, then the probability that A has also occurred is $P[A|B]$.

Exercise: Show that if A and B are events in a probability space such that $P[A], P[B] \neq 0$, then $P[A|B] = P[A]$ if and only if A and B are independent.

Conditional probability can be quite subtle.

Exercise: Let $\Omega = \{HH, HT, TH, TT\}$ be the probability space for two flips of a fair coin, so each outcome has probability $\frac{1}{4}$. Let A be the event that both flips are heads, and let B be the event that at least one flip is a head. Write A and B as subsets of Ω and show that $P[A|B] = \frac{1}{3}$.

Example 13.4 (The Monty Hall Problem). On a game show you are offered the choice of three doors. Behind one door is a car, and behind the other two are goats. You pick a door and then the host, who knows where the car is, opens another door to reveal a goat. You may then either open your original door, or change to the remaining unopened door. Assuming you want the car, should you change?

Most people find the answer to the Monty Hall problem a little surprising. The Sleeping Beauty Problem, stated below, is even more controversial.

Example 13.5. Beauty is told that if a coin lands heads she will be woken on Monday and Tuesday mornings, but after being woken on Monday she will be given an amnesia inducing drug, so that she will have no memory of what happened that day. If the coin lands tails she will only be woken on Tuesday morning. At no point in the experiment will Beauty be told what day it is. Imagine that you are Beauty and are awoken as part of the experiment and asked for your credence that the coin landed heads. What is your answer?

The related statistical issue in the next example is also widely misunderstood.

Example 13.6. Suppose that one in every 1000 people has disease X. There is a new test for X that will always identify the disease in anyone who has it. There is, unfortunately, a tiny probability of 1/250 that the test will falsely report that a healthy person has the disease. What is the probability that a person who tests positive for X actually has the disease?
Random Variables.

Definition 13.7. Let Ω be a probability space. A random variable on Ω is a function $X : \Omega \to \mathbb{R}$.

Definition 13.8. If $X, Y : \Omega \to \mathbb{R}$ are random variables then we say that X and Y are independent if for all $x, y \in \mathbb{R}$ the events

$$A = \{ \omega \in \Omega : X(\omega) = x \} \quad \text{and} \quad B = \{ \omega \in \Omega : Y(\omega) = y \}$$

are independent.

The following shorthand notation is very useful. If $X : \Omega \to \mathbb{R}$ is a random variable, then ' $X = x$ ' is the event $\{ \omega \in \Omega : X(\omega) = x \}$. Similarly ' $X \geq x$ ' is the event $\{ \omega \in \Omega : X(\omega) \geq x \}$. We mainly use this shorthand in probabilities, so for instance

$$P[X = x] = P[\{ \omega \in \Omega : X(\omega) = x \}] .$$

Exercise: Show that $X, Y : \Omega \to \mathbb{R}$ are independent if and only if

$$P[(X = x) \cap (Y = y)] = P[X = x]P[Y = y]$$

for all $x, y \in \mathbb{R}$. (This is just a trivial restatement of the definition.)

Example 13.9. Let $\Omega = \{HH, HT, TH, TT\}$ be the probability space for two flips of a fair coin. Define $X : \Omega \to \mathbb{R}$ to be 1 if the first coin is heads, and zero otherwise. So

$$X(HH) = X(HT) = 1 \quad \text{and} \quad X(TH) = X(TT) = 0 .$$

Define $Y : \Omega \to \mathbb{R}$ similarly for the second coin.

(i) The random variables X and Y are independent.

(ii) Let Z be 1 if exactly one flip is heads, and zero otherwise. Then X and Z are independent, and Y and Z are independent.

(iii) There exist $x, y, z \in \{0, 1\}$ such that

$$P[X = x, Y = y, Z = z] \neq P[X = x]P[Y = y]P[Z = z] .$$

This shows that one has to be quite careful when defining independence for a family of random variables. (Except in the Lovász Local Lemma, we will be able to manage with the pairwise independence defined above.)

Given random variables $X, Y : \Omega \to \mathbb{R}$ we can define new random variables by taking functions such as $X + Y, aX$ for $a \in \mathbb{R}$ and XY. For
instance \((X + Y)(\omega) = X(\omega) + Y(\omega)\), and so on. Notice that if \(z \in \mathbb{R}\) then
\[
\{\omega \in \Omega : (X + Y)(\omega) = z\} = \bigcup_{x + y = z} \{\omega \in \Omega : X(\omega) = x, Y(\omega) = y\}.
\]
The events above are disjoint for different \(x, y\), so we get
\[
P[X + Y = z] = \sum_{x + y = z} P[(X = x) \cap (Y = y)].
\]
If \(X\) and \(Y\) are independent then
\[
P[(X = x) \cap (Y = y)] = P[X = x]P[Y = y]
\]
and so
\[
P[X + Y = z] = \sum_{x + y = z} P[X = x]P[Y = y].
\]
(Note that all of these sums have only finitely many non-zero sum-mands, so they are well-defined.)

Exercise: Show similarly that if \(X, Y : \Omega \to \mathbb{R}\) are independent random variables then
\[
P[XY = z] = \sum_{xy = z} P[X = x]P[Y = y].
\]

Expectation and Linearity.

Definition 13.10. Let \(\Omega\) be a probability space with probability measure \(p\). The **expectation** \(E[X]\) of a random variable \(X : \Omega \to \mathbb{R}\) is defined to be
\[
E[X] = \sum_{\omega \in \Omega} X(\omega)p_\omega.
\]

Intuitively, the expectation of \(X\) is the average value of \(X\) on elements of \(\Omega\), if we choose \(\omega \in \Omega\) with probability \(p_\omega\). We have
\[
E[X] = \sum_{\omega \in \Omega} X(\omega)p_\omega = \sum_{x \in \mathbb{R}} \sum_{\omega : X(\omega) = x} x p_\omega = \sum_{x \in \mathbb{R}} x P[X = x].
\]

A critical property of expectation is that it is linear. Note that we do not need to assume independence in this lemma.

Lemma 13.11. Let \(\Omega\) be a probability space. If \(X_1, X_2, \ldots, X_k : \Omega \to \mathbb{R}\) are random variables then
\[
E[a_1X_1 + a_2X_2 + \cdots + a_kX_k] = a_1E[X_1] + a_2E[X_2] + \cdots + a_kE[X_k]
\]
for any \(a_1, a_2, \ldots, a_k \in \mathbb{R}\).
Proof. By definition the left-hand side is
\[
\sum_{\omega \in \Omega} p_\omega (a_1 X_1 + \cdots + a_k X_k)(\omega) = \sum_{\omega \in \Omega} p_\omega (a_1 X_1(\omega) + \cdots + a_k X_k(\omega)) \\
= a_1 \sum_{\omega \in \Omega} p_\omega X_1(\omega) + \cdots + a_k \sum_{\omega \in \Omega} X_k(\omega)
\]
which is the right-hand side. \(\square\)

When \(X, Y : \Omega \to \mathbb{R}\) are independent random variables, there is a very useful formula for \(E[XY]\).

Lemma 13.12. If \(X, Y : \Omega \to \mathbb{R}\) are independent random variables then \(E[XY] = E[X]E[Y]\).

Exercise: Prove Lemma 13.11 by arguing that
\[
E[XY] = \sum_{z \in \mathbb{R}} z P[XY = z] = \sum_{z \in \mathbb{R}} z \sum_{x \in \mathbb{R}} \sum_{y \in \mathbb{R}} P[(X = x) \cap (Y = y)]
\]
and using independence.

Variance.

Definition 13.13. Let \(\Omega\) be a probability space. The variance \(\text{Var}[X]\) of a random variable \(X : \Omega \to \mathbb{R}\) is defined to be
\[
\text{Var}[X] = E[(X - E[X])^2].
\]
The variance measures how much \(X\) can be expected to depart from its mean value \(E[X]\). So it is a measure of the ‘spread’ of \(X\).

It is tempting to define the variance as \(E[X - E[X]]\), but by linearity this expectation is \(E[X] - E[X] = 0\). One might also consider the quantity \(E[|X - E[X]|]\), but the absolute value turns out to be hard to work with. The definition above works well in practice.

Lemma 13.14. Let \(\Omega\) be a probability space.
(i) If \(X : \Omega \to \mathbb{R}\) is a random variable then
\[
\text{Var}[X] = E[X^2] - (E[X])^2.
\]
(ii) If \(X, Y : \Omega \to \mathbb{R}\) are independent random variables then
\[
\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y].
\]

Exercise: Show that (ii) can fail if \(X\) and \(Y\) are not independent. [Hint: usually a random variable is not independent of itself.]
14. INTRODUCTION TO PROBABILISTIC METHODS

In this section we shall solve some problems involving permutations (including, yet again, the derangements problem) using probabilistic arguments. We shall use the language of probability spaces and random variables recalled in §13. It will be particularly important for you to ask questions if the use of anything from this section is unclear.

Throughout this section we fix $n \in \mathbb{N}$ and let Ω be the set of all permutations of the set $\{1, 2, \ldots, n\}$. We define a probability measure $q : \Omega \to \mathbb{R}$ by $q_\sigma = 1/n!$ for each permutation σ of $\{1, 2, \ldots, n\}$. This makes Ω into a probability space in which all the permutations have equal probability. We say that the permutations are chosen uniformly at random.

Recall that, in probabilistic language, events are subsets of Ω.

Exercise: Let $x \in \{1, 2, \ldots, n\}$ and let $A_x = \{\sigma \in \Omega : \sigma(x) = x\}$. Then A_x is the event that a permutation fixes x. What is the probability of A_x?

Building on this we can give a better proof of Theorem 2.6(ii).

Theorem 14.1. Let $F : \Omega \to \mathbb{N}_0$ be defined so that $F(\sigma)$ is the number of fixed points of the permutation $\sigma \in \Omega$. Then $\mathbb{E}[F] = 1$.

To give a more general result we need cycles and the cycle decomposition of a permutation.

Definition 14.2. A permutation σ of $\{1, 2, \ldots, n\}$ acts as a k-cycle on a k-subset $S \subseteq \{1, 2, \ldots, n\}$ if S has distinct elements x_1, x_2, \ldots, x_k such that

$$\sigma(x_1) = x_2, \sigma(x_2) = x_3, \ldots, \sigma(x_k) = x_1.$$

If $\sigma(y) = y$ for all $y \in \{1, 2, \ldots, n\}$ such that $y \notin S$ then we say that σ is a k-cycle, and write

$$\sigma = (x_1, x_2, \ldots, x_k).$$

Note that there are k different ways to write a k-cycle. For example, the 3-cycle $(1, 2, 3)$ can also be written as $(2, 3, 1)$ and $(3, 1, 2)$.

Definition 14.3. We say that cycles (x_1, x_2, \ldots, x_k) and (y_1, y_2, \ldots, y_l) are disjoint if

$$\{x_1, x_2, \ldots, x_k\} \cap \{y_1, y_2, \ldots, y_l\} = \emptyset.$$

Lemma 14.4. A permutation σ of $\{1, 2, \ldots, n\}$ can be written as a composition of disjoint cycles. The cycles in this composition are uniquely determined by σ.

The proof of Lemma 14.4 is non-examinable and will not be given in full in lectures. What is more important is that you can apply the result. We shall use it below in Theorem 14.5

Exercise: Write the permutation of \{1, 2, 3, 4, 5, 6\} defined by \(\sigma(1) = 3, \sigma(2) = 4, \sigma(3) = 1, \sigma(4) = 6, \sigma(5) = 5, \sigma(6) = 2\) as a composition of disjoint cycles.

Given a permutation \(\sigma\) of \{1, 2, \ldots, n\} and \(k \in \mathbb{N}\), we can ask: what is the probability that a given \(x \in \{1, 2, \ldots, n\}\) lies in a \(k\)-cycle of \(\sigma\)? The first exercise in this section shows that the probability that \(x\) lies in a 1-cycle is \(1/n\).

Exercise: Check directly that the probability that 1 lies in a 2-cycle of a permutation of \{1, 2, 3, 4\} selected uniformly at random is \(1/4\).

Theorem 14.5. Let \(1 \leq k \leq n\) and let \(x \in \{1, 2, \ldots, n\}\). The probability that \(x\) lies in a \(k\)-cycle of a permutation of \{1, 2, \ldots, n\} chosen uniformly at random is \(1/n\).

Theorem 14.6. Let \(p_n\) be the probability that a permutation of \{1, 2, \ldots, n\} chosen uniformly at random is a derangement. Then

\[
p_n = \frac{p_{n-2}}{n} + \frac{p_{n-3}}{n} + \cdots + \frac{p_1}{n} + \frac{p_0}{n}.
\]

It may be helpful to compare this result with Lemma 9.7: there we get a recurrence by considering fixed points; here we get a recurrence by considering cycles.

We now use generating functions to recover the usual formula for \(p_n\).

Corollary 14.7. For all \(n \in \mathbb{N}_0\),

\[
p_n = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^n}{n!}.
\]

We can also generalize Theorem 14.1.

Theorem 14.8. Let \(C_k : \Omega \to \mathbb{R}\) be the random variable defined so that \(C_k(\sigma)\) is the number of \(k\)-cycles in the permutation \(\sigma\) of \{1, 2, \ldots, n\}. Then

\[
E[C_k] = 1/k \text{ for all } k \text{ such that } 1 \leq k \leq n.
\]

Note that if \(k > n/2\) then a permutation can have at most one \(k\)-cycle. So in these cases, \(E[C_k]\) is the probability that a permutation of \{1, 2, \ldots, n\}, chosen uniformly at random, has a \(k\)-cycle.
15. RAMSEY NUMBERS AND THE FIRST MOMENT METHOD

The grandly named ‘First Moment Method’ is nothing more than the following simple observation.

Lemma 15.1 (First Moment Method). Let Ω be a probability space and let $M : \Omega \to \mathbb{N}_0$ be a random variable taking values in \mathbb{N}_0. If $E[M] = x$ then

(i) $P[M \geq x] > 0$, so there exists $\omega \in \Omega$ such that $M(\omega) \geq x$.

(ii) $P[M \leq x] > 0$, so there exists $\omega' \in \Omega$ such that $M(\omega') \leq x$.

Exercise: Check that the lemma holds in the case when

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

models the throw of two fair dice (see Example 13.2(2)) and if $(\alpha, \beta) \in \Omega$ then $M(\alpha, \beta) = \alpha + \beta$.

The kth moment of a random variable X is defined to be $E[X^k]$. Sometimes stronger results can be obtained by considering higher moments. We shall concentrate on first moments, where the power of the method is closely related to the linearity property of expectation (see Lemma 13.11).

Our applications will come from graph theory.

Definition 15.2. Let G be a graph with vertex set V. A cut (S, T) of G is a partition of V into subsets A and B. The capacity of a cut (S, T) is the number of edges of G that meet both S and T.

Note that $T = V \setminus S$ and $S = V \setminus T$, so a cut can be specified by giving either of the sets making up the partition. The diagram below shows the cut in the complete graph on $\{1, 2, 3, 4, 5\}$ where $S = \{1, 2, 3\}$ and $T = \{4, 5\}$. The capacity of the cut is 6, corresponding to the 6 edges $\{x, y\}$ with $x \in S$ and $y \in T$ shown with thicker lines.

Theorem 15.3. Let G be a graph with vertex set $\{1, 2, \ldots, n\}$ and exactly m edges. There is a cut of G with capacity $\geq m/2$.

![Diagram of a complete graph with a cut highlighted]
In 1947 Erdös proved a lower bound on the Ramsey Numbers $R(s, s)$ that is still almost the best known result in this direction. Our version of his proof will use the First Moment Method in the following probability space.

Lemma 15.4. Let $n \in \mathbb{N}$ and let Ω be the set of all red-blue colourings of the complete graph K_n. Let $p_\omega = 1/|\Omega|$ for each $\omega \in \Omega$. Then

(i) each colouring in Ω has probability $1/2^n$;

(ii) given any m edges in G, the probability that all m of these edges have the same colour is 2^{1-m}.

Theorem 15.5. Let $n \in \mathbb{N}$ and let $s \in \mathbb{N}$ with $s \geq 2$. If

$$\binom{n}{s} 2^{1-\frac{s}{2}} < 1$$

then there is a red-blue colouring of the complete graph on \{1, 2, ..., n\} with no red K_s or blue K_s.

Corollary 15.6. For any $s \in \mathbb{N}$ with $s \geq 2$ we have

$$R(s, s) \geq 2^{(s-1)/2}.$$

For example, since

$$\binom{42}{8} 2^{1-\frac{8}{2}} \approx 0.879 < 1,$$

if we repeatedly colour the complete graph on \{1, 2, ..., 42\} at random, then we will fairly soon get a colouring with no monochromatic K_8. However, to check that we have found such a colouring, we will have to look at all $\binom{42}{8} \approx 1.18 \times 10^8$ subsets of \{1, 2, ..., 42\}. Thus Theorem 15.5 does not give an effective construction.

It is a major open problem to find, for each $s \geq 2$, an explicit colouring of the complete graph on 1.01^s vertices with no monochromatic K_s. (Here 1.01 could be replaced with $1 + \epsilon$ for any $\epsilon > 0$.)

The bound in Corollary 15.6 can be slightly improved by the Lovász Local Lemma: see the final section.
16. Lovász Local Lemma

The section is non-examinable, and is included for interest only.

In the proof of Theorem 15.5, we considered a random colouring of the complete graph on \(\{1, 2, \ldots, n\}\) and used Lemma 15.1 to show that, provided \(\binom{n}{s}2^{1 - \left(\frac{s}{n}\right)} < 1\) there was a positive probability that this colouring had no monochromatic \(K_s\). As motivation for the Lovász Local Lemma, consider the following alternative argument, which avoids the use of Lemma 15.1.

Alternative proof of Theorem 15.5. As before, let \(\Omega\) be the probability space of all colourings of the complete graph on \(\{1, 2, \ldots, n\}\), where each colouring gets the same probability. For each \(s\)-subset \(S \subseteq \{1, 2, \ldots, n\}\), let \(E_S\) be the event that \(S\) is a monochromatic \(K_s\). The event that no \(K_s\) is monochromatic is then \(\bigcap_S \bar{E}_S\), where the intersection is taken over all \(s\)-subsets \(S \subseteq \{1, 2, \ldots, n\}\) and \(\bar{E}_S = \Omega \setminus E_S\). So it will suffice to show that \(P[\bigcap E_S] > 0\), or equivalently, that \(P[\bigcup E_S] < 1\).

In lectures we used Lemma 15.4 to show that if \(S\) is any \(s\)-subset of \(\{1, 2, \ldots, n\}\) then
\[
P[E_S] = 2^{1 - \left(\frac{s}{n}\right)}.
\]

By the exercise on page 30, the probability of a union of events is at most the sum of their probabilities, so
\[
P[\bigcup_S E_S] \leq \binom{n}{s}2^{1 - \left(\frac{s}{n}\right)}.
\]

Hence the hypothesis implies that \(P[\bigcup_S E_S] < 1\), as required. \(\square\)

If the events \(E_S\) were independent, we would have
\[
P[\bigcap_S E_S] = \prod_S P[E_S].
\]

Since each event \(E_S\) has non-zero probability, it would follow that their intersection has non-zero probability, giving another way to finish the proof. However, the events are not independent, so this is not an admissible strategy. The Lovász Local Lemma gives a way to get around this obstacle.

We shall need the following definition.

Definition 16.1. An event \(E\) is *mutually independent* of a collection \(\mathcal{A}\) of events, if for all \(U \subseteq \mathcal{A}\) and \(U' \subseteq \mathcal{A} \setminus U\) we have
\[
P\left[E \ \bigg| \ \left(\bigcap_{C \in U} C\right) \cap \left(\bigcap_{D \in U'} D\right)\right] = P[E].
\]
whenever \((\bigcap_{C \in U} C) \cap (\bigcap_{D \in U'} D)\) is non-empty.

For example, if the events \(E_S\) are as defined above, then \(E_S\) is independent of the events \(\{E_T : |S \cap T| \leq 1\}\). This can be checked quite easily: informally the reason is that since each \(S \cap T\) has at most one vertex, no edge is common to both \(S\) and \(T\), and so knowing whether or not \(T\) is monochromatic gives no information about \(S\).

Lemma 16.2 (Symmetric Lovász Local Lemma). Let \(d \in \mathbb{N}\). Let \(A\) be a collection of events such that \(P[E] \leq p\) for all \(E \in A\). Suppose that for each event \(E \in A\), there is a subset \(A_E\) of \(A\) such that

\[
\text{(i)} \quad |A_E| \geq |A| - d;
\]

\[
\text{(ii)} \quad E \text{ is independent of } A_E.
\]

If \(ep(d + 1) \leq 1\) then

\[
P\left[\bigcap_{E \in A} E\right] > 0
\]

For a proof of the lemma, see Chapter 5 of Noga Alon and Joel H. Spencer *The Probabilistic Method*, 3rd edition. A simpler proof of a very similar result, where \(ep(d + 1)\) is replaced with \(4pd\), is given in §6.7 of Michael Mitzenmacher and Eli Upfal *Probability and Computing* (see [6] in the list of page 2).

The Lovász Local Lemma can be used to prove a slightly stronger version of Theorem 15.5.

Theorem 16.3. Let \(n, s \in \mathbb{N}\). If

\[
e\left(\binom{s}{2}\left(\binom{n - 2}{s - 2} + 1\right)2^{1-\left(\begin{smallmatrix}s \\ 2 \end{smallmatrix}\right)}\right) < 1
\]

then there is a red-blue colouring of the complete graph \(K_n\) with no red \(K_s\) or blue \(K_s\).

Proof. Define the events \(E_S\) as at the start of this section. We remarked that if \(S\) is an \(s\)-subset of \(\{1, 2, \ldots, n\}\) then the event \(E_S\) is independent of the events \(E_T\) for those \(s\)-subsets \(T\) such that \(S \cap T \leq 1\). There are at most

\[
\binom{s}{2}\binom{n - 2}{s - 2}
\]

\(s\)-subsets \(T\) such that \(S \cap T \geq 2\), since we can choose two common elements in \(\binom{s}{2}\) ways, and then choose any \(s - 2\) of the remaining \(n - 2\) elements of \(\{1, 2, \ldots, n\}\) to complete \(T\). (There is some over-counting here, so this is only an upper bound.)

Therefore we let \(d = \binom{s}{2}\binom{n - 2}{s - 2}\). Since

\[
P[E_S] = 2^{1-\left(\begin{smallmatrix}s \\ 2 \end{smallmatrix}\right)}.
\]
for all S, we take $p = 2^{1-\left(\frac{n}{s}\right)}$. Then we can apply the Lovász Local Lemma, provided that $ep(d + 1) \leq 1$, which is one of the hypotheses of the theorem. Hence

$$P\left[\cap S \in S E_S\right] > 0$$

and so there is a red-blue colouring with no monochromatic K_s, as required. \(\square\)

Theorem 16.2 is stronger than Theorem 15.5 when s is reasonably large.

Example 16.4. When $s = 15$, the largest n such that

$$\binom{n}{15}2^{1-\left(\frac{15}{2}\right)} < 1$$

is $n = 792$. So Theorem 15.5 tells us that $R(15, 15) > 792$. But

$$e\left(\binom{15}{2}\left(\frac{n - 2}{15 - 2}\right) + 1\right)2^{1-\left(\frac{15}{2}\right)} < 1$$

provided $n \leq 947$. Theorem 16.2 therefore gives the stronger result that $R(15, 15) > 947$.

A more general version of the Lovász Local Lemma can be used to get the bound

$$R(s, 3) \geq \frac{Cs^2}{(\log s)^2}$$

for some constant C. For an outline of the proof and references to further results, see Alon and Spencer, Chapter 5.