
COMBINATORICS MT454 / MT5454

MARK WILDON

These notes are intended to give the logical structure of the course;
proofs and further remarks will be given in lectures. Further install-
ments will be issued as they are ready. All handouts and problem sheets
will be put on Moodle.

I would very much appreciate being told of any corrections or possible
improvements to these notes.

You are warmly encouraged to ask questions in lectures, and to talk to
me after lectures and in my office hours. I am also happy to answer
questions about the lectures or problem sheets by email. My email ad-
dress is mark.wildon@rhul.ac.uk.

Lectures: Tuesday 11am in C201, Wednesday 12 noon in ABLT3 and
Thursday 3pm in C336.

Office hours in McCrea 240: Monday 4pm, Wednesday 10am and Fri-
day 4pm.

Date: First term 2013/14.
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1. INTRODUCTION

Combinatorial arguments may be found lurking in all branches of
mathematics. Many people first become interested in mathematics by
a combinatorial problem. But, strangely enough, at first many mathe-
maticians tended to sneer at combinatorics. Thus one finds:

“Combinatorics is the slums of topology.”
J. H. C. Whitehead (early 1900s, attr.)

Fortunately attitudes have changed, and the importance of combina-
torial arguments is now widely recognised:

“The older I get, the more I believe that at the bottom of most
deep mathematical problems there is a combinatorial problem.”

I. M. Gelfand (1990)

Combinatorics is a very broad subject. It will often be useful to prove
the same result in different ways, in order to see different combinato-
rial techniques at work. There is no shortage of interesting and easily
understood motivating problems.

Overview. This course will give a straightforward introduction to four
related areas of combinatorics. Each is the subject of current research,
and taken together, they give a good idea of what the subject is about.

(A) Enumeration: Binomial coefficients and their properties. Princi-
ple of Inclusion and Exclusion and applications. Rook polyno-
mials.

(B) Generating Functions: Ordinary generating functions and re-
currence relations. Partitions and compositions. Catalan Num-
bers. Derangements.

(C) Ramsey Theory: “Complete disorder is impossible”. Pigeon-
hole Principle. Graph colouring.

(D) Probabilistic Methods: Linearity of expectation. First moment
method. Applications to counting permutations. Lovász Local
Lemma.

Recommended Reading.

[1] A First Course in Combinatorial Mathematics. Ian Anderson, OUP
1989, second edition.

[2] Discrete Mathematics. N. L. Biggs, OUP 1989, second edition.
[3] Combinatorics: Topics, Techniques, Algorithms. Peter J. Cameron,

CUP 1994.
[4] Concrete Mathematics. Ron Graham, Donald Knuth and Oren

Patashnik, Addison-Wesley 1994.
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[5] Invitation to Discrete Mathematics. Jiri Matoušek and Jaroslav
Nešetřil, OUP 2009, second edition.

[6] Probability and Computing: Randomized Algorithms and Probabilis-
tic Analysis. Michael Mitzenmacher and Eli Upfal, CUP 2005.

[7] generatingfunctionology. Herbert S. Wilf, A K Peters 1994, second
edition. Available from http://www.math.upenn.edu/~wilf/

DownldGF.html.

In parallel with the first few weeks of lectures, you will be asked to
do some reading from generatingfunctionology: the problem sheets will
make clear what is expected.

Prerequisites.
• Permutations and their decomposition into disjoint cycles. (Re-

quired for derangements and for some applications in Part D.)
• Basic definitions of graph theory: vertices, edges and complete

graphs. (Required for Part C on Ramsey Theory.)
• Basic knowledge of discrete probability. This will be reviewed

in lectures when we get to part D of the course. A handout with
all the background results needed from probability theory will
be issued later in term.

Problem sheets and exercises. There will be weekly problem sheets;
the first will be due in on Tuesday 15th October. Exercises set in these
notes are intended to be simple tests that you are following the material.
Some will be done in lectures. Doing the others will help you to review
the lectures.

Moodle. Provided you have an RHUL account, you have access to the
Moodle page for this course: moodle.rhul.ac.uk/course/view.php?
id=371. If you are registered for the course then it will appear under
‘My Courses’ on Moodle.

Note on optional questions. Optional questions on problem sheets are
included for interest and to give extra practice. Harder optional ques-
tions are marked (?). If you can do the compulsory questions and
know the bookwork, i.e. the definitions, main theorems, and their
proofs, as set out in the handouts and lectures, you should do very
well in the exam.
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2. BASIC COUNTING PRINCIPLES AND DERANGEMENTS

In the first two lectures we will see the Derangements Problem and
one way to solve it by ad-hoc methods. Later in the course we will de-
velop techniques that can be used to solve this problem more easily.

Definition 2.1. A permutation of a set X is a bijective function

σ : X → X.

A fixed point of a permutation σ of X is an element x ∈ X such that
σ(x) = x. A permutation is a derangement if it has no fixed points.

Usually we will consider permutations of {1, 2, . . . , n} for some nat-
ural number n ∈ N. It is often useful to represent permutations by
diagrams. For example, the diagram below shows the permutation
σ : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} defined by

σ(1) = 2, σ(2) = 1, σ(3) = 4, σ(4) = 5, σ(5) = 3.

Note that σ is a derangement.
1 2 3 4 5

1 2 3 4 5

Exercise: For n ∈ N, how many permutations are there of {1, 2, . . . , n}?
How many of these permutations have 1 as a fixed point?

The principle used to solve this exercise, that when one choice is
made after another, the number of choices should be multiplied, will
be used many times in this course. In the case where one choice does
not affect the next, so we first choose an element of a set A, then an
element of a set B, the principle simply says that |A× B| = |A||B|.

More generally, if an object can be specified uniquely by a sequence
of n choices so that, when making the ith choice, we always have ex-
actly ci possibilities to choose from, then there are exactly c1c2 . . . cn ob-
jects.

Problem 2.2 (Derangements). How many permutations of {1, 2, . . . , n} are
derangements?

Let dn be the number of permutations of {1, 2, . . . , n} that are de-
rangements. By definition, although you may regard this as a conven-
tion if you prefer, d0 = 1.

Exercise: Check, by listing permutations, that d1 = 0, d2 = 1, d3 = 2 and
d4 = 9.
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Exercise: Suppose we try to construct a derangement of {1, 2, 3, 4, 5}
such that σ(1) = 2. Show that there are two derangements such that
σ(1) = 2, σ(2) = 1, and three derangements such that σ(1) = 2, σ(2) =
3. How many choices are there for σ(3) in each case?

The previous exercise shows that we can’t hope to solve the derange-
ments problem just by multiplying numbers of choices. Instead we
shall find a recurrence for the numbers dn.

Lemma 2.3. If n ≥ 2 then the number of derangements σ of {1, 2, . . . , n}
such that σ(1) = 2 is dn−2 + dn−1.

Notice the use of another basic counting principle in Lemma 2.3: if
we can partition the objects we are counting into two disjoint sets A
and B, then the total number of objects is |A|+ |B|.

Theorem 2.4. If n ≥ 2 then dn = (n− 1)(dn−2 + dn−1).

Using this recurrence relation it is easy to find values of dn for much
larger n. Whenever one meets a new combinatorial sequence it is a
good idea to look it up in N. J. A. Sloane’s Online Encyclopedia of In-
teger Sequences: see www.research.att.com/~njas/sequences/. You
will usually find it in there, along with references and often other com-
binatorial interpretations.

Corollary 2.5. For all n ∈ N0,

dn = n!
(

1− 1
1!

+
1
2!
− 1

3!
+ · · ·+ (−1)n

n!

)
.

Exercise: Check directly that the right-hand side is an integer.

A more systematic way to derive Corollary 2.5 from Theorem 2.4 will
be seen in Part B of the course. Question 9 on Sheet 1 gives an alterna-
tive proof that does not require knowing the answer in advance.

The proof of Corollary 2.5 and Question 9 show that it is helpful to
consider the probability dn/n! that a permutation of {1, 2, . . . , n}, cho-
sen uniformly at random, is a derangement. Here ‘uniformly at ran-
dom’ means that each of the n! permutations of {1, 2, . . . , n} is equally
likely to be chosen.

Theorem 2.6. Two probabilistic results on derangements.
(i) The probability that a permutation of {1, 2, . . . , n}, chosen uniformly at

random, is a derangement tends to 1/e as n→ ∞.
(ii) The average number of fixed points of a permutation of {1, 2, . . . , n}

is 1.

We shall prove more results like this in Part D of the course.
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Part A: Enumeration

3. BINOMIAL COEFFICIENTS AND COUNTING PROBLEMS

The following notation is probably already familiar to you.

Notation 3.1. If Y is a set of size k then we say that Y is a k-set, and write
|Y| = k. To emphasise that Y is a subset of some other set X then we
may say that Y is a k-subset of X.

We shall define binomial coefficients combinatorially.

Definition 3.2. Let n, k ∈ N0. Let X = {1, 2, . . . , n}. The binomial coeffi-
cient (n

k) is the number of k-subsets of X.

By this definition, if k 6∈ N0 then (n
k) = 0. Similarly if k > n then

(n
k) = 0. It should be clear that we could replace X with any other set of

size n and we would define the same numbers (n
k).

We should check that the combinatorial definition agrees with the
usual definition.

Lemma 3.3. If n, k ∈ N0 and k ≤ n then
(

n
k

)
=

n(n− 1) . . . (n− k + 1)
k!

=
n!

k!(n− k)!
.

The double-counting technique used to prove Lemma 3.3 is often use-
ful in combinatorial problems.

Many of the basic properties of binomial coefficients can be given
combinatorial proofs involving explicit bijections. We say that such
proofs are bijective.

Lemma 3.4. If n, k ∈ N0 then
(

n
k

)
=

(
n

n− k

)
.

Lemma 3.5 (Fundamental Recurrence). If n, k ∈ N then
(

n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1

k

)
.

reasoning with subsets, do (n − r)(n
r) = (r + 1)( n

r+1) as example.
Note r(n

r) = n(n−1
r−1) is on Sheet 1. Binomial coefficients are so-named

because of the famous binomial theorem. (A binomial is a product of
the form xrys.)
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Theorem 3.6 (Binomial Theorem). Let x, y ∈ C. If n ∈ N0 then

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k.

Exercise: give inductive or algebraic proofs of the previous three results.

Exercise: in New York, how many ways can one start at a junction and
walk to another junction 4 blocks away to the east and 3 blocks away to
the north?

We can now answer a basic combinatorial question: How many ways
are there to put k balls into n numbered urns? The answer depends on
whether the balls are distinguishable. We may consider urns of unlim-
ited capacity, or urns that can only contain one ball.

Numbered balls Indistinguishable balls

≤ 1 ball per urn

unlimited capacity

Three of the entries can be found fairly easily. The entry in the bottom-
right can be found in many different ways: two will be demonstrated
in this lecture.

Theorem 3.7. Let n ∈ N and let k ∈ N0. The number of ways to place k
indistinguishable balls into n numbered urns of unlimited capacity is (n+k−1

k ).

The following reinterpretation of Theorem 3.7 can be useful.

Corollary 3.8. Let n ∈ N and let k ∈ N0. The number of n-tuples [corrected
14th October from k-tuples] (t1, . . . , tn) such that t1, t2, . . . , tn ∈ N0 and

t1 + t2 + · · ·+ tn = k

is (n+k−1
k ).

4. FURTHER BINOMIAL IDENTITIES

This is a vast subject and we shall only cover a few aspects. Particu-
larly recommended for further reading is Chapter 5 of Concrete Mathe-
matics, [4] in the list on page 2.
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Arguments with subsets. The two identities below are among the most
useful in practice.

Lemma 4.1 (Subset of a subset). If k, r, n ∈ N0 and k ≤ r ≤ n then
(

n
r

)(
r
k

)
=

(
n
k

)(
n− k
r− k

)
.

Lemma 4.2 (Vandermonde’s convolution). If a, b ∈ N0 and m ∈ N0 then
m

∑
k=0

(
a
k

)(
b

m− k

)
=

(
a + b

m

)
.

Corollaries of the Binomial Theorem. The following results can be obtained
by making a strategic choice of x and y in the Binomial Theorem.

Corollary 4.3. If n ∈ N then
(

n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n

n− 1

)
+

(
n
n

)
= 2n,

(
n
0

)
−
(

n
1

)
+

(
n
2

)
− · · ·+ (−1)n−1

(
n

n− 1

)
+ (−1)n

(
n
n

)
= 0.

Corollary 4.4. For all n ∈ N there are equally many subsets of {1, 2, . . . , n}
of even size as there are of odd size.

Corollary 4.5. If n ∈ N0 and b ∈ N then
(

n
0

)
bn +

(
n
1

)
bn−1 + · · ·+

(
n

n− 1

)
b +

(
n
n

)
= (1 + b)n.

There is a nice bijective proof of Corollary 4.5; it will appear as a
question with hints on Sheet 2.

Some identities visible in Pascal’s Triangle. There are a number of nice
identities that express row, column or diagonal sums in Pascal’s Tri-
angle.

Lemma 4.6 (Alternating row sums). If n ∈ N, r ∈ N0 and r ≤ n then
r

∑
k=0

(−1)k
(

n
k

)
= (−1)r

(
n− 1

r

)
.

Perhaps surprisingly, there is no simple formula for the unsigned row
sums ∑r

k=0 (
n
k).
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Lemma 4.7 (Diagonal sums, a.k.a. parallel summation). If n ∈ N, r ∈
N0 then

r

∑
k=0

(
n + k

k

)
=

(
n + r + 1

r

)
.

For the column sums on Pascal’s Triangle, see Sheet 1, Question 3.
For the other diagonal sum, see Sheet 1, Question 7.

5. PRINCIPLE OF INCLUSION AND EXCLUSION

The Principle of Inclusion and Exclusion (PIE) is way to find the size
of a union of a finite collection of subsets of a finite universe set X. The
universe set we take will depend on the problem we are solving. If A is
a subset of X, we denote by A the complement of A in X; i.e.,

Ā = X\A = {x ∈ X : x 6∈ A}.
We start with the two smallest non-trivial examples of the Principle

of Inclusion and Exclusion.

Example 5.1. If A, B, C are subsets of a finite set X then

|A ∪ B| = |A|+ |B| − |A ∩ B|
|A ∪ B| = |X| − |A| − |B|+ |A ∩ B|

and

|A ∪ B ∪ C| = |A|+ |B|+ |C|
− |A ∩ B| − |B ∩ C| − |C ∩ A|+ |A ∩ B ∩ C|

|A ∪ B ∪ C| = |X| − |A| − |B| − |C|
+ |A ∩ B|+ |B ∩ C|+ |C ∩ A| − |A ∩ B ∩ C|

Example 5.2. The n-th (centred) hexagonal number is the number of
dots in the n-th digure below. The formula for |A ∪ B ∪ C| gives a nice
way a formula for these numbers.

8

5. Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion (PIE) is an elementary way
to find the sizes of unions or intersections of finite sets.

If A is a subset of a universe set X, we denote by Ā the complement
of A in X; i.e.,

Ā = {x ∈ X : x �∈ A}.
We start with the two smallest non-trivial examples of the principle.

Example 5.1. If A, B, C are subsets of a set X then |A ∪B| = |A| +
|B| − |A ∩B| and so

��A ∪B
�� = |X| − |A| − |B| + |A ∩B|.

Similarly, |A∪B ∪C| = |A|+ |B|+ |C|− |A∩B|− |B ∩C|− |C ∩A|+
|A ∩B ∩ C|, so

��A ∪B ∪ C
�� = |X| − |A| − |B| − |C|

+|A ∩B| + |B ∩ C| + |C ∩ A| − |A ∩B ∩ C|.

Example 5.2. The formula for |A ∪ B ∪ C| gives one of the easiest
ways to find the hexagonal numbers.

, , . . .

In the general setting we have a set X and subsets A1, A2, . . . , An

of X. Let I ⊆ {1, 2, . . . , n} be a non-empty index set. We define

AI =
�

i∈I

Ai.

Thus AI is the set of elements of X which belong to all of the sets Ai

for i ∈ I. By convention we set

A∅ = X.

Theorem 5.3 (Principle of Inclusion Exclusion). If A1, A2, . . . , An are
subsets of a finite set X then

��A1 ∪ A2 ∪ · · · ∪ An

�� =
�

I⊆{1,2,...,n}
(−1)|I| |AI |.

, . . .

It is easier to find the sizes of the intersections of the three rhombi mak-
ing up each hexagon than it is to find the sizes of their unions. When-
ever intersections are easier to think about than unions, the PIE is likely
to work well.
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In the general setting we have a finite universe set X and subsets
A1, A2, . . . , An ⊆ X. For each non-empty subset I ⊆ {1, 2, . . . , n} we
define

AI =
⋂

i∈I
Ai.

Thus AI is the set of elements which belong to all the sets Ai for i ∈ I.
For example, if i, j ∈ {1, 2, . . . , n} then A{i} = Ai and A{i,j} = Ai ∩ Aj.
By convention we set

A∅ = X.

Theorem 5.3 (Principle of Inclusion and Exclusion). If A1, A2, . . . , An are
subsets of a finite set X then

|A1 ∪ A2 ∪ · · · ∪ An| = ∑
I⊆{1,2,...,n}

(−1)|I||AI |.

Exercise: Check that Theorem 5.3 holds when n = 1 and check that it
agrees with Example 5.1 when n = 2 and n = 3.

Exercise: Deduce from Theorem 5.3 that

|A1 ∪ A2 ∪ · · · ∪ An| = ∑
I⊆{1,2,...,n}

I 6=∅

(−1)|I|−1|AI |.

APPLICATION TO DERANGEMENTS. The Principle of Inclusion and Ex-
clusion gives a particularly elegant proof of the formula for the de-
rangement numbers dn first proved in Corollary 2.5:

dn = n!
(

1− 1
1!

+
1
2!
− · · ·+ (−1)n

n!

)
.

Recall from Definition 2.1 that a permutation

σ : {1, 2, . . . , n} → {1, 2, . . . , n}
is a derangement if and only if it has no fixed points. Let X be the set of
all permutations of {1, 2, . . . , n} and let

Ai = {σ ∈ X : σ(i) = i}
be the set of permutations which have i as a fixed point. To apply the
PIE we need the results in the following lemma.

Lemma 5.4. (i) A permutation σ ∈ X is a derangement if and only if

σ ∈ A1 ∪ A2 ∪ · · · ∪ An.

(ii) If I ⊆ {1, 2, . . . , n} then AI consists of all permutations of {1, 2, . . . , n}
which fix the elements of I. If |I| = k then

|AI | = (n− k)!.
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It is often helpful to think of each Ai as the set of all objects in X
satisfying a property Pi. Then the Principle of Inclusion and Exclusion
counts all the objects in X that satisfy none of the properties P1, . . . , Pn.
In the derangements example

Pi(σ) = ‘σ has i as a fixed point′

and we count the permutations σ such that Pi(σ) is false for all i ∈
{1, 2, . . . , n}.

PRIME NUMBERS AND EULER’S φ FUNCTION. Suppose we want to find
the number of primes less than some number M. One approach, which
is related to the Sieve of Eratosthenes, uses the Principle of Inclusion
and Exclusion.

Example 5.5. Let X = {1, 2, . . . , 48}. We define three subsets of X:

B(2) = {m ∈ X : m is divisible by 2}
B(3) = {m ∈ X : m is divisible by 3}
B(5) = {m ∈ X : m is divisible by 5}.

Any composite number ≤ 48 is divisible by either 2, 3 or 5. So

B(2) ∪ B(3) ∪ B(5) = {1} ∪ {p : 5 < p ≤ 48, p is prime}.
We will find the size of the left-hand side using the PIE, and hence count
the number of primes ≤ 48.

The example can be generalized to count numbers not divisible by
any of a specified set of primes. Recall that if x ∈ R then bxc denotes
the largest natural number ≤ x.

Lemma 5.6. Let r, M ∈ N. There are exactly bM/rc numbers in {1, 2, . . . , M}
that are divisible by r.

Theorem 5.7. Let p1, . . . , pn be distinct prime numbers and let M ∈ N.
The number of natural numbers ≤ M that are not divisible by any of primes
p1, . . . , pn is

∑
I⊆{1,2,...,n}

(−1)|I|
⌊

M
∏i∈I pi

⌋
.

For M ∈ N, let π(M) be the number of prime numbers ≤ M. It is
possible to use Theorem 5.7 to show that there is a constant C such that

π(M) ≤ CM
log log M

for all M ∈ N. This is beyond the scope of this course, but I would be
happy to go through the proof in an office-hour or supply a reference.
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The next example will be helpful for the questions on Sheet 2. In
it, we say that numbers n, M are coprime if n and M have no common
prime divisors. For example, 12 and 35 are coprime, but 7 and 14 are
not.

Example 5.8. Let M = pqr where p, q, r are distinct prime numbers. The
numbers of natural numbers less than or equal to pqr that are coprime
to M is

M
(

1− 1
p

)(
1− 1

q

)(
1− 1

r

)
.

There are many other applications of the Principle of Inclusion and
Exclusion. For example, it can be used to count the number of irre-
ducible polynomials of a given degree over a finite field. Such polyno-
mials are important in coding theory and cryptography.

See Question 9 on Sheet 2 for an application of the Principle of Inclu-
sion and Exclusion to counting the number of surjective functions from
{1, . . . , k} to {1, . . . , n}.

6. ROOK POLYNOMIALS

Many enumerative problems can be expressed as problems about
counting permutations with some restriction on their structure. The
derangements problem is a typical example. In this section we shall see
a unified way to solve this sort of problem.

Recommended reading: Ian Anderson, A First Course in Combinatorial
Mathematics, §5.2 ([1] on the list on page 2) and Victor Bryant, Aspects of
Combinatorics, Chapter 12 (Cambridge University Press). Examples 6.3
and 6.4 below are based on those in Bryant’s book.

Definition 6.1. A board is a subset of the squares of an n× n grid. Given
a board B, we let rk(B) denote the number of ways to place k rooks on B,
so that no two rooks are in the same row or column. Such rooks are said
to be non-attacking. The rook polynomial of B is defined to be

fB(x) = r0(B) + r1(B)x + r2(B)x2 + · · ·+ rn(B)xn.

Note that fB(x) is the generating function of the sequence

r0(B), r1(B), r2(B), . . .

Since rk(B) = 0 if k > n, the power series ∑∞
k=0 rk(B)xk is a polynomial.

Example 6.2. Let B be the board shown below.
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7. (Problème des Ménages.) Let Bm denote the board with exactly m squares in the

sequence shown below.

, , , , , , . . .

(a) Prove that the rook polynomial of Bm is

�

k

�
m− k + 1

k

�
xk.

[Corrected from
�

m−k
k

�
on 3 November. Hint: there is a very short

proof using the result on lion caging in Problem 5 of Sheet 1. Alternatively
Lemma 7.6 can be used to give an inductive proof.]

(b) Find the number of ways to place 8 non-attacking rooks on the unshaded
squares of the board shown below.

(c) At a dinner party eight married couples are to be seated around a circular
table. Men and women must sit in alternate places, and no-one may sit next
to their spouse. In how many ways can this be done? [Hint: first seat the
women, then use (b) to count the number of ways to seat the men.]

(a) Number the squares in Bm from 1 in the top-left to m in the bottom-right. A
placement of k rooks on Bm is non-attacking if and only if no two rooks are put in
squares with consecutive numbers. The number of such placements is therefore given by
Question 5 on Sheet 1.

(b) Let B be the board formed from the shaded squares. The polynomial of B can be
found using Lemma 7.6, deleting the square in the bottom left: it is

rB(x) = rB15(x) + xrB13(x).

By (a) the coefficient of xk in rB(x) is
�

15 + 1− k

k

�
+

�
13 + 1− (k − 1)

k − 1

�
=

�
16− k

k

�
+

�
15− k

k − 1

�
.

By Problem 1, Sheet 1 we have (16− k)
�
15−k
k−1

�
= k

�
16
k

�
, hence

�
16− k

k

�
+

�
15− k

k − 1

�
=

�
16− k

k

�
+

k

16− k

�
16− k

k

�
=

�
16− k

k

�
16

16− k
.
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The rook polynomial of B is 1 + 5x + 6x2 + x3.

Exercise: Let B be a board. Show that r0(B) = 1 and that r1(B) is the
number of squares in B.

Example 6.3. After the recent spate of cutbacks, only four professors
remain at the University of Erewhon. Prof. W can lecture courses 1 or 4;
Prof. X is an all-rounder and can lecture 2, 3 or 4; Prof. Y refuses to
lecture anything except 3; Prof. Z can lecture 1 or 2. If each professor
must lecture exactly one course, how many ways are there to assign
professors to courses?

Example 6.4. How many derangements σ of {1, 2, 3, 4, 5} have the prop-
erty that σ(i) 6= i + 1 for 1 ≤ i ≤ 4?

Lemma 6.5. The rook polynomial of the n× n board is
n

∑
k=0

k!
(

n
k

)2
xk.

The two following lemmas are very useful when calculating rook
polynomials. Lemma 6.6 will be illustrated with an example in lectures,
and proved later using Theorem 9.1 on convolutions of generating func-
tions (see Example 9.3).

Lemma 6.6. Let C be a board. Suppose that the squares in C can be partitioned
into sets A and B so that no square in A lies in the same row or column as a
square of B. Then

fC(x) = fA(x) fB(x).

This is the first of many times that multiplying generating functions
will help us to solve combinatorial problems.

Lemma 6.7. Let C be a board and let s be a square in C. Let D be the board
obtained from B by deleting s and let E be the board obtained from B by deleting
the entire row and column containing s. Then

fC(x) = fD(x) + x fE(x).

Example 6.8. The rook-polynomial of the boards in Examples 6.3 and 6.4
can be found using Lemma 6.7. For the board in Example 6.3 it works
well to apply the lemma first to the square marked 1, then to the square
marked 2 (in the new boards).
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1

2

Our final result on rook polynomials is often the most useful in prac-
tice. The proof uses the Principle of Inclusion and Exclusion. The fol-
lowing lemma isolates the key idea. Its proof needs the same idea we
used in Lemma 5.4(ii) to count permutations with a specified set of fixed
points.

Lemma 6.9. Let B be a board contained in an n× n grid and let 0 ≤ k ≤ n.
The number of ways to place k red rooks on B and n− k blue rooks anywhere
on the grid, so that the n rooks are non-attacking, is rk(B)(n− k)!.

Theorem 6.10. Let B be a board contained in an n× n grid. Let B̄ denote the
board formed by all the squares in the grid that are not in B. The number of
ways to place n non-attacking rooks on B̄ is

n!− (n− 1)!r1(B) + (n− 2)!r2(B)− · · ·+ (−1)nrn(B).

As an easy corollary we get our third proof of the derangements for-
mula (Corollary 2.5), that

dn = n!
(

1− 1
1!

+
1
2!
− · · ·+ (−1)n

n!

)
.

See Problem Sheet 3 for some other applications of Theorem 6.10.

Theorem 6.10 is one of the harder results in the course. If you find the
proof difficult, you may find the following exercise helpful.

Exercise: Let n = 3 and let B be the board formed by the shaded squares
below.

Draw the rook placements lying in each of the sets A∅, A{1}, A{2}, A{3},
A{1,2}, A{1,3}, A{2,3}, A{1,2,3} defined in the proof of Theorem 6.10, and
check the main claim in the proof for k = 0, 1, 2, 3. For instance, for
k = 1, you should find that |A{1}| + |A{2}| + |A{3}| is the number of
non-attacking placements with one red rook on B and two blue rooks
anywhere on the grid; according to Lemma 6.9 there are r1(B)(3− 1)!
such placements.
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Part B: Generating Functions

7. INTRODUCTION TO GENERATING FUNCTIONS

Generating functions can be used to solve the sort of recurrence re-
lations that often arise in combinatorial problems. But better still, they
can help us to think about combinatorial problems in new ways and
suggest new results.

Definition 7.1. The ordinary generating function associated to the sequence
a0, a1, a2, . . . is the power series

∞

∑
n=0

anxn = a0 + a1x + a2x2 + · · · .

To indicate that F(x) is the ordinary generating function of the se-
quence a0, a1, a2, . . . we may use the notation in §2.2 of Wilf generating-
functionology and write

(an)
og f←−→ F(x).

Usually we shall drop the word ‘ordinary’ and just write ‘generating
function’.

If there exists N ∈ N such that an = 0 if n > N, then the generating
function of the sequence a0, a1, a2, . . . is a polynomial. Rook polynomi-
als (see Definition 6.1) are therefore generating functions.

OPERATIONS ON GENERATING FUNCTIONS. Let F(x) = ∑∞
n=0 anxn and

G(x) = ∑∞
n=0 bnxn be generating functions. From

F(x) + G(x) =
∞

∑
n=0

(an + bn)xn

and

F(x)G(x) =
∞

∑
n=0

cnxn

where cn = ∑n
m=0 ambn−m. The derivative of F(x) is

F′(x) =
∞

∑
n=0

nxn−1.

Note that if (an)
og f←−→ F(x) and (bn)

og f←−→ G(x) then

(an + bn)
og f←−→ F(x) + G(x).

The sequence (cn) such that (cn)
og f←−→ F(x)G(x) often arises in combi-

natorial problems. This was seen for rook polynomials in Lemma 6.6,
and will be studied in §9.
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It is also possible to define 1/F(x) whenever a0 6= 0. By far the most
important case is the case F(x) = 1− x, when

1
1− x

=
∞

∑
n=0

xn

is the usual formula for the sum of a geometric progression.

ANALYTIC AND FORMAL INTERPRETATIONS. There are at least two ways
to think of a generating function ∑∞

n=0 anxn. Either:

• As a formal power series with x acting as a place-holder. This
is the ‘clothes-line’ interpretation (see the first page of Wilf gen-
eratingfunctionology), in which we regard the power-series as a
convenient way to display the terms in our sequence.

• As a function of a real or complex variable x convergent when
|x| < r, where r is the radius of convergence of ∑∞

n=0 anxn.

The formal point of view is often the most convenient because it al-
lows us to define and manipulate power series by the operations on the
previous page without worrying about convergence. From this point of
view,

0! + 1!x + 2!x2 + 3!x3 + · · ·
is a perfectly respectable formal power series, even though it only con-
verges when x = 0. The analytic point of view is useful for proving
asymptotic results.1

All the generating functions one normally encounters have positive
radius of convergence, so in practice, the two approaches are equiv-
alent. For a more careful discussion of these issues and the general
definition of 1/F(x), see §2.1 of Wilf generatingfunctionology.

TWO EXAMPLES OF GENERATING FUNCTIONS.

Example 7.2. What is the generating function for the number of ways
to tile a 2× n path with bricks that are either 1× 2 ( ) or 2× 1 ( )?

See the exercise on page 19 for how to extract a formula for the num-
ber of tilings from the generating function.

1From the analytic perspective, the formula for the derivative F′(x) on the pre-
vious page expresses a non-trivial theorem, namely that power series are differen-
tiable functions, with derivatives given by term-by-term differentiation. A similar
remark applies to the formulae for the sum F(x) + G(x) and product F(x)G(x).
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In the second example we shall use products of power series to give
a proof of Corollary 3.8 [corrected from Corollary 3.7, 5th November]
that is logically independent of Part A. (We assume n = 3, to make the
notation simpler, but once you understand this case, you should see
that the general case is no harder.)

Example 7.3. Let k ∈ N0. Let bk be the number of 3-tuples (t1, t2, t3)
such that t1, t2, t3 ∈ N0 and t1 + t2 + t3 = k. Then

∞

∑
k=0

bkxk =
1

(1− x)3

and so bk = (k+2
2 ).

USEFUL POWER SERIES. To complete Example 7.3 we needed a special
case of the result below, which was proved on Question 4 of Sheet 3.

Theorem 7.4. If n ∈ N then

1
(1− x)n =

∞

∑
k=0

(
n + k− 1

k

)
xk

A more general result is stated below.

Theorem 7.5 (Binomial Theorem for general exponent). If α ∈ R then

(1 + y)α =
∞

∑
k=0

α(α− 1) . . . (α− (k− 1))
k!

yk

for all y such that |y| < 1.

Exercise: Let α ∈ Z.

(i) Show that if α ≥ 0 then Theorem 7.4 agrees with the Bino-
mial Theorem for integer exponents, proved in Theorem 3.6, and
with Theorem 7.5.

(ii) Show that if α < 0 then Theorem 7.4 agrees with Question 5 on
Sheet 3. (Substitute −x for y.)

We shall need the case α = 1/2 of the general Binomial Theorem to
find the Catalan Numbers in §9.

As we saw in Example 7.3, geometric series often arise in generating
functions problem. So you need to get used to spotting either side of
the identity 1/(1− rx) = ∑∞

n=0 rnxn. The exponential series, exp x =

∑∞
n=0

xn

n! , is also often useful.
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8. RECURRENCE RELATIONS AND ASYMPTOTICS

We have seen that combinatorial problems often lead to recurrence
relations. For example, in §2 we found the derangement numbers dn
by solving the recurrence relation in Theorem 2.4. See also Questions 5
and 7 on Sheet 1 for other examples.

Generating functions are very useful for solving recurrence relations.
The method is clearly explained at the end of §1.2 of Wilf generating-
functionology. Given a recurrence satisfied by the sequence a0, a1, a2, . . .
proceed as follows:

(a) Use the recurrence to write down an equation satisfied by the
generating function F(x) = ∑∞

n=0 anxn;

(b) Solve the equation to get a closed form for the generating func-
tion;

(c) Use the closed form for the generating function to find a formula
for the coefficients.

Step (a) will become routine with practice. To obtain terms like nan−1,
try differentiating F(x). Powers of x will usually be needed to get ev-
erything to match up correctly. In Step (c) it is often necessary to use
partial fractions.

Example 8.1. Solve an+2 = 5an+1 − 6an for n ∈ N0 subject to the initial
conditions a0 = A, a1 = B.

Another way to proceed is to first rewrite the recurrence as an =
5an−1 − 6an−2 for n ≥ 2; then the shifts are done by multiplication by x
and x2 rather than division.

The next theorem gives a general form for the partial fraction expres-
sions needed to solve these recurrences, Recall that if

f (x) = cdxd + cd−1xd−1 + · · ·+ c0

and cd 6= 0 then f is said to have degree d; we write this as deg f = d.
This theorem will not be proved in lectures: see instead Chapter 25 of
Biggs Discrete Mathematics ([2] in the list of recommended reading).

Theorem 8.2. Let f (x) and g(x) be polynomials with deg f < deg g. If

g(x) = α(x− 1/β1)
d1 . . . (x− 1/βk)

dk

where α, β1, β2, . . . , βk are distinct non-zero complex numbers and d1, d2, . . . ,
dk ∈ N, then there exist polynomials P1, . . . , Pk such that deg Pi < di and

f (x)
g(x)

=
P1(1− β1x)
(1− β1x)d1

+ · · ·+ Pk(1− βkx)
(1− βkx)dk

where Pi(1− βix) is Pi evaluated at 1− βix.
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Theorem 7.4 can then be used to find the coefficient of xn in f (x)/g(x).
If di = 1 for all i then each polynomial Pi is just a constant Bi ∈ C and
Theorem 8.2 states that

f (x)
g(x)

=
B1

1− β1x
+ · · ·+ Bk

1− βkx
.

In this case the coefficient of xn in f (x)/g(x) is B1βn
1 + · · ·+ Bkβn

k .

When f (x)/g(x) is a generating function for a sequence a0, a1, a2, . . .
it is usually easiest to use values of the sequence to determine any un-
known constants.

Example 8.3. Will solve bn = 3bn−1 − 4bn−3 for n ≥ 3.

The next exercise completes the solution to Example 7.2.

Exercise: In Example 7.2 we saw that if an is the number of ways to tile
a a 2× n path with bricks that are either 1× 2 ( ) or 2× 1 ( ), then
an = an−1 + an−2, and that the generating function

F(x) =
∞

∑
n=0

anxn

satisfies (1− x− x2)F(x) = 1. Show that x2 + x− 1 = (x− φ)(x− ψ)

where φ = −1+
√

5
2 and ψ = −1−

√
5

2 . Show that 1/φ = −ψ and 1/ψ =
−φ and deduce from Theorem 8.2 that

an = C
(1 +

√
5

2

)n
+ D

(1−
√

5
2

)n

for some C, D ∈ C. Find C and D by using the values a0 = a1 = 1 and
solving a pair of simultaneous equations. (Or by some other method
for finding partial fractions, if we prefer.) You should get

C =
1
2
+

1
2
√

5
and D =

1
2
− 1

2
√

5
.

In §2 we used the recurrence dn = (n− 1)(dn−1 + dn−2) for the de-
rangement numbers to prove Theorem 2.5 by induction on n. This re-
quired us to already know the formula. Generating functions give a
more systematic approach. (You are asked to fill in the details in this
proof in Question 2 on Sheet 4.)

Theorem 8.4. Let pn = dn/n! be the probability that a permutation of the set
{1, 2, . . . , n}, chosen uniformly at random, is a derangement. Then

npn = (n− 1)pn−1 + pn−2

for all n ≥ 2 and

pn = 1− 1
1!

+
1
2!
− · · ·+ (−1)n

n!
.
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The steps needed in this proof can readily be performed using com-
puter algebra packages. Indeed, MATHEMATICA implements a more
refined version of our three step programme for solving recurrences in
its RSolve command. (See the discussion in Appendix A of Wilf gener-
atingfunctionology.)

It is usually possible to get some information about the asymptotic
growth of a sequence from its generating function. For this, it is es-
sential to use the analytic interpretation, and think of the generating
function as a function defined on the complex numbers.

In the theorem below, a singularity of G is a point where G is unde-
fined. (This is a bit loose, but will do for this overview.) For example, if
G(z) = 1/(1− z) then the unique singularity of G is at z = 1.

Theorem 8.5. Let F(z) = ∑∞
n=0 anzn be the generating function for the se-

quence a0, a1, a2, . . .. Let z0 be the singularity of F(z) of smallest modulus and
let R = |z0|. For any ε > 0 we have

|an| ≤
( 1

R
+ ε
)n

for all sufficiently large n ∈ N.

See §2.4 in Wilf generatingfunctionology for a proof of Theorem 8.4. The
proofs of this theorem, and Theorem 8.2, are non-examinable, but you
might be asked to apply these results in simple cases

Example 8.6. Let an be the number of tilings defined in Example 8.1.
We saw that the generating function for an is F(x) = 1/(1− x − x2).
The singularity of F(x) of least modulus is at z0 = −1+

√
5

2 . Since 1/z0 =
1+
√

5
2 , it follows from Theorem 8.5 that given any ε > 0, we have

an ≤
(1 +

√
5

2
+ ε
)n

for all sufficiently large n ∈ N. From the exact formula for an, it is
possible to get a more precise result: an is always the closest integer to
C
( 1+

√
5

2
)n, where C is as defined in the exercise after Example 8.3.

If F(z) has no singularities then the conclusion of Theorem 8.5 holds
for any R ∈ R≥0.

Example 8.7. Let G(z) = ∑∞
n=0 pnzn be the generating function for the

proportion of permutations of {1, 2, . . . , n} that are derangements. We
saw that

G(z) =
exp(−z)

1− z
.
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A direct application of Theorem 8.5 gives only that pn ≤ 1/(1− ε)n for
all sufficiently large n. (Why is this uninteresting?) In such cases, it is a
good idea to take out the part of the function that causes G(z) to blow
up. Define g(z) by

G(z) =
e−1

1− z
+ g(z).

Then we can extend g to a function defined on all of C. Using the exten-
sion to Theorem 8.5 just mentioned, it follows that |pn − e−1| < 1/10n

for all sufficient large n. (Here 10 is just one possible choice of R.)

Note that we got this result in Example 8.6 without using the exact
formula for the pn. This is important because in trickier problems we
might know the generating function, but not have an exact formula for
its coefficients.

9. CONVOLUTIONS AND THE CATALAN NUMBERS

The problems in this section fit into the following pattern: suppose
thatA, B and C are classes of combinatorial objects and that each object
has a size in N0. Write size(X) for the size of X. Suppose that there are
finitely many objects of any given size.

Let an, bn and cn denote the number of objects of size n in A, B, C,
respectively.

Theorem 9.1. Suppose there is a bijection between objects Z ∈ C of size n and
pairs of objects (X, Y) such that X ∈ A and Y ∈ B and size(X) + size(Y) =
n. Then

∞

∑
n=0

cnxn =
( ∞

∑
n=0

anxn
)( ∞

∑
n=0

bnxn
)

The critical step in the proof is to show that

cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 =
n

∑
m=0

ambn−m.

If sequences (an), (bn) and (cn) satisfy this relation then we say that (cn)
is the convolution of (an) and (bn).

Example 9.2. The grocer sells indistinguishable apples and bananas in
unlimited quantities.

(a) What is the generating function for the number of ways to buy n
pieces of fruit if bananas are only sold in bunches of three?

(b) How would your answer to (a) change if dates are also sold?

(c) What if dates are unavailable, but apples come in two varieties?
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It would also be possible to do (b) directly, by using a more general
version of Theorem 9.1 where the objects are decomposed into three (or
more) subobjects.

Example 9.3. Lemma 6.6 on rook placements states that if C is a board
that A and B where no square in A lies in the same row or column as a
square in B has a very short proof using Theorem 9.1.

Exercise: Show tha splitting a non-attacking placement of rooks on C
into the placements on the sub-boards A and B gives a bijection satisfy-
ing the hypotheses of Theorem 9.1. (Define the size of a rook placement
and the sets A, B, C.) Hence prove Lemma 6.6.

The canonical application of convolutions is to the Catalan numbers.
These numbers have many different combinatorial interpretations; we
shall define them using rooted binary trees drawn in the plane.

Definition 9.4. A rooted binary tree is either empty, or consists of a root
vertex together with a pair of rooted binary trees: a left subtree and a right
subtree. The Catalan number Cn is the number of rooted binary trees on
n vertices.

For example, there are five rooted binary trees with three vertices,
so C3 = 5. Three of them are shown below, with the root vertex cir-
cled. The other two can be obtained by reflecting the two asymmetric
diagrams.

18

10. Convolutions and the Catalan numbers

Definition 10.1. The convolution of the sequences a0, a1, a2, . . . and
b0, b1, b2, . . . is the sequence c0, c1, c2, . . . defined by

cn =
n�

k=0

akbn−k.

Keeping the notation from the definition, let F (x) =
�∞

n=0 anx
n,

let G(x) =
�∞

n=0 bnx
n and let H(z) =

�∞
n=0 cnx

n. By definition of the
product of formal power series, we have F (x)G(x) = H(x). This makes
generating functions ideal for finding sequences defined by convolutions.

Convolutions frequently arise in combinatorial problems. See Prob-
lem Sheet 4 for some more examples.

Example 10.2. Given a pile of indistinguishable building blocks, how
many ways are there to use n blocks to make an equilateral triangle
and a square?

The canonical application of convolutions is to the Catalan numbers.
These numbers have a huge number of combinatorial interpretations;
we shall define them using rooted binary trees drawn in the plane.

Definition 10.3. A rooted binary tree is either empty, or consists of a
root vertex together with a pair of rooted binary trees: a left subtree
and a right subtree. The Catalan number Cn is the number of rooted
binary trees on n vertices.

For example, there are five rooted binary trees with three vertices,
so C3 = 5. Corrected from the wrong C4 = 5. Three of them
are shown below, with the root vertex circled. The other two can be
obtained by reflection.

Lemma 10.4. If n ∈ N then

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−2C1 + Cn−1C0.

Theorem 10.5. If n ∈ N0 then Cn = 1
n+1

�
2n
n

�
.

Theorem 9.5. If n ∈ N0 then Cn = 1
n+1(

2n
n ).

We shall prove Theorem 9.6 using our usual three-step programme.
Let F(x) = ∑∞

n=0 Cnxn be the generating function for the Catalan num-
bers. In outline the steps are:

(a) Use Theorem 9.1 (or an ad-hoc argument, see Question 4 on
Sheet 5) to show that F(x) satisfies the quadratic equation

xF(x)2 = F(x)− 1.

(b) Solve the quadratic equation to get the closed form

xF(x) =
1−
√

1− 4x
2

.
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(c) Use the general version of the Binomial Theorem in Theorem 7.5
to deduce the formula for Cn.

The Catalan Numbers have a vast number of combinatorial interpre-
tations. See Question 4 on Sheet 6 for one more. A further 64 (and
counting) are given in Exercise 6.19 in Stanley Enumerative Combina-
torics II, CUP 2001.

Exercise: Explain the unusual structure of the decimal expansion

1
2 −

√
1
4 − 1

1000 = 0.001 001 002 005 014 042 . . . .

As a further application of convolutions we will give yet another
proof (probably the shortest yet!) of the formula for the derangement
numbers dn.

Lemma 9.6. If n ∈ N0 then
n

∑
k=0

(
n
k

)
dn−k = n!.

The sum in the lemma becomes a convolution after a small amount
of rearranging.

Theorem 9.7. If G(x) = ∑∞
n=0 dmxm/m! then

G(x) exp(x) =
1

1− x
.

It is now easy to deduce the formula for dn; the argument needed is
the same as the final step in the proof of Theorem 8.4. The generating
function G used above is an example of an exponential generating func-
tion.

10. PARTITIONS

Definition 10.1. A partition of a number n ∈ N0 is a sequence of natural
numbers (λ1, λ2, . . . , λk) such that

(i) λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1.
(ii) λ1 + λ2 + · · ·+ λk = n.

The entries in a partition λ are called the parts of λ. Let p(n) be the
number of partitions of n.

By this definition the unique partition of 0 is the empty partition ∅,
and so p(0) = 1. The sequence of partition numbers begins

1, 1, 2, 3, 5, 7, 11, 15, . . . .
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Example 10.2. Let an be the number of ways to pay for an item costing n
pence using only 2p and 5p coins. Equivalently, an is the number of
partitions of n into parts of size 2 and size 5. Will find the generating
function for an.

The next theorem can be proved using a generalized version of Theo-
rem 9.1 in which a partition of n decomposes into subobjects consisting
of its parts of size 1, its parts of size 2, and so on.

Instead we will give a direct proof that repeats the main idea in The-
orem 9.1.

Theorem 10.3. The generating function for p(n) is
∞

∑
n=0

p(n)xn =
1

(1− x)(1− x2)(1− x3) . . .
.

It is often useful to represent partitions by Young diagrams. The Young
diagram of (λ1, . . . , λk) has k rows of boxes, with λi boxes in row i. For
example, the Young diagram of (6, 3, 3, 1) is

.

The next theorem has a very simple proof using Young diagrams. (See
also Question 9 on Sheet 5.)

Theorem 10.4. Let n ∈ N and let k ≤ n. The number of partitions of n into
parts of size ≤ k is equal to the number of partitions of n with at most k parts.

While there are bijective proofs of the next theorem using Young di-
agrams, it is much easier to prove it using generating functions. Note
how we adapt the proof of Theorem 10.3 to get the generating functions
for two special types of partitions.

Theorem 10.5. Let n ∈ N. The number of partitions of n with at most one
part of any given size is equal to the number of partitions of n into odd parts.

For a generalization of this result see Question 9 on Sheet 6.

There are many deep combinatorial and number-theoretic properties
of the partition numbers. For example, in 1919 Ramanujan used ana-
lytic arguments with generating functions to prove that

p(4), p(9), p(14), p(19), . . . , p(5m + 4), . . .
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are all divisible by 5. In 1944 Freeman Dyson found a bijective proof
of this result while still an undergraduate. A number of deep gener-
alizations of Ramanujan’s congruences have since been proved, most
recently by Mahlburg in 2005.

Many easily stated problems remain open: for example, is p(n) even
about half the time?

The problem of finding an estimate for the size of the partition num-
ber p(n) was solved in 1919 by Hardy and Ramanujan as the original
application of the circle method. The crudest version of their result is

p(n) ∼ ec
√

n

4n
√

3

where c = 2
√

π2

6 , and ∼ means that the ratio of the two sides tends
to 1 as n → ∞. For a more elementary result, that helps to explain
the constant c in the Hardy–Ramanujan theorem, see Question 10 on
Sheet 6. It is an open problem to find an entirely combinatorial proof
that there is a constant A such that p(n) < A

√
n for all n ∈ N.
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Part C: Ramsey Theory

11. INTRODUCTION TO RAMSEY THEORY

A typical result in Ramsey Theory says that any sufficiently large
combinatorial structure always contain a substructure with some reg-
ular pattern. For example, any infinite sequence of real numbers con-
tains either an increasing or a decreasing subsequence (the Bolzano–
Weierstrass theorem). The finite version of this result will appear on
Problem Sheet 7.

Most of the results in Ramsey Theory are naturally stated in terms of
graphs. In this course we will concentrate on the finite case.

Definition 11.1. A graph consists of a set V of vertices together with a
set E of 2-subsets of V called edges. The complete graph with vertex set V
is the graph whose edge set is all 2-subsets of V.

For example, the complete graph on V = {1, 2, 3, 4, 5} is drawn be-
low. Its edge set is

{
{1, 2}, {1, 3}, . . . , {4, 5}

}
.
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Part C: Ramsey Theory

13. Introduction to Ramsey Theory

The idea behind Ramsey theory is that any sufficiently large struc-
ture should contain a substructure with some regular pattern. For
example, any infinite sequence of real numbers contains either an in-
creasing or a decreasing subsequence (the Bolzano–Weierstrass theo-
rem).

Most of the results in this area concern graphs: we shall concentrate
on the finite case.

Definition 13.1. A graph is a set X of vertices together with a set E
of 2-subsets of X called edges. The complete graph on X is the graph
whose edge set is all 2-subsets of X.

For example, the complete graph on 5 vertices is drawn below. Its
edge set is

�
{1, 2}, {1, 3}, . . . , {4, 5}

�
.

1

2

3 4

5

We denote the complete graph with n vertices by Kn. The graph K3

is often called a triangle.

Exercise: Find the number of edges in Kn.

Definition 13.2. Let c ∈ N and let G be a complete graph, with edge
set E. A c-colouring of G is a function from E to {1, 2, . . . , c}. If Y is
an r-set of vertices of G such that all edges between vertices in Y have
the same colour, then we say that Y is a monochromatic Kr.

Note that it is the edges that are coloured, not the vertices.

In practice we shall specify graphs and colourings rather less formally.
It seems to be a standard convention that colour 1 is red, colour 2 is
blue and colour 3 (which we won’t need for a while) is green.

Example 13.3. In any two-colouring of the edges of K6, there is either
a red triangle, or a blue triangle.

We denote the complete graph on {1, 2, . . . , n} by Kn.

Definition 11.2. Let c, n ∈ N. A c-colouring of the complete graph Kn is
a function from the edge set of Kn to {1, 2, . . . , c}. If S is an s-subset of
the vertices of Kn such that all the edges between vertices in S have the
same colour, then we say that S is a monochromatic Ks

A monochromatic K3 is usually said to be a monochromatic triangle.
Note that it is the edges of the complete graph Kn that are coloured, not
the vertices.

In practice we shall specify graphs and colours rather less formally.
It seems to be a standard convention that colour 1 is red and colour 2
is blue. In these notes, red will be indicated by solid lines and blue by
dashed lines.
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Exercise: Show that in the colouring of K6 below there is a unique blue
(dashed) K4 and exactly two red (solid) triangles. Find all the blue tri-
angles.

1

2 3

4

56

Example 11.3. In any red-blue colouring of the edges of K6 there is ei-
ther a red triangle or a blue triangle.

Definition 11.4. Given s, t ∈ N, with s, t ≥ 2, we define the Ramsey
number R(s, t) to be the smallest n (if one exists) such that in any red-
blue colouring of the complete graph on n vertices, there is either a
red Ks or a blue Kt.

For example, we know from Example 11.3 that R(3, 3) ≤ 6.

Lemma 11.5. Let s, t ∈ N with s, t ≥ 2. Let N ∈ N. Assume that R(s, t)
exists.

(i) If N ≥ R(s, t) then in any red-blue colouring of KN there is either a
red Ks or a blue Kt.

(ii) If N < R(s, t) there exist colourings of KN with no red Ks or blue Kt.

By Question 2 on Sheet 6 there is a red-blue colouring of K5 with no
monochromatic triangle. Hence, Lemma 11.5(i), R(3, 3) > 5. It now
follows from Example 11.3 that R(3, 3) = 6.

Exercise: Let s, t ∈ N with s, t ≥ 2. Show that R(s, t) = R(t, s).

We will prove in Theorem 12.3 that all the two-colour Ramsey num-
bers R(s, t) exist, and that R(s, t) ≤ (s+t−2

s−1 ). (Please do not assume this
result when doing Sheet 6.)

One family of Ramsey numbers is easily found.

Lemma 11.6. If s ≥ 2 then R(s, 2) = R(2, s) = s.
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The main idea need to prove Theorem 12.3 appears in the next exam-
ple.

Example 11.7. In any two-colouring of K10 there is either a red K3 or a
blue K4. Hence R(3, 4) ≤ 10.

This bound can be improved using a result from graph theory. Recall
that if v is a vertex of a graph G then the degree of v is the number of
edges of G that meet v.

Lemma 11.8 (Hand-Shaking Lemma). Let G be a graph with vertex set
{1, 2, ..., n} and exactly e edges. If di is the degree of vertex i then

2e = d1 + d2 + · · ·+ dn.

Theorem 11.9. R(3, 4) = 9.

The proof of the final theorem is left to you: see Question 1 on Sheet 7.

Theorem 11.10. R(4, 4) ≤ 18.

There is a red-blue colouring of K17 with no red K4 or blue K4 so
R(4, 4) = 18. A construction is given in Question 8 of Sheet 7.

It is a very hard problem to find the exact values of Ramsey num-
bers for larger s and t. For a survey of other known results on R(s, t)
for small s and t, see Stanislaw Radziszowski, Small Ramsey Numbers,
Electronic Journal of Combinatorics, available at www.combinatorics.
org/Surveys. For example, it was shown in 1965 that R(4, 5) = 25, but
all that is known about R(5, 5) is that it lies between 43 and 49. It is
probable that no-one will ever know the exact value of R(6, 6).

12. RAMSEY’S THEOREM

Since finding the Ramsey numbers R(s, t) exactly is so difficult, we
settle for proving that they exist, by proving an upper bound for R(s, t).
We work by induction on s + t. The following lemma gives the critical
inductive step.

Lemma 12.1. Let s, t ∈ N with s, t ≥ 3. If R(s− 1, t) and R(s, t− 1) exist
then R(s, t) exists and

R(s, t) ≤ R(s− 1, t) + R(s, t− 1).

Theorem 12.2. For any s, t ∈ N with s, t ≥ 2, the Ramsey number R(s, t)
exists and

R(s, t) ≤
(

s + t− 2
s− 1

)
.
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We now get a bound on the diagonal Ramsey numbers R(s, s). Note
that because of the use of induction on s+ t, we could not have obtained
this result without first bounding all the Ramsey numbers R(s, t).

Corollary 12.3. If s ∈ N and s ≥ 2 then

R(s, s) ≤
(

2s− 2
s− 1

)
≤ 4s−1.

One version of Stirling’s Formula states that if m ∈ N then
√

2πm
(m

e
)m ≤ m! ≤

√
2πm

(m
e
)me1/12m.

These bounds lead to the asymptotically stronger result that

R(s, s) ≤ 4s
√

s
for all s ∈ N.

Corollary 12.3 was proved by Erdös and Szekeres in 1935. We have
followed their proof above. The strongest improvement known to date
is due to David Conlon, who showed in 2004 that, up to a rather tech-
nical error term, R(s, s) ≤ 4s/s. In 1947 Erdös proved the lower bound
R(s, s) ≥ 2(s−1)/2. His argument becomes clearest when stated in prob-
abilistic language: we will see it in Part D of the course.

To end this introduction to Ramsey Theory we give some related re-
sults.

PIGEONHOLE PRINCIPLE. The Pigeonhole Principle states that if n pi-
geons are put into n − 1 holes, then some hole must contain two or
more pigeons. See Question 8 on Sheet 6 for some applications of the
Pigeonhole Principle.

In Examples 11.3 and 11.6, and Lemma 12.1, we used a similar result:
if r + s − 1 objects (in these cases, edges) are coloured red and blue,
then either there are r red objects, or s blue objects. This is probably the
simplest result that has some of the general flavour of Ramsey theory.

MULTIPLE COLOURS. It is possible to generalize all the results proved
so far to three or more colours.

Theorem 12.4. There exists n ∈ N such that if the edges of Kn are coloured
red, blue and yellow then there exists a monochromatic triangle.

There are (at least) two ways to prove Theorem 12.4. The first adapts
our usual argument, looking at the edges coming out of vertex 1 and
concentrating on those vertices joined by edges of the majority colour.
The second uses a neat trick to reduce to the two-colour case.



29

Part D: Probabilistic Methods

13. REVISION OF DISCRETE PROBABILITY

This section is intended to remind you of the definitions and lan-
guage of discrete probability theory, on the assumption that you have
seen most of the ideas before. These notes are based on earlier notes by
Dr Barnea and Dr Gerke; of course any errors are my responsibility.

For further background see any basic textbook on probability, for ex-
ample Sheldon Ross, A First Course in Probability, Prentice Hall 2001.

Definition 13.1.
• A probability measure p on a finite set Ω assigns a real number pω

to each ω ∈ Ω so that 0 ≤ pω ≤ 1 for each ω and

∑
ω∈Ω

pω = 1.

We say that pω is the probability of ω.
• A probability space is a finite set Ω equipped with a probability

measure. The elements of a probability space are sometimes
called outcomes.
• An event is a subset of Ω.
• The probability of an event A ⊆ Ω, denoted P[A] is the sum of

the probability of the outcomes in A; that is

P[A] = ∑
ω∈A

pω.

It follows at once from this definition that P[{ω}] = pω for each ω ∈
Ω. We also have P[∅] = 0 and P[Ω] = 1.

Example 13.2
(1) To model a throw of a single unbiased die, we take

Ω = {1, 2, 3, 4, 5, 6}
and put pω = 1/6 for each outcome ω ∈ Ω. The event that we
throw an even number is A = {2, 4, 6} and as expected, P[A] =
p2 + p4 + p6 = 1/6 + 1/6 + 1/6 = 1/2.

(2) To model a throw of a pair of dice we could take

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}
and give each element of Ω probability 1/36, so p(i,j) = 1/36
for all (i, j) ∈ Ω. Alternatively, if we know we only care about
the sum of the two dice, we could take Ω = {2, 3, . . . , 12} with
p2 = 1/36, p3 = 2/36, . . . , p6 = 5/36, p7 = 6/36, p8 = 5/36,
. . . , p12 = 1/36. The former is natural and more flexible.
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(3) A suitable probability space for three flips of a coin is

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
where H stands for heads and T for tails, and each outcome has
probability 1/8. To allow for a biased coin we fix 0 ≤ q ≤ 1
and instead give an outcome with exactly k heads probability
qk(1− q)3−k.

(4) Let n ∈ N and let Ω be the set of all permutations of {1, 2, . . . , n}.
Set pσ = 1/n! for each permutation σ ∈ Ω. This gives a suitable
setup for Theorem 2.6. Later we shall use the language of prob-
ability theory to give a shorter proof of part (ii) of this theorem.

It will often be helpful to specify events (i.e. subsets of Ω) a little
informally. For example, in (3) above we might write P[at least two
heads], rather than P[{HHT, HTH, THH, HHH}].

UNIONS, INTERSECTIONS AND COMPLEMENTS. Let Ω be a probability
space. If A, B ⊆ Ω then

P[A ∪ B] = ∑
ω∈A∪B

pω = ∑
ω∈A

pω + ∑
ω∈B

pω − ∑
ω∈A∩B

pω

= P[A] + P[B]− P[A ∩ B].

In particular, if A and B are disjoint, i.e. A ∩ B = ∅, then P[A ∪ B] =
P[A] + P[B]. The complement of an event A ⊆ Ω is defined to be

Ā = {ω ∈ Ω : ω 6∈ A}.
Since

1 = P[Ω] = P[A ∪ Ā] = P[A] + P[Ā]

we have P[Ā] = 1− P[A].

Exercise: Show that if A1, . . . , An ⊆ Ω then

P[A1 ∪ · · · ∪ An] ≤ P[A1] + · · ·+ P[An].

CONDITION PROBABILITY AND INDEPENDENCE.

Definition 13.3. Let Ω be a probability space, and let A, B ⊆ Ω be
events.

• If P[B] 6= 0 then we define the conditional probability of A given B
by

P[A|B] = P[A ∩ B]
P[B]

.

• The events A, B are said to be independent if P[A∩B] = P[A]P[B].
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Suppose that each element of Ω has equal probability p. Then

P[A|B] = |A ∩ B|p
|B|p =

|A ∩ B|
|B|

is the proportion of elements of B that also lie in A; informally, if we
know that the event B has occurred, then the probability that A has also
occurred is P[A|B].

Exercise: Show that if A and B are events in a probability space such
that P[A], P[B] 6= 0, then P[A|B] = P[A] if and only if A and B are
independent.

Conditional probability can be quite subtle.

Exercise: Let Ω = {HH, HT, TH, TT} be the probability space for two
flips of a fair coin, so each outcome has probability 1

4 . Let A be the event
that both flips are heads, and let B be the event that at least one flip is a
head. Write A and B as subsets of Ω and show that P[A|B] = 1/3.

Example 13.4 (The Monty Hall Problem). On a game show you are of-
fered the choice of three doors. Behind one door is a car, and behind the
other two are goats. You pick a door and then the host, who knows where
the car is, opens another door to reveal a goat. You may then either open
your original door, or change to the remaining unopened door. Assum-
ing you want the car, should you change?

Most people find the answer to the Monty Hall problem a little sur-
prising. The Sleeping Beauty Problem, stated below, is even more con-
troversial.

Example 13.5. Beauty is told that if a coin lands heads she will be woken
on Monday and Tuesday mornings, but after being woken on Monday
she will be given an amnesia inducing drug, so that she will have no
memory of what happened that day. If the coin lands tails she will
only be woken on Tuesday morning. At no point in the experiment
will Beauty be told what day it is. Imagine that you are Beauty and are
awoken as part of the experiment and asked for your credence that the
coin landed heads. What is your answer?

The related statistical issue in the next example is also widely misun-
derstood.

Example 13.6. Suppose that one in every 1000 people has disease X.
There is a new test for X that will always identify the disease in anyone
who has it. There is, unfortunately, a tiny probability of 1/250 that the
test will falsely report that a healthy person has the disease. What is
the probability that a person who tests positive for X actually has the
disease?
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RANDOM VARIABLES.

Definition 13.7. Let Ω be a probability space. A random variable on Ω is
a function X : Ω→ R.

Definition 13.8. If X, Y : Ω→ R are random variables then we say that
X and Y are independent if for all x, y ∈ R the events

A = {ω ∈ Ω : X(ω) = x} and

B = {ω ∈ Ω : Y(ω) = y}
are independent.

The following shorthand notation is very useful. If X : Ω → R is
a random variable, then ‘X = x’ is the event {ω ∈ Ω : X(ω) = x}.
Similarly ‘X ≥ x’ is the event {ω ∈ Ω : X(ω) ≥ x}. We mainly use this
shorthand in probabilities, so for instance

P[X = x] = P
[
{ω ∈ Ω : X(ω) = x}

]
.

Exercise: Show that X, Y : Ω→ R are independent if and only if

P[(X = x) ∩ (Y = y)] = P[X = x]P[Y = y]

for all x, y ∈ R. (This is just a trivial restatement of the definition.)

Example 13.9. Let Ω = {HH, HT, TH, TT} be the probability space for
two flips of a fair coin. Define X : Ω → R to be 1 if the first coin is
heads, and zero otherwise. So

X(HH) = X(HT) = 1 and X(TH) = X(TT) = 0.

Define Y : Ω→ R similarly for the second coin.

(i) The random variables X and Y are independent.
(ii) Let Z be 1 if exactly one flip is heads, and zero otherwise. Then

X and Z are independent, and Y and Z are independent.
(iii) There exist x, y, z ∈ {0, 1} such that

P[X = x, Y = y, Z = z] 6= P[X = x]P[Y = y]P[Z = z].

This shows that one has to be quite careful when defining indepen-
dence for a family of random variables. (Except in the Lovász Local
Lemma, we will be able to manage with the pairwise independence de-
fined above.)

Given random variables X, Y : Ω → R we can define new random
variables by taking functions such as X + Y, aX for a ∈ R and XY. For
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instance (X + Y)(ω) = X(ω) + Y(ω), and so on. Notice that if z ∈ R
then

{ω ∈ Ω : (X + Y)(ω) = z} =
⋃

x+y=z
{ω ∈ Ω : X(ω) = x, Y(ω) = y}.

The events above are disjoint for different x, y, so we get

P[X + Y = z] = ∑
x+y=z

P[(X = x) ∩ (Y = y)].

If X and Y are independent then

P[(X = x) ∩ (Y = y)] = P[X = x]P[Y = y]

and so
P[X + Y = z] = ∑

x+y=z
P[X = x]P[Y = y].

(Note that all of these sums have only finitely many non-zero sum-
mands, so they are well-defined.)

Exercise: Show similarly that if X, Y : Ω → R are independent random
variables then

P[XY = z] = ∑
xy=z

P[X = x]P[Y = y].

EXPECTATION AND LINEARITY.

Definition 13.10. Let Ω be a probability space with probability mea-
sure p. The expectation E[X] of a random variable X : Ω→ R is defined
to be

E[X] = ∑
ω∈Ω

X(ω)pw.

Intuitively, the expectation of X is the average value of X on elements
of Ω, if we choose ω ∈ Ω with probability pω. We have

E[X] = ∑
ω∈Ω

X(ω)pω = ∑
x∈R

∑
ω

X(ω)=x

xpω = ∑
x∈R

xP[X = x].

A critical property of expectation is that it is linear. Note that we do not
need to assume independence in this lemma.

Lemma 13.11. Let Ω be a probability space. If X1, X2, . . . , Xk : Ω→ R are
random variables then

E[a1X1 + a2X2 + · · ·+ akXk] = a1E[X1] + a2E[X2] + · · ·+ akE[Xk]

for any a1, a2, . . . , ak ∈ R.
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Proof. By definition the left-hand side is

∑
ω∈Ω

pω

(
a1X1 + · · ·+ akXk)(ω) = ∑

ω∈Ω
pω

(
a1X1(ω) + · · ·+ akXK(ω)

)

= a1 ∑
ω∈Ω

pωX1(ω) + · · ·+ ak ∑
ω∈Ω

Xk(ω)

which is the right-hand side. �

When X, Y : Ω → R are independent random variables, there is a
very useful formula for E[XY].

Lemma 13.12. If X, Y : Ω → R are independent random variables then
E[XY] = E[X]E[Y].

Exercise: Prove Lemma 13.11 by arguing that

E[XY] = ∑
z∈R

zP[XY = z] = ∑
z∈R

z ∑
xy=z

P[(X = x) ∩ (Y = y)]

and using independence.

VARIANCE.

Definition 13.13. Let Ω be a probability space. The variance Var[X] of a
random variable X : Ω→ R is defined to be

Var[X] = E
[
(X− E[X])2].

The variance measures how much X can be expected to depart from
its mean value E[X]. So it is a measure of the ‘spread’ of X.

It is tempting to define the variance as E
[
X − E[X]

]
, but by linearity

this expectation is E[X]− E[X] = 0. One might also consider the quan-
tity E

[ ∣∣X− E[X]
∣∣ ], but the absolute value turns out to be hard to work

with. The definition above works well in practice.

Lemma 13.14. Let Ω be a probability space.
(i) If X : Ω→ R is a random variable then

Var[X] = E[X2]− (E[X])2.

(ii) If X, Y : Ω→ R are independent random variables then

Var[X + Y] = Var[X] + Var[Y].

Exercise: Show that (ii) can fail if X and Y are not independent. [Hint:
usually a random variable is not independent of itself.]
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14. INTRODUCTION TO PROBABILISTIC METHODS

In this section we shall solve some problems involving permutations
(including, yet again, the derangements problem) using probabilistic
arguments. We shall use the language of probability spaces and random
variables recalled in §13. It will be particularly important for you to ask
questions if the use of anything from this section is unclear.

Throughout this section we fix n ∈ N and let Ω be the set of all
permutations of the set {1, 2, . . . , n}. We define a probability measure
q : Ω → R by qσ = 1/n! for each permutation σ of {1, 2, . . . , n}. This
makes Ω into a probability space in which all the permutations have
equal probability. We say that the permutations are chosen uniformly at
random.

Recall that, in probabilistic language, events are subsets of Ω.

Exercise: Let x ∈ {1, 2, . . . , n} and let Ax = {σ ∈ Ω : σ(x) = x}.
Then Ax is the event that a permutation fixes x. What is the probability
of Ax?

Building on this we can give a better proof of Theorem 2.6(ii).

Theorem 14.1. Let F : Ω → N0 be defined so that F(σ) is the number of
fixed points of the permutation σ ∈ Ω. Then E[F] = 1.

To give a more general result we need cycles and the cycle decompo-
sition of a permutation.

Definition 14.2. A permutation σ of {1, 2, . . . , n} acts as a k-cycle on a
k-subset S ⊆ {1, 2, . . . , n} if S has distinct elements x1, x2, . . . , xk such
that

σ(x1) = x2, σ(x2) = x3, . . . , σ(xk) = x1.
If σ(y) = y for all y ∈ {1, 2, . . . , n} such that y 6∈ S then we say that σ is
a k-cycle, and write

σ = (x1, x2, . . . , xk).

Note that there are k different ways to write a k-cycle. For example,
the 3-cycle (1, 2, 3) can also be written as (2, 3, 1) and (3, 1, 2).

Definition 14.3. We say that cycles (x1, x2, . . . , xk) and (y1, y2, . . . , y`)
are disjoint if

{x1, x2, . . . , xk} ∩ {y1, y2, . . . , y`} = ∅.

Lemma 14.4. A permutation σ of {1, 2, . . . , n} can be written as a composi-
tion of disjoint cycles. The cycles in this composition are uniquely determined
by σ.
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The proof of Lemma 14.4 is non-examinable and will not be given in
full in lectures. What is more important is that you can apply the result.
We shall use it below in Theorem 14.5

Exercise: Write the permutation of {1, 2, 3, 4, 5, 6} defined by σ(1) = 3,
σ(2) = 4, σ(3) = 1, σ(4) = 6, σ(5) = 5, σ(6) = 2 as a composition of
disjoint cycles.

Given a permutation σ of {1, 2, . . . , n} and k ∈ N, we can ask: what
is the probability that a given x ∈ {1, 2, . . . , n} lies in a k-cycle of σ? The
first exercise in this section shows that the probability that x lies in a
1-cycle is 1/n.

Exercise: Check directly that the probability that 1 lies in a 2-cycle of a
permutation of {1, 2, 3, 4} selected uniformly at random is 1/4.

Theorem 14.5. Let 1 ≤ k ≤ n and let x ∈ {1, 2, . . . , n}. The probability
that x lies in a k-cycle of a permutation of {1, 2, . . . , n} chosen uniformly at
random is 1/n.

Theorem 14.6. Let pn be the probability that a permutation of {1, 2, . . . , n}
chosen uniformly at random is a derangement. Then

pn =
pn−2

n
+

pn−3

n
+ · · ·+ p1

n
+

p0

n
.

It may be helpful to compare this result with Lemma 9.7: there we
get a recurrence by considering fixed points; here we get a recurrence
by considering cycles.

We now use generating functions to recover the usual formula for pn.

Corollary 14.7. For all n ∈ N0,

pn = 1− 1
1!

+
1
2!
− 1

3!
+ · · ·+ (−1)n

n!
.

We can also generalize Theorem 14.1.

Theorem 14.8. Let Ck : Ω → R be the random variable defined so that
Ck(σ) is the number of k-cycles in the permutation σ of {1, 2, . . . , n}. Then
E[Ck] = 1/k for all k such that 1 ≤ k ≤ n.

Note that if k > n/2 then a permutation can have at most one k-
cycle. So in these cases, E[Ck] is the probability that a permutation of
{1, 2, . . . , n}, chosen uniformly at random, has a k-cycle.
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15. RAMSEY NUMBERS AND THE FIRST MOMENT METHOD

The grandly named ‘First Moment Method’ is nothing more than the
following simple observation.

Lemma 15.1 (First Moment Method). Let Ω be a probability space and let
M : Ω→ N0 be a random variable taking values in N0. If E[M] = x then

(i) P[M ≥ x] > 0, so there exists ω ∈ Ω such that M(ω) ≥ x.
(ii) P[M ≤ x] > 0, so there exists ω′ ∈ Ω such that M(ω′) ≤ x.

Exercise: Check that the lemma holds in the case when

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}
models the throw of two fair dice (see Example 13.2(2)) and if (α, β) ∈ Ω
then M(α, β) = α + β.

The kth moment of a random variable X is defined to be E[Xk]. Some-
times stronger results can be obtained by considering higher moments.
We shall concentrate on first moments, where the power of the method
is closely related to the linearity property of expectation (see Lemma
13.11).

Our applications will come from graph theory.

Definition 15.2. Let G be a graph with vertex set V. A cut (S, T) of G is
a partition of V into subsets A and B. The capacity of a cut (S, T) is the
number of edges of G that meet both S and T.

Note that T = V\S and S = V\T, so a cut can be specified by giving
either of the sets making up the partition. The diagram below shows
the cut in the complete graph on {1, 2, 3, 4, 5} where S = {1, 2, 3} and
T = {4, 5}. The capacity of the cut is 6, corresponding to the 6 edges
{x, y} with x ∈ S and y ∈ T shown with thicker lines.
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18. Ramsey Numbers and the First Moment Method

The grandly named ‘First Moment Method’ is nothing more than
the following observation.

Lemma 18.1 (First Moment Method). Let Ω be a probability space
and let X : Ω→ N0 be a random variable. If E[X] = x then

(i) P[X ≥ x] > 0, so there exists ω ∈ Ω such that X(ω) ≥ x.
(ii) P[X ≤ x] > 0, so there exists ω� ∈ Ω such that X(ω�) ≤ x.

Exercise: check that the lemma holds in the case where

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}
models the throw of two fair dice and X(x, y) = x + y.

More generally, the k-th moment of X is E[Xk]. Sometimes stronger
results can be obtained by considering these higher moments. We shall
concentrate on first moments, where the power is the method is closely
related to the linearity property of expectation (see Lemma 16.8).

Our applications will come from graph theory.

Definition 18.2. Let G be a graph with vertex set V . A cut of G is a
partition of V into two disjoint subsets A and B. The capacity of the
cut is the number of edges of G that meet both A and B.

Note that B = V \A and A = V \B, so a cut can be specified by
giving either of the sets in the partition.

For example, the diagram below shows the cut in the complete graph
on {1, 2, 3, 4, 5} where A = {1, 2, 3} and B = {4, 5}. The capacity of
this cut is 6, corresponding to the 6 edges {x, y} for x ∈ A, y ∈ B
shown with thicker lines.

1

2

3 4

5

Theorem 18.3. Let G be a graph with n vertices and m edges. There
is a cut of G with capacity ≥ m/2.

Theorem 15.3. Let G be a graph with vertex set {1, 2, . . . , n} and exactly m
edges. There is a cut of G with capacity ≥ m/2.
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In 1947 Erdös proved a lower bound on the Ramsey Numbers R(s, s)
that is still almost the best known result in this direction. Our version of
his proof will use the First Moment Method in the following probability
space.

Lemma 15.4. Let n ∈ N and let Ω be the set of all red-blue colourings of the
complete graph Kn. Let pω = 1/|Ω| for each ω ∈ Ω. Then

(i) each colouring in Ω has probability 1/2(
n
2);

(ii) given any m edges in G, the probability that all m of these edges have
the same colour is 21−m.

Theorem 15.5. Let n ∈ N and let s ∈ N with s ≥ 2. If
(

n
s

)
21−(s

2) < 1

then there is a red-blue colouring of the complete graph on {1, 2, . . . , n} with
no red Ks or blue Ks.

Corollary 15.6. For any s ∈ N with s ≥ 2 we have

R(s, s) ≥ 2(s−1)/2.

For example, since
(

42
8

)
21−(8

2) ≈ 0.879 < 1,

if we repeatedly colour the complete graph on {1, 2, ..., 42} at random,
then we will fairly soon get a colouring with no monochromatic K8.
However, to check that we have found such a colouring, we will have to
look at all (42

8 ) ≈ 1.18× 108 subsets of {1, 2, . . . , 42}. Thus Theorem 15.5
does not give an effective construction.

It is a major open problem to find, for each s ≥ 2, an explicit colour-
ing of the complete graph on 1.01s vertices with no monochromatic Ks.
(Here 1.01 could be replaced with 1 + ε for any ε > 0.

The bound in Corollary 15.6 can be slightly improved by the Lovász
Local Lemma: see the final section.
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16. LOVÁSZ LOCAL LEMMA

The section is non-examinable, and is included for interest only.

In the proof of Theorem 15.5, we considered a random colouring
of the complete graph on {1, 2, . . . , n} and used Lemma 15.1 to show
that, provided (n

s)2
1−(s

2) < 1 there was a positive probability that this
colouring had no monochromatic Ks. As motivation for the Lovász Lo-
cal Lemma, consider the following alternative argument, which avoids
the use of Lemma 15.1.

Alternative proof of Theorem 15.5. As before, let Ω be the probability space
of all colourings of the complete graph on {1, 2, . . . , n}, where each
colouring gets the same probability. For each s-subset

S ⊆ {1, 2, . . . , n},
let ES be the event that S is a monochromatic Ks. The event that no Ks
is monochromatic is then

⋂
S ĒS, where the intersection is taken over all

s-subsets S ⊆ {1, 2, . . . , n} and ĒS = Ω\ES. So it will suffice to show
that P[

⋂
ĒS] > 0, or equivalently, that P[

⋃
ES] < 1.

In lectures we used Lemma 15.4 to show that if S is any s-subset of
{1, 2, . . . , n} then

P[ES] = 21−(n
s).

By the exercise on page 30, the probability of a union of events is at most
the sum of their probabilities, so

P[
⋃

S
ES] ≤

(
n
s

)
21−(n

s).

Hence the hypothesis implies that P
[⋃

S ES
]
< 1, as required. �

If the events ES were independent, we would have

P
[⋂

S
ĒS
]
= ∏

S
P[ĒS].

Since each event ES has non-zero probability, it would follow that their
intersection has non-zero probability, giving another way to finish the
proof. However, the events are not independent, so this is not an ad-
missible strategy. The Lovász Local Lemma gives a way to get around
this obstacle.

We shall need the following definition.

Definition 16.1. An event E is mutually independent of a collection A of
events, if for all U ⊆ A and U′ ⊆ A\U we have

P
[

E
∣∣∣
( ⋂

C∈U
C
)
∩
( ⋂

D∈U′
D̄
)]

= P[E]
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whenever
(⋂

C∈U C
)
∩
(⋂

D∈U′ D̄
)

is non-empty.

For example, if the events ES are as defined above, then ES is inde-
pendent of the events {ET : |S ∩ T| ≤ 1}. This can be checked quite
easily: informally the reason is that since each S ∩ T has at most one
vertex, no edge is common to both S and T, and so knowing whether
or not T is monochromatic gives no information about S.

Lemma 16.2 (Symmetric Lovász Local Lemma). Let d ∈ N. Let A be a
collection of events such that P[E] ≤ p for all E ∈ A. Suppose that for each
event E ∈ A, there is a subset AE of A such that

(i) |AE| ≥ |A| − d;
(ii) E is independent of AE.

If ep(d + 1) ≤ 1 then

P
[ ⋂

E∈A
E
]
> 0

For a proof of the lemma, see Chapter 5 of Noga Alon and Joel H.
Spencer The Probabilistic Method, 3rd edition. A simpler proof of a very
similar result, where ep(d + 1) is replaced with 4pd, is given in §6.7
of Michael Mitzenmacher and Eli Upfal Probability and Computing
(see [6] in the list of page 2).

The Lovász Local Lemma can be used to prove a slightly stronger
version of Theorem 15.5.

Theorem 16.3. Let n, s ∈ N. If

e
((s

2

)(
n− 2
s− 2

)
+ 1
)

21−(s
2) < 1

then there is a red-blue colouring of the complete graph Kn with no red Ks or
blue Ks.

Proof. Define the events ES as at the start of this section. We remarked
that if S is an s-subset of {1, 2, . . . , n} then the event ES is independent
of the events ET for those s-subsets T such that S ∩ T ≤ 1. There are at
most (

s
2

)(
n− 2
s− 2

)

s-subsets T such that S ∩ T ≥ 2, since we can choose two common
elements in (s

2) ways, and then choose any s− 2 of the remaining n− 2
elements of {1, 2, . . . , n} to complete T. (There is some over-counting
here, so this is only an upper bound.)

Therefore we let d = (s
2)(

n−2
s−2). Since

P[ES] = 21−(n
s).



41

for all S, we take p = 21−(n
s). Then we can apply the Lovász Local

Lemma, provided that ep(d + 1) ≤ 1, which is one of the hypotheses of
the theorem. Hence

P
[⋂

S
ES

]
> 0

and so there is a red-blue colouring with no monochromatic Ks, as re-
quired. �

Theorem 16.2 is stronger than Theorem 15.5 when s is reasonably
large.

Example 16.4. When s = 15, the largest n such that
(

n
15

)
21−(15

2 ) < 1

is n = 792. So Theorem 15.5 tells us that R(15, 15) > 792. But

e
((15

2

)(
n− 2
15− 2

)
+ 1
)

21−(15
2 ) < 1

provided n ≤ 947. Theorem 16.2 therefore gives the stronger result that
R(15, 15) > 947.

A more general version of the Lovász Local Lemma can be used to
get the bound

R(s, 3) ≥ Cs2

(log s)2

for some constant C. For an outline of the proof and references to fur-
ther results, see Alon and Spencer, Chapter 5.


