A MATRIX TRANSFORM WITH INTERESTING SPECTRAL BEHAVIOUR

MARK WILDON

The purpose of this note is to give a family of lower-triangular matrices, having prescribed diagonal entries $\lambda_{0}, \ldots, \lambda_{n-1}$, and such that their vertical reflections have eigenvalues λ_{0} and $\pm \sqrt{\lambda_{x} \lambda_{n-x}}$ for $1 \leq x \leq n / 2$.

To explain one motivation, let $J(n)$ be the $n \times n$ matrix having 1 s on its anti-diagonal and 0 s in all other positions. That is, $J(n)_{x y}=[x+y=n-1]$, where (as ever, unless otherwise specified) we number rows and columns of matrices and vectors from 0 . The vertical reflection of a matrix H is then $H J(n)$, and Theorem 1.1 below relates the spectra of H and $H J(n)$ when H is lower-triangular. We ask, more generally:

Question. How may the spectra of a lower-triangular matrix H and its vertical reflection $H J(n)$ be related?

To give one indication that this question has some depth, in [1] and [2] a different family of lower-triangular matrices H are considered in which the eigenvalues of $H J(n)$ are $\lambda_{0},-\lambda_{1}, \ldots,(-1)^{n-1} \lambda_{n-1}$. In $\S 2$ below we study a family of stochastic examples, also related to [1], but given by the construction in this note.

1. Construction

Fix a field F. All our matrices will have entries in an extension field of F. Given $r \in \mathbf{N}$, let $K(r)$ be the $r \times r$ lower-triangular matrix all of whose entries on or below the diagonal are 1. Our matrices are constructed using parameters m, n, L and v where:

- $m, n \in \mathbf{N}$ with $m \leq\lfloor n / 2\rfloor$;
- L is an $m \times m$ lower-unitriangular matrix with entries in F such that every entry in the leftmost column of L is 1 , i.e. $L_{x 0}=1$ and $L_{x x}=1$ for $0 \leq x<m ;$
- $v \in \mathbb{R}^{m}$ has leftmost entry 1 , i.e. $v_{0}=1$.

Given these data, let $Q_{n}(L, v)$ be the $n \times n$ matrix with the block structure shown below.

$$
\left(\begin{array}{cc}
L & 0 \\
v & \\
\vdots & K(n-m) \\
v &
\end{array}\right)
$$

For example, if $n=10, v=(1,2,3,4)$ and L is the 4×4 Pascal's Triangle matrix, then

$$
Q_{9}(L, v)=\left(\begin{array}{cccccccccc}
1 & . & . & . & . & . & . & . & . & . \\
1 & 1 & . & . & . & . & . & . & . & . \\
1 & 2 & 1 & . & . & . & . & . & . & . \\
1 & 3 & 3 & 1 & . & . & . & . & . & . \\
1 & 2 & 3 & 4 & 1 & . & . & . & . & . \\
1 & 2 & 3 & 4 & 1 & 1 & . & . & . & . \\
1 & 2 & 3 & 4 & 1 & 1 & 1 & . & . & . \\
1 & 2 & 3 & 4 & 1 & 1 & 1 & 1 & . & . \\
1 & 2 & 3 & 4 & 1 & 1 & 1 & 1 & 1 & . \\
1 & 2 & 3 & 4 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

where • indicates 0 entries implied by the lower-triangular structure of the Q matrix. (We use this convention throughout.) Let $H_{n}(L, v)$ be the transform of the diagonal matrix $\operatorname{Diag}\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}\right)$ by $Q_{n}(L, v)$, defined so that the eigenvector of $H_{n}(L, v)$ with eigenvalue λ_{y} is column y of $Q_{n}(L, v)$. That is,

$$
H_{n}(L, v)=Q_{n}(L, v) \operatorname{Diag}\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}\right) Q_{n}(L, v)^{-1}
$$

We give an example where $H_{n}(L, v)$ is stochastic in Example 2.2 below.
Theorem 1.1. The eigenvalues of $H_{n}(L, v) J(n)$ are λ_{0} and $\pm \sqrt{\lambda_{x} \lambda_{n-x}}$ for $1 \leq x<n$.

To prove this theorem it is most convenient to undo the matrix transform, so that it is applied instead to $J(n)$, by taking the conjugate

$$
\begin{aligned}
Q_{n}(L, v)^{-1} & \left(H_{n}(L, v) J(n)\right) Q_{n}(L, v) \\
& =\operatorname{Diag}\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}\right) Q_{n}(L, v)^{-1} J(n) Q_{n}(L, v)
\end{aligned}
$$

Observe that $Q_{n}(L, v)^{-1} J(n) Q_{n}(L, v)$ is the matrix representing the involution $J(n)$ in the basis of columns of $Q_{n}(L, v)$. In the example above, this matrix is

$$
\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 1 & 1 & 1 & 1 & 1 & 1 \\
\cdot & -1 \\
\cdot & -1 & 1 \\
\cdot & -1 & 2 & -1 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & -1 & 3 & -6 & 2 \\
\cdot & \cdot & \cdot & \cdot & \cdot & -1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & 0 & -3 & -1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & -1 & -2 & -1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & -1 & -1 & \cdot \\
\cdot & -1 & \cdot & \cdot
\end{array}\right) .
$$

Lemma 1.2. The non-zero entries of $Q_{n}(L, v)^{-1} J(n) Q_{n}(L, v)$ lie only in the marked regions in Figure 1.

Figure 1. The non-zero entries of the matrix $Q_{n}(L, v)^{-1} J(n) Q_{n}(L, v)$ in Lemma 1.2 lie in the marked regions. If $m=n / 2$ then the middle section is empty and the two triangular regions overlap in their top-right and bottomleft entries, as shown in Figure 2 below; if $m=(n+1) / 2$ then the middle section is empty but there is no overlap to consider. The main diagonal and sub-antidiagonal, both important in the proof of Proposition 1.4, are shown by thick lines.

Proof. Let $q^{(y)}$ denote column y of $Q_{n}(L, v)$. Fix y and let $c=J q^{(y)}$. By the remark before the proof, column y of $Q_{n}(L, v)^{-1} J(n) Q_{n}(L, v)$ records the coefficients expressing c as a linear combination of $q^{(0)}, q^{(1)} \ldots, q^{(n-1)}$. We consider three cases. Note that the second includes columns m and $n-m$ which lie just outside the middle region in Figure 1.

- If $0 \leq y<m$ then since v is constant in positions $m, m+1, \ldots, n-1$, we have $c_{0}=\ldots=c_{n-m-1}$. Hence $c=c_{0} q^{(0)}+v$ where v is a linear combination of columns $q^{(n-m)}, \ldots, q^{(n-1)}$. There is a linear combination w of columns $q^{(n-m)}, \ldots, q^{(n-(y-1))}$ such that $c_{0} q^{(0)}+w$ agrees with c in positions $0,1, \ldots, n-m-1, n-m, \ldots, n-(y-1)$. Since c has the same entry in positions $n-y, \ldots, n-1$, and the same holds for $q^{(0)}$ and all the columns contributing to w, there exists $\alpha \in F$ such that $c_{0} q^{(0)}+w+\alpha q^{(n-y)}=c$. Therefore column y of M has its only non-zero entries in row 0 and the rows $n-m, \ldots, n-y$.
- If $m \leq y \leq n-m$ then $q^{(y)}=(0, \ldots, 0,1, \ldots, 1)^{t}$ where y entries are zero and the first 1 is in position y. Hence $c_{0}=\ldots=c_{n-y-1}=1$ and $c_{n-y}=\ldots=c_{n-1}=0$ and so $q^{(0)}-c=(0, \ldots, 0,1, \ldots, 1)^{t}$ where y entries are 1 and the first 1 is in position $n-y$. Since
$m \leq n-y \leq n-m$, we have $q^{(0)}-c=q^{(n-y)}$ and so $c=q^{(0)}-q^{(n-y)}$. Hence the non-zero entries in column y are 1 in the top row and -1 in row $n-y$.
- If $n-m<y<n$ then, as seen in the second case, $q^{(0)}-c=$ $(0, \ldots, 0,1, \ldots, 1)^{t}$ where y entries are 1 and the first 1 is in position $n-y$. Since $y>n-m$, we have $n-y<m$, as shown diagrammatically below where the bottom numbers show positions:

$$
q^{(0)}-c=(\overbrace{0, \ldots, 0}^{n-y}, \overbrace{1, \ldots, 1,1}^{m-(n-y)}, \overbrace{1, \ldots, 1}^{n-m}) .
$$

Now, arguing as in the first case, there exists a linear combination w of columns $q^{(n-y)}, \ldots, q^{(m-1)}$ such that $q^{(0)}+w$ agrees with c in positions $0,1, \ldots, m-1$. Moreover, since c has the same entry (namely 0) in positions $m, \ldots, n-1$, there exists $\beta \in F$ such that $q^{(0)}+w+\beta q^{(m)}=c$. Therefore column y of M has its only non-zero entries in row 0 and the rows $n-y, \ldots, m-1, m$.

We now use this lemma to find the characteristic polynomial of the matrix $\operatorname{Diag}\left(\lambda_{0}, \ldots, \lambda_{n-1}\right) Q_{n}(L, v)^{-1} J(n) Q_{n}(L, v)$. To make the inductive step as transparent as possible, we isolate it in the following lemma. The hypotheses states that the non-zero elements of the matrix M lie in the marked regions in Figure 2 below. This is the matrix from Figure 1, defined in the extreme cases $n=2 m$ and $n=2 m+1$, with row 0 and column 0 deleted.

Figure 2. The matrix M in Lemma 1.3 when $n=2 m$ (left) and there are $2 m-1$ rows and columns and $n=2 m+1$ (right) when there are $2 m$ rows and columns.

Lemma 1.3. Let $n \geq 2$ and let M be an $(n-1) \times(n-1)$ matrix with rows and columns labelled by $\{1, \ldots, n-1\}$ such that if $M_{x y} \neq 0$ then one of:

- $x=y$;
- $1 \leq x \leq\lfloor n / 2\rfloor$ and $x+y \geq n$;
- $\lceil n / 2\rceil \leq x \leq n-1$ and $x+y \leq n$.

Then the determinant of M agrees with the determinant of the matrix obtained from M by setting to zero all entries $M_{x y}$ except the diagonal entries (those with $x=y$) and the antidiagonal entries (those with $x+y=n$).

Proof. If $n=2$ then the matrix is 1×1 and there is nothing to prove; if $n=3$ then the matrix is 2×2 with all entries potentially non-zero and again there is nothing to prove.

Suppose that $n \geq 4$. Let σ be a permutation of $\{1, \ldots, n-1\}$ such that $\prod_{x=1}^{n-1} M_{x \sigma(x)} \neq 0$. It suffices to show that $\sigma(x) \in\{x, n-x\}$ for all x. By the hypotheses, $\{\sigma(1), \sigma(n-1)\}=\{1, n-1\}$. If $\sigma(1)=1$ and $\sigma(n-1)=n-1$ we may delete rows 1 and $n-1$ and columns 1 and $n-1$ to reach an inductive case. Otherwise $\sigma(1)=n-1$ and $\sigma(n-1)=1$ and again we may delete these rows and columns to reach an inductive case.

Proposition 1.4. The matrix $\operatorname{Diag}\left(\lambda_{0}, \ldots, \lambda_{n-1}\right) Q_{n}(L, v)^{-1} J(n) Q_{n}(L, v)$ has characteristic polynomial $\left(z-\lambda_{0}\right) \prod_{x=0}^{n / 2}\left(z^{2}-\lambda_{x} \lambda_{n-1}\right)$.

Proof. Let $N=\operatorname{Diag}\left(\lambda_{0}, \ldots, \lambda_{n-1}\right) Q_{n}(L, v)^{-1} J(n) Q_{n}(L, v)-z I$ where I is the $n \times n$ identity matrix. Since the only non-zero entry of M in column 0 is $\lambda_{0}-z$ in row 0 , we have $\operatorname{det} N=\left(\lambda_{0}-z\right) \operatorname{det} M$ where M is the matrix obtained from N by deleting row 0 and column 0 . By Lemma 1.2, increasing the size m of the matrix L defining $Q_{n}(L, v)$ only introduces new positions where N may be non-zero. Hence we may assume that $n=\lfloor n / 2\rfloor$. But now, by Lemma 1.3, we may assume all the entries not on the main diagonal or sub-antidiagonal of M are zero; equivalently, we are in the case $m=1$.

If σ is a permutation of $\{1, \ldots, n-1\}$ such that $\prod_{x=1}^{n-1} M_{x \sigma(x)} \neq 0$, then since $m=1$ we have $\{\sigma(x), \sigma(n-x)\}=\{x, n-x\}$ for each x. Hence, setting $J=\{x: \sigma(x) \neq x\}$, we find that

$$
\operatorname{det} M=\sum_{J \subseteq\{1, \ldots,\lfloor n / 2\rfloor\}}(-1)^{|J|} z^{2|J|} \prod_{x \in J} \lambda_{x} \lambda_{n-x}
$$

This is the expansion of $\prod_{x=0}^{n / 2}\left(\lambda_{x} \lambda_{n-x}-z^{2}\right)$, as required.
Theorem 1.1 follows at once.

2. The involutive random walk

An interesting family of examples is obtained by taking $L=B(m)$ where $B(m)$ is the $m \times m$ Pascal's Triangle matrix with entries $B(m)_{x y}=\binom{x}{y}$ and $v=v(m)$ where $v(m)_{x}=\binom{m}{x}$. Thus $v(m)$ is the first m entries in the bottom row of $B(m+1)$ and $H_{n}(B(m), v)$ has $B(m+1)$ as its top-left $(m+1) \times(m+1)$-submatrix.

For $d \in \mathbf{N}_{0}$ and $y \in N_{0}$ with $d+y<n$, define $\Delta^{d} \lambda_{y}=\sum_{k=0}^{d}\binom{d}{k} \lambda_{y+k}$. Given $x<n$, let $x^{\dagger}=\min (x, m)$. It follows by a routine computation (see
[1, Lemma 7.1] for the case $y<x \leq m)$ that the matrix $H_{n}(B(m), v(m))$ has entries

$$
H_{n}(B(m), v(m))_{x y}= \begin{cases}0 & \text { if } x<y \tag{1}\\ \binom{x^{\dagger}}{y} \Delta^{x^{\dagger}-y} \lambda_{y} & \text { if } y<m \text { and } x \geq y \\ \lambda_{x} & \text { if } y \geq m \text { and } x=y \\ \lambda_{y}-\lambda_{y+1} & \text { if } y \geq m \text { and } x>y\end{cases}
$$

Hence $H_{n}(B(m), v(m))$ is non-negative if and only if $\Delta^{d} \lambda_{y} \geq 0$ for all $d, y \in$ \mathbf{N}_{0} with $d+y \leq m$ and $\lambda_{m} \geq \ldots \geq \lambda_{n-1} \geq 0$. Moreover, all the rows have sum λ_{0} so the matrix is stochastic if and only if, in addition, $\lambda_{0}=1$. The vertical reflection $H_{n}(B(m), v(m)) J(n)$ is then the transition matrix of a random walk on $\{0,1, \ldots, n-1\}$ in which, starting at $x \in\{0,1, \ldots, n-1\}$, an element $y \in\{0,1, \ldots, n-1\}$ is chosen with probability $H_{n}(B(m), v(m))_{x y}$ and the walk then steps to x^{\star}, where \star is the involution on $\{0,1, \ldots, n-1\}$ defined by $x^{\star}=n-1-x$. This is an instance of the involutive random walk studied in detail in [1]. In particular, by [1, Theorem 1.3], provided $\lambda_{1}<1$, the walk is irreducible, recurrent and ergodic with a unique invariant distribution. By Theorem 1.1 its eigenvalues are 1 and $\pm \sqrt{\lambda_{x} \lambda_{x^{\star}+1}}$ for $1 \leq x \leq\lfloor n / 2\rfloor$.

Remark 2.1. The $m \times m$ matrices $B(m) \operatorname{Diag}\left(\lambda_{0}, \ldots, \lambda_{m-1}\right) B(m)^{-1}$ appearing in the top-left corner of $H_{n}(B(m), v(m))$ are studied in [2], also in the context of stochastic processes. That the entries of $H_{n}(B(m), v(m))$ are as claimed when $y<x \leq m$ also follows from [2, Lemma 2.30].

Example 2.2. If $m=3$ and $n=6$ then the matrices $Q_{8}(B(4),(1,4,6,4))$ and $H_{4}(B(4),(1,4,6,4))$ are as shown below.

$$
\left(\begin{array}{cccccc}
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & 1 & \cdot & \cdot & \cdot & \cdot \\
1 & 2 & 1 & \cdot & \cdot & \cdot \\
1 & 3 & 3 & 1 & \cdot & \cdot \\
1 & 3 & 3 & 1 & 1 & \cdot \\
1 & 3 & 3 & 1 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{cccccc}
\lambda_{0} & \cdot & \cdot & \cdot & \cdot & \cdot \\
\lambda_{0}-\lambda_{1} & \lambda_{1} & \cdot & \cdot & \cdot & \cdot \\
\lambda_{0}-2 \lambda_{1}+2 \lambda_{2} & 2\left(\lambda_{1}-\lambda_{2}\right) & \lambda_{2} & \cdot & \cdot & \cdot \\
\lambda_{0}-3 \lambda_{1}+3 \lambda_{2}+\lambda_{3} & 3\left(\lambda_{1}-2 \lambda_{2}+\lambda_{3}\right) & 3\left(\lambda_{2}-\lambda_{3}\right) & \lambda_{3} & \cdot & \cdot \\
\lambda_{0}-3 \lambda_{1}+3 \lambda_{2}+\lambda_{3} & 3\left(\lambda_{1}-2 \lambda_{2}+\lambda_{3}\right) & 3\left(\lambda_{2}-\lambda_{3}\right) & \lambda_{3}-\lambda_{4} & \lambda_{4} & \cdot \\
\lambda_{0}-3 \lambda_{1}+3 \lambda_{2}+\lambda_{3} & 3\left(\lambda_{1}-2 \lambda_{2}+\lambda_{3}\right) & 3\left(\lambda_{2}-\lambda_{3}\right) & \lambda_{3}-\lambda_{4} & \lambda_{4}-\lambda_{5} & \lambda_{5}
\end{array}\right)
$$

As claimed, the entries are non-negative if and only if $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{5}$ and in addition, $\lambda_{0}-2 \lambda_{1}+\lambda_{2} \geq 0, \lambda_{1}-2 \lambda_{2}+\lambda_{3} \geq 0$ and $\lambda_{0}-3 \lambda_{1}+3 \lambda_{2}-\lambda_{3} \geq 0$. In fact the first of these additional inequalities follows from the final two, so can be omitted. Moreover, the row sums are all λ_{0} and so $H_{8}(B(4), v(4))$ is stochastic if and only if $\lambda_{0}=1$.
2.1. Eigenvectors when $m=1$. When $m=1$ the matrix $H_{n}(B(1), v(1))$ admits the easier definition

$$
H_{x y}= \begin{cases}\lambda_{x} & \text { if } y=x \\ \lambda_{y}-\lambda_{y+1} & \text { if } y<x \\ 0 & \text { if } y>x\end{cases}
$$

Let $P=H J(n)$ be the corresponding transition matrix of the involutive random walk. In this case it is possible to write down the eigenvectors of P explicitly. For $x \in\{0,1, \ldots, n-1\}$, let $e^{(x)} \in \mathbf{R}^{n}$ be the row vector with 1 in position x.

Proposition 2.3. The matrix P is diagonalizable with eigenvalues 1 and $\pm \sqrt{\lambda_{x} \lambda_{x^{\star}+1}}$ for $0<x \leq n / 2$. If $x<n / 2$ then the $\pm \sqrt{\lambda_{x} \lambda_{x^{\star}+1}}$ eigenspace contains

$$
\sqrt{\lambda_{x^{\star}+1}}\left(e^{(x)}-e^{(x-1)}\right) \pm \sqrt{\lambda_{x}}\left(e^{\left(x^{\star}+1\right)}-e^{\left(x^{\star}\right)}\right) .
$$

When $n=2 m$, there is an eigenvalue $-\lambda_{m}$ and the $-\lambda_{m}$-eigenspace contains $e^{(m)}-e^{(m-1)}$.

The proof is a fairly routine calculation by considering the action of H on $e^{(x)}-e^{(x-1)}$ and is omitted.
2.2. Reversibility when $m=1$. There is also an interesting characterisation of when the walk is reversible. To prove it, we require the version of Kolmogorov's Criterion, as stated below.

Lemma 2.4. Let P be the transition matrix of a random walk on $\{0,1, \ldots, n-$ 1\} such that if $P_{x y} \neq 0$ then $x+y \geq n-1$. Suppose that P has a unique invariant distribution. The walk is reversible if and only if

$$
P_{x_{0} x_{1}} P_{x_{1} x_{2}} \ldots P_{x_{\ell-1} x_{0}}=P_{x_{0} x_{\ell-1}} \ldots P_{x_{2} x_{1}} P_{x_{1} x_{0}}
$$

for all distinct $x_{0}, x_{1}, \ldots, x_{\ell-1} \in n$ with $\ell \geq 3$, such that $x_{i}+x_{i+1} \geq n-1$ for all $i \in n$, taking indices modulo ℓ.

Proposition 2.5. The involutive walk with transition matrix P is reversible if and only if

$$
\lambda_{1} \lambda_{n-1}=\lambda_{2} \lambda_{n-2}=\ldots=\lambda_{n-1} \lambda_{1} .
$$

Proof. Suppose that the walk is reversible. Let $1 \leq x<(n-1) / 2$. Consider the 3 -cycle $n-1 \mapsto x \mapsto x^{\star} \mapsto n-1$ and its reverse $n-1 \mapsto x^{\star} \mapsto x \mapsto n-1$. Since $x+x^{\star}=n-1$, the positions (x, x^{\star}) and (x^{\star}, x) are on the antidiagonal of P, while the other two relevant positions are strictly below the anti-diagonal. By (1) and Kolmogorov's Criterion we have

$$
\left(\lambda_{x^{\star}}-\lambda_{x^{\star}+1}\right) \lambda_{x}\left(1-\lambda_{1}\right)=\left(\lambda_{x}-\lambda_{x+1}\right) \lambda_{x^{\star}}\left(1-\lambda_{1}\right) .
$$

Simplifying, this becomes $\lambda_{x} \lambda_{x^{\star}+1}=\lambda_{x+1} \lambda_{x^{\star}}$ as required.

Conversely, suppose that this condition holds whenever $1 \leq x<n-1$. Let $x_{0} \mapsto x_{1} \mapsto \ldots \mapsto x_{\ell-1} \mapsto x_{0}$ be a cycle (with distinct vertices). Denote this cycle by C and let C^{\prime} denote the reversed cycle $x_{0} \mapsto x_{\ell-1} \mapsto \ldots \mapsto x_{1} \mapsto x_{i}$. Throughout, all indices are to be regarded modulo p. Using Lemma 2.4, we may assume that $\ell \geq 3$ and $x_{i-1}+x_{i} \geq n-1$ for each i; it then suffices to show that the product of transition probabilities is the same for C and C^{\prime}. Let $I=\left\{i: x_{i-1}+x_{i}=n-1\right\}$ be the set of indices i of those steps $x_{i-1} \mapsto x_{i}$ that contribute $\lambda_{x_{i}^{\star}}$ (rather than $\lambda_{x_{i}^{\star}}-\lambda_{x_{i}^{\star}+1}$) to the product for C. Now i^{\prime} appears in the analogous set for C^{\prime}, of those indices i^{\prime} such that the step $x_{i^{\prime}+1} \mapsto x_{i^{\prime}}$ contributes $\lambda_{x_{i^{\prime}}^{\star}}\left(\right.$ rather than $\left.\lambda_{x_{i^{\prime}}^{\star}}-\lambda_{x_{i^{\prime}}^{\star}+1}\right)$ to the product of C^{\prime}, if and only if $x_{i^{\prime}}+x_{i^{\prime}+1}=n-1$, so if and only if $i^{\prime}-1 \in I$. Let $I-1=\{i-1: i \in I\}$ be the set of such indices i^{\prime}. Observe that if $i \in I \cap(I-1)$ then the step $x_{i-1} \mapsto x_{i}$ in C is $x_{i}^{\star} \mapsto x_{i}$, and the step $x_{i+1} \mapsto x_{i}$ in C^{\prime} is also $x_{i}^{\star} \mapsto x_{i}$. Therefore C has a subcycle of length 2 , contrary to our assumption that the vertices are distinct. Hence I and $I-1$ are disjoint. If $i \notin I \cup(I-1)$ then the step to x_{i} contributes $\lambda_{x_{i}^{\star}}-\lambda_{x_{i}^{\star}+1}$ to both products. Hence the two products are equal if and only if

$$
\prod_{i \in I} \lambda_{x_{i}^{\star}} \prod_{i \in I-1}\left(\lambda_{x_{i}^{\star}}-\lambda_{x_{i}^{\star}+1}\right)=\prod_{i \in I}\left(\lambda_{x_{i}^{\star}}-\lambda_{x_{i}^{\star}+1}\right) \prod_{i \in I-1} \lambda_{x_{i}^{\star}}
$$

Equivalently

$$
\prod_{i \in I} \lambda_{x_{i}^{\star}}\left(\lambda_{x_{i-1}^{\star}}-\lambda_{x_{i-1}^{\star}+1}\right)=\prod_{i \in I}\left(\lambda_{x_{i}^{\star}}-\lambda_{x_{i}^{\star}+1}\right) \lambda_{x_{i-1}^{\star}} .
$$

If $i \in I$ then $x_{i-1}+x_{i}=n-1$, and so $x_{i-1}^{\star}=x_{i}$. Therefore a final equivalent form is

$$
\prod_{i \in I} \lambda_{x_{i}^{\star}}\left(\lambda_{x_{i}}-\lambda_{x_{i}+1}\right)=\prod_{i \in I}\left(\lambda_{x_{i}^{\star}}-\lambda_{x_{i}^{\star}+1}\right) \lambda_{x_{i}}
$$

This holds term-by-term, since $\lambda_{x_{i}^{\star}} \lambda_{x_{i}+1}=\lambda_{x_{i}^{\star}+1} \lambda_{x_{i}}$.
We remark that if $\lambda_{x}=r^{x}$ then the detailed balance equations have the explicit solution $\pi_{x}=\left(r^{x+1}-r^{x}\right) /\left(r^{n}-1\right)$ and, as expected from the theorem just proved, the involutive random walk is reversible. In general the invariant distribution is π where

$$
\pi_{x}= \begin{cases}\frac{\lambda_{n-1}\left(1-\lambda_{1}\right)}{1-\lambda_{1} \lambda_{n-1}} & \text { if } x=0 \\ \frac{\left(\lambda_{x^{\star}}-\lambda_{x^{\star}+1}\right)\left(1-\lambda_{x+1}\right)+\left(\lambda_{x}-\lambda_{x+1}\right)\left(1-\lambda_{x^{\star}}\right) \lambda_{x^{\star}+1}}{\left(1-\lambda_{x} \lambda_{x^{\star}+1}\right)\left(1-\lambda_{x+1} \lambda_{x^{\star}}\right)} & \text { if } 0<x<n-1 \\ \frac{1-\lambda_{1}}{1-\lambda_{1} \lambda_{n-1}} & \text { if } x=n-1 .\end{cases}
$$

The author's proof is an explicit calculation most conveniently performed by computer algebra.

Corollary 2.6. The involutive walk with transition matrix P is reversible if and only if it has exactly 3 distinct eigenvalues.

Proof. By Theorem 2.5, the walk is reversible if and only if $\lambda_{x} \lambda_{x^{\star}+1}$ is a constant, α say. By Theorem 1.1 this is the case if and only if the eigenvalues of P are 1 and $\pm \sqrt{\alpha}$.
2.3. Question. It would be interesting to know if these results generalize to larger m.

References

1. John R. Britnell and Mark Wildon, The involutive random walk on total orders and the anti-diagonal eigenvalue property, (2020, in preparation).
2. Hiroyuki Ochiai, Makiko Sasada, Tomoyuki Shirai, and Takashi Tsuboi, Eigenvalue problem for some special class of anti-triangular matrices, arXiv:1403.6797 (March 2014), 23 pages.
