A MATRIX TRANSFORM WITH INTERESTING SPECTRAL BEHAVIOUR

MARK WILDON

The purpose of this note is to give a family of lower-triangular matrices, having prescribed diagonal entries $\lambda_0, \ldots, \lambda_{n-1}$, and such that their vertical reflections have eigenvalues λ_0 and $\pm \sqrt{\lambda_x \lambda_{n-x}}$ for $1 \le x \le n/2$.

To explain one motivation, let J(n) be the $n \times n$ matrix having 1s on its anti-diagonal and 0s in all other positions. That is, $J(n)_{xy} = [x+y=n-1]$, where (as ever, unless otherwise specified) we number rows and columns of matrices and vectors from 0. The vertical reflection of a matrix H is then HJ(n), and Theorem 1.1 below relates the spectra of H and HJ(n) when H is lower-triangular. We ask, more generally:

Question. How may the spectra of a lower-triangular matrix H and its vertical reflection HJ(n) be related?

To give one indication that this question has some depth, in [1] and [2] a different family of lower-triangular matrices H are considered in which the eigenvalues of HJ(n) are $\lambda_0, -\lambda_1, \ldots, (-1)^{n-1}\lambda_{n-1}$. In §2 below we study a family of stochastic examples, also related to [1], but given by the construction in this note.

1. Construction

Fix a field F. All our matrices will have entries in an extension field of F. Given $r \in \mathbf{N}$, let K(r) be the $r \times r$ lower-triangular matrix all of whose entries on or below the diagonal are 1. Our matrices are constructed using parameters m, n, L and v where:

- $m, n \in \mathbf{N}$ with $m \leq \lfloor n/2 \rfloor$;
- L is an $m \times m$ lower-unitriangular matrix with entries in F such that every entry in the leftmost column of L is 1, i.e. $L_{x0} = 1$ and $L_{xx} = 1$ for $0 \le x < m$;
- $v \in \mathbb{R}^m$ has leftmost entry 1, i.e. $v_0 = 1$.

Given these data, let $Q_n(L, v)$ be the $n \times n$ matrix with the block structure shown below.

$$\begin{pmatrix} L & 0 \\ v & \\ \vdots & K(n-m) \\ v & \end{pmatrix}$$

Date: December 27, 2020.

For example, if n = 10, v = (1, 2, 3, 4) and L is the 4×4 Pascal's Triangle matrix, then

	1	·	·	·	•	•	•	·	·	· /
	1	1	•	•	•	•	•	•	•	
	1	2	1	•	•	•	•	•	•	
	1	3	3	1	•	•	•	•	•	
$O_{\tau}(I, w) =$	1	2	3	4	1	•	•	•	•	•
Qg(L, v) =	1	2	3	4	1	1	•	•	•	•
	1	2	3	4	1	1	1	•	•	•
	1	2	3	4	1	1	1	1	•	•
	1	2	3	4	1	1	1	1	1	•
	$\backslash 1$	2	3	4	1	1	1	1	1	1/

where \cdot indicates 0 entries implied by the lower-triangular structure of the Qmatrix. (We use this convention throughout.) Let $H_n(L, v)$ be the transform of the diagonal matrix $\text{Diag}(\lambda_0, \lambda_1, \ldots, \lambda_{n-1})$ by $Q_n(L, v)$, defined so that the eigenvector of $H_n(L, v)$ with eigenvalue λ_y is column y of $Q_n(L, v)$. That is,

$$H_n(L,v) = Q_n(L,v) \operatorname{Diag}(\lambda_0, \lambda_1, \dots, \lambda_{n-1}) Q_n(L,v)^{-1}$$

We give an example where $H_n(L, v)$ is stochastic in Example 2.2 below.

Theorem 1.1. The eigenvalues of $H_n(L, v)J(n)$ are λ_0 and $\pm \sqrt{\lambda_x \lambda_{n-x}}$ for $1 \le x < n$.

To prove this theorem it is most convenient to undo the matrix transform, so that it is applied instead to J(n), by taking the conjugate

$$Q_n(L,v)^{-1} (H_n(L,v)J(n)) Q_n(L,v)$$

= Diag $(\lambda_0, \lambda_1, \dots, \lambda_{n-1}) Q_n(L,v)^{-1} J(n) Q_n(L,v).$

Observe that $Q_n(L,v)^{-1}J(n)Q_n(L,v)$ is the matrix representing the involution J(n) in the basis of columns of $Q_n(L,v)$. In the example above, this matrix is

/1	2	3	4	1	1	1	1	1	1	
·	•	•	•	•	•	•	•	•	-1	
	•	•	•	•	•	•	•	-1	1	
.	•	•	•	•	•	•	-1	2	-1	
·	•	•	•	•	•	-1	3	-6	2	
	•	•	•	•	-1	•	•	•	•	
.	1	0	-3	-1	•	•	•	•		
·	-1	-2	-1	•	•	•	•	•	•	
	-1	-1		•	•	•	•	•		
(.	-1	•	•	•	•	•	•	•	.)	

Lemma 1.2. The non-zero entries of $Q_n(L,v)^{-1}J(n)Q_n(L,v)$ lie only in the marked regions in Figure 1.

FIGURE 1. The non-zero entries of the matrix $Q_n(L, v)^{-1}J(n)Q_n(L, v)$ in Lemma 1.2 lie in the marked regions. If m = n/2 then the middle section is empty and the two triangular regions overlap in their top-right and bottomleft entries, as shown in Figure 2 below; if m = (n + 1)/2 then the middle section is empty but there is no overlap to consider. The main diagonal and sub-antidiagonal, both important in the proof of Proposition 1.4, are shown by thick lines.

Proof. Let $q^{(y)}$ denote column y of $Q_n(L, v)$. Fix y and let $c = Jq^{(y)}$. By the remark before the proof, column y of $Q_n(L, v)^{-1}J(n)Q_n(L, v)$ records the coefficients expressing c as a linear combination of $q^{(0)}, q^{(1)} \dots, q^{(n-1)}$. We consider three cases. Note that the second includes columns m and n - m which lie just outside the middle region in Figure 1.

- If $0 \leq y < m$ then since v is constant in positions $m, m+1, \ldots, n-1$, we have $c_0 = \ldots = c_{n-m-1}$. Hence $c = c_0 q^{(0)} + v$ where v is a linear combination of columns $q^{(n-m)}, \ldots, q^{(n-1)}$. There is a linear combination w of columns $q^{(n-m)}, \ldots, q^{(n-(y-1))}$ such that $c_0 q^{(0)} + w$ agrees with c in positions $0, 1, \ldots, n - m - 1, n - m, \ldots, n - (y - 1)$. Since c has the same entry in positions $n - y, \ldots, n - 1$, and the same holds for $q^{(0)}$ and all the columns contributing to w, there exists $\alpha \in F$ such that $c_0 q^{(0)} + w + \alpha q^{(n-y)} = c$. Therefore column y of Mhas its only non-zero entries in row 0 and the rows $n - m, \ldots, n - y$.
- If $m \leq y \leq n-m$ then $q^{(y)} = (0, \ldots, 0, 1, \ldots, 1)^t$ where y entries are zero and the first 1 is in position y. Hence $c_0 = \ldots = c_{n-y-1} = 1$ and $c_{n-y} = \ldots = c_{n-1} = 0$ and so $q^{(0)} - c = (0, \ldots, 0, 1, \ldots, 1)^t$ where y entries are 1 and the first 1 is in position n - y. Since

MARK WILDON

 $m \leq n-y \leq n-m$, we have $q^{(0)}-c = q^{(n-y)}$ and so $c = q^{(0)}-q^{(n-y)}$. Hence the non-zero entries in column y are 1 in the top row and -1 in row n-y.

• If n - m < y < n then, as seen in the second case, $q^{(0)} - c = (0, \ldots, 0, 1, \ldots, 1)^t$ where y entries are 1 and the first 1 is in position n-y. Since y > n-m, we have n-y < m, as shown diagrammatically below where the bottom numbers show positions:

$$q^{(0)} - c = (\overbrace{0, \dots, 0}^{n-y}, \overbrace{1, \dots, 1}^{m-(n-y)}, \overbrace{1, \dots, 1}^{n-m}, \overbrace{1, \dots, 1}^{n-m}).$$

Now, arguing as in the first case, there exists a linear combination w of columns $q^{(n-y)}, \ldots, q^{(m-1)}$ such that $q^{(0)} + w$ agrees with c in positions $0, 1, \ldots, m-1$. Moreover, since c has the same entry (namely 0) in positions $m, \ldots, n-1$, there exists $\beta \in F$ such that $q^{(0)} + w + \beta q^{(m)} = c$. Therefore column y of M has its only non-zero entries in row 0 and the rows $n - y, \ldots, m - 1, m$.

We now use this lemma to find the characteristic polynomial of the matrix $\text{Diag}(\lambda_0, \ldots, \lambda_{n-1})Q_n(L, v)^{-1}J(n)Q_n(L, v)$. To make the inductive step as transparent as possible, we isolate it in the following lemma. The hypotheses states that the non-zero elements of the matrix M lie in the marked regions in Figure 2 below. This is the matrix from Figure 1, defined in the extreme cases n = 2m and n = 2m + 1, with row 0 and column 0 deleted.

FIGURE 2. The matrix M in Lemma 1.3 when n = 2m (left) and there are 2m - 1 rows and columns and n = 2m + 1 (right) when there are 2m rows and columns.

Lemma 1.3. Let $n \ge 2$ and let M be an $(n-1) \times (n-1)$ matrix with rows and columns labelled by $\{1, \ldots, n-1\}$ such that if $M_{xy} \ne 0$ then one of:

• x = y;

- $1 \le x \le \lfloor n/2 \rfloor$ and $x + y \ge n$;
- $\lceil n/2 \rceil \le x \le n-1 \text{ and } x+y \le n.$

Then the determinant of M agrees with the determinant of the matrix obtained from M by setting to zero all entries M_{xy} except the diagonal entries (those with x = y) and the antidiagonal entries (those with x + y = n).

Proof. If n = 2 then the matrix is 1×1 and there is nothing to prove; if n = 3 then the matrix is 2×2 with all entries potentially non-zero and again there is nothing to prove.

Suppose that $n \ge 4$. Let σ be a permutation of $\{1, \ldots, n-1\}$ such that $\prod_{x=1}^{n-1} M_{x\sigma(x)} \ne 0$. It suffices to show that $\sigma(x) \in \{x, n-x\}$ for all x. By the hypotheses, $\{\sigma(1), \sigma(n-1)\} = \{1, n-1\}$. If $\sigma(1) = 1$ and $\sigma(n-1) = n-1$ we may delete rows 1 and n-1 and columns 1 and n-1 to reach an inductive case. Otherwise $\sigma(1) = n-1$ and $\sigma(n-1) = 1$ and again we may delete these rows and columns to reach an inductive case. \Box

Proposition 1.4. The matrix $\text{Diag}(\lambda_0, \ldots, \lambda_{n-1})Q_n(L, v)^{-1}J(n)Q_n(L, v)$ has characteristic polynomial $(z - \lambda_0) \prod_{x=0}^{n/2} (z^2 - \lambda_x \lambda_{n-1}).$

Proof. Let $N = \text{Diag}(\lambda_0, \ldots, \lambda_{n-1})Q_n(L, v)^{-1}J(n)Q_n(L, v) - zI$ where I is the $n \times n$ identity matrix. Since the only non-zero entry of M in column 0 is $\lambda_0 - z$ in row 0, we have det $N = (\lambda_0 - z)$ det M where M is the matrix obtained from N by deleting row 0 and column 0. By Lemma 1.2, increasing the size m of the matrix L defining $Q_n(L, v)$ only introduces new positions where N may be non-zero. Hence we may assume that $n = \lfloor n/2 \rfloor$. But now, by Lemma 1.3, we may assume all the entries not on the main diagonal or sub-antidiagonal of M are zero; equivalently, we are in the case m = 1.

If σ is a permutation of $\{1, \ldots, n-1\}$ such that $\prod_{x=1}^{n-1} M_{x\sigma(x)} \neq 0$, then since m = 1 we have $\{\sigma(x), \sigma(n-x)\} = \{x, n-x\}$ for each x. Hence, setting $J = \{x : \sigma(x) \neq x\}$, we find that

$$\det M = \sum_{J \subseteq \{1, \dots, \lfloor n/2 \rfloor\}} (-1)^{|J|} z^{2|J|} \prod_{x \in J} \lambda_x \lambda_{n-x}.$$

This is the expansion of $\prod_{x=0}^{n/2} (\lambda_x \lambda_{n-x} - z^2)$, as required.

Theorem 1.1 follows at once.

2. The involutive random walk

An interesting family of examples is obtained by taking L = B(m) where B(m) is the $m \times m$ Pascal's Triangle matrix with entries $B(m)_{xy} = {x \choose y}$ and v = v(m) where $v(m)_x = {m \choose x}$. Thus v(m) is the first m entries in the bottom row of B(m+1) and $H_n(B(m), v)$ has B(m+1) as its top-left $(m+1) \times (m+1)$ -submatrix.

For $d \in \mathbf{N}_0$ and $y \in N_0$ with d + y < n, define $\Delta^d \lambda_y = \sum_{k=0}^d {d \choose k} \lambda_{y+k}$. Given x < n, let $x^{\dagger} = \min(x, m)$. It follows by a routine computation (see

[1, Lemma 7.1] for the case $y < x \le m$) that the matrix $H_n(B(m), v(m))$ has entries

(1)
$$H_n(B(m), v(m))_{xy} = \begin{cases} 0 & \text{if } x < y \\ \binom{x^{\dagger}}{y} \Delta^{x^{\dagger} - y} \lambda_y & \text{if } y < m \text{ and } x \ge y \\ \lambda_x & \text{if } y \ge m \text{ and } x = y \\ \lambda_y - \lambda_{y+1} & \text{if } y \ge m \text{ and } x > y. \end{cases}$$

Hence $H_n(B(m), v(m))$ is non-negative if and only if $\Delta^d \lambda_y \geq 0$ for all $d, y \in \mathbf{N}_0$ with $d + y \leq m$ and $\lambda_m \geq \ldots \geq \lambda_{n-1} \geq 0$. Moreover, all the rows have sum λ_0 so the matrix is stochastic if and only if, in addition, $\lambda_0 = 1$. The vertical reflection $H_n(B(m), v(m))J(n)$ is then the transition matrix of a random walk on $\{0, 1, \ldots, n-1\}$ in which, starting at $x \in \{0, 1, \ldots, n-1\}$, an element $y \in \{0, 1, \ldots, n-1\}$ is chosen with probability $H_n(B(m), v(m))_{xy}$ and the walk then steps to x^* , where \star is the involution on $\{0, 1, \ldots, n-1\}$ defined by $x^* = n - 1 - x$. This is an instance of the involutive random walk studied in detail in [1]. In particular, by [1, Theorem 1.3], provided $\lambda_1 < 1$, the walk is irreducible, recurrent and ergodic with a unique invariant distribution. By Theorem 1.1 its eigenvalues are 1 and $\pm \sqrt{\lambda_x \lambda_{x^*+1}}$ for $1 \leq x \leq \lfloor n/2 \rfloor$.

Remark 2.1. The $m \times m$ matrices $B(m)\text{Diag}(\lambda_0, \ldots, \lambda_{m-1})B(m)^{-1}$ appearing in the top-left corner of $H_n(B(m), v(m))$ are studied in [2], also in the context of stochastic processes. That the entries of $H_n(B(m), v(m))$ are as claimed when $y < x \le m$ also follows from [2, Lemma 2.30].

Example 2.2. If m = 3 and n = 6 then the matrices $Q_8(B(4), (1, 4, 6, 4))$ and $H_4(B(4), (1, 4, 6, 4))$ are as shown below.

/1	•		•		. \	١	λ_0	•		•		•	١
1	. 1	•	•		•		$\lambda_0 - \lambda_1$	λ_1	•	•		•	
1	2	1	•		•		$\lambda_0 - 2\lambda_1 + 2\lambda_2$	$2(\lambda_1 - \lambda_2)$	λ_2	•		•	
1	. 3	3	1	•	•		$\lambda_0 - 3\lambda_1 + 3\lambda_2 + \lambda_3$	$3(\lambda_1 - 2\lambda_2 + \lambda_3)$	$3(\lambda_2 - \lambda_3)$	λ_3		•	
1	. 3	3	1	1	•	}	$\lambda_0 - 3\lambda_1 + 3\lambda_2 + \lambda_3$	$3(\lambda_1 - 2\lambda_2 + \lambda_3)$	$3(\lambda_2 - \lambda_3)$	$\lambda_3 - \lambda_4$	λ_4	•	
$\backslash 1$. 3	3	1	1	1/	/	$\lambda_0 - 3\lambda_1 + 3\lambda_2 + \lambda_3$	$3(\lambda_1 - 2\lambda_2 + \lambda_3)$	$3(\lambda_2 - \lambda_3)$	$\lambda_3 - \lambda_4$	$\lambda_4 - \lambda_5$	λ_5	Ϊ

As claimed, the entries are non-negative if and only if $\lambda_0 \geq \lambda_1 \geq \ldots \geq \lambda_5$ and in addition, $\lambda_0 - 2\lambda_1 + \lambda_2 \geq 0$, $\lambda_1 - 2\lambda_2 + \lambda_3 \geq 0$ and $\lambda_0 - 3\lambda_1 + 3\lambda_2 - \lambda_3 \geq 0$. In fact the first of these additional inequalities follows from the final two, so can be omitted. Moreover, the row sums are all λ_0 and so $H_8(B(4), v(4))$ is stochastic if and only if $\lambda_0 = 1$. 2.1. Eigenvectors when m = 1. When m = 1 the matrix $H_n(B(1), v(1))$ admits the easier definition

$$H_{xy} = \begin{cases} \lambda_x & \text{if } y = x\\ \lambda_y - \lambda_{y+1} & \text{if } y < x\\ 0 & \text{if } y > x. \end{cases}$$

Let P = HJ(n) be the corresponding transition matrix of the involutive random walk. In this case it is possible to write down the eigenvectors of Pexplicitly. For $x \in \{0, 1, ..., n-1\}$, let $e^{(x)} \in \mathbf{R}^n$ be the row vector with 1 in position x.

Proposition 2.3. The matrix P is diagonalizable with eigenvalues 1 and $\pm \sqrt{\lambda_x \lambda_{x^*+1}}$ for $0 < x \le n/2$. If x < n/2 then the $\pm \sqrt{\lambda_x \lambda_{x^*+1}}$ eigenspace contains

$$\sqrt{\lambda_{x^{\star}+1}} (e^{(x)} - e^{(x-1)}) \pm \sqrt{\lambda_x} (e^{(x^{\star}+1)} - e^{(x^{\star})}).$$

When n = 2m, there is an eigenvalue $-\lambda_m$ and the $-\lambda_m$ -eigenspace contains $e^{(m)} - e^{(m-1)}$.

The proof is a fairly routine calculation by considering the action of H on $e^{(x)} - e^{(x-1)}$ and is omitted.

2.2. Reversibility when m = 1. There is also an interesting characterisation of when the walk is reversible. To prove it, we require the version of Kolmogorov's Criterion, as stated below.

Lemma 2.4. Let P be the transition matrix of a random walk on $\{0, 1, ..., n-1\}$ such that if $P_{xy} \neq 0$ then $x + y \geq n - 1$. Suppose that P has a unique invariant distribution. The walk is reversible if and only if

$$P_{x_0x_1}P_{x_1x_2}\dots P_{x_{\ell-1}x_0} = P_{x_0x_{\ell-1}}\dots P_{x_2x_1}P_{x_1x_0}$$

for all distinct $x_0, x_1, \ldots, x_{\ell-1} \in n$ with $\ell \geq 3$, such that $x_i + x_{i+1} \geq n-1$ for all $i \in n$, taking indices modulo ℓ .

Proposition 2.5. The involutive walk with transition matrix P is reversible if and only if

$$\lambda_1 \lambda_{n-1} = \lambda_2 \lambda_{n-2} = \ldots = \lambda_{n-1} \lambda_1.$$

Proof. Suppose that the walk is reversible. Let $1 \le x < (n-1)/2$. Consider the 3-cycle $n-1 \mapsto x \mapsto x^* \mapsto n-1$ and its reverse $n-1 \mapsto x^* \mapsto x \mapsto n-1$. Since $x + x^* = n - 1$, the positions (x, x^*) and (x^*, x) are on the antidiagonal of P, while the other two relevant positions are strictly below the anti-diagonal. By (1) and Kolmogorov's Criterion we have

$$(\lambda_{x^{\star}} - \lambda_{x^{\star}+1})\lambda_x(1-\lambda_1) = (\lambda_x - \lambda_{x+1})\lambda_{x^{\star}}(1-\lambda_1).$$

Simplifying, this becomes $\lambda_x \lambda_{x^*+1} = \lambda_{x+1} \lambda_{x^*}$ as required.

MARK WILDON

Conversely, suppose that this condition holds whenever $1 \le x < n-1$. Let $x_0 \mapsto x_1 \mapsto \ldots \mapsto x_{\ell-1} \mapsto x_0$ be a cycle (with distinct vertices). Denote this cycle by C and let C' denote the reversed cycle $x_0 \mapsto x_{\ell-1} \mapsto \ldots \mapsto x_1 \mapsto x_i$. Throughout, all indices are to be regarded modulo p. Using Lemma 2.4, we may assume that $\ell \geq 3$ and $x_{i-1} + x_i \geq n-1$ for each *i*; it then suffices to show that the product of transition probabilities is the same for C and C'. Let $I = \{i : x_{i-1} + x_i = n - 1\}$ be the set of indices i of those steps $x_{i-1} \mapsto x_i$ that contribute $\lambda_{x_i^{\star}}$ (rather than $\lambda_{x_i^{\star}} - \lambda_{x_i^{\star}+1}$) to the product for C. Now i' appears in the analogous set for C', of those indices i' such that the step $x_{i'+1} \mapsto x_{i'}$ contributes $\lambda_{x_{i'}}$ (rather than $\lambda_{x_{i'}} - \lambda_{x_{i'}+1}$) to the product of C', if and only if $x_{i'} + x_{i'+1} = n - 1$, so if and only if $i' - 1 \in I$. Let $I - 1 = \{i - 1 : i \in I\}$ be the set of such indices i'. Observe that if $i \in I \cap (I-1)$ then the step $x_{i-1} \mapsto x_i$ in C is $x_i^{\star} \mapsto x_i$, and the step $x_{i+1} \mapsto x_i$ in C' is also $x_i^* \mapsto x_i$. Therefore C has a subcycle of length 2, contrary to our assumption that the vertices are distinct. Hence I and I-1are disjoint. If $i \notin I \cup (I-1)$ then the step to x_i contributes $\lambda_{x^*} - \lambda_{x^*+1}$ to both products. Hence the two products are equal if and only if

$$\prod_{i\in I} \lambda_{x_i^\star} \prod_{i\in I-1} (\lambda_{x_i^\star} - \lambda_{x_i^\star+1}) = \prod_{i\in I} (\lambda_{x_i^\star} - \lambda_{x_i^\star+1}) \prod_{i\in I-1} \lambda_{x_i^\star}.$$

Equivalently

$$\prod_{i\in I} \lambda_{x_i^\star} (\lambda_{x_{i-1}^\star} - \lambda_{x_{i-1}^\star + 1}) = \prod_{i\in I} (\lambda_{x_i^\star} - \lambda_{x_i^\star + 1}) \lambda_{x_{i-1}^\star}.$$

If $i \in I$ then $x_{i-1} + x_i = n-1$, and so $x_{i-1}^{\star} = x_i$. Therefore a final equivalent form is

$$\prod_{i \in I} \lambda_{x_i^{\star}} (\lambda_{x_i} - \lambda_{x_i+1}) = \prod_{i \in I} (\lambda_{x_i^{\star}} - \lambda_{x_i^{\star}+1}) \lambda_{x_i}.$$

This holds term-by-term, since $\lambda_{x_i^*} \lambda_{x_i+1} = \lambda_{x_i^*+1} \lambda_{x_i}$.

We remark that if $\lambda_x = r^x$ then the detailed balance equations have the explicit solution $\pi_x = (r^{x+1} - r^x)/(r^n - 1)$ and, as expected from the theorem just proved, the involutive random walk is reversible. In general the invariant distribution is π where

$$\pi_x = \begin{cases} \frac{\lambda_{n-1}(1-\lambda_1)}{1-\lambda_1\lambda_{n-1}} & \text{if } x = 0\\ \frac{(\lambda_{x^\star} - \lambda_{x^\star+1})(1-\lambda_{x+1}) + (\lambda_x - \lambda_{x+1})(1-\lambda_{x^\star})\lambda_{x^\star+1}}{(1-\lambda_x\lambda_{x^\star+1})(1-\lambda_{x+1}\lambda_{x^\star})} & \text{if } 0 < x < n-1\\ \frac{1-\lambda_1}{1-\lambda_1\lambda_{n-1}} & \text{if } x = n-1. \end{cases}$$

The author's proof is an explicit calculation most conveniently performed by computer algebra.

Corollary 2.6. The involutive walk with transition matrix P is reversible if and only if it has exactly 3 distinct eigenvalues.

Proof. By Theorem 2.5, the walk is reversible if and only if $\lambda_x \lambda_{x^*+1}$ is a constant, α say. By Theorem 1.1 this is the case if and only if the eigenvalues of P are 1 and $\pm \sqrt{\alpha}$.

2.3. Question. It would be interesting to know if these results generalize to larger m.

References

- 1. John R. Britnell and Mark Wildon, *The involutive random walk on total orders and the anti-diagonal eigenvalue property*, (2020, in preparation).
- Hiroyuki Ochiai, Makiko Sasada, Tomoyuki Shirai, and Takashi Tsuboi, *Eigenvalue problem for some special class of anti-triangular matrices*, arXiv:1403.6797 (March 2014), 23 pages.