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Mark Wildon, mark.wildon@rhul.ac.uk

Please take:
> Introduction Notes
> Preliminary Problem Sheet
» Challenge Problems.

(A) Enumeration

(B) Generating Functions: Recurrences and applications to
enumeration. Problem sheets will ask you to read the early
sections of H. S. Wilf, generatingfunctionology.

(C) Ramsey Theory: ‘Complete disorder is impossible’.

(D) Probabilistic Methods: counting via discrete probability,
lower bounds in Ramsey theory.

All course material is available from Moodle:
moodle.royalholloway.ac.uk/course/view.php?id=371.
Everyone has access to the page.
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Problem Sheets

> The preliminary problem sheet is designed to get you thinking
about the basic counting ideas seen in the first three lectures.

» There will be nine marked problem sheets; the first will be due
in on Tuesday 13th October.

» You are very welcome to discuss the problems with the
lecturer.

> You do not have to wait until answers appear on Moodle. |
will give you full marks if you discuss the question with me but
write up your answer on your own.

» MSc students: you must submit answers to a mini-project
problem sheet (see Moodle in week 3) by the end of term.



Problem Sheets

> The preliminary problem sheet is designed to get you thinking
about the basic counting ideas seen in the first three lectures.

» There will be nine marked problem sheets; the first will be due
in on Tuesday 13th October.

» You are very welcome to discuss the problems with the
lecturer.

> You do not have to wait until answers appear on Moodle. |
will give you full marks if you discuss the question with me but
write up your answer on your own.

» MSc students: you must submit answers to a mini-project
problem sheet (see Moodle in week 3) by the end of term.

Warning: You will not pass this course by last minute cram-
ming. You must attempt the compulsory questions on problem
sheets and learn the techniques for yourself.




Permutations

Definition 2.1
A permutation of a set X is a bijective function

o: X — X.

A fixed point of a permutation ¢ of X is an element x € X such
that o(x) = x. A permutation is a derangement if it has no fixed
points.

Exercise: For n € Ng, how many permutations are there of
{1,2,...,n}? How many of these permutations have 1 as a fixed
point?



Permutations

Definition 2.1
A permutation of a set X is a bijective function

o: X — X.

A fixed point of a permutation ¢ of X is an element x € X such
that o(x) = x. A permutation is a derangement if it has no fixed
points.

Exercise: For n € Ng, how many permutations are there of
{1,2,...,n}? How many of these permutations have 1 as a fixed
point?

BCP1 Multiplying Choices. If an object can be specified
uniquely by a sequence of r choices so that, when making the
ith choice, we always have exactly ¢; possibilities to choose
from, then there are exactly ci1¢ ... ¢, objects.




Correction

On Tuesday | used generating functions to find a formula for the
Fibonacci numbers. There was a sign error. Replace

\}5(1 —1¢x+1 —1¢x)

with

1 1 1
7(1 —gx 1 —¢x)
and replace % (¢”+@D”) with L (qb” "),



Problem 2.2 (Derangements)
How many permutations of {1,2,...,n} are derangements?
Let d, be the number of permutations of {1,2,..., n} that are
derangements. By definition, although you may regard this as a
convention if you prefer, dy = 1.

Exercise: Check, by listing permutations, or some cleverer method,
that di =0, db =1, d3 =2 and ds = 9.
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titioned into two disjoint sets A and B, then the total number
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Problem 2.2 (Derangements)

How many permutations of {1,2,...,n} are derangements?

Let d, be the number of permutations of {1,2,..., n} that are
derangements. By definition, although you may regard this as a
convention if you prefer, dy = 1.

Exercise: Check, by listing permutations, or some cleverer method,
that di =0, db =1, d3 =2 and ds = 9.

We used the following counting principle to get dy = 9.

BCP2: Adding Choices. If a finite set of objects can be par-
titioned into two disjoint sets A and B, then the total number

of objects is |A| + |B|.

In the proof of Lemma 2.3 we will also need:

BCPO: Bijections. If there is a bijection between finite sets
A and B then |A| = |B].




Derangements: Exercise
Suppose we try to construct a derangement of {1,2,3,4,5} such
that o(1) = 2. Show that there are
» two derangements such that (1) = 2,0(2) =1,
> three derangements such that (1) =2, ¢(2) = 3.

How many choices are there for o(3) in each case?
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Derangements: Exercise
Suppose we try to construct a derangement of {1,2,3,4,5} such
that o(1) = 2. Show that there are
» two derangements such that (1) = 2,0(2) =1,
> three derangements such that o(1) = 2, 0(2) = 3.
How many choices are there for o(3) in each case?

Here are the two derangements such that 0(1) =2and 0(2) =1

><>?< ><7$<

2 3 4
o(2) o(1) o(5) o(3) o(4 o 2 o(l) o(4) o(5) of 3
Two of the three derangements such that o(1) =2 and ¢(2) = 3.
2 3 4

WW



Moodle and Part A handout

» Please take the Part A handout

> Everyone has access to the Moodle page
moodle.royalholloway.ac.uk/course/view.php?id=371.
(You can get this link from my website.)

If you are doing 354 or 5454, then you may not see
Combinatorics in your list of Moodle courses. So make a
bookmark and use that.

Provided your Campus Connect record of courses is correct,
there is nothing to worry about.



Derangements: An Ad-hoc Solution

Recall that d, is the number of permutations of {1,2,...,n} that
are derangements. By definition, although you may regard this as a
convention, if you prefer, dy = 1.

Overview: Using Lemma 2.3 we will prove Theorem 2.4, which
gives a recurrence relation for d,. We will then solve the
recurrence in Corollary 2.5 to get a formula for d,.

Lemma 2.3
If n > 2, there are d,_» + d,—1 derangements o of {1,2,...,n}
such that o(1) = 2.

Theorem 2.4
If n>2 then d, = (n—1)(dp—2 + dp—1).



Example of Lemma 2.3

Take n =5 and let D, be the set of permutations ¢ of
{1,2,3,4,5} such that (1) = 2.

In Case (i) we showed that [{o € X : 0(2) = 1}| = dp_2.

In Case (ii) we showed that [{o € X : 0(2) # 1}| = dp—1 by the
‘swapping letters’ bijection.

1 2 3 4 5

permutations o of {1,2,..., n} such that
. . . 0(1)=2,0(2)#1,0(3)#3,0(4) #4, 0(5) #5

—_
N
w
IS
6)]

IS
€)1}

permutations 7 of {1,2,..., n} such that
(1) =1, 7(2)#2, 7(3)#3, 7(4) #4, 7(5) #5

—_
N
w
=
a1



Formula for d,, and Two Probabilistic Results

Theorem 2.4
If n>2 then d, = (n —1)(dp—2 + dp—_1).

Corollary 2.5
For all n € Ny,
1 1 1 (1)
o= nl(L= gt g )
Theorem 2.6

(i) The probability that a permutation of {1,2,...,n}, chosen
uniformly at random, is a derangement tends to 1/e as
n— oo.

(ii) The average number of fixed points of a permutation of
{1,2,...,n} is 1.

We'll prove more results like these in Part D of the course.



Preliminary Problem Sheet

1. A menu has 3 starters, 4 main courses and 6 desserts.

(a) How many ways are there to order a starter, main course and
dessert? [Hint: multiply choices.]

(b) How many ways are there to order a two course meal,
including exactly one main course?

3. A deck consists of 52 cards. There are four Aces, four Kings,
four Queens and four Jacks. How many hands of five cards are
there that

(a) have at least one Ace, King, Queen and Jack? [Hint: first
count hands of the form AKQJx, then hands of the form
AAKQJ, and so on. Note hands are unordered: AKQJ3 is
the same hand as JQ3AK.]

(b) have at least one Ace, King and Queen?



Part A: Enumeration
§3: Binomial Coefficients

Notation 3.1

If Y is a set of size k then we say that Y is a k-set. To emphasise
that Y is a subset of some other set X then we may say that Y is
a k-subset of X.

We shall define binomial coefficients combinatorially.

Definition 3.2
Let n, k € Ng. Let X ={1,2,...,n}. The binomial coefficient (Z)
is the number of k-subsets of X.



Part A: Enumeration
§3: Binomial Coefficients

Notation 3.1

If Y is a set of size k then we say that Y is a k-set. To emphasise
that Y is a subset of some other set X then we may say that Y is
a k-subset of X.

We shall define binomial coefficients combinatorially.

Definition 3.2
Let n, k € Ng. Let X ={1,2,...,n}. The binomial coefficient (Z)
is the number of k-subsets of X.

Quiz: which of the following are true?
(A) (1.2) = (21) (B) {1.2} =(1.2)
(€) {12} ={21} (D) {121} ={1.2}.



Bijective Proofs

We should prove that the combinatorial definition agrees with the
usual one. This proof generalizes Question 2 on the Preliminary
Problem Sheet (answers available from Moodle).

Lemma 3.3
If n, k € Ng and k < n then

n\ n(n—1)...(n—k+1) n!
(k) N k! ~kl(n— k)




Bijective Proofs

We should prove that the combinatorial definition agrees with the
usual one. This proof generalizes Question 2 on the Preliminary
Problem Sheet (answers available from Moodle).

Lemma 3.3
If n, k € Ng and k < n then

n\ n(ln—1)...(n—k+1) n!
(k) N k! ~kl(n— k)

Exercise: give an alternative proof of Lemma 3.3 by double
counting the set of pairs

(X,(xl,...,xk))
such that X = {x1,...,x¢} C{1,...,n}.

Lemma 3.4
If n, k € Ng then



More Bijective Proofs

Lemma 3.5 (Fundamental Recurrence)

If n, k € N then
n\ (n—1 n n—1
k)  \k-—-1 k '

Exercise: Prove bijectively that (n—r)(7) = (r + 1)(#1) if
0<r<n.
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Exercise: Prove bijectively that (n —r)(7) = (r +1)(,,) if
0<r<n.

The bijective proof used the bijection

Y C{L,2,....n}|Y]|=r, Z C{1,2,...,n},
Y,z): Z,z): .
{( S P Y WY }*{( 2 |Z|:r+1,z€Z}

defined by (Y, z) — (Y U{z},z). You might prefer a more
informal version.



More Bijective Proofs

Lemma 3.5 (Fundamental Recurrence)

If n, k € N then
ny n—1 n n—1
k) \k-—1 k '

Exercise: Prove bijectively that (n —r)(7) = (r +1)(,,) if
0<r<n.

The bijective proof used the bijection

{ §{1,2,...,n},|Y|:r,}

Y : Z,z):

((;)z ze{l,2,....,n},z¢ Y %{((n’i) [Z|=r+1z€eZ
r r+1
defined by (Y, z) — (Y U{z}, z). You might prefer a more
informal version.

g{1,2,...,n},}




More Bijective Proofs

Lemma 3.5 (Fundamental Recurrence)

If n, k € N then
n\ (n—1 n n—1
k) \k-—1 k '

Exercise: Prove bijectively that (n —r)(7) = (r +1)(,,) i
0<r<n.

Binomial coefficients are so-named because of the famous binomial
theorem. (A binomial is a term of the form x"y*.)

Theorem 3.6 (Binomial Theorem)
Let x, y € C. If n € Ng then



Example of Bijection in Lemma 3.5

(53.) oo {"1'3} d "‘z' ,‘}; {'321 s’)'” }

sigeof 4 ey §2,3,5] §2,4, 50 10,45}
CASE ) CAE 2
containg S,
142,53, 14350 104} } { 1,3,38, 12,4} ‘
{ i2,3,53 ' izo‘bsSJ {309'):1 l',3,9}| "o’a"'* ¢
aads ( 2&“,, s  eouated by (’)
inay, 1,33, 1hed ‘
{3,31, 82,4}, 13,4}

Counted by {g’)



Example of Bijection in Theorem 3.6 (Binomial Theorem)

The 3-subset {1,2,5} corresponds to expanding (x + y)° by

choosing x from terms 1, 2 and 5, and y from the other terms,
obtaining x3y?. Since there are (g) = 10 distinct 3-subsets of

{1,2,3,4,5}, the coefficient of x3y? is 10.

) PGS

2 S

|
(x+9)’= &

3 a2,
Coefficint 2y is the
Xy n::{fc;c;} 3‘,‘:5“5-‘2‘5 of 1133,4,5F



Example of Bijection in Theorem 3.6 (Binomial Theorem)

The 3-subset {1,2,5} corresponds to expanding (x + y)° by
choosing x from terms 1, 2 and 5, and y from the other terms,
obtaining x3y?. Since there are (g) = 10 distinct 3-subsets of

{1,2,3,4,5}, the coefficient of x3y? is 10.

: 3.2 .0l
3 Coe{fiﬂ&é < 2 is ¢he

x 3 Numba °j— 3-3«5:": cj' i\,?.,B,q.,s'}

Exercise: Write out an alternative proof of the Binomial Theorem

by induction on n, using Lemma 3.5 in the inductive step. Which
proof do you find more convincing?



§4: Further Binomial Identities and Balls and Urns

Quiz: How many ways are there to walk from X to Y, taking only
steps South and East?

X

(A)7  (B)21  (C)35 (D) 128



84: Further Binomial Identities and Balls and Urns

The entry in row n and column r of Pascal’s Triangle is ('r’)
Pascal’s Triangle can be computed by hand using (5) = (")

1
n
and the Fundamental Recurrence.

Lemma 4.1 (Alternating row sums)
IfneN, re Ng and r < n then

Lemma 4.2 (Diagonal sums, a.k.a. parallel summation)
If n € Ng, r € Ng then

i(ﬁk) _ <n+:+1>

k=0



Pascal’s Triangle: entry in row n column k is (Z)

mk|o 1 2 3 4 5 6 7 8 9 10
0 |1

1|1 1

2 |1 2 1

3 /1 3 3 1

411 4 6 4 1

5 /1 5 10 10 5 1

6 |1 6 15 2 15 6 1

7|1 7 21 3 3% 21 7 1

8 |1 8 28 5 70 5 28 8 1

9 |1 9 36 84 126 126 8 36 9 1
10 |1 10 45 120 210 252 210 120 45 10 1




Lemma 4.1: Alternating Row Sums

k|0 1 2 3 4 5 6 7 8 9 10
0 |1

1 |1 1

2 11 2 1

3 /1 3 3 1

4 11 4 6 4 1

5 |1 5 10 10 5 1

6 |1 6 15 20 15 6 1

7 |1 7 21 3 3 21 7 1

8 |1 8 28 5 70 56 28 8 1

9 |01-9+36 -84 +126) 126 84 36 9 1
10 |1 10 45 120 210 252 210 120 45 10 1




Lemma 4.2: Alternating Row Sums

k|0 1 2 3 4 5 6 7 8 9 10
0 |1

1 |1 1

2 11 2 1

3 /1 3 3 1

4 11 4 6 4 1

5 |1 5 10 10 5 1

6 |1 6 15 20 15 6 1

7 |1 7 21 3 3 21 7 1

8 |1 8 28 5 70 56 28 8 1

9 |01-9+36 -84 +126) 126 84 36 9 1
10 |1 10 45 120 210 252 210 120 45 10 1




Lemma 4.2: Diagonal Sums a.k.a. Parallel Summation

k|0 1 2 3 4 5 6 7 8 9 10
0 |1

1 |1 1

2 11 2 1

3 /1 3 3 1

4 |1 4 6 4 1

5 |1 5 10 10 5 1

6 |1 6 15 20 15 6 1

7 /1 7 21 3 35 21 7 1

8 |1 8 28 5 70 5 28 8 1

9 |1 9 36 84 126 126 84 36 9 1
10 |1 10 45 120 210 252 210 120 45 10 1




Column Sums (see Sheet 1, Question 3)

mk|o 1 2 3 4 5 6 7 8 9 10
0 |1

1|1 1

2 |1 2 1

3 /1,3 3 (1)

411 4,6 |4 1

5 /1 5 10 _j10f 5 1

6 |1 6 15 20|, 15 6 1

71 7 21 (35) 3% 21 7 1

8 |1 8 28 5 70 5 28 8 1

9 |1 9 36 84 126 126 8 36 9 1
10 |1 10 45 120 210 252 210 120 45 10 1




Quiz and Hint for Q3 on Sheet 1

Quiz: How many empty sets are there?

(A) 0 (B) 1
(C) infinitely many (D) it depends on your axioms

(3) Let n, r € N. Prove that

()= (7)) () - ()

in two ways:
(a) by induction on n (where r is fixed in the inductive argument);
(b) bijectively, by reasoning with subsets of {1,2,...,n+ 1}.
[Hint: interpret each summand as counting the
(r + 1)-subsets with a particular maximum element.]

If n < r then both sides in (a) are 0. (The sum has no terms!) So
you can take the base case of the induction to be n = r. Work by
induction on n, keeping r fixed.



Arguments with subsets

Lemma 4.3 (Subset of a subset)
Ifk, r, n€ Ng and k < r < n then

D -=@00)

Lemma 4.4 (Vandermonde's convolution)
Ifa, b € Ng and m € Ng then

(1t -(0")



Corollaries of the Binomial Theorem

Corollary 4.5
. “ n n
(i) 1fn € Ng then kz;) <k> = 2"

(i) Ifn €N then é(—1)"<z> = 0.

Exercise: Find a bijective proof of (i) and a bijective proof of (ii)
when n is odd. Harder exercise: Is there a bijective proof of (ii)
when n is even?

Corollary 4.6
For all n € N there are equally many subsets of {1,2,...,n} of
even size as there are of odd size.



Bijective Proof that (”erl) is the nth Triangle Number




Balls and Urns

How many ways are there to put k balls into n numbered urns?
The answer depends on whether the balls are distinguishable. We
may consider urns of unlimited capacity, or urns that can only

contain one ball.

Numbered balls

Indistinguishable balls

<1 ball per urn

unlimited capacity
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Balls and Urns

How many ways are there to put k balls into n numbered urns?
The answer depends on whether the balls are distinguishable. We
may consider urns of unlimited capacity, or urns that can only

contain one ball.

Numbered balls Indistinguishable balls

<1ballperurn | n(n—1)...(n—k+1) <Z>
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Balls and Urns

How many ways are there to put k balls into n numbered urns?
The answer depends on whether the balls are distinguishable. We
may consider urns of unlimited capacity, or urns that can only

contain one ball.

Numbered balls Indistinguishable balls

<1ballperurn | n(n—1)...(n—k+1) n(n—1)..l.<(!n—k+1)

unlimited capacity nk 3 (n+k—13(-!..(n+1)n




Balls and Urns

How many ways are there to put k balls into n numbered urns?
The answer depends on whether the balls are distinguishable. We
may consider urns of unlimited capacity, or urns that can only

contain one ball.

k=2 n=3

Numbered balls

Indistinguishable balls

<1 ball per urn

3x2=6

unlimited capacity

3x3=9




Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7

Let n € N and let k € Ng. The number of ways to place k

indistinguishable balls into n urns of unlimited capacity is (”Jr:*l).
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Theorem 4.7
Let n € N and let k € Ng. The number of ways to place k

indistinguishable balls into n urns of unlimited capacity is (”Jr:*l).

k|01 2 3 4
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Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7
Let n € N and let k € Ng. The number of ways to place k

indistinguishable balls into n urns of unlimited capacity is (”Jr:*l).

k|01 2 3 4

1 1 1 1
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Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7
Let n € N and let k € Ng. The number of ways to place k

indistinguishable balls into n urns of unlimited capacity is (”Jr:*l).
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1 1 1 1
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Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7
Let n € N and let k € Ng. The number of ways to place k

indistinguishable balls into n urns of unlimited capacity is (”Jr:*l).

k|01 2 3 4

1 1 1 1
3

gk o N
e
w




Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7

Let n € N and let k € Ng. The number of ways to place k
indistinguishable balls into n urns of unlimited capacity is (

k|01 2 3 4
11111 1 1
2 |1 2 3
311 3 6
4 |1 4
5 |1

n+k—1
k

).



Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7

Let n € N and let k € Ng. The number of ways to place k
indistinguishable balls into n urns of unlimited capacity is (

nk| 01 2 3 4
111 1 1 1
2 12 3 4 5
3 (1 3 6 10
4 |1 4 10
5 |1 5

n+k—1
k

).



Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7
Let n € N and let k € Ng. The number of ways to place k

indistinguishable balls into n urns of unlimited capacity is (”Jrf*l).

nk| 01 2 3 4

1 /1 1 1 1 1
2 |1 2 3 4 5
3 ]1 3 6 10 15
4 |1 4 10 20

5 |1 5 15




Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7

Let n € N and let k € Ng. The number of ways to place k
indistinguishable balls into n urns of unlimited capacity is (

nk| 01 2 3 4
111 1 1 1
2 12 3 4 5
3 (13 6 10 15
4 |1 4 10 20 35
5 |1 5 15 35

n+k—1
k

).



Unnumbered Balls, Urns of Unlimited Capacity

Theorem 4.7

Let n € N and let k € Ng. The number of ways to place k
indistinguishable balls into n urns of unlimited capacity is (

nk| 01 2 3 4
111 1 1 1
2 12 3 4 5
3 (13 6 10 15
4 |1 4 10 20 35
5 [1 5 15 35 70

n+k—1
k

).



Counting n-Tuples with Sum k

The following reinterpretation of Theorem 4.7 is often useful.

Corollary 4.8

Let n € N and let k € Ng. The number of solutions to the
equation

i+ttt t,=k

with ty, ta,...,t, € Ng is (n+/€71)'



Questions from Sheet 1

(0)=()

for n, r € N in two ways:

1. Prove that

(a) using the formula for a binomial coefficient;

(b) by reasoning with subsets.

3. Let n, r € N. Prove that

() (7)

in two ways:

(1) =(72)

(a) by induction on n (where r is fixed in the inductive argument);
(b) by reasoning with subsets of {1,2,...,n+ 1}.



5. A lion tamer has n cages in a row. Let g(n, k) be the number

of ways is which she may accommodate k indistinguishable lions so

that no cage contains more than one lion, and no two lions are

housed in adjacent cages.

(a) Show that g(n, k) =g(n—2,k—1)+g(n—1,k) if n>2
and k > 1.

(b) Prove by induction that g(n, k) = (" ™) for all n € N and
k € Ng such that kK < n.

In (b), we need to know the formula is true for g(n — 2, k — 1) and
g(n—1,k) in the inductive step.

k|01 2 3 4

1

Induction on n,
assuming (b) for
all k< n

OO



5. A lion tamer has n cages in a row. Let g(n, k) be the number
of ways is which she may accommodate k indistinguishable lions so
that no cage contains more than one lion, and no two lions are
housed in adjacent cages.
(a) Show that g(n, k) =g(n—2,k—1)+g(n—1,k) if n>2
and k > 1.
(b) Prove by induction that g(n, k) = (" ™) for all n € N and
k € Ng such that kK < n.
In (b), we need to know the formula is true for g(n — 2, k — 1) and
g(n—1,k) in the inductive step.
n\k| 01 2 3 4

1 1

Induction on n,
assuming (b) for
all k< n

O O BN
el el el el e



5. A lion tamer has n cages in a row. Let g(n, k) be the number
of ways is which she may accommodate k indistinguishable lions so
that no cage contains more than one lion, and no two lions are
housed in adjacent cages.
(a) Show that g(n, k) =g(n—2,k—1)+g(n—1,k) if n>2
and k > 1.
(b) Prove by induction that g(n, k) = (" ™) for all n € N and
k € Ng such that kK < n.
In (b), we need to know the formula is true for g(n — 2, k — 1) and
g(n—1,k) in the inductive step.
n\k| 01 2 3 4

1

N =
o

Induction on n,
assuming (b) for
all k< n

O O BN
el el el el e



5. A lion tamer has n cages in a row. Let g(n, k) be the number
of ways is which she may accommodate k indistinguishable lions so
that no cage contains more than one lion, and no two lions are
housed in adjacent cages.
(a) Show that g(n, k) =g(n—2,k—1)+g(n—1,k) if n>2
and k > 1.
(b) Prove by induction that g(n, k) = (" ™) for all n € N and
k € Ng such that kK < n.
In (b), we need to know the formula is true for g(n — 2, k — 1) and
g(n—1,k) in the inductive step.
n\k| 01 2 3 4

1

—

Induction on n,
assuming (b) for
all k< n

O O BN
el el el el e



5. A lion tamer has n cages in a row. Let g(n, k) be the number
of ways is which she may accommodate k indistinguishable lions so
that no cage contains more than one lion, and no two lions are
housed in adjacent cages.
(a) Show that g(n, k) =g(n—2,k—1)+g(n—1,k) if n>2
and k > 1.
(b) Prove by induction that g(n, k) = (" ™) for all n € N and
k € Ng such that kK < n.
In (b), we need to know the formula is true for g(n — 2, k — 1) and
g(n—1,k) in the inductive step.
n\k| 01 2 3 4

1 1
Induction on n, g (1) 0
assuming (b) for
g (b) 4 2 00

all k< n

O O BN
el el el el e



5. A lion tamer has n cages in a row. Let g(n, k) be the number
of ways is which she may accommodate k indistinguishable lions so
that no cage contains more than one lion, and no two lions are
housed in adjacent cages.
(a) Show that g(n, k) =g(n—2,k—1)+g(n—1,k) if n>2
and k > 1.
(b) Prove by induction that g(n, k) = (" ™) for all n € N and
k € Ng such that kK < n.
In (b), we need to know the formula is true for g(n — 2, k — 1) and
g(n—1,k) in the inductive step.
n\k| 01 2 3 4

1

Induction on n,
assuming (b) for
all k< n

Gl B W N =
DN = O

el el el el e
o O O
o O

OO



5. A lion tamer has n cages in a row. Let g(n, k) be the number

of ways is which she may accommodate k indistinguishable lions so

that no cage contains more than one lion, and no two lions are

housed in adjacent cages.

(a) Show that g(n, k) =g(n—2,k—1)+g(n—1,k) if n>2
and k > 1.

(b) Prove by induction that g(n, k) = (" ™) for all n € N and
k € Ng such that kK < n.

In (b), we need to know the formula is true for g(n — 2, k — 1) and
g(n—1,k) in the inductive step.
n\k| 01 2 3 4

1 |1 1

Induction on n, 2 1 20

assuming (b) for 311310

all k < n 4 11 4 2 00
511 5 6 00
6 |1 6 10 1 0



§5: Principle of Inclusion and Exclusion

Example 5.1
If A, B, C are subsets of a finite set X then

|AUB| = |Al+|B| — |AN B|
|AUB| = |X| = |A] - [B] + AN B
and
|JAUBU C| = |Al + |B| +|C|
—|ANB|—|BNC|—|CNA+|ANnBNC]|
[AUBU C| = [X]| - [A] - |B] = [C]
+]ANB|+|BNC|+|CNAl—-|AnBNC|



Venn Diagrams for Four Sets



Venn Diagrams for Four Sets




Venn Diagrams for Four Sets




Hexagonal Numbers

Example 5.2
The formula for |[AU B U C| gives a nice way to find a formula for
the (centred) hexagonal numbers.

e o o
e o e e o o
e [ ] [ ] e [ ] [ [ ] [ e
e o e e o o
e o o

It is easier to find the sizes of the intersections of the three rhombi
making up each hexagon than it is to find the sizes of their unions.
Whenever intersections are easier to think about than unions, the
PIE is likely to work well.



Principle of Inclusion and Exclusion

In general we have finite universe set X and subsets
A1, Az, ..., A, C X. For each non-empty subset / C {1,2,...,n}

we define
A=A
i€l
By convention we set Ay = X.

Theorem 5.3 (Principle of Inclusion and Exclusion)
If A1, Az, ..., An are subsets of a finite set X then

ALUA U UAl= Y (1A
1C{1,2,...,n}

Exercise: Check that Theorem 5.3 holds when n = 1 and check
that it agrees with Example 5.1 when n =2 and n = 3.



Principle of Inclusion and Exclusion

In general we have finite universe set X and subsets
A1, Az, ..., A, C X. For each non-empty subset / C {1,2,...,n}

we define
A=A
i€l
By convention we set Ay = X.

Theorem 5.3 (Principle of Inclusion and Exclusion)
If A1, Aa, ..., A, are subsets of a finite set X then

AL UA U UAl= Y (1Al
1C{1,2,...,n}

Think of A; as the set of objects in the universe U having
property i. Then the PIE counts all those objects having none of
the properties Pi,...,Pp. If | ={i,f,..., ik} then A, consists of
those objects having (at least) properties i1, iz, ..., ik.



Application: Counting Prime Numbers

Example 5.4
Let X = {1,2,...,48}. We define three subsets of X:

B(2) = {m € X, mis divisible by 2}
B(3) = {m € X, mis divisible by 3}
B(5) = {m € X, mis divisible by 5}

Any composite number < 48 is divisible by either 2, 3 or 5. So

B2)uBB)UB((5) ={1}U{p:5< p <48, pis prime}.



Counting Prime numbers

Lemma 5.5
Let r, M € N. There are exactly |M/r| numbers in {1,2,..., M}

that are divisible by r.

Theorem 5.6
Let p1, ..., pn be distinct prime numbers and let M € N. The
number of natural numbers < M that are not divisible by any of
primes pi,...,pn Is
DRG]
1C{1,2,....n} [Lici P
Example 5.7

Let M = pqg where p, g are distinct prime numbers. The numbers
of natural numbers < pg that are coprime to M is

-2



Application: Counting Derangements

Let n € N. Let X be the set of all permutations of {1,2,...,n}
and let
Ai={oceX:o(i)=1i}.

To apply the PIE to count derangements we need this lemma.

Lemma 5.8
(i) A permutation o € X is a derangement if and only if

ceAUAU---UA,.

(i) If1 C{1,2,...,n} then A, consists of all permutations of
{1,2,...,n} which fix the elements of I. If ||| = k then

Al = (n— k)L



IAUBUC| = |X|—|Al—|B|—|C|+|AN BJ+

+BNC|+|CNA|—

I W
B C

f(x)=1-1-0-040+0+0—-0=0

fly)=1-1—-1-04+1+04+0-0=0

fz)=1—-1-1—-1+414+1+1-0=0
)

f(w)=1-0-0-04+0+0+0-0=1

AN BN C|



IAUBUC| = |X|—|Al—|B|—|C|+|AN B+
+BNCl|+|CNA—|AnBNC

f(x)=1-1-0-04+0+0+0-0=(5) — () =0

f()=1-1-1-0+140+0-0=3) -3 +(3) =0

fz)=1-1-1-14+1+1+1-1=Q) -+ - () =0
) = 1

fw)=1-0-0-0+0+0+0—-0=



§6: Rook Polynomials

Definition 6.1

A board is a subset of the squares of an n x n grid. Given a board
B, we let ri(B) denote the number of ways to place k rooks on B,
so that no two rooks are in the same row or column. Such rooks
are said to be non-attacking. The rook polynomial of B is defined
to be

fa(x) = ro(B) + r(B)x + ra(B)x* 4 - - - + r,(B)x".

Example 6.2
The rook polynomial of the board B below is 1 + 5x + 6x% + x3.




Examples

Exercise: Let B be a board. Check that rp(B) = 1 and that r;(B)
is the number of squares in B.

Example 6.3

After the recent spate of cutbacks, only four professors remain at
the University of Erewhon. Prof. W can lecture courses 1 or 4;
Prof. X is an all-rounder and can lecture 2, 3 or 4; Prof. Y refuses
to lecture anything except 3; Prof. Z can lecture 1 or 2. If each
professor must lecture exactly one course, how many ways are
there to assign professors to courses?



Examples

Exercise: Let B be a board. Check that rp(B) = 1 and that r;(B)
is the number of squares in B.

Example 6.3

After the recent spate of cutbacks, only four professors remain at
the University of Erewhon. Prof. W can lecture courses 1 or 4;
Prof. X is an all-rounder and can lecture 2, 3 or 4; Prof. Y refuses
to lecture anything except 3; Prof. Z can lecture 1 or 2. If each
professor must lecture exactly one course, how many ways are
there to assign professors to courses?

Example 6.4

How many derangements o of {1,2,3,4,5} have the property that
o(i)#i+1forl<i<4?



Square Boards

Lemma 6.5
The rook polynomial of the n x n-board is

n n 2
Zk!<k> xk.
k=0



Peer marking

Question 2 on Sheet 3 will be used for a peer-marking exercise.

>

Write answers to Question 2 on a separate sheet and hand
them in next Friday 30th.

A detailed marking scheme will be issued.

Peer-markers should return marked work to me on Tuesday
3rd November.

I will give it a quick check and return it to you on Thursday
5th November.

Try to write clearly! One aim of the exercise is to encourage
you to think about mathematical writing.

Answers to Sheet 2 are available from Moodle. There are some
remarks on common errors. | added an example at the end of the
proof of the PIE.



Lemmas for Calculating Rook Polynomials

The two following lemmas are very useful when calculating rook
polynomials.

Lemma 6.6

Let C be a board. Suppose that the squares in C can be
partitioned into sets A and B so that no square in A lies in the
same row or column as a square of B. Then

fe(x) = fa(x)fg(x).

Lemma 6.7

Let B be a board and let s be a square in B. Let D be the board
obtained from B by deleting s and let E be the board obtained
from B by deleting the entire row and column containing s. Then

fB(X) = fD(X) + XfE(X).



Example of Lemma 6.7

Example 6.8

The rook-polynomial of the boards in Examples 6.3 and 6.4 can be
found using Lemma 6.7. For the board in Example 6.3 it works
well to apply the lemma first to the square marked 1, then to the
square marked 2 (in the new boards).




Example 6.8




Example 6.8




Example 6.8




Example 6.8

DD



Example 6.8

DD DE ED EE

(14 2x)(1 + 4x + 3x?) (1+x)®  (1+x)(1+3x+x?) 1+ x



Example 6.8

DD DE ED EE

(14 2x)(1 + 4x + 3x?) (1+x)®  (1+x)(1+3x+x?) 1+ x
(14 2x)(1 + 4x + 3x?) x(L+x)? x(L+x)(1+3x+x%) x*(1+x)



Placements on the Complement

Lemma 6.9
Let B be a board contained in an n x n grid and let 0 < k < n
The number of ways to place k red rooks on B and n — k blue

rooks anywhere on the grid, so that the n rooks are non-attacking,
is re(B)(n — k)!.

Theorem 6.10

Let B be a board contained in an n x n grid. Let B denote the
board formed by all the squares in the grid that are not in B. The
number of ways to place n non-attacking rooks on B is

n—(n—=1)!n(B)+ (n—2)n(B)— -+ (-1)"m(B).



Part B: Generating Functions

§7: Introduction to Generating Functions

Definition 7.1
The ordinary generating function associated to the sequence
ap, a1, Az, . . . is the power series

oo
Za,,x":ao+alx+agx2+---.
n=0

Usually we shall drop the word ‘ordinary’ and just write ‘generating
function’.

The sequences we deal with usually have integer entries, and so
the coefficients in generating functions will usually be integers.



Sums and Products of Power Series

Let F(x) =) 12 ganx" and G(x) = > 2, bpx". Then
o F(x)+ G(x) = > 0Zo(an + bn)x"
o F(x)G(x) =020 cax" where ¢, => 7 o ambn—m.
o F'(x) =300y nanx""t,

It is also possible to define the reciprocal 1/F(x) whenever ag # 0.
By far the most important case is the case F(x) = 1 — x, when

1 o0
1—x :an
n=0

is the usual formula for the sum of a geometric progression.




Analytic and Formal Interpretations.

We can think of a generating function >_° ) a,x" in two ways.
Either:

e As a formal power series with x acting as a place-holder. This
is the ‘clothes-line’ interpretation (see Wilf
generatingfunctionology, page 4), in which we regard the
power-series merely as a convenient way to display the terms
in our sequence.

e As a function of a real or complex variable x convergent when
|x| < r, where r is the radius of convergence of » 7° 5 apx".



Quiz

(1) What is a closed form for
D (1R =1 2x 44 -8 -
k=0
1 1 1

C
(©) 1+2x

(D) exp(—2x).

(2) What is a closed form for Z nx" = x4+ 2x24+3x3+4x* 4.7

n=1




Quiz

(1) What is a closed form for
D (1R =1 2x 44 -8 -
k=0
1 1 1

C
(©) 1+2x

(D) exp(—2x).

(2) What is a closed form for Z nx" = x+2x°+ 33 Faxt 47

n=1




Quiz

(1) What is a closed form for
D (1R =1 2x 44 -8 -
k=0
1 1 1

C
(©) 1+2x

(D) exp(—2x).

(2) What is a closed form for Z nx" = x+2x°+ 33 Faxt 47

n=1




(1- 2x)4?
(A)10 (B)40 (C)16 (D) —24

(3) What is the coefficient of x3 in

(4) True or false: S°°°  nx™ = Y32, kxk?

(5) Let F(x) = >_72o(n+ 1)x". Which of the following equals
xF(x)?

(A) D (n+1)x™ (B) Y (n+1)x
n*O n=1

an inn+1
n=1



(1- 2x)4?
(A)10 (B)40 (C)16 (D) —24

(3) What is the coefficient of x3 in

(4) True or false: S°°°  nx™ = Y32, kxk?

(5) Let F(x) = >_72o(n+ 1)x". Which of the following equals
xF(x)?

(A) D (n+1)x™ (B) Y (n+1)x
n*O n=1

an inn+1
n=1



(1- 2x)4?
(A)10 (B)40 (C)16 (D) —24

(3) What is the coefficient of x3 in

(4) True or false: S°°°  nx™ =302, kxk? True

(5) Let F(x) = >_72o(n+ 1)x". Which of the following equals
xF(x)?

(A) D (n+1)x™ (B) Y (n+1)x
n*O n=1

an inn+1
n=1



(1- 2x)4?
(A)10 (B)40 (C)16 (D) —24

(3) What is the coefficient of x3 in

(4) True or false: S°°°  nx™ =302, kxk? True

(5) Let F(x) = >_72o(n+ 1)x". Which of the following equals
xF(x)?

(A) D (n+1)x™ (B) Y (n+1)x
n*O n=1

an inn+1
n=1



Administration

» Please return marked answers to Sheet 3, Question 2. (You
will get your own work back on Thursday.)

> Please take your work on the other questions.

» The Coulter McDowell Lecture is tomorrow (Wednesday):

> Gareth Griffiths
» Chess at 200 mph: The Game of Formula 1 Strategy

» 6.15pm Windsor Auditorium, refreshments from 5.30pm



Examples

Example 7.2

(Variation) How many ways are there to tile a 2 x n path using
1 x 2 red bricks and 2 x 2 yellow and red bricks?

Example 7.3

Let k € N. Let by be the number of 3-tuples (t1, t2, t3) such that
t1, to, t3 € Ng and t; + tp + t3 = k. Will find by using generating
functions.

To complete the example we needed the following theorem, proved
as Question 4 of Sheet 3.

Theorem 7.4
If n € N then

(1_x i<n+k—1> P

k=0



General Binomial Theorem

Theorem 7.5
If « € R then
Loy i“o‘_” o= (k1))
=0

for all y such that |y| < 1.

Exercise: Let o € Z.

(i) Show that if & > 0 then Theorem 7.4 agrees with the
Binomial Theorem for integer exponents, proved in Theorem
3.6, and with Theorem 7.5.

(i) Show that if @ < 0 then Theorem 7.4 agrees with Question 4
on Sheet 3. (Substitute —x for y.)



68: Recurrence Relations and Asymptotics

Three step programme for solving recurrences:

(a) Use the recurrence to write down an equation satisfied by the
generating function F(x) =Y 72 anx";

(b) Solve the equation to get a closed form for the generating
function;

(c) Use the closed form for the generating function to find a
formula for the coefficients.

Example 8.1
Will solve a2 = bap11 — 6a, for n € Ng subject to the initial
conditions ag = A and a; = B, using the three-step programme.



Partial Fractions

Theorem 8.2
Let f(x) and g(x) be polynomials with deg f < degg. If

g(x) =a(x— l/ﬂl)d1 co(x = l/ﬂk)dk

where «, b1, B2, . .., Bk are distinct non-zero complex numbers and
di, da, ..., d¢ € N, then there exist polynomials Py, ..., Py such
that deg P; < d; and

) P P
gx) 0= pB)% T A B




Quiz

. . . . 4
» What is a possible partial fractions form for 17?.
- X

1 1 1 1
1—x+l—|—x+1+2x+1—2x'
1 1 1 1
17X+17iX+1+X+1+I.X'

2 2
1+X2+1—x2'
@) —2 42

(1—-x)2  (1+x)?

» What is the coefficient of x3 in

(1)
()
(3)

1 1 1 1 1 1
2|x+3x+ )<+1|x+ X+3IX+ )

(A)8/3 (B)1/6 (C)4/3 (D)1/2

1
(1—|—1|x+



Quiz

. . . . 4
» What is a possible partial fractions form for 17?.
- X

1 1 1 1
1—x+l—|—x+1—|—2x+1—2x'
1 1 1 1
1fx+l—ix+1+x+1+ix'

2 2
1+x2+1—x2'
@) —2 42

(1—-x)2  (1+x)?

» What is the coefficient of x3 in

(1)
()
(3)

1 1 1 1 1 1
2|x+3x+ )(—i—llx—i- X+3|X+ )

(A)8/3 (B)1/6 (C)4/3 (D)1/2

1
(1—|—1|x+



Quiz

. . . . 4
» What is a possible partial fractions form for 17?.
- X

1 1 1 1
1—x+1—|—x+1—|—2x+1—2x'
1 1 1 1
1fx+1—ix+1+x+1+ix'

2 2
1+x2+1—x2'
@) —2 42

(1—-x)2  (1+x)?

» What is the coefficient of x3 in

(1)
()
(3)

1 1 1 1 1 1
2|x+3x+ )(—i—llx—i- X+3|X+ )

(A)8/3 (B)1/6 (C)4/3 (D)1/2

1
(1—|—1|x+



More Examples and Derangements [Missing Work!]

Example 8.3
Will solve b, = 3b,_1 — 4b,_3 for n > 3.
Q(x)
(14 x)(1 —2x)?
of degree < 2. Then Theorem 8.2 gives a constant A and a
polynomial P(x) of degree <1 such that
Q) A PW
(I1+x)(1—-2x)2 1+x (1-2x)%

Endgame: we got > > bpx" = for some Q(x)

Theorem 8.4
Let p, = d,/n! be the probability that a permutation of
{1,2,...,n}, chosen uniformly at random, is a derangement. Then

npnp = (n - 1)pn71 + pn—2
for all n > 2 and




Singularities

Let G be a complex valued function. A singularity of G is a point
where G is undefined. For example, if G(z) = 1/(1 — z?) then G
has singularities at z=1 and z = —1 and G has no singularities w
such that |w| < 1.

Theorem 8.5

Let F(z) =Y _,2anz" be the generating function for the sequence
ao, ai, as, . ... Fix R € R. Suppose that F has no singularities w
such that |w| < R. Then for any € > 0 we have

1 n
/< (R +9)
for all sufficiently large n € N. Moreover, if F has a singularity w
such that |w| = R then there exist infinitely many n such that

1 n
|an| > (E—e) .



Example of Theorem 8.5

Example 8.6

Consider the recurrence relation ap4+3 = ap + an+1 + an+2. Step (1)
of the three-step programme shows that the generating function
for a, is F(z) = P(z)/(1 — z — z? — 23) for some polynomial P(z).
The roots of 1 — z — z2 — z3 = 0 are, to five decimal places,

0.543689 [not 0.543790], 0.7718445+1.115143/, 0.7718445—1.115143i.

So the singularity of F(z) of smallest modulus is at 0.543689. . ..
By Theorem 8.5, a, < m < 2" for all sufficiently large n.
[Correction: The printed notes have 0.543791", going in the
wrong direction.] (Note that the initial values ag, a; and ay were

not needed.)



Theorem 8.5

Let F(z) =Y _,>anz" be the generating function for the sequence
ag, a1, a2, - ... Fix R € R. Suppose that F has no singularities w
such that |w| < R. Then for any ¢ > 0 we have

1 n
/< (R +9)
for all sufficiently large n € N. [Final part omitted]

Let (a,) be the sequence of numbers with generating function

1

1_x_x3 T+ x+x24+2x3+3x* +4x° +6x0 4+ 0x" +13x8 + - .

Given that x3 — x — 1 has roots at, approximately,
—0.341164 — 1.16154/, —0.341164 + 1.16154/, 0.682328, which of
the following is an upper bound for a,, for all n sufficiently large?

(A) 0.69" (B) (3/2)" (C)1.2" (D)n



More Interesting Example of Theorem 8.5

Example 8.7
Let G(z) = > °2, pnz" be the generating function for the
n=0
proportion of permutations of {1,2,...,n} that are derangements.

You should have found that

6(z) = =2




More Interesting Example of Theorem 8.5

Example 8.7
Let G(z) = >_;2, Pnz" be the generating function for the
proportion of permutations of {1,2,...,n} that are derangements.

You should have found that

o) — 202

1—z °

Take out the part of G(z) responsible for the singularity at z =1

e_l e_l —e

G(z) = —

1—2z 1—2z

z

We now apply Theorem 8.5 to the non-singular part.



§9: Convolutions and the Catalan Numbers

The problems in this section fit into the following pattern: suppose
that A, B and C are classes of combinatorial objects and that each
object has a size in Ng. Write size(X) for the size of X. Suppose
that there are finitely many objects of any given size.

Let a,, b, and ¢, denote the number of objects of size n in A,
B, C, respectively.

Theorem 9.1

Suppose there is a bijection

XeAYeB }

{Z €C :size(Z) = n} > {(X, Y): size(X) + size(Y) = n

Then

ni:% cpx" = (ni:% a,,x”) (g% b,,x”)



Convolutions and First Example
The critical step in the proof is to show that

n
Cp = aob, +a1by,—1 + -+ ap_1b1 + apby = Z ambn—m.

m=0

If sequences (a,), (bn) and (c,) satisfy this relation then we say
that (c,) is the convolution of (a,) and (b).

Example 9.2

The grocer sells indistinguishable apples and bananas in unlimited

quantities. Bananas are only sold in bunches of three.

(a) What is the generating function for the number of ways to
buy n pieces of fruit?

(b) How would your answer to (a) change if dates are also sold?

(c) Let ¢, be the number of ways to buy n pieces of fruit and then
to donate some number of the apples just purchased to the
Students’ Union. Find the generating function > 7 ; c,x".



Feedback on Sheet 4

» Multiplication of power series.

» Quiz: what is (i x”)( 3 X")?
n=1 n=1
(A) DY x> (B) D nx"
n=2 n=2
(C) Y (n=1)x" (D) x") X"
n=2 n=2

» Check your answers! E.g. is p, = (—1)"/n! a plausible answer
for a derangement probability?

You are very welcome to email me with queries. Office hours are
Monday 4pm, Thursday 2pm, Friday 4pm.



Feedback on Sheet 4

» Multiplication of power series.

» Quiz: what is (i x”)( 3 X")?
n=1 n=1
(A) DY x> (B) D nx"
n=2 n=2
Q) > (n=1)x" (D) x") X"
n=2 n=2

» Check your answers! E.g. is p, = (—1)"/n! a plausible answer
for a derangement probability?

You are very welcome to email me with queries. Office hours are
Monday 4pm, Thursday 2pm, Friday 4pm.



Feedback on Sheet 4: Question 4
Let n € N be given. Let by be the number of n-tuples (ti,...,t,)

such that t; € N for each j and t; +--- + t, = k. Such a tuple is
called a composition of k into n parts.

(a) Show that by = 0 if kK < n and give formulae for b, and by41.
(b) Let F(x) = >_3%, bkx*. Show that

Foo = ()"

1—x

[Hint: Compare Example 7.3: now t; € N for each /]
(c) Deduce from Theorem 7.4 (or Question 4 on Sheet 3) that

Flx) = i (” e 1>xr+”.

r=0
Find the coefficient of x¥ in the right-hand side and show that
k—1
bk = (n—l)'
(d) Hence, or otherwise, show that the number of compositions of
k € N into any number of parts is 2¢~1. [Update: changed
notation from n to k to make consistent.]



Example 9.3

Lemma 6.6 on rook placements states that if C is a board that A
and B where no square in A lies in the same row or column as a
square in B has a very short proof using Theorem 9.1.

Exercise: Show that splitting a non-attacking placement of rooks
on C into the placements on the sub-boards A and B gives a
bijection satisfying the hypotheses of Theorem 9.1. (Define the
size of a rook placement and the sets 4, B, C.) Hence prove
Lemma 6.6.

Lemma 6.6

Let C be a board. Suppose that the squares in C can be
partitioned into sets A and B so that no square in A lies in the
same row or column as a square of B. Then

fc(x) = fa(x)fs(x).



Rooted Binary Trees

Definition 9.4

A rooted binary tree is either empty, or consists of a root vertex
together with a pair of rooted binary trees: a left subtree and a

right subtree. The Catalan number C, is the number of rooted

binary trees on n vertices.

Theorem 9.5

1 /2
If n € Ng then C :< ”).
n+1\n



Derangements by Convolution: Warm-up Quiz

Let n € N. How many permutations of {1,2,...,n} fix 17

(A)nt (B)2" (C)(n—1)t (D) (";")

Let n > 3. How many permutations of {1,2,...,n} fix 1 and 2
and 37

(A) (n—3)! (B) (n—2)! (C)(n—1)! (D) n!

How many permutations of {1,2,3,4,5,6} have exactly 2 fixed
points? [Hint: ds = 9.]

(A)360 (B)135 (C)108 (D) 160
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Derangements by Convolution

Lemma 9.6
If n € Ng then

zn: <Z> dpi = .

k=0

The sum in the lemma becomes a convolution after a small
amount of rearranging.

Theorem 9.7
If G(x) = > 72 dnx"/n! then

1

1—x’

exp(x)G(x) =

It is now easy to deduce the formula for d,,; the argument needed
is the same as the final step in the proof of Theorem 8.4. The
generating function G used above is an example of an exponential
generating function.



Pure Mathematics Seminar this Tuesday (Today)

» Sean Eberhard, Permutations fixing a k-set.

Tuesday 2pm in C219.



§10: Partitions

Definition 10.1
A partition of a number n € Ny is a sequence of natural numbers
()\1, A2y, Ak) such that

() AM>X>-- >N >1

(ii) )\1—1—)\2—1—---4-)\/(:”.
The entries in a partition A are called the parts of A. Let p(n) be
the number of partitions of n.

Example 10.2

Let a, be the number of ways to pay for an item costing n pence
using only 2p and 5p coins. Equivalently, a, is the number of
partitions of n into parts of size 2 and size 5. Will find the
generating function for a,.



Quiz

What is the coefficient of x2° in L ?
(1—x2)(1—x5)




Quiz

What is the coefficient of x2° in L ?
(1—x2)(1—x5)




Generating Function for Partitions

Theorem 10.3
The generating function for p(n) is

1

; P = @ ) a =2



Young Diagrams

It is often useful to represent partitions by Young diagrams. The
Young diagram of (A1, ..., \x) is an array of boxes such that there
are exactly \; boxes in row i for each i € {1,..., k}.

For example, the Young diagram of (6,3,3,1) is

Theorem 10.4

Let n € N and let k < n. The number of partitions of n into parts
of size < k is equal to the number of partitions of n with at most
k parts.



A Result from Generating Functions

While there are bijective proofs of the next theorem, it is much
easier to prove it using generating functions.

Theorem 10.5

Let n € N. The number of partitions of n with at most one part of
any given size is equal to the number of partitions of n into odd
parts.



Part C: Ramsey Theory
§11: Introduction to Ramsey Theory

Definition 11.1
A graph consists of a set V of vertices together with a set E of
2-subsets of V called edges. The complete graph with vertex set V
is the graph whose edge set is all 2-subsets of V.
The complete graph on V = {1,2,3,4,5} is:

1

3 4
MSc students: | emailed you with a correction to the miniproject.
The Stirling number {g} is 7, not 3. Please take a corrected copy.



Colourings

Definition 11.2

Let ¢, n € N. A c-colouring of the complete graph K, is a function
from the edge set of K, to {1,2,...,c}. If S is an s-subset of the
vertices of K, such that all the edges between vertices in S have
the same colour, then we say that S is a monochromatic Ks
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from the edge set of K, to {1,2,...,c}. If S is an s-subset of the
vertices of K, such that all the edges between vertices in S have
the same colour, then we say that S is a monochromatic Ks

Exercise: find all red K3s and blue Kys in this colouring of Kg:
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Let ¢, n € N. A c-colouring of the complete graph K, is a function

from the edge set of K, to {1,2,...,c}. If S is an s-subset of the
vertices of K, such that all the edges between vertices in S have
the same colour, then we say that S is a monochromatic Ks

Exercise: find all red K3s and blue Kys in this colouring of Kg:
6 5

M2
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Colourings

Definition 11.2
Let ¢, n € N. A c-colouring of the complete graph K, is a function

from the edge set of K, to {1,2,...,c}. If S is an s-subset of the
vertices of K, such that all the edges between vertices in S have
the same colour, then we say that S is a monochromatic Ks

Exercise: find all red K3s and blue Kys in this colouring of Kg:




In any Room with Six People ...

Example 11.3

In any red-blue colouring of the edges of Kg there is either a red
triangle or a blue triangle.



In any Room with Six People ...

Example 11.3

In any red-blue colouring of the edges of Kg there is either a red
triangle or a blue triangle.

Definition 11.4

Given s, t € N, with s, t > 2, we define the Ramsey number
R(s, t) to be the smallest n (if one exists) such that in any
red-blue colouring of the complete graph on n vertices, there is
either a red Ks or a blue K;.



From Chaos to Order

Definition 11.4

Given s, t € N, with s,t > 2, we define the Ramsey number
R(s, t) to be the smallest n (if one exists) such that in any
red-blue colouring of the complete graph on n vertices, there is
either a red Ks or a blue K;.

Lemma 11.5
Lets,t € N withs,t > 2. Let N € N. Assume that R(s, t) exists.

(i) If N < R(s,t) there exist colourings of Ky with no red Ks or
blue Ks.

(i) If N > R(s,t) then in any red-blue colouring of Ky there is
either a red Ks or a blue Ks.



R(3,4) < 10

Lemma 11.6
For any s € N we have R(s,2) = R(2,s) = s.

The main idea need to prove the existence of all the Ramsey
Numbers R(s, t) appears in the next example.

Example 11.7

In any two-colouring of Kig there is either a red K3 or a blue Kj.
Hence R(3,4) < 10.



Example R(3,4) < 10
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Example R(3,4) < 10
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Example R(3,4) < 10




R(3,4) = 9

Lemma 11.8 (Hand-Shaking Lemma)

Let G be a graph with vertex set {1,2,...,n} and exactly e edges.
If dy is the degree of vertex x then

2e=d1+dr+ -+ dp.

In particular, the number of vertices of odd degree is even.

Theorem 11.9
R(3,4) = 9.

The red-blue colouring of Kg used to show that R(3,4) > 8 is a
special case of a more general construction: see Question 3 on
Sheet 7.

Theorem 11.10 (See Question 1 on Sheet 7)
R(4,4) < 18.



R(3,4) > 8




§12: Ramsey's Theorem

We shall prove by induction on s + t that R(s, t) exists. To make
the induction go through we must prove a stronger result giving an
upper bound on R(s, t).

Lemma 12.1
Lets,t € N withs,t > 3. If R(s —1,t) and R(s,t — 1) exist then
R(s, t) exists and

R(s,t) < R(s—1,t)+ R(s,t —1).

Theorem 12.2
For any s, t € N with s, t > 2, the Ramsey number R(s,t) exists

and )
Ss+t—

R(s,t) < .

cos<(C1i7)



Inductive Proof of Ramsey's Theorem

s\t| 2 3 4 5

- OO B W N




Inductive Proof of Ramsey's Theorem

s\t| 2 3 4 5 6
212 3 4 5 6
3|3
4 |4
5|5
6 |6

Base case: R(2,s) = R(s,2) = s for all s > 2.



Inductive Proof of Ramsey's Theorem

s\t| 2 3 4 5 6
212 3 4 5 6
313 6

4 |4

5|5

6 |6

Base case: R(2,s) = R(s,2) = s for all s > 2.
Inductive step by Lemma 13.1
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s\t 3 4 5 6
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Base case: R(2,s) = R(s,2) = s for all s > 2.
Inductive step by Lemma 13.1



Inductive Proof of Ramsey's Theorem

s\t| 2 3 4 5 6
212 3 4 5 6
3 /3 6 10 15
4 |4 10 20
5|5 15

6 |6

Base case: R(2,s) = R(s,2) = s for all s > 2.
Inductive step by Lemma 13.1



Inductive Proof of Ramsey's Theorem

s\t| 2 3 4 5 6
212 3 4 5 6
313 6 10 15 21
4 |4 10 20 35
5 |5 15 35

6 |6 21

Base case: R(2,s) = R(s,2) = s for all s > 2.
Inductive step by Lemma 13.1



Inductive Proof of Ramsey's Theorem

s\t| 2 3 4 5 6
212 3 4 5 6
313 6 10 15 21
4 |4 10 20 35 56
5 5 15 35 70
6 |6 21 56

Base case: R(2,s) = R(s,2) = s for all s > 2.

Inductive step by Lemma 13.1



Inductive Proof of Ramsey's Theorem

s\t| 2 3 4 5 6
212 3 4 5 6
313 6 10 15 21
4 |4 10 20 35 56
5 5 15 35 70 126
6 |6 21 56 126

Base case: R(2,s) = R(s,2) = s for all s > 2.

Inductive step by Lemma 13.1



Inductive Proof of Ramsey's Theorem

s\t| 2 3 4 5 6
212 3 4 5 6
313 6 10 15 21
4 |4 10 20 35 56
5 5 15 35 70 126
6 |6 21 56 126 252

Base case: R(2,s) = R(s,2) = s for all s > 2.

Inductive step by Lemma 13.1



Inductive Proof of Ramsey's Theorem

s\t| 2 3 4 5 6
212 3 4 5 6
3/3 6 9 14 18
4 14 9 18 25 41
5|5 14 25 49 87
6 |6 18 41 87 143

Base case: R(2,s) = R(s,2) = s for all s > 2.

Inductive step by Lemma 13.1

Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Inductive Proof of Ramsey's Theorem

s\t| 2 3 4 5 6
212 3 4 5 6
3/3 6 9 14 18
414 9 18 25 35
5|5 14 25 43 58
6 |6 18 35 58 102

Base case: R(2,s) = R(s,2) = s for all s > 2.

Inductive step by Lemma 13.1

Best known upper bounds and lower bounds (black if Ramsey
number known exactly)



Diagonal Ramsey Numbers

Corollary 12.3
Ifse N and s > 2 then

25 — 2
R < <4571
o= (227) <



Games and Multiple Colours

Red and Blue play a game. Red starts by drawing a red line
between two corners of a hexagon, then Blue draws a blue line and
so on. A player Joses if they makes a triangle of their colour.

Exercise: can the game end in a draw?



Games and Multiple Colours

Red and Blue play a game. Red starts by drawing a red line
between two corners of a hexagon, then Blue draws a blue line and
so on. A player Joses if they makes a triangle of their colour.

Exercise: can the game end in a draw?

Theorem 12.4
There exists n € N such that if the edges of K, are coloured red,
blue and yellow then there exists a monochromatic triangle.



Sheet 6

1. Let a, be the number of partitions of n € N into parts of
size 3 and 5.
(a) Show that a;5 = 2 and find a4 and ase.

(b) Explain why

1
Z"’" = T 0)

(c) Let ¢, be the number of partitions with parts of sizes 3 and 5
whose sum of parts is at most n. Find the generating function
of ¢,.

2. Let b, be the number of partitions of n that have at most one
part of each odd size. For example, bg = 5: the relevant
partitions are (6), (5,1),(4,2),(3,2,1),(2,2,2). Express the
generating function 77 ; b,x" as an infinite product.



5. Let s,t > 2. By constructing a suitable red-blue colouring of
K(s—1)(t—1) Prove that R(s, t) > (s — 1)(t — 1). [Hint: start
by partitioning the vertices into s — 1 blocks each of size
t — 1. Colour edges within each block with one colour . ..]



5. Let s,t > 2. By constructing a suitable red-blue colouring of
K(s—1)(t—1) Prove that R(s, t) > (s — 1)(t — 1). [Hint: start
by partitioning the vertices into s — 1 blocks each of size
t — 1. Colour edges within each block with one colour . ..]

Example for s =t = 4.




Part D: Probabilistic Methods

§13: Revision of Discrete Probability

Definition 13.1

e A probability measure p on a finite set Q assigns a real
number p, to each w € Q so that 0 < p, < 1 for each w and

Z po =1.
wen

We say that p,, is the probability of w.

e A probability space is a finite set {2 equipped with a
probability measure. The elements of a probability space are
sometimes called outcomes.

e An event is a subset of Q.

e The probability of an event A C Q, denoted P[A] is the sum of
the probability of the outcomes in A; that is P[A] = > 4 pu.



Example 13.2: Probability Spaces

(1)

To model a throw of a single unbiased die, we take
Q = {]"27 3747 57 6}

and put p,, = 1/6 for each outcome w € €. The event that
we throw an even number is A = {2,4,6} and as expected,
PAl=po+ps+ps=1/6+1/6+1/6=1/2.

To model a throw of a pair of dice we could take
Q=1{1,2,3,4,5,6} x {1,2,3,4,5,6}

and give each element of Q probability 1/36, so p;jj) = 1/36
for all (i,j) € Q. Alternatively, if we know we only care about
the sum of the two dice, we could take Q = {2,3,...,12}
with

n‘ 2 3 6 7 8 12

pn|1/36 2/36 ... 5/36 6/36 5/36 ... 1/36

The former is natural and more flexible.



Example 13.2: Probability Spaces

(3) A suitable probability space for three flips of a coin is

Q = {HHH, HHT ,HTH, HTT, THH, THT, TTH, TTT}

where H stands for heads and T for tails, and each outcome
has probability 1/8. To allow for a biased coin we fix

0 < g <1 and instead give an outcome with exactly k heads
probability g¥(1 — ¢)3~k.

Exercise: Let A be the event that there is at least one head,
and let B the the event that there is at least one tail. Find
P[A], P[B], P[AN B], P[AU B].

Let n € N and let € be the set of all permutations of
{1,2,...,n}. Set p, = 1/n! for each permutation o € Q.
This gives a suitable setup for Theorem 2.6.



Conditional Probability

Definition 13.3
Let Q be a probability space, and let A, B C Q be events.

e If P[B] # 0 then we define the conditional probability of A

given B by
P[AN B]

P[B]
e The events A, B are said to be independent if

P[A|B] =

P[ANn B] = P[A]P[B].

Exercise: Let Q = {HH,HT, TH, TT} be the probability space for
two flips of a fair coin. Let A be the event that both flips are
heads, and let B be the event that at least one flip is a head.
Write A and B as subsets of Q and show that P[A|B] = 1/3.



The Most Misunderstood Problem Ever?

Example 13.4 (The Monty Hall Problem)

On a game show you are offered the choice of three doors. Behind
one door is a car, and behind the other two are goats. You pick a
door and then the host, who knows where the car is, opens another
door to reveal a goat. You may then either open your original
door, or change to the remaining unopened door. Assuming you
want the car, should you change?



Further Probability Examples

Example 13.5 (Sleeping Beauty)

Beauty is told that if a coin lands heads she will be woken on
Monday and Tuesday mornings, but after being woken on Monday
she will be given an amnesia inducing drug, so that she will have
no memory of what happened that day. If the coin lands tails she
will only be woken on Tuesday morning. At no point in the
experiment will Beauty be told what day it is. Imagine that you are
Beauty and are awoken as part of the experiment and asked for
your credence that the coin landed heads. What is your answer?

Example 13.6

Suppose that one in every 1000 people has disease X. There is a
new test for X that will always identify the disease in anyone who
has it. There is, unfortunately, a tiny probability of 1/250 that the
test will falsely report that a healthy person has the disease. What
is the probability that a person who tests positive for X actually
has the disease?



Random Variables

Definition 13.7
Let 2 be a probability space. A random variable on Q is a function
X:Q—R.

Definition 13.8
If X, Y :Q — R are random variables then we say that X and Y
are independent if for all x, y € R the events

A={weQ: X(w)=x} and
B={weQ:Y(w)=y}
are independent.

If X:Q — Ris arandom variable, then ‘X = x’ is the event
{w € Q: X(w) = x}. We mainly use this shorthand in
probabilities, so for instance

PIX =x] =P[{w € Q: X(w) = x}].



Example of Independence of Random Variables

Example 13.9

Let Q = {HH,HT, TH, TT} be the probability space for two flips
of a fair coin. Define X : Q — R to be 1 if the first coin is heads,
and zero otherwise. So

X(HH)=X(HT)=1 and X(TH)=X(TT)=0.
Define Y : Q — R similarly for the second coin.

(i) The random variables X and Y are independent.

(ii) Let Z be 1 if exactly one flip is heads, and zero otherwise.
Then X and Z are independent, and Y and Z are
independent.

(iii) There exist x,y,z € {0,1} such that

PIX=x,Y =y,Z=1z] # P[X =x]P[Y = y]P[Z = z].



Expectation

Definition 13.10
Let 2 be a probability space with probability measure p. The
expectation E[X] of a random variable X : Q — R is defined to be

ELX] = 3 X(@)pu.

weN

Lemma 13.11
Let Q be a probability space. If X1, Xo,..., X, : Q2 — R are
random variables then

E[31X1 +aXo+ -+ aka] = alE[Xl] + azE[XQ] + -+ akE[Xk]
for any a1, az,...,ax € R.

Lemma 13.12
If X, Y :Q — R are independent random variables then
E[XY] = E[X]E[Y].



Example of Linearity of Expectation (Question 11, Sheet 7)

11. Let 0 < p <1 and let n € N. Suppose that a coin biased to
land heads with probability p is tossed n times. Let X be the
number of times the coin lands heads.

(a) Describe a suitable probability space © and probability
measure p : Q — R and define X as a random variable Q — R.

(b) Find E[X] and Var[X]. [Hint: write X as a sum of n
independent random variables and use linearity of expectation
and Lemma 13.14(ii).]

(c) Find a simple closed form for the generating function
Yoo PIX = k]x*. (Such power series are called probability
generating functions.)



Variance

Definition 13.13
Let Q be a probability space. The variance Var[X] of a random
variable X : Q — R is defined to be

Var[X] = E[(X — E[X])?].

Lemma 13.14
Let Q be a probability space.

(i) If X :Q — R is a random variable then
Var[X] = E[X?] — (E[X])2.
(i) If X, Y :Q — R are independent random variables then

Var[X + Y] = Var[X] + Var[Y].



§14: Introduction to Probabilistic Methods

Throughout this section we fix n € N and let Q be the set of all
permutations of the set {1,2,...,n}. Define a probability measure
on 2 so that permutations are chosen uniformly at random.

Exercise: Let x € {1,2,...,n} and let A, = {0 € Q: o(x) = x}.
Then A, is the event that a permutation fixes x. What is the
probability of A,?

Theorem 14.1
Let F : Q — Nq be defined so that F(o) is the number of fixed
points of the permutation o € Q. Then E[F] = 1.



Cycles

Definition 14.2
A permutation o of {1,2,...,n} acts as a k-cycle on a k-subset
S C{1,2,...,n}if S has distinct elements x1, x2, ..., xx such that

o(x1) = x2, o(x2) = x3, ..., o(xk) = x1.

If o(y) =y forall y € {1,2,...,n} such that y ¢ S then we say
that o is a k-cycle, and write

g = (X1,X27 oo ,Xk).
Definition 14.3
We say that cycles (x1,x2,...,xk) and (y1, y2, ..., y) are disjoint if

{X17X27---an}ﬂ{YL}Qa---a}/é} =d.



Cycle Decomposition of a Permutation

Lemma 14.4

A permutation o of {1,2,...,n} can be written as a composition
of disjoint cycles. The cycles in this composition are uniquely
determined by o.

Exercise: Write the permutation of {1,2,3,4,5,6} defined by
0(1)=3,0(2)=4,003)=1,0(4)=6,0(5)=50(6)=2asa
composition of disjoint cycles.
Quiz (relevant to Question 2 on Sheet 8): Let
T =(4,5), o=(1,4,7)(2,5)(6,8).
Which is of the following is 70 o7
(A) (1,5,2,4,7,6,8) (B) (1,4,7)(2,5)(6,8)
(C) (4,7,1,5,2)(6,8) (D) (1,5,2,4,7).



Cycle Decomposition of a Permutation

Lemma 14.4

A permutation o of {1,2,...,n} can be written as a composition
of disjoint cycles. The cycles in this composition are uniquely
determined by o.

Exercise: Write the permutation of {1,2,3,4,5,6} defined by
0(1)=3,0(2)=4,003)=1,0(4)=6,0(5)=50(6)=2asa
composition of disjoint cycles.
Quiz (relevant to Question 2 on Sheet 8): Let
T = (47 5)7 g = (17477)(275)(678)
Which is of the following is 70 o7
(A) (1,5,2,4,7,6,8) (B) (1,4,7)(2,5)(6,8)
(C) (4,7,1,5,2)(6,8) (D) (1,5,2,4,7).



Counting k-Cycles

Theorem 14.5
Let1 < k <nandlet x € {1,2,...,n}. The probability that x lies

in a k-cycle of a permutation of {1,2,...,n} chosen uniformly at
random is 1/n.



Application to Derangements

Theorem 14.6
Let py, be the probability that a permutation of {1,2,..., n}
chosen uniformly at random is a derangement. If n € N then

py= P2 P3P PO
n n n n
Corollary 14.7
For all n € Ny,
1 1 1 (=1)"
pn—l—F—f—E—a‘i‘—i‘T

It may be helpful to compare this result with Lemma 9.6: there we
get a recurrence by considering fixed points; here we get a
recurrence by considering cycles.



Counting Cycles

We can also generalize Theorem 14.1.

Theorem 14.8

Let Cx : Q — R be the random variable defined so that Cy(c) is
the number of k-cycles in the permutation o of {1,2, ... n}.
Then E[Ci] = 1/k for all k such that 1 < k < n.



Counting Cycles

We can also generalize Theorem 14.1.

Theorem 14.8

Let Cx : Q — R be the random variable defined so that Cy(c) is
the number of k-cycles in the permutation o of {1,2, ... n}.
Then E[Ci] = 1/k for all k such that 1 < k < n.

Feedback Forms: Please make sure to take a form with the correct
code: 354 (3rd years), 454 (4th year MSci), 5454 (MSc).

> ‘agree strongly’ is at the far left,

> ‘disagree strongly’ is at the far right,

> ‘tutor’ means the lecturer.

» For question 2.4, please do not include time spent in lectures.

Comments are very welcome and will be taken seriously.



§15: Ramsey Numbers and the First Moment Method

Lemma 15.1 (First Moment Method)

Let Q be a probability space and let M : Q — Ng be a random
variable taking values in Ng. If E[M] = x then

(i) P[M > x] > 0, so there exists w € Q such that M(w) > x.
(i) P[M < x] > 0, so there exists w' € Q such that M(w') < x.

Exercise: Check that the lemma holds in the case when
Q=1{1,2,3,4,5,6} x {1,2,3,4,5,6}

models the throw of two fair dice and M(x,y) = x+y.



Cut Sets in Graphs

Definition 15.2
Let G be a graph with vertex set V. A cut (A,B) of G is a
partition of V into two subsets A and B. The capacity of a cut
(A, B) is the number of edges of G that meet both A and B.

1

2 5 ({12}, {345})
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3 4
Theorem 15.3

Let G be a graph with vertex set {1,2,...,n} and m edges. There
is a cut of G with capacity > m/2.



Application to Ramsey Theory

Lemma 15.4
Let n € N and let Q be the set of all red-blue colourings of the
complete graph K,. Let p, = 1/|Q| for each w € Q. Then
(i) each colouring in Q has probability 1/2(3);
(ii) given any m edges in G, the probability that all m of these
edges have the same colour is 21=™.

Theorem 15.5
Let n,s € N. If

(;’) 21-() <1

then there is a red-blue colouring of the complete graph on
{1,2,...,n} with no red Ks or blue Ks.



Lower bound on R(s, s)

Corollary 15.6
For any s € N with s > 2 we have

R(s,s) > 26~ 1/2,

This result can be strengthened slightly using the Lovasz Local
Lemma. See the printed lecture notes for an outline. (The
contents of §16 are non-examinable.)



§16: Lovasz Local Lemma

Let Q be a probability space and let A;, ..., A, be events in A.

Definition 16.1
Let T C {1,2,...,n}. We say that A; is mutually independent of
the events {A;: j € T}ifforall U,U' C T suchthat UNU' = o

we have
(ﬂ Ak) N (ﬂ /_\z)] = P[A]],
keU teu

provided the event conditioned on has non-zero probability.

P|A;

Definition 16.2
Let G be a digraph with edge set
EC{(i):1<ij<ni#j}

If A is mutually independent of {A; : (i,j) ¢ E} for all
i€{1,2,...,n} then we say that G is a dependency digraph for
the events A1, Az, ..., Ap.



Lemma 16.3 (Asymmetric Lovész Local Lemma)

Let G be a dependency digraph with edge set E for the events

A1, ..., An. Suppose there exist x; € R such that 0 < x; < 1 and

PlAT<x [[ (1-x)

J:(ij)EE

for all i. Then

n

P[] [T

i=1

Claim (to be proved by induction on |S]). Let S C {1,2,...

and suppose i € S. Then

P[4 #0

Jjes

Pla|NA] <x.

Jjes

and

,n}



Corollary 16.4 (Symmetric Lovész Local Lemma)

Suppose that the maximum degree in a dependency digraph for the
events Ai, ..., Anisd. IfP[A]] < p forall i andep(d+1) <1

then ;
P { (Al =o0.
i=1



Application to diagonal Ramsey numbers

Theorem 16.5
Let n,s € N withs > 3. If

I

then there is a red-blue colouring of the complete graph K,, with
no red Ks or blue Ks.
Example 16.6

15

When s = 15, the largest n such that (1"5)21_(2) <1lis n=792.
So Theorem 15.5 tells us that R(15,15) > 792. But

15 n—2 1_(15)
o(5) (55 _3)2 @<
provided n < 947. So Theorem 16.5 implies that R(15,15) > 947.

Proposition 16.7
Let s > 9. Then R(s,s) > 2(=1/2s/e.



Application to edge disjoint paths

Suppose that G is a graph and that Fi,...,F, are sets of paths in
G of length at least m such that if i # j and P € F; and Q € F;
then P and @ have at most k edges in common.

Proposition 16.8
If

< —
m= 2ke
then there are paths P, € Fi, ..., P, € F, such that Py,..., P,
are edge disjoint.

For an application of the asymmetric Lovasz Local Lemma to the
Ramsey number R(3, t) see the printed notes (Section 16 is
updated and extended on Moodle).



