
Part A: Enumeration

§3: Binomial Coefficients

Notation 3.1
If Y is a set of size k then we say that Y is a k-set. To emphasise
that Y is a subset of some other set X then we may say that Y is
a k-subset of X .

We shall define binomial coefficients combinatorially.

Definition 3.2
Let n, k ∈ N0. Let X = {1, 2, . . . , n}. The binomial coefficient

(n
k

)

is the number of k-subsets of X .



Bijective Proofs
We should prove that the combinatorial definition agrees with the
usual one. This proof generalizes Question 2 on the Preliminary
Problem Sheet (answers available from Moodle).

Lemma 3.3
If n, k ∈ N0 and k ≤ n then

(
n

k

)
=

n(n − 1) . . . (n − k + 1)

k!
=

n!

k!(n − k)!
.

Exercise: give an alternative proof of Lemma 3.3 by double
counting the set of pairs

(
X , (a1, . . . , ak)

)

such that X = {a1, . . . , ak} ⊆ {1, . . . , n}.

Lemma 3.4
If n, k ∈ N0 then (

n

k

)
=

(
n

n − k

)
.



Bijective Proofs
We should prove that the combinatorial definition agrees with the
usual one. This proof generalizes Question 2 on the Preliminary
Problem Sheet (answers available from Moodle).

Lemma 3.3
If n, k ∈ N0 and k ≤ n then

(
n

k

)
=

n(n − 1) . . . (n − k + 1)

k!
=

n!

k!(n − k)!
.

Exercise: give an alternative proof of Lemma 3.3 by double
counting the set of pairs

(
X , (a1, . . . , ak)

)

such that X = {a1, . . . , ak} ⊆ {1, . . . , n}.

Lemma 3.4
If n, k ∈ N0 then (

n

k

)
=

(
n

n − k

)
.



More Bijective Proofs

Lemma 3.5 (Fundamental Recurrence)

If n, k ∈ N then
(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
.

Exercise: Prove bijectively that (n − r)
(n
r

)
= (r + 1)

( n
r+1

)
if

0 ≤ r ≤ n.

Binomial coefficients are so-named because of the famous binomial
theorem. (A binomial is a term of the form x ry s .)

Theorem 3.6 (Binomial Theorem)

Let x, y ∈ C. If n ∈ N0 then

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k .
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Example of Bijection in Lemma 3.5



Example of Bijection in Theorem 3.6 (Binomial Theorem)

The 3-subset {1, 2, 5} corresponds to expanding (x + y)5 by
choosing x from terms 1, 2 and 5, and y from the other terms,
obtaining x3y2. Since there are

(5
3

)
= 10 distinct 3-subsets of

{1, 2, 3, 4, 5}, the coefficient of x3y2 is 10.

Exercise: Write out an alternative proof of the Binomial Theorem
by induction on n, using Lemma 3.5 in the inductive step. Which
proof do you find more convincing?
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§4: Further Binomial Identities and Balls and Urns

The entry in row n and column r of Pascal’s Triangle is
(n
r

)
.

Pascal’s Triangle can be computed by hand using
(n
0

)
=
(n
n

)
= 1

and the Fundamental Recurrence.

Lemma 4.1 (Alternating row sums)

If n ∈ N, r ∈ N0 and r ≤ n then

r∑

k=0

(−1)k
(
n

k

)
= (−1)r

(
n − 1

r

)
.

Lemma 4.2 (Diagonal sums, a.k.a. parallel summation)

If n ∈ N, r ∈ N0 then

r∑

k=0

(
n + k

k

)
=

(
n + r + 1

r

)



Pascal’s Triangle: entry in row n column k is
(
n
k

)

n\k 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1



Lemma 4.1: Alternating Row Sums

n\k 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

�
 �	− + − +



Lemma 4.2: Alternating Row Sums

n\k 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

�
 �	− + − +



Lemma 4.2: Diagonal Sums a.k.a. Parallel Summation

n\k 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

+

+

+

+



Column Sums (see Sheet 1, Question 3)

n\k 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

+

+

+

+

�

�

�






Arguments with subsets

Lemma 4.3 (Subset of a subset)

If k, r , n ∈ N0 and k ≤ r ≤ n then

(
n

r

)(
r

k

)
=

(
n

k

)(
n − k

r − k

)
.

Lemma 4.4 (Vandermonde’s convolution)

If a, b ∈ N0 and m ∈ N0 then

m∑

k=0

(
a

k

)(
b

m − k

)
=

(
a + b

m

)
.



Corollaries of the Binomial Theorem

Corollary 4.5

(i) If n ∈ N0 then
n∑

k=0

(
n

k

)
= 2n.

(ii) If n ∈ N then
n∑

k=0

(−1)k
(
n

k

)
= 0.

Exercise: Find a bijective proof of (i) and a bijective proof of (ii)
when n is odd. Harder exercise: Is there a bijective proof of (ii)
when n is even?

Corollary 4.6

For all n ∈ N there are equally many subsets of {1, 2, . . . , n} of
even size as there are of odd size.



Bijective Proof that
(
n+1

2

)
is the nth Triangle Number



Balls and Urns

How many ways are there to put k balls into n numbered urns?
The answer depends on whether the balls are distinguishable. We
may consider urns of unlimited capacity, or urns that can only
contain one ball.

Numbered balls Indistinguishable balls

≤ 1 ball per urn

unlimited capacity
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Balls and Urns

How many ways are there to put k balls into n numbered urns?
The answer depends on whether the balls are distinguishable. We
may consider urns of unlimited capacity, or urns that can only
contain one ball.

Numbered balls Indistinguishable balls

≤ 1 ball per urn n(n − 1) . . . (n − k + 1)
n(n−1)···(n−k+1)

k!

unlimited capacity nk
(n+k−1)···(n+1)n

k!



Balls and Urns

How many ways are there to put k balls into n numbered urns?
The answer depends on whether the balls are distinguishable. We
may consider urns of unlimited capacity, or urns that can only
contain one ball.

k = 2, n = 3 Numbered balls Indistinguishable balls

≤ 1 ball per urn 3× 2 = 6

(
3

2

)
=

3× 2

2
= 3

unlimited capacity 3× 3 = 9

(
4

2

)
=

4× 3

2
= 6



Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7
Let n ∈ N and let k ∈ N0. The number of ways to place k
indistinguishable balls into n urns of unlimited capacity is

(n+k−1
k

)
.
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Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7
Let n ∈ N and let k ∈ N0. The number of ways to place k
indistinguishable balls into n urns of unlimited capacity is

(n+k−1
k

)
.

n\k 0 1 2 3 4 . . .

1 1 1 1 1 1
2 1 2 3 4 5
3 1 3 6 10
4 1 4 10
5 1 5
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Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7
Let n ∈ N and let k ∈ N0. The number of ways to place k
indistinguishable balls into n urns of unlimited capacity is

(n+k−1
k

)
.

n\k 0 1 2 3 4 . . .

1 1 1 1 1 1
2 1 2 3 4 5
3 1 3 6 10 15
4 1 4 10 20
5 1 5 15
...



Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7
Let n ∈ N and let k ∈ N0. The number of ways to place k
indistinguishable balls into n urns of unlimited capacity is

(n+k−1
k

)
.

n\k 0 1 2 3 4 . . .

1 1 1 1 1 1
2 1 2 3 4 5
3 1 3 6 10 15
4 1 4 10 20 35
5 1 5 15 35
...



Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7
Let n ∈ N and let k ∈ N0. The number of ways to place k
indistinguishable balls into n urns of unlimited capacity is

(n+k−1
k

)
.

n\k 0 1 2 3 4 . . .

1 1 1 1 1 1
2 1 2 3 4 5
3 1 3 6 10 15
4 1 4 10 20 35
5 1 5 15 35 70
...



Counting n-Tuples with Sum k

The following reinterpretation of Theorem 4.7 is often useful.

Corollary 4.8

Let n ∈ N and let k ∈ N0. The number of solutions to the
equation

t1 + t2 + · · ·+ tn = k

with t1, t2, . . . , tn ∈ N0 is
(n+k−1

k

)
.



Questions from Sheet 1

1. Prove that

r

(
n

r

)
= n

(
n − 1

r − 1

)

for n, r ∈ N in two ways:

(a) using the formula for a binomial coefficient;

(b) by reasoning with subsets.

3. Let n, r ∈ N. Prove that
(
r

r

)
+

(
r + 1

r

)
+

(
r + 2

r

)
+ · · ·+

(
n

r

)
=

(
n + 1

r + 1

)

in two ways:

(a) by induction on n (where r is fixed in the inductive argument);

(b) by reasoning with subsets of {1, 2, . . . , n + 1}.



§5: Principle of Inclusion and Exclusion

Example 5.1

If A, B, C are subsets of a finite set X then

|A ∪ B| = |A|+ |B| − |A ∩ B|
|A ∪ B| = |X | − |A| − |B|+ |A ∩ B|

and

|A ∪ B ∪ C | = |A|+ |B|+ |C |
− |A ∩ B| − |B ∩ C | − |C ∩ A|+ |A ∩ B ∩ C |

|A ∪ B ∪ C | = |X | − |A| − |B| − |C |
+ |A ∩ B|+ |B ∩ C |+ |C ∩ A| − |A ∩ B ∩ C |



Hexagonal Numbers

Example 5.2

The formula for |A ∪ B ∪ C | gives a nice way to find a formula for
the (centred) hexagonal numbers.

8

5. Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion (PIE) is an elementary way
to find the sizes of unions or intersections of finite sets.

If A is a subset of a universe set X, we denote by Ā the complement
of A in X; i.e.,

Ā = {x ∈ X : x �∈ A}.
We start with the two smallest non-trivial examples of the principle.

Example 5.1. If A, B, C are subsets of a set X then |A ∪ B| = |A| +
|B| − |A ∩ B| and so

��A ∪ B
�� = |X| − |A| − |B| + |A ∩ B|.

Similarly, |A∪B ∪C| = |A|+ |B|+ |C|− |A∩B|− |B ∩C|− |C ∩A|+
|A ∩ B ∩ C|, so

��A ∪ B ∪ C
�� = |X| − |A| − |B| − |C|

+|A ∩ B| + |B ∩ C| + |C ∩ A| − |A ∩ B ∩ C|.

Example 5.2. The formula for |A ∪ B ∪ C| gives one of the easiest
ways to find the hexagonal numbers.

, , . . .

In the general setting we have a set X and subsets A1, A2, . . . , An

of X. Let I ⊆ {1, 2, . . . , n} be a non-empty index set. We define

AI =
�

i∈I

Ai.

Thus AI is the set of elements of X which belong to all of the sets Ai

for i ∈ I. By convention we set

A∅ = X.

Theorem 5.3 (Principle of Inclusion Exclusion). If A1, A2, . . . , An are
subsets of a finite set X then

��A1 ∪ A2 ∪ · · · ∪ An

�� =
�

I⊆{1,2,...,n}
(−1)|I| |AI |.

,

It is easier to find the sizes of the intersections of the three rhombi
making up each hexagon than it is to find the sizes of their unions.
Whenever intersections are easier to think about than unions, the
PIE is likely to work well.



Principle of Inclusion and Exclusion

In general we have finite universe set X and subsets
A1,A2, . . . ,An ⊆ X . For each non-empty subset I ⊆ {1, 2, . . . , n}
we define

AI =
⋂

i∈I
Ai .

By convention we set A∅ = X .

Theorem 5.3 (Principle of Inclusion and Exclusion)

If A1,A2, . . . ,An are subsets of a finite set X then

|A1 ∪ A2 ∪ · · · ∪ An| =
∑

I⊆{1,2,...,n}
(−1)|I ||AI |.

Exercise: Check that Theorem 5.3 holds when n = 1 and check
that it agrees with Example 5.1 when n = 2 and n = 3.



Principle of Inclusion and Exclusion
In general we have finite universe set X and subsets
A1,A2, . . . ,An ⊆ X . For each non-empty subset I ⊆ {1, 2, . . . , n}
we define

AI =
⋂

i∈I
Ai .

By convention we set A∅ = X .

Theorem 5.3 (Principle of Inclusion and Exclusion)

If A1,A2, . . . ,An are subsets of a finite set X then

|A1 ∪ A2 ∪ · · · ∪ An| =
∑

I⊆{1,2,...,n}
(−1)|I ||AI |.

Think of Ai as the set of objects in the universe U having
property i . Then the PIE counts all those objects having none of
the properties P1, . . . ,Pn. If I = {i1, i2, . . . , ik} then AI consists of
those objects having (at least) properties i1, i2, . . . , ik .



Application: Counting Prime Numbers

Example 5.4

Let X = {1, 2, . . . , 48}. We define three subsets of X :

B(2) = {m ∈ X , m is divisible by 2}
B(3) = {m ∈ X , m is divisible by 3}
B(5) = {m ∈ X , m is divisible by 5}

Any composite number ≤ 48 is divisible by either 2, 3 or 5. So

B(2) ∪ B(3) ∪ B(5) = {1} ∪ {p : 5 < p ≤ 48, p is prime}.



Counting Prime numbers

Lemma 5.5
Let r , M ∈ N. There are exactly bM/rc numbers in {1, 2, . . . ,M}
that are divisible by r .

Theorem 5.6
Let p1, . . . , pn be distinct prime numbers and let M ∈ N. The
number of natural numbers ≤ M that are not divisible by any of
primes p1, . . . , pn is

∑

I⊆{1,2,...,n}
(−1)|I |

⌊
M∏
i∈I pi

⌋
.

Example 5.7

Let M = pq where p, q are distinct prime numbers. The numbers
of natural numbers ≤ pq that are coprime to M is

M
(

1− 1

p

)(
1− 1

q

)



Application: Counting Derangements

Let n ∈ N. Let X be the set of all permutations of {1, 2, . . . , n}
and let

Ai = {σ ∈ X : σ(i) = i}.
To apply the PIE to count derangements we need this lemma.

Lemma 5.8
(i) A permutation σ ∈ X is a derangement if and only if

σ ∈ A1 ∪ A2 ∪ · · · ∪ An.

(ii) If I ⊆ {1, 2, . . . , n} then AI consists of all permutations of
{1, 2, . . . , n} which fix the elements of I . If |I | = k then

|AI | = (n − k)!.



Coulter McDowell Lecture and Imperial Colloquium
Dr Vicky Neale (Cambridge) on

’7 Things you really need to know about prime numbers!’

Time: Wednesday 22nd October (TODAY), 5.30pm (tea/cakes)
for 6.15pm

Place: Windsor Building

Abstract: Prime numbers are fundamentally important in
mathematics. Join Dr Vicky Neale to discover some of the
beautiful properties of prime numbers, and learn about some of the
unsolved problems that mathematicians are working on today.

Departmental Colloquium at Imperial at 17.00 on Thursday by
Martin Hairer (2014 Fields Medallist).

“Taming Infinities”

Clore Lecture Theatre.



§6: Rook Polynomials

Definition 6.1
A board is a subset of the squares of an n × n grid. Given a board
B, we let rk(B) denote the number of ways to place k rooks on B,
so that no two rooks are in the same row or column. Such rooks
are said to be non-attacking. The rook polynomial of B is defined
to be

fB(x) = r0(B) + r1(B)x + r2(B)x2 + · · ·+ rn(B)xn.

Example 6.2

The rook polynomial of the board B below is 1 + 5x + 6x2 + x3.
7. (Problème des Ménages.) Let Bm denote the board with exactly m squares in the

sequence shown below.

, , , , , , . . .

(a) Prove that the rook polynomial of Bm is

�

k

�
m − k + 1

k

�
xk.

[Corrected from
�

m−k
k

�
on 3 November. Hint: there is a very short

proof using the result on lion caging in Problem 5 of Sheet 1. Alternatively
Lemma 7.6 can be used to give an inductive proof.]

(b) Find the number of ways to place 8 non-attacking rooks on the unshaded
squares of the board shown below.

(c) At a dinner party eight married couples are to be seated around a circular
table. Men and women must sit in alternate places, and no-one may sit next
to their spouse. In how many ways can this be done? [Hint: first seat the
women, then use (b) to count the number of ways to seat the men.]

(a) Number the squares in Bm from 1 in the top-left to m in the bottom-right. A
placement of k rooks on Bm is non-attacking if and only if no two rooks are put in
squares with consecutive numbers. The number of such placements is therefore given by
Question 5 on Sheet 1.

(b) Let B be the board formed from the shaded squares. The polynomial of B can be
found using Lemma 7.6, deleting the square in the bottom left: it is

rB(x) = rB15(x) + xrB13(x).

By (a) the coefficient of xk in rB(x) is
�

15 + 1 − k

k

�
+

�
13 + 1 − (k − 1)

k − 1

�
=

�
16 − k

k

�
+

�
15 − k

k − 1

�
.

By Problem 1, Sheet 1 we have (16 − k)
�
15−k
k−1

�
= k

�
16
k

�
, hence

�
16 − k

k

�
+

�
15 − k

k − 1

�
=

�
16 − k

k

�
+

k

16 − k

�
16 − k

k

�
=

�
16 − k

k

�
16

16 − k
.

7



Examples

Exercise: Let B be a board. Check that r0(B) = 1 and that r1(B)
is the number of squares in B.

Example 6.3

After the recent spate of cutbacks, only four professors remain at
the University of Erewhon. Prof. W can lecture courses 1 or 4;
Prof. X is an all-rounder and can lecture 2, 3 or 4; Prof. Y refuses
to lecture anything except 3; Prof. Z can lecture 1 or 2. If each
professor must lecture exactly one course, how many ways are
there to assign professors to courses?

Example 6.4

How many derangements σ of {1,2,3,4,5} have the property that
σ(i) 6= i + 1 for 1 ≤ i ≤ 4?



Examples

Exercise: Let B be a board. Check that r0(B) = 1 and that r1(B)
is the number of squares in B.

Example 6.3

After the recent spate of cutbacks, only four professors remain at
the University of Erewhon. Prof. W can lecture courses 1 or 4;
Prof. X is an all-rounder and can lecture 2, 3 or 4; Prof. Y refuses
to lecture anything except 3; Prof. Z can lecture 1 or 2. If each
professor must lecture exactly one course, how many ways are
there to assign professors to courses?

Example 6.4

How many derangements σ of {1,2,3,4,5} have the property that
σ(i) 6= i + 1 for 1 ≤ i ≤ 4?



Square Boards

Lemma 6.5
The rook polynomial of the n × n-board is

n∑

k=0

k!

(
n

k

)2
xk .



Administration and Careers Event

I Please take the Part B handout and collect your work for
Sheet 2.

I Answers to Sheet 2 are available from Moodle.

I Question 2 on Sheet 3 will be used for a peer-marking
exercise. Hand in at the lecture on Thursday.



Lemmas for Calculating Rook Polynomials
The two following lemmas are very useful when calculating rook
polynomials.

Lemma 6.6
Let C be a board. Suppose that the squares in C can be
partitioned into sets A and B so that no square in A lies in the
same row or column as a square of B. Then

fC (x) = fA(x)fB(x).

Lemma 6.7
Let B be a board and let s be a square in B. Let D be the board
obtained from B by deleting s and let E be the board obtained
from B by deleting the entire row and column containing s. Then

fB(x) = fD(x) + xfE (x).

[In printed notes: fB(x) is misprinted as fC (x).]



Example of Lemma 6.7

Example 6.8

The rook-polynomial of the boards in Examples 6.3 and 6.4 can be
found using Lemma 6.7. For the board in Example 6.3 it works
well to apply the lemma first to the square marked 1, then to the
square marked 2 (in the new boards).

1

2



Example 6.8

in

B

1

2

D E

DD DE ED EE

(1 + 2x)(1 + 4x + 3x2) (1 + x)3 (1 + x)(1 + 3x + x2) 1 + x

(1 + 2x)(1 + 4x + 3x2) x(1 + x)3 x(1 + x)(1 + 3x + x2) x2(1 + x)



Example 6.8

in

B

1

2

D

E

DD DE ED EE

(1 + 2x)(1 + 4x + 3x2) (1 + x)3 (1 + x)(1 + 3x + x2) 1 + x

(1 + 2x)(1 + 4x + 3x2) x(1 + x)3 x(1 + x)(1 + 3x + x2) x2(1 + x)



Example 6.8

in

B

1

2

D E

DD DE ED EE

(1 + 2x)(1 + 4x + 3x2) (1 + x)3 (1 + x)(1 + 3x + x2) 1 + x

(1 + 2x)(1 + 4x + 3x2) x(1 + x)3 x(1 + x)(1 + 3x + x2) x2(1 + x)



Example 6.8

in

B

1

2

D E

DD DE

ED EE

(1 + 2x)(1 + 4x + 3x2) (1 + x)3 (1 + x)(1 + 3x + x2) 1 + x

(1 + 2x)(1 + 4x + 3x2) x(1 + x)3 x(1 + x)(1 + 3x + x2) x2(1 + x)



Example 6.8

in

B

1

2

D E

DD DE ED EE

(1 + 2x)(1 + 4x + 3x2) (1 + x)3 (1 + x)(1 + 3x + x2) 1 + x

(1 + 2x)(1 + 4x + 3x2) x(1 + x)3 x(1 + x)(1 + 3x + x2) x2(1 + x)



Example 6.8

in

B

1

2

D E

DD DE ED EE

(1 + 2x)(1 + 4x + 3x2) (1 + x)3 (1 + x)(1 + 3x + x2) 1 + x

(1 + 2x)(1 + 4x + 3x2) x(1 + x)3 x(1 + x)(1 + 3x + x2) x2(1 + x)



Placements on the Complement

Lemma 6.9
Let B be a board contained in an n × n grid and let 0 ≤ k ≤ n
The number of ways to place k red rooks on B and n − k blue
rooks anywhere on the grid, so that the n rooks are non-attacking,
is rk(B)(n − k)!.

Theorem 6.10
Let B be a board contained in an n × n grid. Let B̄ denote the
board formed by all the squares in the grid that are not in B. The
number of ways to place n non-attacking rooks on B̄ is

n!− (n − 1)!r1(B) + (n − 2)!r2(B)− · · ·+ (−1)nrn(B).



Part B: Generating Functions

§7: Introduction to Generating Functions

Definition 7.1
The ordinary generating function associated to the sequence
a0, a,a2, . . . is the power series

∞∑

n=0

anx
n = a0 + a1x + a2x

2 + · · · .

Usually we shall drop the word ‘ordinary’ and just write ‘generating
function’.

The sequences we deal with usually have integer entries, and so
the coefficients in generating functions will usually be integers.



Sums and Products of Formal Power Series

Let F (x) =
∑∞

n=0 anx
n and G (x) =

∑∞
n=0 bnx

n. Then

• F (x) + G (x) =
∑∞

n=0(an + bn)xn

• F (x)G (x) =
∑∞

n=0 cnx
n where cn =

∑n
m=0 ambn−m.

• F ′(x) =
∑∞

n=0 nanx
n−1.

It is also possible to define the reciprocal 1/F (x) whenever a0 6= 0.
By far the most important case is the case F (x) = 1− x , when

1

1− x
=
∞∑

n=0

xn

is the usual formula for the sum of a geometric progression.



Analytic and Formal Interpretations.

We can think of a generating function
∑∞

n=0 anx
n in two ways.

Either:

• As a formal power series with x acting as a place-holder. This
is the ‘clothes-line’ interpretation (see Wilf
generatingfunctionology, page 4), in which we regard the
power-series merely as a convenient way to display the terms
in our sequence.

• As a function of a real or complex variable x convergent when
|x | < r , where r is the radius of convergence of

∑∞
n=0 anx

n.



Examples

Example 7.2

How many ways are there to tile a 2× n path with bricks that are
either 1× 2 or 2× 1?

Example 7.3

Let k ∈ N. Let bk be the number of 3-tuples (t1, t2, t3) such that
t1, t2, t3 ∈ N0 and t1 + t2 + t3 = k. Will find bk using generating
functions.

To complete the example we needed the following theorem, proved
as Question 4 of Sheet 3.

Theorem 7.4
If n ∈ N then

1

(1− x)n
=
∞∑

k=0

(
n + k − 1

k

)
xk



General Binomial Theorem

Theorem 7.5
If α ∈ R then

(1 + y)α =
∞∑

k=0

α(α− 1) . . . (α− (k − 1))

k!
yk

for all y such that |y | < 1.

Exercise: Let α ∈ Z.

(i) Show that if α ≥ 0 then Theorem 7.4 agrees with the
Binomial Theorem for integer exponents, proved in Theorem
3.6, and with Theorem 7.5.

(ii) Show that if α < 0 then Theorem 7.4 agrees with Question 4
[not 5 as it says in printed notes] on Sheet 3. (Substitute
−x for y .)



I Please return peer-marked Sheet 2 Question 2 to lecturer.

§8: Recurrence Relations and Asymptotics

Three step programme for solving recurrences:

(a) Use the recurrence to write down an equation satisfied by the
generating function F (x) =

∑∞
n=0 anx

n;

(b) Solve the equation to get a closed form for the generating
function;

(c) Use the closed form for the generating function to find a
formula for the coefficients.

Example 8.1

Will solve an+2 = 5an+1 − 6an for n ∈ N subject to the initial
conditions a0 = A and a1 = B, using the three-step programme.



Partial Fractions

Theorem 8.2
Let f (x) and g(x) be polynomials with deg f < deg g. If

g(x) = α(x − 1/β1)d1 . . . (x − 1/βk)dk

where α, β1, β2, . . . , βk are distinct non-zero complex numbers and
d1, d2, . . . , dk ∈ N, then there exist polynomials P1, . . . , Pk such
that degPi < di and

f (x)

g(x)
=

P1(x)

(1− β1x)d1
+ · · ·+ Pk(x)

(1− βkx)dk
.



More Examples and Derangements

Example 8.3

Will solve bn = 3bn−1 − 4bn−3 for n ≥ 3.

See also printed notes for end of solution to Example 7.2 (garden
paths).

Theorem 8.4
Let pn = dn/n! be the probability that a permutation of
{1, 2, . . . , n}, chosen uniformly at random, is a derangement. Then

npn = (n − 1)pn−1 + pn−2

for all n ≥ 2 and

pn = 1− 1

1!
+

1

2!
− · · ·+ (−1)n

n!
.



Singularities

If G is a power series then a singularity of G is a point where G is
undefined. For example, if G (z) = 1/(1− z2) then G has
singularities at z = 1 and z = −1 and G has no singularities w
such that |w | < 1.

Theorem 8.5
Let F (z) =

∑∞
n=0 anz

n be the generating function for the sequence
a0, a1, a2, . . .. Fix R ∈ R. Suppose that F has no singularities w
such that |w | < R. Then for any ε > 0 we have

|an| ≤
( 1

R
+ ε
)n

for all sufficiently large n ∈ N. Moreover, if F has a singularity w
such that |w | = R then there exist infinitely many n such that

|an| ≥
( 1

R
− ε
)n
.



Example of Theorem 8.5

Chocolates are provided today.

Example 8.6

Consider the recurrence relation an+3 = an + an+1 + an+2. Step (1)
of the three-step programme shows that the generating function
for an is F (z) = P(z)/(1− z − z2 − z3) for some polynomial P(z).
The roots of 1− z − z2 − z3 = 0 are, to five decimal places,

0.543790, 0.7718445 + 1.115143i , 0.7718445− 1.115143i .

So the singularity of F (z) of smallest modulus is at 0.543790 . . ..
By Theorem 8.5, an ≤ 1

0.543791n ≤ 2n for all sufficiently large n.
(Note that the initial values a0, a1 and a2 were not needed.)



More Interesting Example of Theorem 8.5

Example 8.7

Let G (z) =
∑∞

n=0 pnz
n be the generating function for the

proportion of permutations of {1, 2, . . . , n} that are derangements.
You should have found that

G (z) =
exp(−z)

1− z
.

Take out the part of G (z) responsible for the singularity at z = 1

G (z) =
e−1

1− z
− e−1 − e−z

1− z
.

We now apply Theorem 8.5 to the non-singular part.
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§9: Convolutions and the Catalan Numbers

The problems in this section fit into the following pattern: suppose
that A, B and C are classes of combinatorial objects and that each
object has a size in N0. Write size(X ) for the size of X . Suppose
that there are finitely many objects of any given size.

Let an, bn and cn denote the number of objects of size n in A,
B, C, respectively.

Theorem 9.1
Suppose there is a bijection

{
Z ∈ C : size(Z ) = n

}
↔
{

(X ,Y ) :
X ∈ A,Y ∈ B

size(X ) + size(Y ) = n

}

Then ∞∑

n=0

cnx
n =

( ∞∑

n=0

anx
n
)( ∞∑

n=0

bnx
n
)



Convolutions and First Example
The critical step in the proof is to show that

cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 =
n∑

m=0

ambn−m.

If sequences (an), (bn) and (cn) satisfy this relation then we say
that (cn) is the convolution of (an) and (bn).

Example 9.2

The grocer sells indistinguishable apples and bananas in unlimited
quantities. Bananas are only sold in bunches of three.

(a) What is the generating function for the number of ways to
buy n pieces of fruit?

(b) How would your answer to (a) change if dates are also sold?

(c) Let cn be the number of ways to buy n pieces of fruit and then
to donate some number of the apples just purchased to the
Students’ Union. Find the generating function

∑∞
n=0 cnx

n.



Example 9.3

Lemma 6.6 on rook placements states that if C is a board that A
and B where no square in A lies in the same row or column as a
square in B has a very short proof using Theorem 9.1.

Exercise: Show tha splitting a non-attacking placement of rooks on
C into the placements on the sub-boards A and B gives a bijection
satisfying the hypotheses of Theorem 9.1. (Define the size of a
rook placement and the sets A, B, C.) Hence prove Lemma 6.6.

Lemma 6.6
Let C be a board. Suppose that the squares in C can be
partitioned into sets A and B so that no square in A lies in the
same row or column as a square of B. Then

fC (x) = fA(x)fB(x).



Rooted Binary Trees

Definition 9.4
A rooted binary tree is either empty, or consists of a root vertex
together with a pair of rooted binary trees: a left subtree and a
right subtree. The Catalan number Cn is the number of rooted
binary trees on n vertices.

Theorem 9.5

If n ∈ N0 then Cn =
1

n + 1

(
2n

n

)
.

Bijection in Step (a) of three-step programme.
I Let C be the set of all rooted binary trees
I Let T be the set of all non-empty rooted binary trees.

Define the size of a rooted binary tree T to be its number of
vertices. Now define a bijection

T → {•} × C × C.

and apply Theorem 9.1.



Exercise
A resident of Flatland (see Flatland: A Romance of Many
Dimensions, Edwin A. Abbott 1884) is given an enormous number
of indistinguishable 1× 1 square bricks for his birthday. Let tn be
the number of ways to make a ‘T’ shape at least three bricks high
and at least two bricks across.

Show that the generating function for tn is

∞∑

n=0

tnx
n = x2(1 + x + x2 + · · · )x2(1 + x + x2 + · · · )

by decomposing a ‘T’ shape into a vertical part (stopping below
the horizontal) containing at least two bricks and a horizontal part
containing at least two bricks, and applying Theorem 9.1. Hence

∞∑

n=0

tnx
n =

x2

1− x

x2

1− x
=

x4

(1− x)2
.
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Quiz

Suppose instead an ’C’ shape is required, at least three bricks high
and at least two bricks across, having reflective symmetry. Let cn
be the number of ’C’s made using n bricks. Find a closed form for
C (x) =

∑∞
n=0 cnx

n.

A: G (x) =
x7

(1− x)3
B:

x5

(1− x)3

C: G (x) =
x7

(1− x)(1− x2)
D:

x5

(1− x)(1− x2)

How would your answers to both parts change if bricks came in
two colours (but were otherwise still indistinguishable)?

Answers: C (x) = x5

(1−x)(1−x2) for original problem, C (2x) if two

colours available.
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Derangements by Convolution

Lemma 9.6
If n ∈ N0 then

n∑

k=0

(
n

k

)
dn−k = n!.

The sum in the lemma becomes a convolution after a small
amount of rearranging.

Theorem 9.7
If G (x) =

∑∞
n=0 dnx

n/n! then

G (x) exp(x) =
1

1− x
.

It is now easy to deduce the formula for dn; the argument needed
is the same as the final step in the proof of Theorem 8.4. The
generating function G used above is an example of an exponential
generating function.



Seminars Today

I Maura Paterson, Combinatorial properties and applications
of algebraic manipulation detection codes, 2pm in C219

I Mark Wildon, Open problems on partitions and
permutations, 4pm in IN007.



§10: Partitions

Definition 10.1
A partition of a number n ∈ N0 is a sequence of natural numbers
(λ1, λ2, . . . , λk) such that

(i) λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1.

(ii) λ1 + λ2 + · · ·+ λk = n.

The entries in a partition λ are called the parts of λ. Let p(n) be
the number of partitions of n.

Example 10.2

Let an be the number of ways to pay for an item costing n pence
using only 2p and 5p coins. Equivalently, an is the number of
partitions of n into parts of size 2 and size 5. Will find the
generating function for an.



Generating function

Theorem 10.3
The generating function for p(n) is

∞∑

n=0

p(n)xn =
1

(1− x)(1− x2)(1− x3) . . .
.



Young Diagrams

It is often useful to represent partitions by Young diagrams. The
Young diagram of (λ1, . . . , λk) is an array of boxes left-aligned
such that there are exactly λi boxes in row i for each
i ∈ {1, . . . , k}.
For example, the Young diagram of (6, 3, 3, 1) is

.

Theorem 10.4
Let n ∈ N and let k ≤ n. The number of partitions of n into parts
of size ≤ k is equal to the number of partitions of n with at most
k parts.



Two results from generating functions

While there are bijective proofs of the next theorem, it is much
easier to prove it using generating functions.

Theorem 10.5
Let n ∈ N. The number of partitions of n with at most one part of
any given size is equal to the number of partitions of n into odd
parts.



Part C: Ramsey Theory

§11: Introduction to Ramsey Theory

Definition 11.1
A graph consists of a set V of vertices together with a set E of
2-subsets of V called edges. The complete graph with vertex set V
is the graph whose edge set is all 2-subsets of V .

The complete graph on V = {1, 2, 3, 4, 5} is:

24

Part C: Ramsey Theory

13. Introduction to Ramsey Theory

The idea behind Ramsey theory is that any sufficiently large struc-
ture should contain a substructure with some regular pattern. For
example, any infinite sequence of real numbers contains either an in-
creasing or a decreasing subsequence (the Bolzano–Weierstrass theo-
rem).

Most of the results in this area concern graphs: we shall concentrate
on the finite case.

Definition 13.1. A graph is a set X of vertices together with a set E
of 2-subsets of X called edges. The complete graph on X is the graph
whose edge set is all 2-subsets of X.

For example, the complete graph on 5 vertices is drawn below. Its
edge set is

�
{1, 2}, {1, 3}, . . . , {4, 5}

�
.

1

2

3 4

5

We denote the complete graph with n vertices by Kn. The graph K3

is often called a triangle.

Exercise: Find the number of edges in Kn.

Definition 13.2. Let c ∈ N and let G be a complete graph, with edge
set E. A c-colouring of G is a function from E to {1, 2, . . . , c}. If Y is
an r-set of vertices of G such that all edges between vertices in Y have
the same colour, then we say that Y is a monochromatic Kr.

Note that it is the edges that are coloured, not the vertices.

In practice we shall specify graphs and colourings rather less formally.
It seems to be a standard convention that colour 1 is red, colour 2 is
blue and colour 3 (which we won’t need for a while) is green.

Example 13.3. In any two-colouring of the edges of K6, there is either
a red triangle, or a blue triangle.



Colourings

Definition 11.2
Let c , n ∈ N. A c-colouring of the complete graph Kn is a function
from the edge set of Kn to {1, 2, . . . , c}. If S is an s-subset of the
vertices of Kn such that all the edges between vertices in X have
the same colour, then we say that S is a monochromatic Ks

Exercise: find all red K3s and blue K4s in this colouring of K6:

1

2 3

4

56



Colourings

Definition 11.2
Let c , n ∈ N. A c-colouring of the complete graph Kn is a function
from the edge set of Kn to {1, 2, . . . , c}. If S is an s-subset of the
vertices of Kn such that all the edges between vertices in X have
the same colour, then we say that S is a monochromatic Ks

Exercise: find all red K3s and blue K4s in this colouring of K6:

1

2 3

4

56



Colourings

Definition 11.2
Let c , n ∈ N. A c-colouring of the complete graph Kn is a function
from the edge set of Kn to {1, 2, . . . , c}. If S is an s-subset of the
vertices of Kn such that all the edges between vertices in X have
the same colour, then we say that S is a monochromatic Ks

Exercise: find all red K3s and blue K4s in this colouring of K6:

1

2 3

4

56



Colourings

Definition 11.2
Let c , n ∈ N. A c-colouring of the complete graph Kn is a function
from the edge set of Kn to {1, 2, . . . , c}. If S is an s-subset of the
vertices of Kn such that all the edges between vertices in X have
the same colour, then we say that S is a monochromatic Ks

Exercise: find all red K3s and blue K4s in this colouring of K6:

1

2 3

4

56



Colourings

Definition 11.2
Let c , n ∈ N. A c-colouring of the complete graph Kn is a function
from the edge set of Kn to {1, 2, . . . , c}. If S is an s-subset of the
vertices of Kn such that all the edges between vertices in X have
the same colour, then we say that S is a monochromatic Ks

Exercise: find all red K3s and blue K4s in this colouring of K6:

1

2 3

4

56



Colourings

Definition 11.2
Let c , n ∈ N. A c-colouring of the complete graph Kn is a function
from the edge set of Kn to {1, 2, . . . , c}. If S is an s-subset of the
vertices of Kn such that all the edges between vertices in X have
the same colour, then we say that S is a monochromatic Ks

Exercise: find all red K3s and blue K4s in this colouring of K6:

1

2 3

4

56



Colourings

Definition 11.2
Let c , n ∈ N. A c-colouring of the complete graph Kn is a function
from the edge set of Kn to {1, 2, . . . , c}. If S is an s-subset of the
vertices of Kn such that all the edges between vertices in X have
the same colour, then we say that S is a monochromatic Ks

Exercise: find all red K3s and blue K4s in this colouring of K6:

1

2 3

4

56



In any Room with Six People . . .

Example 11.3

In any red-blue colouring of the edges of K6 there is either a red
triangle or a blue triangle.

Definition 11.4
Given s, t ∈ N, with s, t ≥ 2, we define the Ramsey number
R(s, t) to be the smallest n (if one exists) such that in any
red-blue colouring of the complete graph on n vertices, there is
either a red Ks or a blue Kt .

Lemma 11.5
Let s, t ∈ N with s, t ≥ 2. Let N ∈ N. Assume that R(s, t) exists.

(i) If N < R(s, t) there exist colourings of KN with no red Ks or
blue Kt .

(ii) If N < R(s, t) there exist colourings of KN with no red Ks or
blue Kt .
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triangle or a blue triangle.
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Given s, t ∈ N, with s, t ≥ 2, we define the Ramsey number
R(s, t) to be the smallest n (if one exists) such that in any
red-blue colouring of the complete graph on n vertices, there is
either a red Ks or a blue Kt .

Lemma 11.5
Let s, t ∈ N with s, t ≥ 2. Let N ∈ N. Assume that R(s, t) exists.

(i) If N < R(s, t) there exist colourings of KN with no red Ks or
blue Kt .

(ii) If N < R(s, t) there exist colourings of KN with no red Ks or
blue Kt .



R(3, 4) ≤ 10

Lemma 11.6
For any s ∈ N we have R(s, 2) = R(2, s) = s.

The main idea need to prove the existence of all the Ramsey
Numbers R(s, t) appears in the next example.

Example 11.7

In any two-colouring of K10 there is either a red K3 or a blue K4.
Hence R(3, 4) ≤ 10.
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R(3, 4) = 9

Lemma 11.8 (Hand-Shaking Lemma)

Let G be a graph with vertex set {1, 2, ..., n} and exactly e edges.
If dx is the degree of vertex x then

2e = d1 + d2 + · · ·+ dn.

In particular, the number of vertices of odd degree is even.

Theorem 11.9
R(3, 4) = 9.

The red-blue colouring of K8 used to show that R(3, 4) > 8 is a
special case of a more general construction: see Question 3 on
Sheet 7.

Theorem 11.10
R(4, 4) ≤ 18.



§12: Ramsey’s Theorem

We shall prove by induction on s + t that R(s, t) exists. To make
the induction go through we must prove a stronger result giving an
upper bound on R(s, t).

Lemma 12.1
Let s, t ∈ N with s, t ≥ 3. If R(s − 1, t) and R(s, t − 1) exist then
R(s, t) exists and

R(s, t) ≤ R(s − 1, t) + R(s, t − 1).

Theorem 12.2
For any s, t ∈ N with s, t ≥ 2, the Ramsey number R(s, t) exists
and

R(s, t) ≤
(
s + t − 2

s − 1

)
.



Inductive Proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2
3
4
5
6
...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.
Inductive step by Lemma 13.1
Best known upper bounds and lower bounds (black if Ramsey
number known exactly)
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s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .
3 3
4 4
5 5
6 6
...

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.

Inductive step by Lemma 13.1
Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Inductive Proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .
3 3 6
4 4
5 5
6 6
...

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.
Inductive step by Lemma 13.1

Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Inductive Proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .
3 3 6 10
4 4 10
5 5
6 6
...

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.
Inductive step by Lemma 13.1

Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Inductive Proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .
3 3 6 10 15
4 4 10 20
5 5 15
6 6
...

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.
Inductive step by Lemma 13.1

Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Inductive Proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .
3 3 6 10 15 21
4 4 10 20 35
5 5 15 35
6 6 21
...

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.
Inductive step by Lemma 13.1

Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Inductive Proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .
3 3 6 10 15 21
4 4 10 20 35 56
5 5 15 35 70
6 6 21 56
...

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.
Inductive step by Lemma 13.1

Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Inductive Proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .
3 3 6 10 15 21
4 4 10 20 35 56
5 5 15 35 70 126
6 6 21 56 126
...

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.
Inductive step by Lemma 13.1

Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Inductive Proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .
3 3 6 10 15 21
4 4 10 20 35 56
5 5 15 35 70 126
6 6 21 56 126 252
...

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.
Inductive step by Lemma 13.1

Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Inductive Proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .
3 3 6 9 14 18
4 4 9 18 25 41
5 5 14 25 49 87
6 6 18 41 87 143
...

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.
Inductive step by Lemma 13.1
Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Inductive Proof of Ramsey’s Theorem

s\t 2 3 4 5 6 . . .

2 2 3 4 5 6 . . .
3 3 6 9 14 18
4 4 9 18 25 35
5 5 14 25 43 58
6 6 18 35 58 102
...

...

Base case: R(2, s) = R(s, 2) = s for all s ≥ 2.
Inductive step by Lemma 13.1
Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Diagonal Ramsey Numbers

Corollary 12.3

If s ∈ N and s ≥ 2 then

R(s, s) ≤
(

2s − 2

s − 1

)
≤ 4s−1.



Games and Multiple Colours

Red and Blue play a game. Red starts by drawing a red line
between two corners of a hexagon, then Blue draws a blue line and
so on. A player loses if they makes a triangle of their colour.

Exercise: can the game end in a draw?

Theorem 12.4
There exists n ∈ N such that if the edges of Kn are coloured red,
blue and yellow then there exists a monochromatic triangle.
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Sheet 6

1. Let an be the number of partitions of n ∈ N into parts of
size 3 and 5.

(a) Show that a15 = 2 and find a14 and a16.

(b) Explain why

∞∑

n=0

anx
n =

1

(1− x3)(1− x5)
.

(c) Let cn be the number of partitions with parts of sizes 3 and 5
whose sum of parts is at most n. Find the generating function
of cn.

2. Let bn be the number of partitions of n that have at most one
part of each odd size. For example, b6 = 5: the relevant
partitions are (6), (5, 1), (4, 2), (3, 2, 1), (2, 2, 2). Express the
generating function

∑∞
n=0 bnx

n as an infinite product.



5. Let s, t ≥ 2. By constructing a suitable red-blue colouring of
K(s−1)(t−1) prove that R(s, t) > (s − 1)(t − 1). [Hint: start
by partitioning the vertices into s − 1 blocks each of size
t − 1. Colour edges within each block with one colour . . . ]

Example for s = t = 4.
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Part D: Probabilistic Methods

§13: Revision of Discrete Probability

Definition 13.1

• A probability measure p on a finite set Ω assigns a real
number pω to each ω ∈ Ω so that 0 ≤ pω ≤ 1 for each ω and

∑

ω∈Ω

pω = 1.

We say that pω is the probability of ω.

• A probability space is a finite set Ω equipped with a
probability measure. The elements of a probability space are
sometimes called outcomes.

• An event is a subset of Ω.

• The probability of an event A ⊆ Ω, denoted P[A] is the sum of
the probability of the outcomes in A; that is P[A] =

∑
ω∈A pω.



Example 13.2: Probability Spaces

(1) To model a throw of a single unbiased die, we take

Ω = {1, 2, 3, 4, 5, 6}
and put pω = 1/6 for each outcome ω ∈ Ω. The event that
we throw an even number is A = {2, 4, 6} and as expected,
P[A] = p2 + p4 + p6 = 1/6 + 1/6 + 1/6 = 1/2.

(2) To model a throw of a pair of dice we could take

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}
and give each element of Ω probability 1/36, so p(i ,j) = 1/36
for all (i , j) ∈ Ω. Alternatively, if we know we only care about
the sum of the two dice, we could take Ω = {2, 3, . . . , 12}
with

n 2 3 . . . 6 7 8 . . . 12

pn 1/36 2/36 . . . 5/36 6/36 5/36 . . . 1/36

The former is natural and more flexible.



Example 13.2: Probability Spaces

(3) A suitable probability space for three flips of a coin is

Ω = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}

where H stands for heads and T for tails, and each outcome
has probability 1/8. To allow for a biased coin we fix
0 ≤ q ≤ 1 and instead give an outcome with exactly k heads
probability qk(1− q)3−k .

Exercise: Let A be the event that there is at least one head,
and let B the the event that there is at least one tail. Find
P[A], P[B], P[A ∩ B], P[A ∪ B].

(4) Let n ∈ N and let Ω be the set of all permutations of
{1, 2, . . . , n}. Set pσ = 1/n! for each permutation σ ∈ Ω.
This gives a suitable setup for Theorem 2.6.



Feedback

I ‘What worked well: the lectures are very clear and the lecturer
explained all the topics clearly. The problem sheets could have fewer
questions.’

I ‘Asking lecturer for help when stuck’, and ‘Please do more bijective
proofs’.

I Aspect of the course that most helped you:

I ‘The lectures and homework’,
I ‘extra problems’,
I ‘the problem sheets and extra questions’.

I ‘I think Part A was too big and Parts B and C should be increased
in size’.

I ‘Don’t feel like the homework related to a lot of the examples in the
notes so struggled to answer the questions’.

I ‘This was a very stimulating course with a lot of challenging
material. The lecturer explained it well.’

I ‘Interesting proofs and engaging examples that were interesting to
help and understand the proofs’.



Conditional Probability

Definition 13.3
Let Ω be a probability space, and let A, B ⊆ Ω be events.

• If P[B] 6= 0 then we define the conditional probability of A
given B by

P[A|B] =
P[A ∩ B]

P[B]
.

• The events A, B are said to be independent if

P[A ∩ B] = P[A]P[B].

Exercise: Let Ω = {HH,HT ,TH,TT} be the probability space for
two flips of a fair coin. Let A be the event that both flips are
heads, and let B be the event that at least one flip is a head.
Write A and B as subsets of Ω and show that P[A|B] = 1/3.



The Most Misunderstood Problem Ever?

Example 13.4 (The Monty Hall Problem)

On a game show you are offered the choice of three doors. Behind
one door is a car, and behind the other two are goats. You pick a
door and then the host, who knows where the car is, opens another
door to reveal a goat. You may then either open your original
door, or change to the remaining unopened door. Assuming you
want the car, should you change?



More Examples of Conditional Probability

Example 13.5 (Sleeping Beauty)

Beauty is told that if a coin lands heads she will be woken on
Monday and Tuesday mornings, but after being woken on Monday
she will be given an amnesia inducing drug, so that she will have
no memory of what happened that day. If the coin lands tails she
will only be woken on Tuesday morning. At no point in the
experiment will Beauty be told what day it is. Imagine that you are
Beauty and are awoken as part of the experiment and asked for
your credence that the coin landed heads. What is your answer?

Example 13.6

Suppose that one in every 1000 people has disease X . There is a
new test for X that will always identify the disease in anyone who
has it. There is, unfortunately, a tiny probability of 1/250 that the
test will falsely report that a healthy person has the disease. What
is the probability that a person who tests positive for X actually
has the disease?



Random Variables

Definition 13.7
Let Ω be a probability space. A random variable on Ω is a function
X : Ω→ R.

Definition 13.8
If X , Y : Ω→ R are random variables then we say that X and Y
are independent if for all x , y ∈ R the events

A = {ω ∈ Ω : X (ω) = x} and

B = {ω ∈ Ω : Y (ω) = y}

are independent.

If X : Ω→ R is a random variable, then ‘X = x ’ is the event
{ω ∈ Ω : X (ω) = x}. We mainly use this shorthand in
probabilities, so for instance

P[X = x ] = P
[
{ω ∈ Ω : X (ω) = x}

]
.



Example of Independence of Random Variables

Example 13.9

Let Ω = {HH,HT ,TH,TT} be the probability space for two flips
of a fair coin. Define X : Ω→ R to be 1 if the first coin is heads,
and zero otherwise. So

X (HH) = X (HT ) = 1 and X (TH) = X (TT ) = 0.

Define Y : Ω→ R similarly for the second coin.

(i) The random variables X and Y are independent.

(ii) Let Z be 1 if exactly one flip is heads, and zero otherwise.
Then X and Z are independent, and Y and Z are
independent.

(iii) There exist x , y , z ∈ {0, 1} such that

P[X = x ,Y = y ,Z = z ] 6= P[X = x ]P[Y = y ]P[Z = z ].



Expectation

Definition 13.10
Let Ω be a probability space with probability measure p. The
expectation E[X ] of a random variable X : Ω→ R is defined to be

E[X ] =
∑

ω∈Ω

X (ω)pw .

Lemma 13.11
Let Ω be a probability space. If X1,X2, . . . ,Xk : Ω→ R are
random variables then

E[a1X1 + a2X2 + · · ·+ akXk ] = a1E[X1] + a2E[X2] + · · ·+ akE[Xk ]

for any a1, a2, . . . , ak ∈ R.

Lemma 13.12
If X , Y : Ω→ R are independent random variables then
E[XY ] = E[X ]E[Y ].



Example of Linearity of Expectation (Question 11, Sheet 7)

11. Let 0 ≤ p ≤ 1 and let n ∈ N. Suppose that a coin biased to
land heads with probability p is tossed n times. Let X be the
number of times the coin lands heads.

(a) Describe a suitable probability space Ω and probability
measure p : Ω→ R and define X as a random variable Ω→ R.

(b) Find E[X ] and Var[X ]. [Hint: write X as a sum of n
independent random variables and use linearity of expectation
and Lemma 13.14(ii).]

(c) Find a simple closed form for the generating function∑∞
k=0 P[X = k]xk . (Such power series are called probability

generating functions.)



Variance

Definition 13.13
Let Ω be a probability space. The variance Var[X ] of a random
variable X : Ω→ R is defined to be

Var[X ] = E
[
(X − E[X ])2

]
.

Lemma 13.14
Let Ω be a probability space.

(i) If X : Ω→ R is a random variable then

Var[X ] = E[X 2]− (E[X ])2.

(ii) If X , Y : Ω→ R are independent random variables then

Var[X + Y ] = Var[X ] + Var[Y ].



§14: Introduction to Probabilistic Methods

Throughout this section we fix n ∈ N and let Ω be the set of all
permutations of the set {1, 2, . . . , n}. Define a probability measure
on Ω so that permutations are chosen uniformly at random.

Exercise: Let x ∈ {1, 2, . . . , n} and let Ax = {σ ∈ Ω : σ(x) = x}.
Then Ax is the event that a permutation fixes x . What is the
probability of Ax?

Theorem 14.1
Let F : Ω→ N0 be defined so that F (σ) is the number of fixed
points of the permutation σ ∈ Ω. Then E[F ] = 1.



Cycles

Definition 14.2
A permutation σ of {1, 2, . . . , n} acts as a k-cycle on a k-subset
S ⊆ {1, 2, . . . , n} if S has distinct elements x1, x2, . . . , xk such that

σ(x1) = x2, σ(x2) = x3, . . . , σ(xk) = x1.

If σ(y) = y for all y ∈ {1, 2, . . . , n} such that y 6∈ S then we say
that σ is a k-cycle, and write

σ = (x1, x2, . . . , xk).

Definition 14.3
We say that cycles (x1, x2, . . . , xk) and (y1, y2, . . . , y`) are disjoint if

{x1, x2, . . . , xk} ∩ {y1, y2, . . . , y`} = ∅.



Cycle Decomposition of a Permutation

Lemma 14.4
A permutation σ of {1, 2, . . . , n} can be written as a composition
of disjoint cycles. The cycles in this composition are uniquely
determined by σ.

Exercise: Write the permutation of {1, 2, 3, 4, 5, 6} defined by
σ(1) = 3, σ(2) = 4, σ(3) = 1, σ(4) = 6, σ(5) = 5, σ(6) = 2 as a
composition of disjoint cycles.

Theorem 14.5
Let 1 ≤ k ≤ n and let x ∈ {1, 2, . . . , n}. The probability that x lies
in a k-cycle of a permutation of {1, 2, . . . , n} chosen uniformly at
random is 1/n.



Application to Derangements

Theorem 14.6
Let pn be the probability that a permutation of {1, 2, . . . , n}
chosen uniformly at random is a derangement. If n ∈ N then

pn =
pn−2

n
+

pn−3

n
+ · · ·+ p1

n
+

p0

n
.

Corollary 14.7

For all n ∈ N0,

pn = 1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!
.

It may be helpful to compare this result with Lemma 9.6 [not
Lemma 9.7, misprint in printed notes]: there we get a
recurrence by considering fixed points; here we get a recurrence by
considering cycles.



Counting Cycles

We can also generalize Theorem 14.1.

Theorem 14.8
Let Ck : Ω→ R be the random variable defined so that Ck(σ) is
the number of k-cycles in the permutation σ of {1, 2, . . . , n}.
Then E[Ck ] = 1/k for all k such that 1 ≤ k ≤ n.



§15: Ramsey Numbers and the First Moment Method

Lemma 15.1 (First Moment Method)

Let Ω be a probability space and let M : Ω→ N0 be a random
variable taking values in N0. If E[M] = x then

(i) P[M ≥ x ] > 0, so there exists ω ∈ Ω such that M(ω) ≥ x.

(ii) P[M ≤ x ] > 0, so there exists ω′ ∈ Ω such that M(ω′) ≤ x.

Exercise: Check that the lemma holds in the case when

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}

models the throw of two fair dice and M(x , y) = x + y .



Cut sets in graphs

Definition 15.2
Let G be a graph with vertex set V . A cut (A,B) of G is a
partition of V into two subsets A and B. The capacity of a cut
(A,B) is the number of edges of G that meet both A and B.
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18. Ramsey Numbers and the First Moment Method

The grandly named ‘First Moment Method’ is nothing more than
the following observation.

Lemma 18.1 (First Moment Method). Let Ω be a probability space
and let X : Ω → N0 be a random variable. If E[X] = x then

(i) P[X ≥ x] > 0, so there exists ω ∈ Ω such that X(ω) ≥ x.
(ii) P[X ≤ x] > 0, so there exists ω� ∈ Ω such that X(ω�) ≤ x.

Exercise: check that the lemma holds in the case where

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}
models the throw of two fair dice and X(x, y) = x + y.

More generally, the k-th moment of X is E[Xk]. Sometimes stronger
results can be obtained by considering these higher moments. We shall
concentrate on first moments, where the power is the method is closely
related to the linearity property of expectation (see Lemma 16.8).

Our applications will come from graph theory.

Definition 18.2. Let G be a graph with vertex set V . A cut of G is a
partition of V into two disjoint subsets A and B. The capacity of the
cut is the number of edges of G that meet both A and B.

Note that B = V \A and A = V \B, so a cut can be specified by
giving either of the sets in the partition.

For example, the diagram below shows the cut in the complete graph
on {1, 2, 3, 4, 5} where A = {1, 2, 3} and B = {4, 5}. The capacity of
this cut is 6, corresponding to the 6 edges {x, y} for x ∈ A, y ∈ B
shown with thicker lines.

1

2

3 4

5

Theorem 18.3. Let G be a graph with n vertices and m edges. There
is a cut of G with capacity ≥ m/2.

({1,2}, {3,4,5})

Theorem 15.3
Let G be a graph with vertex set {1, 2, . . . , n} and m edges. There
is a cut of G with capacity ≥ m/2.



Application to Ramsey Theory

Lemma 15.4
Let n ∈ N and let Ω be the set of all red-blue colourings of the
complete graph Kn. Let pω = 1/|Ω| for each ω ∈ Ω. Then

(i) each colouring in Ω has probability 1/2(n2);

(ii) given any m edges in G, the probability that all m of these
edges have the same colour is 21−m.

Theorem 15.5
Let n, s ∈ N. If (

n

s

)
21−(s2) < 1

then there is a red-blue colouring of the complete graph on
{1, 2, . . . , n} with no red Ks or blue Ks .



Lower bound on R(s, s)

Corollary 15.6

For any s ∈ N with s ≥ 2 we have

R(s, s) ≥ 2(s−1)/2.

This result can be strengthened slightly using the Lovász Local
Lemma. See the printed lecture notes for an outline. (The
contents of §16 are non-examinable.)



§16: Lovász Local Lemma

Let Ω be a probability space and let A1, . . . ,An be events in A.

Definition 16.1
Let T ⊆ {1, 2, . . . , n}. We say that Ai is mutually independent of
the events {Aj : j ∈ T} if for all U,U ′ ⊆ T such that U ∩ U ′ = ∅
we have

P
[
Ai

∣∣∣
(⋂

k∈U
Ak

)
∩
( ⋂

`∈U′
Ā`

)]
= P[Ai ],

provided the event conditioned on has non-zero probability.

Definition 16.2
Let G be a digraph with edge set

E ⊆ {(i , j) : 1 ≤ i , j ≤ n, i 6= j}.

If Ai is mutually independent of {Aj : (i , j) 6∈ E} for all
i ∈ {1, 2, . . . , n} then we say that G is a dependency digraph for
the events A1,A2, . . . ,An.



Lemma 16.3 (Asymmetric Lovász Local Lemma)

Let G be a dependency digraph with edge set E for the events
A1, . . . ,An. Suppose there exist xi ∈ R such that 0 ≤ xi < 1 and

P[Ai ] ≤ xi
∏

j :(i ,j)∈E
(1− xj)

for all i . Then

P
[ n⋂

i=1

Āi

]
≥

n∏

i=1

(1− xi ).

Claim (to be proved by induction on |S |). Let S ⊆ {1, 2, . . . , n}
and suppose i 6∈ S . Then

P
[ ⋂

j∈S
Āj

]
6= 0

and
P
[
Ai

∣∣∣
⋂

j∈S
Āj

]
≤ xi .



Corollary 16.4 (Symmetric Lovász Local Lemma)

Suppose that the maximum degree in a dependency digraph for the
events A1, . . . ,An is d. If P[Ai ] ≤ p for all i and ep(d + 1) ≤ 1
then

P
[ n⋂

i=1

Āi ] ≥ 0.



Application to diagonal Ramsey numbers

Theorem 16.5
Let n, s ∈ N with s ≥ 3. If

e

(
s

2

)(
n − 2

s − 2

)
21−(s2) < 1

then there is a red-blue colouring of the complete graph Kn with
no red Ks or blue Ks .

Example 16.6

When s = 15, the largest n such that
( n

15

)
21−(15

2 ) < 1 is n = 792.
So Theorem 15.5 tells us that R(15, 15) > 792. But

e

(
15

2

)(
n − 2

15− 2

)
21−(15

2 ) < 1

provided n ≤ 947. So Theorem 16.5 implies that R(15, 15) > 947.

Proposition 16.7

Let s ≥ 9. Then R(s, s) ≥ 2(s−1)/2s/e.



Application to edge disjoint paths

Suppose that G is a graph and that F1, . . . ,Fn are sets of paths in
G of length at least m such that if i 6= j and P ∈ Fi and Q ∈ Fj

then P and Q have at most k edges in common.

Proposition 16.8

If
n ≤ m

2ke

then there are paths P1 ∈ F1, . . . , Pn ∈ Fn such that P1, . . . ,Pn

are edge disjoint.

For an application of the asymmetric Lovász Local Lemma to the
Ramsey number R(3, t) see the printed notes (Section 16 is
updated and extended on Moodle).


