EXPANDED VERSION OF §5

MARK WILDON

The argument at the start of the second paragraph of $\S 5$ of my paper [2] leaves too much to the reader. Here is a more careful version.

Reminder of setting. The permutation group G acts regularly on the set $\{0,1, \ldots, d-1\}$ and has $\langle g\rangle \cong C_{d}$ as a regular cyclic subgroup. From $\S 3$ we have the corresponding permutation module $M=\left\langle v_{0}, v_{1}, \ldots, v_{d-1}\right\rangle$, where v_{j} affords the 1-dimensional representation of $\langle g\rangle$ on which g acts by ζ^{j}, where ζ is a primitive d-th root of unity. Let ϑ be the complex character of $\langle g\rangle$ defined by $\vartheta(g)=\zeta$. We have seen that

$$
M=\left\langle v_{0}\right\rangle \oplus V_{1} \oplus \cdots \oplus V_{t}
$$

where each V_{k} has a basis $\left\{j: v_{j} \in B_{k}\right\}$ for disjoint $B_{k} \subseteq\{1, \ldots, d-1\}$. By definition π_{k} is the character of G afforded by the $\mathbf{C} G$-module V_{k}. Thus $\pi_{k} \downarrow_{\langle g\rangle}=\sum_{j \in V_{k}} \vartheta^{j}$.

Subalgebra. A self-contained proof that the span of the π_{k} is a subalgebra of the character ring is outlined in my MathOverflow question and my (later) answer, based on [1]: https://mathoverflow.net/q/319547/7709.

Details of argument: this may replace the first two paragraph of $\S 5$. Since $(a+b)^{p} \equiv a^{p}+b^{p} \bmod p$ for $a, b \in \mathbf{Z}$, we have

$$
\begin{equation*}
\left(\pi_{k} \downarrow\langle g\rangle\right)^{p}=\left(\sum_{j \in V_{k}} \vartheta^{j}\right)^{p}=\sum_{j \in V_{k}} \vartheta^{j p}+p \phi \tag{1}
\end{equation*}
$$

where ϕ is a character of $\langle g\rangle$. (We do not claim that ϕ is the restriction of a character of G.) Since the linear span of the π_{k} is a subalgebra of the character ring, we may also write

$$
\pi_{k}^{p}=a 1_{G}+\sum_{\ell}\left(a_{\ell}+p b_{\ell}\right) \pi_{\ell}
$$

for some coefficients $a_{\ell} \in\{0,1, \ldots, p-1\}$ and $b_{\ell} \in \mathbf{N}_{0}$ and $a \in \mathbf{N}_{0}$. (In the published paper there is a typo at this point: $a 1_{H}$ should be $a 1_{G}$.) Restricting each side to $\langle g\rangle$ we obtain

$$
\begin{equation*}
\left(\pi_{k} \downarrow_{\langle g\rangle}\right)^{p}=a 1_{\langle g\rangle}+\sum_{\ell}\left(a_{\ell}+p b_{\ell}\right) \sum_{j \in V_{k}} \vartheta^{j} . \tag{2}
\end{equation*}
$$

Fix $s \in\{0,1, \ldots, d-1\}$ such that p does not divide s. Let π_{ℓ} be the unique character in the list π_{1}, \ldots, π_{t} that contains ϑ^{s}. Since the coefficient of ϑ^{s}
in (1) is divisible by p, we see that $a_{\ell}=0$. We may therefore write (2) in a better way as

$$
\begin{equation*}
\left(\pi_{k} \downarrow_{\langle g\rangle}\right)^{p}=a 1_{\langle g\rangle}+\sum_{\ell \in L}\left(a_{\ell}+p b_{\ell}\right) \pi_{\ell} \downarrow_{\langle g\rangle}+p \sum_{\ell \notin L} b_{\ell} \pi_{\ell} \downarrow_{\langle g\rangle} \tag{3}
\end{equation*}
$$

where L is the set of indices ℓ such that all ϑ^{m} appearing in π_{ℓ} have p dividing m. Since the π_{ℓ} have disjoint support it follows that (3) holds without restriction:

$$
\pi_{k}^{p}=a 1_{\langle g\rangle}+\sum_{\ell \in L}\left(a_{\ell}+p b_{\ell}\right) \pi_{\ell}+p \sum_{\ell \notin L} b_{\ell} \pi_{\ell} .
$$

We may therefore set $\pi=\sum_{\ell} b_{\ell} \pi_{\ell}$ and obtain

$$
\pi_{k}^{p}-p \pi=a 1_{G}+\sum_{\ell \in L} a_{\ell} \pi_{\ell}=a 1_{G}+\sum_{\ell \in L} a_{\ell} \sum_{j \in B_{\ell}} \vartheta^{j}
$$

By definition of the set L, if $a_{\ell} \neq 0$ then B_{ℓ} contains only those j with j divisible by p. Hence if $a_{\ell} \neq 0$ for some ℓ then, by Proposition 3.3, G is imprimitive. We may therefore assume that $a_{\ell}=0$ for all ℓ and so

$$
\begin{equation*}
\pi_{k}^{p}=a 1_{G}+p \pi \tag{4}
\end{equation*}
$$

for some character π of G not containing the trivial character. Comparing (1) and (4) we see that $\sum_{j \in V_{k}} \vartheta^{j p}$ is equal to some multiple of the trivial character of $\langle g\rangle$, plus p times a character of $\langle g\rangle$. Now take the coefficient of $r p$ for each r with $1 \leq r<d / p$ to get that

$$
\left|\left\{j \in B_{k}: j p \equiv r p \bmod d\right\}\right|
$$

Rest as paper
is a multiple of p for each such r. Identifying $\{0,1, \ldots, d-1\}$ with $\mathbf{Z} / d \mathbf{Z}$, note that $j p \equiv r p \bmod d$ if and only if $j \in r+\langle d / p\rangle$. Therefore for each prime p dividing d, each B_{k} is the union of a subset of $\langle d / p\rangle$ and some proper cosets $r+\langle d / p\rangle$.

Acknowledgements

I thank an anonymous reader (who disclaimed public acknowledgement) for pointing out this gap in the argument. Of course I have full responsibilities for any remaining errors.

References

[1] Wolfgang Knapp, On Burnside's method, J. Algebra 175 (1995), no. 2, 644-660.
[2] Mark Wildon, Permutation groups containing a regular abelian subgroup: the tangled history of two mistakes of Burnside, Math. Proc. Cambridge Philos. Soc. 168 (2020), no. 3, 613-633.

