NOTES ON THE DIACONIS-FULMAN BIJECTION

MARK WILDON

This note presents a bijective proof due to Diaconis and Fulman [2] of Theorem 3.1 below. The case $b=2$ of this theorem relates riffle shuffles to the ranking permutations of random binary numbers. We define these objects in $\S 1$ and $\S 2$ below. The theorem is stated in $\S 3$ and proved in $\S 6$ using the preliminary results on the dagger and star re-ordering maps in $\S 4$ and $\S 5$. No originality is claimed.

1. Shuffles

We use position permutations to represent shuffles, thus if $\tau(i)=j$ then the card in position i is moved to position j. As in [2] we multiply permutations from right to left. We note that if τ is a shuffle performed on a pack of cards numbered from 1 (at the top) to r (at the bottom) then $\tau^{-1}(j)=i$ if and only if card i ends in place j. Therefore the one-line form of τ^{-1} encodes the new pack order.

Fix $b \in \mathbf{N}$ with $b \geq 2$. Besides the meaning in the definition below, b will be the base in which we represent natural numbers.

Definition 1.1. A b-riffle shuffle of r cards is a permutation $\tau \in \operatorname{Sym}_{r}$ obtained by choosing a set composition $(J(1), \ldots, J(b))$ of $\{1, \ldots, r\}$ uniformly at random, and then setting $\tau\left(c_{m}+i\right)=J(m)_{i}$ where $c_{m}=|J(1)|+$ $\cdots+|J(m-1)|$ and $J(m)_{i}$ is the i th smallest element of $J(m)$.

For example, a 2-riffle shuffle τ is obtained by choosing a subset $J \subseteq$ $\{1, \ldots, r\}$ uniformly at random; if $J=\left\{j_{1}, \ldots, j_{c}\right\}$ and $\{1, \ldots, r\} \backslash J=$ $\left\{k_{1}, \ldots, k_{d}\right\}$, where $j_{1}<\ldots<j_{c}$ and $k_{1}<\ldots<k_{d}$, then $\tau(i)=j_{i}$ for $1 \leq i \leq c$ and $\tau(a+i)=k_{i}$ for $1 \leq i \leq d$. In this shuffle the top c cards end in positions j_{1}, \ldots, j_{c} and the bottom d cards end in positions k_{1}, \ldots, k_{d}. The one-line form is therefore $j_{1} \ldots j_{c} k_{1} \ldots k_{d}$. The diagram below the 3 riffle shuffle 24153 for $(\{2,4\},\{1,5\},\{3\})$ performed on the five honour cards in a suit.

Date: July 26, 2019.

As expected, $\tau^{-1}=31524$ gives the new pack order. (Thus our riffle shuffles are the inverses of those in [2].)

The remainder of this section is not logically essential.
GSR-model for riffle shuffles. An alternative model for shuffling is due to Gilbert and Shannon, and, independently, Reeds (see references in [1]). In this model the deck is cut into b piles, so that pile 1 consisting of some of the cards at the top of the deck, and pile b consisting of some of the cards at the bottom of the deck, and the probability that the piles have sizes r_{1}, \ldots, r_{b} is the multinomial $\binom{r}{r_{1}, \ldots, r_{b}} / b^{r}$. (Thus some piles may be empty.) A shuffled deck is then constructed from the top down, so that if at some step the piles have sizes $r_{1}, \ldots, r_{b} \in \mathbf{N}_{0}$, the probability the next card comes from the top of pile m is $r_{m} /\left(r_{1}+\cdots+r_{b}\right)$. (Except for the top-down rebuilding order, this corresponds to dropping cards with probability proportion to the weight of the piles they lie in.) Let $\left(p_{\tau}\right)_{\tau \in \operatorname{Sym}_{r}}$ be the probability distribution of GSR-shuffles.

Example 1.2. Let $b=3$. The 3-riffle shuffle 231 (written in one-line form) is obtained from the set compositions

$$
(\{2\},\{3\},\{1\}),(\{2,3\},\{1\}, \varnothing),(\{2,3\}, \varnothing,\{1\}),(\varnothing,\{2,3\},\{1\})
$$

and so has probability $\frac{4}{27}$. In the GSR-model, starting with the deck AKQ and ending with QAK (from top-to-bottom), it is obtained from the cuts leaving piles $(\mathrm{A}, \mathrm{K}, \mathrm{Q}),(\mathrm{AK}, \mathrm{Q}, \varnothing),(\mathrm{AK}, \varnothing, \mathrm{Q}),(\varnothing, \mathrm{AK}, \mathrm{Q})$, necessarily by rebuilding in the order $(\mathrm{Q}, \mathrm{A}, \mathrm{K})$. The contributions to p_{231} are $\frac{1}{3^{3}}\binom{3}{1,1,1} \frac{1}{3} \times$ $\frac{1}{2}=\frac{1}{3^{3}}$ and (in each remaining case) $\frac{1}{3^{3}}\binom{3}{2,1} \frac{1}{3}=\frac{1}{3^{3}}$, hence $p_{231}=\frac{4}{27}$.

More generally, we have the following result, proved as Lemma 1 and Theorem 3 in [1]. Recall that a permutation $\tau \in \mathrm{Sym}_{r}$ has a descent in position i if and only if $\tau(i)>\tau(i+1)$. We denote the number of descents of τ by $d(\tau)$.

Lemma 1.3.

(i) Choosing b-riffle shuffles of r-cards uniformly at random, the probability of choosing $\tau \in \mathrm{Sym}_{r}$ is p_{τ}.
(ii) We have $p_{\tau}=\binom{r+b-d(\tau)}{r} / b^{r}$.

Proof. Given a set composition $(J(1), \ldots, J(b))$ corresponding to the b-riffle shuffle τ there is a corresponding GSR-shuffle, in which the deck is cut into piles of sizes $|J(1)|, \ldots,|J(b)|$ and the deck is rebuilt so that the j th card comes from pile m if and only if $\tau^{-1}(j) \in J(m)$. Using the notation of Definition 1.1, the i th card from pile m, which began in position $c_{m}+i$ of the original deck, finishes in position j, where $\tau^{-1}(j)=c_{m}+i$. Hence $\tau\left(c_{m}+i\right)=J(m)_{i}$, as required. The product of the probabilities from the second phase of the GSR-model is in every case $\frac{J(1)!\ldots J(b)!}{r!}=\binom{r}{|J(1)|, \ldots,|J(r)|}^{-1}$,
so the contribution to p_{τ} is $1 / r^{b}$. This proves (i). For (ii), take the set composition of $\{1, \ldots, r\}$ into $d(\tau)$ sets that corresponds to τ, and observe that there are $\binom{r+d(\tau)-b}{d(\tau)-b}$ ways to refine it (by dividing the one-line form of τ in $d(\tau)-b$ places) into a set composition into b parts still corresponding to τ.

The main application of Theorem 3.1 concerns descents of inverse riffleshuffles and their compositions. This statistic has very different properties. For example, a non-identity 2-riffle shuffle $\tau \in \mathrm{Sym}_{2 s}$ has a unique descent, whereas τ^{-1} may have any number of descents between 1 and s. The maximum is achieved (uniquely) by the 2-riffle shuffle $24 \ldots(2 s) 13 \ldots(2 s-1)$, with inverse $(s+1) 1(s+2) 2 \ldots(2 s) s$.

2. RANKING PERMUTATIONS AND THE DAGGER MAP

We define the ranking permutation π of an r tuple $\left(x_{1}, \ldots, x_{r}\right)$ of elements from a totally ordered set by $\pi(i)=j$ if x_{i} is the j th smallest element in the tuple. Ties are broken by the rule that if $i<i^{\prime}$ and $x_{i}=x_{i^{\prime}}$ then x_{i} has lower rank than $x_{i^{\prime}}$. Less algorithmically, an equivalent definition of π is

$$
\pi(i)=\mid\left\{k: 1 \leq k \leq r, x_{k}<x_{i} \text { or both } x_{k}=x_{i} \text { and } k<i\right\} \mid
$$

We say $\pi(i)$ is the rank of element i of $\left(x_{1}, \ldots, x_{r}\right)$, or more informally, that $\pi(i)$ is the rank of x_{i}. (Strictly speaking the latter is ambiguous when x_{i} appears multiple times.)

Example 2.1.

(1) The ranking permutation of $(1,0,2,1,0)$ is 31542 in one-line form and the ranking permutation of $(2,3,1,4)$ is simply 2314 .
(2) More generally, if τ is a permutation of $\{1, \ldots, r\}$ then, since x has rank x in any tuple of distinct elements from an initial segment of the natural numbers, the ranking permutation of $(\tau(1), \ldots, \tau(r))$ is τ.
(3) The set composition $(\{2,4\},\{1,5\},\{3\})$ corresponds, by recording the part containing each entry, to the 5 -tuple $(2,1,3,1,2)$. The ranking permutation of this tuple is 31524 and its inverse is the 3 -riffle shuffle 24153 corresponding to $(\{2,4\},\{1,5\},\{3\})$.

The third example motivates the following lemma.
Lemma 2.2. The ranking permutation of r numbers, chosen uniformly at random from $\{0,1, \ldots, b-1\}$, has the same distribution as the inverse of a uniform-at-random b-riffle shuffle of r cards.

Proof. Suppose that the numbers are x_{1}, \ldots, x_{r} and that $x_{j}=m$ if and only if $j \in J(m) \subseteq\{1, \ldots, m\}$. Let π be the ranking permutation of $\left(x_{1}, \ldots, x_{r}\right)$. Suppose that x_{j} is the i th smallest element of $J(m)$. Then counting the lower ranked elements lying in $J(1), \ldots, J(m-1)$, we see that $\pi(j)=|J(1)|+\cdots+$
$|J(m-1)|+i$. Therefore π^{-1} is the b-riffle shuffle corresponding to the set composition $(J(1), \ldots, J(m))$.

3. Diaconis-Fulman Theorem

This theorem relates iterated inverse riffle shuffles to the ranking permutations of r numbers, lying in $\left\{0, \ldots, b^{k}-1\right\}$, under addition in base b. We use bold letters for such numbers, and roman letters for their base b digits. Ranking permutations were defined in $\S 2$ above.

Theorem 3.1 (Diaconis-Fulman). Let $k, r \in \mathbf{N}$. Let $\vartheta_{1}, \ldots, \vartheta_{k} \in \operatorname{Sym}_{r}$ be inverse b-riffle shuffles, chosen uniformly at random. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{r} \in$ $\left\{0, \ldots, b^{k}-1\right\}$ be chosen uniformly at random. For $1 \leq p \leq k$ let

- $\tau_{p} \in \operatorname{Sym}_{r}$ be the composition $\vartheta_{p} \ldots \vartheta_{1}$.
- $\pi_{p} \in \operatorname{Sym}_{r}$ be the ranking permutation of $\left(\mathbf{x}_{1} \bmod b^{p}, \ldots, \mathbf{x}_{r} \bmod b^{p}\right)$. The joint distributions of $\left(\tau_{k}, \ldots, \tau_{1}\right)$ and $\left(\pi_{k}, \ldots, \pi_{1}\right)$ agree.

While this theorem is not stated in [2], it follows from the key Lemma 3.5 in this paper. This may be the intended content of the remark following the proof of Theorem 3.1 in [2]. However there is some ambiguity about whether this remark is a claim on the distribution of τ_{k}, or on the joint distribution of $\tau_{1}, \ldots, \tau_{k}$. Note that the case $k=1$ is Lemma 2.2.

Example 3.2. The 2-riffle shuffles in Sym_{3} are 123, 132, 213, 231, 312. Following the Gilbert-Shannon-Reeds model, the identity has probability $1 / 2$ and the other four each have probability $1 / 8$. For example, to obtain 132 we must split the deck as 12,3 , and reassemble (from the top-down) in the order $1,3,2$; this has probability $\frac{1}{2^{3}}\binom{3}{1} \frac{2}{3} \frac{1}{2}=\frac{1}{8}$. (This example is atypical in that a shuffle and its inverse have the same probability.) The first matrix below, with rows labelled by τ_{1} and columns by τ_{2}, shows the number of pairs $\left(\vartheta_{2}, \vartheta_{1}\right)$ of inverse 2 -riffle shuffles of three cards such that $\vartheta_{1}=\tau_{1}$ and $\vartheta_{2} \vartheta_{1}=\tau_{2}$. The second matrix is the transition matrix of the Markov chain on Sym_{3} with generators the inverse 2-riffle shuffles (chosen with the appropriate probabilities).
123
132
213
231
312
321 $\left(\begin{array}{cccccc}16 & 4 & 4 & 4 & 4 & 0 \\ 1 & 4 & 1 & 1 & 0 & 1 \\ 1 & 1 & 4 & 0 & 1 & 1 \\ 1 & 1 & 0 & 4 & 1 & 1 \\ 1 & 0 & 1 & 1 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \quad \frac{1}{8}\left(\begin{array}{cccccc}4 & 1 & 1 & 1 & 1 & 0 \\ 1 & 4 & 1 & 1 & 0 & 1 \\ 1 & 1 & 4 & 0 & 1 & 1 \\ 1 & 1 & 0 & 4 & 1 & 1 \\ 1 & 0 & 1 & 1 & 4 & 1 \\ 0 & 1 & 1 & 1 & 1 & 4\end{array}\right)$

As predicted by Theorem 3.1, the first matrix also records the number of $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \in\{0,1,2,3\}$ such that $\left(\mathbf{x}_{1} \bmod 2, \mathbf{x}_{2} \bmod 2, \mathbf{x}_{3} \bmod 2\right)$ has ranking permutation τ_{1} and ($\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$) has ranking permutation τ_{2}. For example, the entry 1 in row 132 and column 213 comes uniquely from $\left(\vartheta_{1}, \vartheta_{2}\right)=$ $(132,231)$ and from $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=(10,01,10)$.

Application to carries. The aim of [2] is the following application. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{r} \in\left\{0, \ldots, b^{k}-1\right\}$ be chosen uniformly at random and let $\mathbf{s}_{1}, \ldots, \mathbf{s}_{r}$ be their partial sums, defined by $\mathbf{s}_{i}=\mathbf{x}_{1}+\cdots+\mathbf{x}_{i}$ for $1 \leq i \leq r$. A new carry is created going into position $p+1$ on addition (in base b) of \mathbf{x}_{i} to \mathbf{s}_{i-1} if and only if

$$
\mathbf{s}_{i} \bmod b^{p}<\mathbf{s}_{i-1} \bmod b^{p} .
$$

Thus the total carry C_{p} into position $p+1$ is the number of descents of the ranking permutation of $\left(\mathbf{s}_{1} \bmod b^{p}, \ldots, \mathbf{s}_{r} \bmod b^{p}\right)$. Denote this permutation by π_{p}^{\prime}. The map $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right) \mapsto\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{r}\right)$ is a self-bijection of the set of r-tuples of elements of $\left\{0, \ldots, b^{k}-1\right\}$. Therefore the distributions of $\left(\pi_{k}^{\prime}, \ldots, \pi_{1}^{\prime}\right)$ and $\left(\pi_{k}, \ldots, \pi_{1}\right)$ agree and Theorem 3.1 implies that

$$
\left.\mathbf{P}\left[C_{k}=d_{k}, \ldots, C_{1}=d_{1}\right]=\mathbf{P}\left[d\left(\tau_{k}\right)=d_{k}, \ldots, d\left(\tau_{1}\right)=d_{1}\right)\right]
$$

for all $d_{k}, \ldots, d_{1} \in \mathbf{N}_{0}$.
It is a small calculation to see that the maximum possible carry is $r-1$ (independently of b); this is obvious in the riffle-shuffle interpretation. Since the carry going into position $p+1$ depends only on the carry going into position p (and the numbers we add), but not on earlier carries, the tuple $\left(C_{1}, \ldots, C_{k}\right)$ is a Markov chain on $\{0, \ldots, r-1\}$. This is far from obvious in the shuffles interpretation. (As noted in this context in [3, §2], the image of a Markov chain under a function is not usually a Markov chain.)

Example 3.3. The transition matrices for the carries process when $b=2$ and $r \in\{2,3,4,5\}$ are shown below.

$$
\frac{1}{4}\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right), \frac{1}{8}\left(\begin{array}{lll}
4 & 1 & 0 \\
4 & 6 & 4 \\
0 & 1 & 4
\end{array}\right), \frac{1}{16}\left(\begin{array}{cccc}
5 & 1 & 0 & 0 \\
10 & 10 & 5 & 1 \\
1 & 5 & 10 & 10 \\
0 & 0 & 1 & 5
\end{array}\right), \frac{1}{32}\left(\begin{array}{ccccc}
6 & 1 & 0 & 0 & 0 \\
20 & 15 & 6 & 1 & 0 \\
6 & 15 & 20 & 15 & 0 \\
0 & 1 & 6 & 15 & 20 \\
0 & 0 & 0 & 1 & 6
\end{array}\right)
$$

These are instances of Holte's amazing matrices: see [4] and MathOverflow question 258284. When we add r bits, of which exactly w are 1 , with an initial carry of c, the new carry is c^{\prime} where $c+w \in\left\{2 c^{\prime}, 2 c^{\prime}+1\right\}$. Therefore the amazing matrices for $b=2$ may be defined by

$$
P(r)_{c^{\prime} c}=\frac{1}{2^{r}}\left(\binom{r}{w}+\binom{r}{w+1}\right) \quad \text { where } w=2 c^{\prime}-c .
$$

One of the amazing properties is that the eigenvalues are $1,1 / 2, \ldots, 1 / 2^{r-1}$. Explicit eigenvectors are found in [4]; the eigenvector for 1, giving the invariant distribution of the Markov chain, is $\left(\frac{1}{r!}\left\langle\begin{array}{r}r \\ 0\end{array}\right\rangle, \frac{1}{r!}\left\langle{ }_{1}^{r}\right\rangle, \ldots, \frac{1}{r!}\left\langle\begin{array}{c}r \\ r-1\end{array}\right\rangle\right)$. Here the Eulerian number $\left\langle\begin{array}{l}r \\ c\end{array}\right\rangle$ is the number of permutations of $\{1, \ldots, r\}$ having exactly c descents.

Application to shuffles. Another corollary of Theorem 3.1 is as follows.
Corollary 3.4. Let ϕ and ϑ be random b-shuffles of r cards. Then $\phi \vartheta$ is distributed as a random b^{2}-shuffle of r cards.

Proof. The ranking permutation of r numbers in $\left\{0,1, \ldots, b^{2}-1\right\}$ chosen uniformly at random does not depend on whether these numbers are regarded as single digit numbers in base b^{2} (giving a random b^{2}-shuffle, by Lemma 2.2, or the special case $k=1$ of Theorem 3.1), or as double digit numbers in base b (giving the distribution of $\phi \vartheta$ by Theorem 3.1).

The more general result behind this is that if ϕ is a random a-shuffle and ϑ is a random b-shuffle then $\phi \vartheta$ is distributed as a random $a b$-shuffle. This was proved by Holte [4] (see remark after Theorem 3) in the setting of carries, and has an easier proof in the setting of shuffles given in [2] (see (3) on page 3).

4. The dagger map

In this section we define the main building block for the star map in [2]. Let $\left(x_{1}, \ldots, x_{r}\right)$ and $\left(y_{1}, \ldots, y_{r}\right)$ be r-tuples from totally ordered finite sets X and Y, respectively. Write $x_{i} y_{j}$ for the element $\left(x_{i}, y_{j}\right) \in X \times Y$ and order $X \times Y$ lexicographically, i.e. first by X then by Y. Let π be the ranking permutation for $\left(y_{1}, \ldots, y_{r}\right)$. Define

$$
\left(x_{1} y_{1}, \ldots, x_{r} y_{r}\right)^{\dagger}=\left(x_{\pi(1)} y_{1}, \ldots, x_{\pi(r)} y_{r}\right)
$$

For example, if $X=Y=\{0,1,2\}$ with the usual total order then since $(1,2,0,1)$ has ranking permutation 2413 in one-line form, we have

$$
\left(x_{1} 1, x_{2} 2, x_{3} 1, x_{4} 0\right)^{\dagger}=\left(x_{2} 1, x_{4} 2, x_{3} 0, x_{1} 1\right) .
$$

It is easily seen that the dagger map is a bijection.
Proposition 4.1. Let X and Y be totally ordered finite sets. Let $\left(x_{1}, \ldots, x_{r}\right) \in$ X^{r} and $\left(y_{1}, \ldots, y_{r}\right) \in Y^{r}$. Let π be the ranking permutation of $\left(y_{1}, \ldots, y_{r}\right)$. Let τ be the ranking permutation of $\left(x_{1}, \ldots, x_{r}\right)$ and let τ^{\dagger} be the ranking permutation of $\left(x_{\pi(1)} y_{1}, \ldots, x_{\pi(r)} y_{r}\right)$. Then $\tau^{\dagger}=\tau \circ \pi$.

To motivate the proof we consider two special cases. First suppose that $\left(x_{1}, \ldots, x_{r}\right)$ has distinct entries. In this case, the ranking permutations of $\left(x_{\pi(1)} y_{1}, \ldots, x_{\pi(r)} y_{r}\right)$ and $\left(x_{\pi(1)}, \ldots, x_{\pi(r)}\right)$ agree, since we need compare only on the first parts. The latter is $\tau \circ \pi$. Secondly, suppose that all the x_{i} are equal. Then τ is the identity and the ranking permutations of $\left(x_{\pi(1)} y_{1}, \ldots, x_{\pi(r)} y_{r}\right)$ and $\left(y_{1}, \ldots, y_{r}\right)$ agree. So we have $\tau^{\dagger}=\pi$, as required. It is worth noting that the second case shows that the ranking permutation of $\left(x_{\pi(1)}, \ldots, x_{\pi(r)}\right)$ is, in general, not $\tau \circ \pi$. The dagger map may be regarded as correcting for this.

Proof of Proposition 4.1. We compare ranks of the elements in the tuples $\left(x_{\pi(1)}, \ldots, x_{\pi(r)}\right)$ and $\left(x_{\pi(1)} y_{1}, \ldots, x_{\pi(r)} y_{r}\right)$.

Let $i<i^{\prime}$. Suppose that $x_{\pi(i)}<x_{\pi\left(i^{\prime}\right)}$. Then $\tau(\pi(i))<\tau\left(\pi\left(i^{\prime}\right)\right)$ and, since we need to compare $x_{\pi(i)} y_{i}$ and $x_{\pi\left(i^{\prime}\right)} y_{i^{\prime}}$ only on their first parts, $\tau^{\dagger}(i)<$ $\tau^{\dagger}\left(i^{\prime}\right)$. Similarly if $x_{\pi(i)}>x_{\pi\left(i^{\prime}\right)}$ then $\tau(\pi(i))>\tau\left(\pi\left(i^{\prime}\right)\right)$ and $\tau^{\dagger}(i)>\tau^{\dagger}\left(i^{\prime}\right)$.

Now suppose that $x_{\pi\left(i_{1}\right)}=\ldots=x_{\pi\left(i_{c}\right)}=x$ where $\pi\left(i_{1}\right)<\ldots<\pi\left(i_{c}\right)$. Let s be the number of $x_{\pi(i)} y_{i}$ such that $x_{\pi(i)}<x$. Observe that:
the rank, in $\{1, \ldots, c\}$ of the entry $y_{i_{a}}$ in position a of the tuple $\left(y_{i_{1}}, \ldots, y_{i_{c}}\right)$ is the rank, again in $\{1, \ldots, c\}$, of the entry $\pi\left(i_{a}\right)$ in position a of the tuple $\left(\pi\left(i_{1}\right), \ldots, \pi\left(i_{c}\right)\right)$.
In $\left(x_{\pi(1)} y_{1}, \ldots, x_{\pi(r) y_{r}}\right)$, the ranks of the entries $x y_{i_{1}}, \ldots, x y_{i_{c}}$ are, as a set, $s+1, \ldots, s+c$, and the rank of the entry $x y_{i_{c}}$ in position i_{a} is s plus the rank of $y_{i_{a}}$ in the tuple $\left(y_{i_{1}}, \ldots, y_{i_{c}}\right)$. In $\left(x_{1}, \ldots, x_{r}\right)$, the ranks of the entries (all equal to x) in positions $\pi\left(i_{1}\right), \ldots, \pi\left(i_{c}\right)$ are, as a set $s+1, \ldots, s+c$, and the rank of the entry $x_{\pi\left(i_{c}\right)}$ in position $\pi\left(i_{c}\right)$ is s plus the rank of $\pi\left(i_{c}\right)$ in $\left(\pi\left(i_{1}\right), \ldots, \pi\left(i_{c}\right)\right)$. These agree, by the observation.

It follows that $\pi \circ \tau=\pi^{\dagger}$.
It is tempting to short-cut the second part of the proof by claiming it reduces to the case, considered before the proof, where all the x_{i} are equal. This feels convincing, but after some thought, I am not sure it should be. Proposition 4.1 is a special case of Lemma 3.5 in [2], where the proof again is quite demanding on the reader's intuition.

5. The star map

Let $X(1), \ldots, X(k)$ be totally ordered finite sets. We use bold letters to denote elements of $X(k) \times \cdots X(1)$; thus \mathbf{x} denotes the k-tuple $(\mathbf{x}(k), \ldots, \mathbf{x}(1))$. Extending the notational convention used for $X \times Y$ in the previous section, we write $\mathbf{x}(p) \ldots \mathbf{x}(1)$ for the final p elements of this tuple. Given an r-tuple $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right)$ of elements of $X(k) \times \cdots \times X(1)$, define

$$
\left(\mathbf{y}_{1}(1), \ldots, \mathbf{y}_{r}(1)\right)=\left(\mathbf{x}_{1}(1), \ldots, \mathbf{x}_{r}(1)\right)
$$

and for each $p \in\{2, \ldots, k\}$, define $\mathbf{y}_{1}(p), \ldots, \mathbf{y}_{r}(p)$ by

$$
\left(\mathbf{y}_{1}(p) \ldots \mathbf{y}_{1}(2) \mathbf{y}_{1}(1), \ldots, \mathbf{y}_{r}(p) \ldots \mathbf{y}_{r}(2) \mathbf{y}_{r}(1)\right)=\left(\mathbf{x}_{1}(p) \mathbf{w}_{1}, \ldots, \mathbf{x}_{r}(p) \mathbf{w}_{r}\right)^{\dagger}
$$

where, for each $i \in\{1, \ldots, r\}$, we set $\mathbf{w}_{i}=y_{i}(p-1) \ldots y_{i}(1)$, thought of as an element of the totally ordered set $X(p-1) \times \cdots \times X(1)$. The star map is then defined by $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right)^{\star}=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{r}\right)$.

Example 5.1. Let $X(3)=X(2)=X(1)=\{0,1\}$. Then

$$
(01,11,01,10)^{\star}=(01,11,01,11)^{\dagger}=(11,01,11,00)
$$

since the ranking permutation of $(1,1,1,0)$ is 2341 , so we reorder $x=$ $(0,1,0,1)$ as $\left(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}, x_{\pi(4)}\right)=\left(x_{2}, x_{3}, x_{4}, x_{1}\right)=(1,0,1,0)$. Hence

$$
(101,011,001,110)^{\star}=(1(11), 0(01), 1(11), 1(00))^{\dagger}=(011,001,111,100) .
$$

Lemma 5.2. Let $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right)^{\star}=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{r}\right)$. Let $p \in\{1, \ldots, k\}$. Let \mathbf{z}^{\prime} denote the p-tuple obtained from $\mathbf{z} \in X(k) \times \cdots \times X(1)$ by taking the final p entries. Then

$$
\left(\mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{r}^{\prime}\right)^{\star}=\left(\mathbf{y}_{1}^{\prime}, \ldots, \mathbf{y}_{r}^{\prime}\right) .
$$

Proof. This is obvious from the iterative definition of the star map.

6. Proof of Theorem 3.1

For convenience we repeat the statement of the theorem below.
Theorem 6.3. Let $k, r \in \mathbf{N}$. Let $\vartheta_{1}, \ldots, \vartheta_{k} \in \operatorname{Sym}_{r}$ be inverse b-riffle shuffles, chosen uniformly at random. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{r} \in\left\{0, \ldots, b^{k}-1\right\}$ be chosen uniformly at random. For $1 \leq p \leq k$ let

- $\tau_{p} \in \operatorname{Sym}_{r}$ be the composition $\vartheta_{p} \ldots \vartheta_{1}$.
- $\pi_{p} \in \operatorname{Sym}_{r}$ be the ranking permutation of $\left(\mathbf{x}_{1} \bmod b^{p}, \ldots, \mathbf{x}_{r} \bmod b^{p}\right)$.

The joint distributions of $\left(\tau_{k}, \ldots, \tau_{1}\right)$ and $\left(\pi_{k}, \ldots, \pi_{1}\right)$ agree.
For $\mathbf{x} \in\left\{0, \ldots, b^{k}-1\right\}$, we identify \mathbf{x} with the tuple $\mathbf{x}(k) \ldots \mathbf{x}(2) \mathbf{x}(1) \in$ $\{0, \ldots, b-1\}^{k}$ of its base b digits, defined by

$$
\mathbf{x}=\mathbf{x}(k) b^{k-1}+\cdots+\mathbf{x}(2) b+\mathbf{x}(1) .
$$

Observe that if $\mathbf{x} \in \mathbf{N}_{0}$ then $\mathbf{x} \bmod b^{p}$ is $\mathbf{x}(p) b^{p-1}+\cdots+\mathbf{x}(2) b+\mathbf{x}(1)$, which may be identified with $\mathbf{x}(p) \ldots \mathbf{x}(1)$.

Proof of Theorem 3.1. Since the dagger map is a bijection, so is the star map. Hence there exist unique $\mathbf{y}_{1}, \ldots, \mathbf{y}_{r} \in\left\{0, \ldots, b^{k}-1\right\}$ such that $\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{r}\right)^{\star}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right)$.

We show, by induction on p, that the joint distributions of $\left(\tau_{p}, \ldots, \tau_{1}\right)$ and $\left(\pi_{p}, \ldots, \pi_{1}\right)$ agree. When $p=1$ this is Lemma 2.2. Let $p \geq 2$ and let ϑ_{p} be the ranking permutation of $\left(\mathbf{y}_{1}(p), \ldots, \mathbf{y}_{r}(p)\right)$. This is consistent with the statement of the theorem because, by Lemma 2.2, ϑ_{p} is a uniform-at-random inverse b-riffle shuffle. Let $\mathbf{w}_{i}=\mathbf{x}_{i} \bmod p^{b-1}$ for each i. By Lemma 5.2 we have

$$
\begin{aligned}
\left(\mathbf{x}_{1} \bmod b^{p}, \ldots, \mathbf{x}_{r} \bmod b^{p}\right) & =\left(\mathbf{y}_{1} \bmod b^{p}, \ldots, \mathbf{y}_{r} \bmod b^{p}\right)^{\star} \\
& =\left(\mathbf{y}_{1}(p) \mathbf{w}_{1}, \ldots, \mathbf{y}_{r}(p) \mathbf{w}_{r}\right)^{\dagger}
\end{aligned}
$$

The ranking permutation of the left-hand side is, by definition, π_{p}, and, again by definition, the ranking permutation of $\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{r}\right)$ is π_{p-1}. Hence, by Proposition 4.1, we have $\pi_{p}=\vartheta_{p} \circ \pi_{p-1}$. The theorem follows.

References

[1] Dave Bayer and Persi Diaconis, Trailing the dovetail shuffle to its lair, Ann. Appl. Probab. 2 (1992), no. 2, 294-313.
[2] Persi Diaconis and Jason Fulman, Carries, shuffling, and an amazing matrix, Amer. Math. Monthly 116 (2009), no. 9, 788-803.
[3] , Carries, shuffling, and symmetric functions, Adv. in Appl. Math. 43 (2009), no. 2, 176-196.
[4] John M. Holte, Carries, combinatorics, and an amazing matrix, Amer. Math. Monthly 104 (1997), no. 2, 138-149.

