EXPANDED VERSION OF §5

MARK WILDON

The argument at the start of the second paragraph of §5 of my paper [2] leaves too much to the reader. Here is a more careful version.

Reminder of setting. The permutation group G acts regularly on the set $\{0, 1, \ldots, d-1\}$ and has $\langle g \rangle \cong C_d$ as a regular cyclic subgroup. From §3 we have the corresponding permutation module $M = \langle v_0, v_1, \ldots, v_{d-1} \rangle$, where v_j affords the 1-dimensional representation of $\langle g \rangle$ on which g acts by ζ^j , where ζ is a primitive d-th root of unity. Let ϑ be the complex character of $\langle g \rangle$ defined by $\vartheta(g) = \zeta$. We have seen that

$$M = \langle v_0 \rangle \oplus V_1 \oplus \cdots \oplus V_t$$

where each V_k has a basis $\{j : v_j \in B_k\}$ for disjoint $B_k \subseteq \{1, \ldots, d-1\}$. By definition π_k is the character of G afforded by the CG-module V_k . Thus $\pi_k \downarrow_{\langle g \rangle} = \sum_{j \in V_k} \vartheta^j$.

Subalgebra. A self-contained proof that the span of the π_k is a subalgebra of the character ring is outlined in my MathOverflow question and my (later) answer, based on [1]: https://mathoverflow.net/q/319547/7709.

Details of argument: this may replace the first two paragraph of §5. Since $(a+b)^p \equiv a^p + b^p \mod p$ for $a, b \in \mathbb{Z}$, we have

(1)
$$(\pi_k \downarrow_{\langle g \rangle})^p = \left(\sum_{j \in V_k} \vartheta^j\right)^p = \sum_{j \in V_k} \vartheta^{jp} + p\phi$$

where ϕ is a character of $\langle g \rangle$. (We do not claim that ϕ is the restriction of a character of G.) Since the linear span of the π_k is a subalgebra of the character ring, we may also write

$$\pi_k^p = a \mathbf{1}_G + \sum_{\ell} (a_\ell + p b_\ell) \pi_\ell$$

for some coefficients $a_{\ell} \in \{0, 1, \ldots, p-1\}$ and $b_{\ell} \in \mathbf{N}_0$ and $a \in \mathbf{N}_0$. (In the published paper there is a typo at this point: $a1_H$ should be $a1_G$.) Restricting each side to $\langle g \rangle$ we obtain

(2)
$$(\pi_k \downarrow_{\langle g \rangle})^p = a \mathbf{1}_{\langle g \rangle} + \sum_{\ell} (a_\ell + p b_\ell) \sum_{j \in V_k} \vartheta^j.$$

Fix $s \in \{0, 1, \ldots, d-1\}$ such that p does not divide s. Let π_{ℓ} be the unique character in the list π_1, \ldots, π_t that contains ϑ^s . Since the coefficient of ϑ^s

Date: February 27, 2021.

in (1) is divisible by p, we see that $a_{\ell} = 0$. We may therefore write (2) in a better way as

(3)
$$(\pi_k \downarrow_{\langle g \rangle})^p = a \mathbf{1}_{\langle g \rangle} + \sum_{\ell \in L} (a_\ell + pb_\ell) \pi_\ell \downarrow_{\langle g \rangle} + p \sum_{\ell \notin L} b_\ell \pi_\ell \downarrow_{\langle g \rangle}$$

where L is the set of indices ℓ such that all ϑ^m appearing in π_ℓ have p dividing m. Since the π_ℓ have disjoint support it follows that (3) holds without restriction:

$$\pi_k^p = a \mathbf{1}_{\langle g \rangle} + \sum_{\ell \in L} (a_\ell + pb_\ell) \pi_\ell + p \sum_{\ell \notin L} b_\ell \pi_\ell.$$

We may therefore set $\pi = \sum_{\ell} b_{\ell} \pi_{\ell}$ and obtain

$$\pi_k^p - p\pi = a\mathbf{1}_G + \sum_{\ell \in L} a_\ell \pi_\ell = a\mathbf{1}_G + \sum_{\ell \in L} a_\ell \sum_{j \in B_\ell} \vartheta^j.$$

By definition of the set L, if $a_{\ell} \neq 0$ then B_{ℓ} contains only those j with j divisible by p. Hence if $a_{\ell} \neq 0$ for some ℓ then, by Proposition 3.3, G is imprimitive. We may therefore assume that $a_{\ell} = 0$ for all ℓ and so

(4)
$$\pi_k^p = a \mathbf{1}_G + p \pi$$

for some character π of G not containing the trivial character. Comparing (1) and (4) we see that $\sum_{j \in V_k} \vartheta^{jp}$ is equal to some multiple of the trivial character of $\langle g \rangle$, plus p times a character of $\langle g \rangle$. Now take the coefficient of rp for each r with $1 \leq r < d/p$ to get that

$$\left|\left\{j \in B_k : jp \equiv rp \bmod d\right\}\right|$$

is a multiple of p for each such r. Identifying $\{0, 1, \ldots, d-1\}$ with $\mathbb{Z}/d\mathbb{Z}$, note that $jp \equiv rp \mod d$ if and only if $j \in r + \langle d/p \rangle$. Therefore for each prime p dividing d, each B_k is the union of a subset of $\langle d/p \rangle$ and some proper cosets $r + \langle d/p \rangle$.

Acknowledgements

I thank an anonymous reader (who disclaimed public acknowledgement) for pointing out this gap in the argument. Of course I have full responsibilities for any remaining errors.

References

- [1] Wolfgang Knapp, On Burnside's method, J. Algebra 175 (1995), no. 2, 644–660.
- [2] Mark Wildon, Permutation groups containing a regular abelian subgroup: the tangled history of two mistakes of Burnside, Math. Proc. Cambridge Philos. Soc. 168 (2020), no. 3, 613–633.