DIACONIS EXERCISE 13

1. PRELIMINARY DEFINITIONS

Let P and Q be probability distributions on a finite set Ω . The *total* variation distance between P and Q, denoted ||P - Q|| is defined by

$$||P - Q|| = \max_{A \subseteq \Omega} |P(A) - Q(A)|$$

Note that since $P(\Omega \setminus A) - Q(\Omega \setminus A) = -(P(A) - Q(A))$, an equivalent definition is

$$||P - Q|| = \max_{A \subseteq \Omega} P(A) - Q(A).$$

This definition apparently requires us to consider all events $A \subseteq \Omega$ to find the one on which P and Q assign the most widely differing probabilities. But a moments thought shows that

$$||P - Q|| = \sum_{\substack{\omega \in \Omega \\ P(w) > Q(w)}} \left(P(\omega) - Q(\omega) \right)$$

and hence that

(1)
$$||P-Q|| = \frac{1}{2} \sum_{\omega \in \Omega} |P(\omega) - Q(\omega)|.$$

It still seems quite remarkable to me that (1) can serve as a definition of total variation distance. This equation also shows that total variation distance is essentially the same as the ℓ_1 norm on \mathbf{R}^N .

2. EXPECTATION AND VARIANCE OF THE NUMBER OF FIXED POINTS

Suppose that we shuffle a pack of n cards by choosing uniformly at random two numbers from $\{1, 2, ..., n\}$. If the numbers are the same, we do nothing; otherwise we swap the cards in the indicated positions. The corresponding probability distribution on the symmetric group S_n is defined by $P(1_{S_n}) =$ 1/n and $P(t) = 2/n^2$ if t is a transposition. If we perform the shuffle ktimes, then the probability that the cards are permuted according to the permutation $\sigma \in S_n$ is $P^{\star k}(\sigma)$. Here $P^{\star k}$ is the k-th convolution of P, as defined by $Q^{\star 1} = Q$ and

$$P^{\star k}(\sigma) = \sum_{\pi \in S_n} P^{\star (k-1)}(\sigma \pi^{-1}) P(\pi)$$

for each $k \geq 2$.

DIACONIS EXERCISE 13

The first part of Exercise 13 in Diaconis' book outlines a proof that if b > 0 and $k = \frac{n}{2} \log n - bn$ then the total variation distance between $P^{\star k}$ and the uniform distribution U is non-negligible. Earlier, in Theorem 5, it is shown that if c > 0 and $k = \frac{n}{2} \log n + cn$ then

$$||P^{\star k} - U|| \le a \mathrm{e}^{-2\alpha}$$

for a constant $a \in \mathbf{R}$, so this result is sharp. Even the crude statement of this 'fast cut-off', that for any $\varepsilon > 0$, a shuffle with $(1/2 + \varepsilon)n \log n$ steps guarantees good mixing, while the shuffle obtained by $(1/2 - \varepsilon)n \log n$ steps will (with overwhelming probability) be poor, seems striking.

Let $F(\sigma)$ denote the number of fixed points of $\sigma \in S_n$. Under the uniform distribution permutations with no fixed points, i.e. derangements, occur with probability about 1/e. If k is small then it is intuitively clear that the probability distribution $P^{\star k}$ will favour permutations with relatively many fixed points, and so derangements, and other permutations with few fixed points, will be underrepresented. By making this precise we shall get a bound in Corollary 9 on the variation distance $||P^{\star k} - U||$.

We shall in fact solve the more general version of the problem where $P(1_{S_n}) = p_n$ for given $p_n \in \mathbf{R}$, and $P(t) = (1-p_n)/\binom{n}{2}$ if t is a transposition; this is required to solve the second part of the exercise. For notational convenience, let $q_n = 1 - p_n$.

Proposition 1. If $k \in \mathbf{N}$ then

$$\mathbf{E}_{P^{\star k}}(F) = 1 + (n-1) \left(1 - \frac{2q_n}{n-1} \right)^k.$$

In particular, if $p_n = 1/n$ then $q_n = 1 - 1/n$ and

$$\mathbf{E}_{P^{\star k}}(F) = 1 + (n-1)\left(1 - \frac{2}{n}\right)^k.$$

Proof. The *n*-dimensional natural representation of S_n decomposes as the sum of an irreducible subrepresentation W of dimension n-1 and the trivial representation. The trace of the permutation matrix representing $\sigma \in S_n$ is simply $F(\sigma)$, so we we have $\operatorname{Tr}_W(\sigma) = F(\sigma) - 1$ for all $\sigma \in S_n$.

Let

$$x = p_n + \frac{q_n}{\binom{n}{2}} \sum_{1 \le i < j \le n} (ij) \in \mathbf{C}S_n$$

be the element encoding the probability distribution P. By the previous paragraph we have $\mathbf{E}_P(F-1) = \operatorname{Tr}_W(x)$. More generally, since the product in the group algebra $\mathbf{C}S_n$ corresponds to the convolution product on probability distributions, we have

(2)
$$\mathbf{E}_{P^{\star k}}(F-1) = \mathrm{Tr}_W(x^k)$$

It follows from Lemma 2 below that x acts as $\alpha 1_W$ on W, where

$$\alpha = p_n + \frac{(1-p_n)}{\binom{n}{2}} \binom{n}{2} \frac{\chi_W((12))}{n-1} = p_n + q_n \frac{n-3}{n}$$
$$= 1 - \frac{2q_n}{n-1}.$$

Note that in the particular case where $p_n = 1/n$ we have $\alpha = 1 - \frac{2}{n}$. Hence x^k acts as $\left(1 - \frac{2}{n-1}(1-p_n)\right)^k 1_W$ on W and, by (2), we have

$$\mathbf{E}_{P^{\star k}}(F-1) = (n-1)\left(1 - \frac{2q_n}{n-1}\right)$$

from which the result follows immediately.

The following lemma, which can be easily proved using Schur's Lemma, was used in the proof of Proposition 1.

Lemma 2. Let W be an irreducible representation of S_n . If $x \in \mathbb{C}S_n$ is the sum of all elements in the conjugacy class of $\sigma \in S_n$ then x acts on W as

$$\frac{|x^{S_n}|\chi_W(\sigma)}{\chi_W(1)}\mathbf{1}_W.$$

It is easily seen from (1) that if $f: S_n \to \mathbf{R}$ is any function such that $|f(\sigma)| \leq 1$ for all $\sigma \in S_n$, then

$$||Q - R|| \ge \frac{1}{2} |f(\sigma) (Q(\sigma) - R(\sigma))|.$$

Taking $f(\sigma) = F(\sigma)/n$ and applying Proposition 1 we get

$$||P^{\star k} - U|| \ge \frac{1}{2n} \left(\mathbf{E}_{P^{\star k}}(F) - 1 \right) = \left(1 - \frac{2q_n}{n-1} \right)^k.$$

In particular, if $p_n = 1/n$ then since $(1 - \frac{2}{n})^n \to e^{-2}$ as $n \to \infty$, it follows that *n* steps do not suffice to get good mixing in this case. The same result holds whenever $p_n \to 0$ as $n \to \infty$. As Diaconis remarks, to get a stronger result we need to use the variance of *F*.

Proposition 3. If $k \in \mathbb{N}$ and $n \geq 4$ then

$$\mathbf{Var}_{P^{\star k}}(F) = 1 + (n-1)\left(1 - \frac{2q_n}{n-1}\right)^k + \frac{n(n-3)}{2}\left(1 - \frac{4q_n}{n}\right)^k$$
$$\frac{(n-1)(n-2)}{2}\left(1 - \frac{4q_n}{n-1}\right)^k - (n-1)^2\left(1 - \frac{2q_n}{n-1}\right)^{2k}$$

Proof. The variance of F is the same as the variance of F - 1 so as in Proposition 1, we may work with F - 1. We keep the notation from this proposition. To find the variance of F - 1 we need the expected value of $(F-1)^2$. Since $(F-1)(\sigma)^2$ is the trace of σ in its action on $W \otimes W$ we have

(3)
$$\mathbf{E}_{P^{\star k}}(F-1)^2 = \operatorname{Tr}_{W \otimes W}(x).$$

To compute this trace we decompose $W \otimes W$ into its irreducible constituents. We begin by observing that

$$\chi_{W\otimes W} = \chi_W \times \chi_W$$

= $\chi_W \times (1_{S_{n-1}} \uparrow^{S_n} - 1_{S_n})$
= $(\chi_W \downarrow_{S_{n-1}}) \uparrow^{S_n} - \chi_W.$

In the standard notation for irreducible characters of the symmetric group, $\chi_W = \chi^{(n-1,1)}$. Using the ordinary branching rule (see [1, Chapter 9]) we get

$$\chi_W \downarrow_{S_{n-1}} = \chi^{(n-1)} + \chi^{(n-2,1)}$$

and hence, provided $n \ge 4$,

$$\chi_W \downarrow_{S_{n-1}} \uparrow^{S_n} - \chi_W = \chi^{(n)} + \chi^{(n-1,1)} + \chi^{(n-2,2)} + \chi^{(n-2,1,1)}.$$

Therefore W decomposes as a direct sum of four irreducible representations. By Lemma 2, the scalar by which x acts on an irreducible representation U is

$$p_n + q_n \frac{\chi_U((12))}{\chi_U(1)}$$

The table below shows $\chi^{\lambda}(1)$ and $\chi^{\lambda}(12)$ for the irreducible characters appearing above. These values are easily computed using the Murnagham– Nakayama rule: see [1, Chapter 21]. The calculations can be simplified by using the identity (n-3)(n-4)/2 = (n-2)(n-5)/2 + 1.

$$\begin{array}{cccc} \lambda & \chi^{\lambda}(1) & \chi^{\lambda}\big((12)\big) \\ \hline (n-1,1) & n-1 & n-3 \\ (n-2,2) & n(n-3)/2 & (n-3)(n-4)/2 \\ (n-2,1,1) & (n-1)(n-2)/2 & (n-2)(n-5)/2 \end{array}$$

It follows that there is a basis of W on which x acts as the matrix

$$I_{1} \oplus \left(1 - \frac{2q_{n}}{n-1}\right) I_{n-1} \oplus \left(1 - \frac{4q_{n}}{n}\right) I_{n(n-3)/2} \oplus \left(1 - \frac{4q_{n}}{n-1}\right) I_{(n-1)(n-2)/2}.$$

Hence by (3), we have

$$\mathbf{E}_{P^{\star k}}(F-1)^2 = 1 + (n-1)\left(1 - \frac{2q_n}{n-1}\right)^k + \frac{n(n-3)}{2}\left(1 - \frac{4q_n}{n}\right)^k + \frac{(n-1)(n-2)}{2}\left(1 - \frac{4q_n}{n-1}\right)^k.$$

The proposition now follows on subtracting

$$\left(\mathbf{E}_{P^{\star k}}(F-1)\right)^2 = (n-1)^2 \left(1 - \frac{2q_n}{n-1}\right)^{2k}$$

using the value given in Proposition 1.

The following special case is worth noting.

Proposition 4. If $p_n = 1/n$ then

$$\mathbf{Var}_{P^{\star k}}(F) = 1 + (n-1)\left(1 - \frac{2}{n}\right)^k - \frac{(n+1)(n-2)}{2}\left(1 - \frac{2}{n}\right)^{2k} + \frac{(n-1)(n-2)}{2}\left(1 - \frac{4}{n}\right)^k.$$

Proof. Substituting $q_n = (n-1)/n$ in Proposition we see that

$$\frac{n(n-3)}{2} \left(1 - \frac{4q_n}{n}\right)^k = \frac{n(n-3)}{2} \left(1 - \frac{2}{n}\right)^{2k}$$

and

$$(n-1)^2 \left(1 - \frac{2q_n}{n-1}\right)^{2k} = (n-1)^2 \left(1 - \frac{2}{n}\right)^{2k}.$$

The difference of these expressions gives the third term above, and the others come from direct substitution. $\hfill \Box$

To get the corollary of Proposition 1 and Proposition 4 when $k = \frac{n}{2} \log n - bn$ we need the following lemma.

Lemma 5. If f(n) is a polynomial of degree d with leading term an^d and $(d-r_n)\log n \to 0$ as $n \to \infty$ then

$$f(n) \left(1 - \frac{2r_n}{n}\right)^{\frac{n}{2}\log n - bn} = a e^{2bd} \left(1 + O\left(\frac{\log n}{n}\right)\right)$$

as $n \to \infty$.

Proof. It is not hard to show that $\log f(n) = d \log n + \log a + O(1/n)$ and that

$$\log\left(1 - \frac{2r_n}{n}\right)^{\frac{n}{2}\log n - bn} = \left(\frac{n}{2}\log n - bn\right)\log\left(1 - \frac{2r_n}{n}\right)$$
$$= -\left(\frac{n}{2}\log n - bn\right)\left(\frac{2r_n}{n} + O(1/n^2)\right)$$
$$= -r_n\log n + 2br_n + O\left(\frac{\log n}{n}\right).$$

The lemma now follows from the hypothesis that $(d - r_n) \log n \to 0$ as $n \to \infty$.

Note that the proof of the lemma makes it clear that the implied constant in the O(1/n) term depends on b.

Corollary 6. Let $k = \frac{n}{2} \log n - bn$. Then

$$\mathbf{E}_{P^{\star k}}(F) \to 1 + \mathrm{e}^{2b},$$
$$\mathbf{Var}_{P^{\star k}}(F) \to 1 + \mathrm{e}^{2b},$$

provided that $p_n \log n \to 0$ as $n \to \infty$,

Proof. By Lemma 5 in the case when $r_n = nq_n/(n-1)$ and $f(n) = (n-1)^2$ we get

$$\lim_{n \to \infty} (n-1)^2 \left(1 - \frac{2q_n}{n-1} \right)^k = e^{2b}.$$

To apply the lemma we need that

$$\left(1 - \frac{nq_n}{n-1}\right)\log n \to 0 \quad \text{as } n \to \infty;$$

this holds because

$$-\frac{\log n}{n} \le \left(1 - \frac{nq_n}{n-1}\right)\log n \le p_n\log n$$

and by assumption $p_n \log n \to 0$ as $n \to \infty$. Hence, by Proposition 1 we have

$$\lim_{n \to \infty} \mathbf{E}_{P^{\star k}}(F) = 1 + \mathrm{e}^{2b}.$$

The proof of the limit for $\operatorname{Var}_{P^{\star k}}(F)$ is similar using the lemma and Proposition 2.

3. Bounds

The following two propositions will be used to turn this corollary into a bound on $||P^{\star k} - U||$.

Proposition 7. Suppose that $p_n \log n \to 0$ as $n \to \infty$. Let $M \in \mathbf{N}$. If $k = \frac{n}{2} \log n - bn$ where $b \ge 2$ and $M = \lfloor e^{2b}/2 \rfloor$ then

$$\mathbf{P}_{P^{\star k}}(F \le M) \le \frac{2}{M}$$

for all k sufficiently large.

Proof. Choose k sufficiently large so that $\mathbf{E}_{P^{\star k}}(F) \ge e^{2b}$ and $\operatorname{Var}_{P^{\star k}}(F) \le 2 + e^{2b}$. Since $(1 + e^b)^2 \ge 2 + e^{2b}$, it follows from Chebychev's inequality that

$$\mathbf{P}_{P^{\star k}}\left(F \le e^{2b} - t(1+e^b)\right) \le \frac{1}{t^2}.$$

Putting $t = \frac{1}{2}(e^b - 1)$ we get

$$\mathbf{P}_{P^{\star k}}\left(F \le \frac{\mathrm{e}^{2b}}{2}\right) \le \frac{2}{(\mathrm{e}^{b} - 1)^{2}}$$

One can check that

$$(\mathrm{e}^b - 1)^2 \ge \mathrm{e}^{2b}/2$$

for all $b \geq 2$. It follows that if $M = \lfloor e^{2b}/2 \rfloor$ then

$$\mathbf{P}_{P^{\star k}}(F \le M) \le \mathbf{P}_{P^{\star k}}\left(F \le \frac{e^{2b}}{2}\right) \le \frac{2}{(e^b - 1)^2} \le \frac{2}{e^{2b}/2} \le \frac{2}{M}$$

as required.

Proposition 8. Let $M \in \mathbf{N}$. Then

$$\mathbf{P}_U(F > M) \le \frac{1}{(M+1)!}.$$

Proof. The probability that a particular M+1-subset of $\{1, 2, ..., n\}$ is fixed by a permutation in S_n is (n - M - 1)!/n!; now sum over all M + 1-subsets to get

$$\mathbf{P}_U(F > M) \le {\binom{n}{M+1}} \frac{(n-M-1)!}{n!} = \frac{1}{(M+1)!}.$$

Corollary 9. Suppose that $p_n \log n \to 0$ as $n \to \infty$. If $k = \frac{n}{2} \log n - bn$ where $b \ge 2$ then

$$||P^{\star k} - U|| \ge 1 - \frac{6}{e^{2b} - 2}$$

provided k is sufficiently large.

Proof. Let $M = \lfloor e^{2b}/2 \rfloor$ and consider the event $F \leq M$. We have

$$||P^{\star k} - U|| \ge P_U(F \le M) - P_{P^{\star k}}(F \le M).$$

It follows from the previous two propositions that, provided k is sufficiently large

$$||P^{\star k} - U|| \ge 1 - \frac{1}{(M+1)!} - \frac{2}{M} \ge 1 - \frac{3}{M} \ge 1 - \frac{6}{e^{2b} - 2}$$

as required.

This gives a non-trivial bound provided that $b \ge 1.04$. Therefore provided $p_n = O(1/\log n)$ we have shown that $\frac{n}{2}\log n - 2n$ steps do not suffice to get good mixing.

4. Second part of Exercise 13

The second part of Exercise 13 claims that if $p_n = 1/(1 + \binom{n}{2})$, so the identity is equally likely to be chosen as any transpositions, then $c(n)n^2$ are necessary to get a good shuffle, where $c(n) \to \infty$ as $n \to \infty$.

It follows easily from Proposition 1 and the inequality $1 - x \leq e^{-x}$ that

$$0 \leq \mathbf{E}_{P \star c(n)n^2}(F-1) \leq (n-1)e^{-2c(n)nq_n}$$

for all $n \in \mathbf{N}$. A similar bound will hold for the variance of F. So it seems that if $k = c(n)n^2$ then F is not able to detect any significant difference between $P^{\star k}$ and U unless p_n is at least $1/\log n$; certainly the smaller value $p_n = 1/(1 + {n \choose 2})$, as compared to 1/n, will not cause any unexpected problems.

It is however possible to use similar ideas to get a slightly weaker result. The key observation is that if we make much fewer than $1/p_n$ steps then there is a good chance that we have never chosen the identity. In this case,

the sign of the resulting permutation is given the parity of the number of steps. So if $A_n \subseteq S_n$ is the alternating group then

$$\mathbf{P}_{P^{\star k}}(A_n) \ge (1 - p_n)^k \ge 1 - kp_n$$

whenever k is even. Since $\mathbf{P}_U(A_n) = 1/2$ for all n, it follows from the definition of total variation distance that

$$||P^{\star k} - U|| \ge 1/2 - kp_n$$

whenever k is even. So in this particular case we have

$$||P^{\star k} - U|| \ge 1/2 - \theta$$

whenever k is even and $k \le \theta n^2/2$. So $n^2/4$ steps do not suffice.

References

 JAMES, G. D. The representation theory of the symmetric groups, vol. 682 of Lecture Notes in Mathematics. Springer, Berlin, 1978.