DIACONIS EXERCISE 13

1. Preliminary definitions

Let P and Q be probability distributions on a finite set Ω. The total variation distance between P and Q, denoted $\|P-Q\|$ is defined by

$$
\|P-Q\|=\max _{A \subseteq \Omega}|P(A)-Q(A)|
$$

Note that since $P(\Omega \backslash A)-Q(\Omega \backslash A)=-(P(A)-Q(A))$, an equivalent definition is

$$
\|P-Q\|=\max _{A \subseteq \Omega} P(A)-Q(A) .
$$

This definition apparently requires us to consider all events $A \subseteq \Omega$ to find the one on which P and Q assign the most widely differing probabilities. But a moments thought shows that

$$
\|P-Q\|=\sum_{\substack{\omega \in \Omega \\ P(w)>Q(w)}}(P(\omega)-Q(\omega))
$$

and hence that

$$
\begin{equation*}
\|P-Q\|=\frac{1}{2} \sum_{\omega \in \Omega}|P(\omega)-Q(\omega)| . \tag{1}
\end{equation*}
$$

It still seems quite remarkable to me that (1) can serve as a definition of total variation distance. This equation also shows that total variation distance is essentially the same as the ℓ_{1} norm on \mathbf{R}^{N}.

2. Expectation and variance of the number of fixed points

Suppose that we shuffle a pack of n cards by choosing uniformly at random two numbers from $\{1,2, \ldots, n\}$. If the numbers are the same, we do nothing; otherwise we swap the cards in the indicated positions. The corresponding probability distribution on the symmetric group S_{n} is defined by $P\left(1_{S_{n}}\right)=$ $1 / n$ and $P(t)=2 / n^{2}$ if t is a transposition. If we perform the shuffle k times, then the probability that the cards are permuted according to the permutation $\sigma \in S_{n}$ is $P^{\star k}(\sigma)$. Here $P^{\star k}$ is the k-th convolution of P, as defined by $Q^{\star 1}=Q$ and

$$
P^{\star k}(\sigma)=\sum_{\pi \in S_{n}} P^{\star(k-1)}\left(\sigma \pi^{-1}\right) P(\pi)
$$

for each $k \geq 2$.

The first part of Exercise 13 in Diaconis' book outlines a proof that if $b>0$ and $k=\frac{n}{2} \log n-b n$ then the total variation distance between $P^{\star k}$ and the uniform distribution U is non-negligible. Earlier, in Theorem 5, it is shown that if $c>0$ and $k=\frac{n}{2} \log n+c n$ then

$$
\left\|P^{\star k}-U\right\| \leq a \mathrm{e}^{-2 c}
$$

for a constant $a \in \mathbf{R}$, so this result is sharp. Even the crude statement of this 'fast cut-off', that for any $\varepsilon>0$, a shuffle with $(1 / 2+\varepsilon) n \log n$ steps guarantees good mixing, while the shuffle obtained by $(1 / 2-\varepsilon) n \log n$ steps will (with overwhelming probability) be poor, seems striking.

Let $F(\sigma)$ denote the number of fixed points of $\sigma \in S_{n}$. Under the uniform distribution permutations with no fixed points, i.e. derangements, occur with probability about $1 / \mathrm{e}$. If k is small then it is intuitively clear that the probability distribution $P^{\star k}$ will favour permutations with relatively many fixed points, and so derangements, and other permutations with few fixed points, will be underrepresented. By making this precise we shall get a bound in Corollary 9 on the variation distance $\left\|P^{\star k}-U\right\|$.

We shall in fact solve the more general version of the problem where $P\left(1_{S_{n}}\right)=p_{n}$ for given $p_{n} \in \mathbf{R}$, and $P(t)=\left(1-p_{n}\right) /\binom{n}{2}$ if t is a transposition; this is required to solve the second part of the exercise. For notational convenience, let $q_{n}=1-p_{n}$.

Proposition 1. If $k \in \mathbf{N}$ then

$$
\mathbf{E}_{P^{\star k}}(F)=1+(n-1)\left(1-\frac{2 q_{n}}{n-1}\right)^{k}
$$

In particular, if $p_{n}=1 / n$ then $q_{n}=1-1 / n$ and

$$
\mathbf{E}_{P * k}(F)=1+(n-1)\left(1-\frac{2}{n}\right)^{k} .
$$

Proof. The n-dimensional natural representation of S_{n} decomposes as the sum of an irreducible subrepresentation W of dimension $n-1$ and the trivial representation. The trace of the permutation matrix representing $\sigma \in S_{n}$ is simply $F(\sigma)$, so we we have $\operatorname{Tr}_{W}(\sigma)=F(\sigma)-1$ for all $\sigma \in S_{n}$.

Let

$$
x=p_{n}+\frac{q_{n}}{\binom{n}{2}} \sum_{1 \leq i<j \leq n}(i j) \in \mathbf{C} S_{n}
$$

be the element encoding the probability distribution P. By the previous paragraph we have $\mathbf{E}_{P}(F-1)=\operatorname{Tr}_{W}(x)$. More generally, since the product in the group algebra $\mathbf{C} S_{n}$ corresponds to the convolution product on probability distributions, we have

$$
\begin{equation*}
\mathbf{E}_{P * k}(F-1)=\operatorname{Tr}_{W}\left(x^{k}\right) \tag{2}
\end{equation*}
$$

It follows from Lemma 2 below that x acts as $\alpha 1_{W}$ on W, where

$$
\begin{aligned}
\alpha=p_{n}+\frac{\left(1-p_{n}\right)}{\binom{n}{2}}\binom{n}{2} \frac{\chi_{W}((12))}{n-1} & =p_{n}+q_{n} \frac{n-3}{n} \\
& =1-\frac{2 q_{n}}{n-1} .
\end{aligned}
$$

Note that in the particular case where $p_{n}=1 / n$ we have $\alpha=1-\frac{2}{n}$. Hence x^{k} acts as $\left(1-\frac{2}{n-1}\left(1-p_{n}\right)\right)^{k} 1_{W}$ on W and, by (2), we have

$$
\mathbf{E}_{P \star k}(F-1)=(n-1)\left(1-\frac{2 q_{n}}{n-1}\right)^{k}
$$

from which the result follows immediately.
The following lemma, which can be easily proved using Schur's Lemma, was used in the proof of Proposition 1.

Lemma 2. Let W be an irreducible representation of S_{n}. If $x \in \mathbf{C} S_{n}$ is the sum of all elements in the conjugacy class of $\sigma \in S_{n}$ then x acts on W as

$$
\frac{\left|x^{S_{n}}\right| \chi_{W}(\sigma)}{\chi_{W}(1)} 1_{W}
$$

It is easily seen from (1) that if $f: S_{n} \rightarrow \mathbf{R}$ is any function such that $|f(\sigma)| \leq 1$ for all $\sigma \in S_{n}$, then

$$
\|Q-R\| \geq \frac{1}{2}|f(\sigma)(Q(\sigma)-R(\sigma))|
$$

Taking $f(\sigma)=F(\sigma) / n$ and applying Proposition 1 we get

$$
\left\|P^{\star k}-U\right\| \geq \frac{1}{2 n}\left(\mathbf{E}_{P^{\star k}}(F)-1\right)=\left(1-\frac{2 q_{n}}{n-1}\right)^{k}
$$

In particular, if $p_{n}=1 / n$ then since $\left(1-\frac{2}{n}\right)^{n} \rightarrow \mathrm{e}^{-2}$ as $n \rightarrow \infty$, it follows that n steps do not suffice to get good mixing in this case. The same result holds whenever $p_{n} \rightarrow 0$ as $n \rightarrow \infty$. As Diaconis remarks, to get a stronger result we need to use the variance of F.

Proposition 3. If $k \in \mathbf{N}$ and $n \geq 4$ then

$$
\begin{aligned}
\operatorname{Var}_{P^{\star k}}(F)=1+ & (n-1)\left(1-\frac{2 q_{n}}{n-1}\right)^{k}+\frac{n(n-3)}{2}\left(1-\frac{4 q_{n}}{n}\right)^{k} \\
& \frac{(n-1)(n-2)}{2}\left(1-\frac{4 q_{n}}{n-1}\right)^{k}-(n-1)^{2}\left(1-\frac{2 q_{n}}{n-1}\right)^{2 k}
\end{aligned}
$$

Proof. The variance of F is the same as the variance of $F-1$ so as in Proposition 1, we may work with $F-1$. We keep the notation from this proposition. To find the variance of $F-1$ we need the expected value of $(F-1)^{2}$. Since $(F-1)(\sigma)^{2}$ is the trace of σ in its action on $W \otimes W$ we have

$$
\begin{equation*}
\mathbf{E}_{P \star k}(F-1)^{2}=\operatorname{Tr}_{W \otimes W}(x) \tag{3}
\end{equation*}
$$

To compute this trace we decompose $W \otimes W$ into its irreducible constituents. We begin by observing that

$$
\begin{aligned}
\chi_{W \otimes W} & =\chi_{W} \times \chi_{W} \\
& =\chi_{W} \times\left(1_{S_{n-1}} \uparrow^{S_{n}}-1_{S_{n}}\right) \\
& =\left(\chi_{W} \downarrow_{S_{n-1}}\right) \uparrow^{S_{n}}-\chi_{W}
\end{aligned}
$$

In the standard notation for irreducible characters of the symmetric group, $\chi_{W}=\chi^{(n-1,1)}$. Using the ordinary branching rule (see [1, Chapter 9$]$) we get

$$
\chi_{W} \downarrow_{S_{n-1}}=\chi^{(n-1)}+\chi^{(n-2,1)}
$$

and hence, provided $n \geq 4$,

$$
\chi_{W} \downarrow_{S_{n-1}} \uparrow^{S_{n}}-\chi_{W}=\chi^{(n)}+\chi^{(n-1,1)}+\chi^{(n-2,2)}+\chi^{(n-2,1,1)}
$$

Therefore W decomposes as a direct sum of four irreducible representations. By Lemma 2, the scalar by which x acts on an irreducible representation U is

$$
p_{n}+q_{n} \frac{\chi_{U}((12))}{\chi_{U}(1)}
$$

The table below shows $\chi^{\lambda}(1)$ and $\chi^{\lambda}(12)$ for the irreducible characters appearing above. These values are easily computed using the MurnaghamNakayama rule: see [1, Chapter 21]. The calculations can be simplified by using the identity $(n-3)(n-4) / 2=(n-2)(n-5) / 2+1$.

λ	$\chi^{\lambda}(1)$	$\chi^{\lambda}((12))$
$(n-1,1)$	$n-1$	$n-3$
$(n-2,2)$	$n(n-3) / 2$	$(n-3)(n-4) / 2$
$(n-2,1,1)$	$(n-1)(n-2) / 2$	$(n-2)(n-5) / 2$

It follows that there is a basis of W on which x acts as the matrix

$$
I_{1} \oplus\left(1-\frac{2 q_{n}}{n-1}\right) I_{n-1} \oplus\left(1-\frac{4 q_{n}}{n}\right) I_{n(n-3) / 2} \oplus\left(1-\frac{4 q_{n}}{n-1}\right) I_{(n-1)(n-2) / 2}
$$

Hence by (3), we have

$$
\begin{aligned}
\mathbf{E}_{P \star k}(F-1)^{2}=1+ & (n-1)\left(1-\frac{2 q_{n}}{n-1}\right)^{k}+ \\
& \frac{n(n-3)}{2}\left(1-\frac{4 q_{n}}{n}\right)^{k}+\frac{(n-1)(n-2)}{2}\left(1-\frac{4 q_{n}}{n-1}\right)^{k}
\end{aligned}
$$

The proposition now follows on subtracting

$$
\left(\mathbf{E}_{P^{\star k}}(F-1)\right)^{2}=(n-1)^{2}\left(1-\frac{2 q_{n}}{n-1}\right)^{2 k}
$$

using the value given in Proposition 1.
The following special case is worth noting.

Proposition 4. If $p_{n}=1 / n$ then

$$
\begin{aligned}
\operatorname{Var}_{P \star k}(F)=1+(n-1)\left(1-\frac{2}{n}\right)^{k}- & \frac{(n+1)(n-2)}{2}\left(1-\frac{2}{n}\right)^{2 k} \\
& +\frac{(n-1)(n-2)}{2}\left(1-\frac{4}{n}\right)^{k} .
\end{aligned}
$$

Proof. Substituting $q_{n}=(n-1) / n$ in Proposition we see that

$$
\frac{n(n-3)}{2}\left(1-\frac{4 q_{n}}{n}\right)^{k}=\frac{n(n-3)}{2}\left(1-\frac{2}{n}\right)^{2 k}
$$

and

$$
(n-1)^{2}\left(1-\frac{2 q_{n}}{n-1}\right)^{2 k}=(n-1)^{2}\left(1-\frac{2}{n}\right)^{2 k} .
$$

The difference of these expressions gives the third term above, and the others come from direct substitution.

To get the corollary of Proposition 1 and Proposition 4 when $k=\frac{n}{2} \log n-$ $b n$ we need the following lemma.

Lemma 5. If $f(n)$ is a polynomial of degree d with leading term $a n^{d}$ and $\left(d-r_{n}\right) \log n \rightarrow 0$ as $n \rightarrow \infty$ then

$$
f(n)\left(1-\frac{2 r_{n}}{n}\right)^{\frac{n}{2} \log n-b n}=a \mathrm{e}^{2 b d}\left(1+O\left(\frac{\log n}{n}\right)\right)
$$

as $n \rightarrow \infty$.
Proof. It is not hard to show that $\log f(n)=d \log n+\log a+O(1 / n)$ and that

$$
\begin{aligned}
\log \left(1-\frac{2 r_{n}}{n}\right)^{\frac{n}{2} \log n-b n} & =\left(\frac{n}{2} \log n-b n\right) \log \left(1-\frac{2 r_{n}}{n}\right) \\
& =-\left(\frac{n}{2} \log n-b n\right)\left(\frac{2 r_{n}}{n}+O\left(1 / n^{2}\right)\right) \\
& =-r_{n} \log n+2 b r_{n}+O\left(\frac{\log n}{n}\right) .
\end{aligned}
$$

The lemma now follows from the hypothesis that $\left(d-r_{n}\right) \log n \rightarrow 0$ as $n \rightarrow \infty$.

Note that the proof of the lemma makes it clear that the implied constant in the $O(1 / n)$ term depends on b.

Corollary 6. Let $k=\frac{n}{2} \log n-b n$. Then

$$
\begin{aligned}
\mathbf{E}_{P^{\star k}}(F) & \rightarrow 1+\mathrm{e}^{2 b}, \\
\operatorname{Var}_{P^{\star k}}(F) & \rightarrow 1+\mathrm{e}^{2 b},
\end{aligned}
$$

provided that $p_{n} \log n \rightarrow 0$ as $n \rightarrow \infty$,

Proof. By Lemma 5 in the case when $r_{n}=n q_{n} /(n-1)$ and $f(n)=(n-1)^{2}$ we get

$$
\lim _{n \rightarrow \infty}(n-1)^{2}\left(1-\frac{2 q_{n}}{n-1}\right)^{k}=\mathrm{e}^{2 b}
$$

To apply the lemma we need that

$$
\left(1-\frac{n q_{n}}{n-1}\right) \log n \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

this holds because

$$
-\frac{\log n}{n} \leq\left(1-\frac{n q_{n}}{n-1}\right) \log n \leq p_{n} \log n
$$

and by assumption $p_{n} \log n \rightarrow 0$ as $n \rightarrow \infty$. Hence, by Proposition 1 we have

$$
\lim _{n \rightarrow \infty} \mathbf{E}_{P_{\star} k}(F)=1+\mathrm{e}^{2 b}
$$

The proof of the limit for $\operatorname{Var}_{P * k}(F)$ is similar using the lemma and Proposition 2.

3. Bounds

The following two propositions will be used to turn this corollary into a bound on $\left\|P^{\star k}-U\right\|$.

Proposition 7. Suppose that $p_{n} \log n \rightarrow 0$ as $n \rightarrow \infty$. Let $M \in \mathbf{N}$. If $k=\frac{n}{2} \log n-b n$ where $b \geq 2$ and $M=\left\lfloor\mathrm{e}^{2 b} / 2\right\rfloor$ then

$$
\mathbf{P}_{P \star k}(F \leq M) \leq \frac{2}{M}
$$

for all k sufficiently large.
Proof. Choose k sufficiently large so that $\mathbf{E}_{P \star k}(F) \geq \mathrm{e}^{2 b}$ and $\operatorname{Var}_{P \star k}(F) \leq$ $2+e^{2 b}$. Since $\left(1+e^{b}\right)^{2} \geq 2+e^{2 b}$, it follows from Chebychev's inequality that

$$
\mathbf{P}_{P \star k}\left(F \leq \mathrm{e}^{2 b}-t\left(1+\mathrm{e}^{b}\right)\right) \leq \frac{1}{t^{2}}
$$

Putting $t=\frac{1}{2}\left(\mathrm{e}^{b}-1\right)$ we get

$$
\mathbf{P}_{P^{\star k}}\left(F \leq \frac{\mathrm{e}^{2 b}}{2}\right) \leq \frac{2}{\left(\mathrm{e}^{b}-1\right)^{2}}
$$

One can check that

$$
\left(\mathrm{e}^{b}-1\right)^{2} \geq \mathrm{e}^{2 b} / 2
$$

for all $b \geq 2$. It follows that if $M=\left\lfloor\mathrm{e}^{2 b} / 2\right\rfloor$ then

$$
\mathbf{P}_{P^{\star k}}(F \leq M) \leq \mathbf{P}_{P^{\star k}}\left(F \leq \frac{\mathrm{e}^{2 b}}{2}\right) \leq \frac{2}{\left(\mathrm{e}^{b}-1\right)^{2}} \leq \frac{2}{\mathrm{e}^{2 b} / 2} \leq \frac{2}{M}
$$

as required.

Proposition 8. Let $M \in \mathbf{N}$. Then

$$
\mathbf{P}_{U}(F>M) \leq \frac{1}{(M+1)!}
$$

Proof. The probability that a particular $M+1$-subset of $\{1,2, \ldots, n\}$ is fixed by a permutation in S_{n} is $(n-M-1)!/ n!$; now sum over all $M+1$-subsets to get

$$
\mathbf{P}_{U}(F>M) \leq\binom{ n}{M+1} \frac{(n-M-1)!}{n!}=\frac{1}{(M+1)!}
$$

Corollary 9. Suppose that $p_{n} \log n \rightarrow 0$ as $n \rightarrow \infty$. If $k=\frac{n}{2} \log n-b n$ where $b \geq 2$ then

$$
\left\|P^{\star k}-U\right\| \geq 1-\frac{6}{\mathrm{e}^{2 b}-2}
$$

provided k is sufficiently large.
Proof. Let $M=\left\lfloor\mathrm{e}^{2 b} / 2\right\rfloor$ and consider the event $F \leq M$. We have

$$
\left\|P^{\star k}-U\right\| \geq P_{U}(F \leq M)-P_{P^{\star k}}(F \leq M)
$$

It follows from the previous two propositions that, provided k is sufficiently large

$$
\left\|P^{\star k}-U\right\| \geq 1-\frac{1}{(M+1)!}-\frac{2}{M} \geq 1-\frac{3}{M} \geq 1-\frac{6}{\mathrm{e}^{2 b}-2}
$$

as required.
This gives a non-trivial bound provided that $b \geq 1.04$. Therefore provided $p_{n}=O(1 / \log n)$ we have shown that $\frac{n}{2} \log n-2 n$ steps do not suffice to get good mixing.

4. Second part of Exercise 13

The second part of Exercise 13 claims that if $p_{n}=1 /\left(1+\binom{n}{2}\right)$, so the identity is equally likely to be chosen as any transpositions, then $c(n) n^{2}$ are necessary to get a good shuffle, where $c(n) \rightarrow \infty$ as $n \rightarrow \infty$.

It follows easily from Proposition 1 and the inequality $1-x \leq \mathrm{e}^{-x}$ that

$$
0 \leq \mathbf{E}_{P_{\star c(n) n^{2}}(F-1) \leq(n-1) \mathrm{e}^{-2 c(n) n q_{n}}}
$$

for all $n \in \mathbf{N}$. A similar bound will hold for the variance of F. So it seems that if $k=c(n) n^{2}$ then F is not able to detect any significant difference between $P^{\star k}$ and U unless p_{n} is at least $1 / \log n$; certainly the smaller value $p_{n}=1 /\left(1+\binom{n}{2}\right)$, as compared to $1 / n$, will not cause any unexpected problems.

It is however possible to use similar ideas to get a slightly weaker result. The key observation is that if we make much fewer than $1 / p_{n}$ steps then there is a good chance that we have never chosen the identity. In this case,
the sign of the resulting permutation is given the parity of the number of steps. So if $A_{n} \subseteq S_{n}$ is the alternating group then

$$
\mathbf{P}_{P \star k}\left(A_{n}\right) \geq\left(1-p_{n}\right)^{k} \geq 1-k p_{n}
$$

whenever k is even. Since $\mathbf{P}_{U}\left(A_{n}\right)=1 / 2$ for all n, it follows from the definition of total variation distance that

$$
\left\|P^{\star k}-U\right\| \geq 1 / 2-k p_{n}
$$

whenever k is even. So in this particular case we have

$$
\left\|P^{\star k}-U\right\| \geq 1 / 2-\theta
$$

whenever k is even and $k \leq \theta n^{2} / 2$. So $n^{2} / 4$ steps do not suffice.

References

[1] James, G. D. The representation theory of the symmetric groups, vol. 682 of Lecture Notes in Mathematics. Springer, Berlin, 1978.

