
NOTES ON FARKAS’ LEMMA AND THE STRONG

DUALITY THEOREM FOR LINEAR PROGRAMMING

Let A be an m×n real matrix. We work throughout with column vectors

x ∈ Rn and y ∈ Rm.

Farkas’ Lemma. Let b ∈ Rm. Either there exists x ∈ Rn such that x ≥ 0

and Ax = b, or there exists y ∈ Rm such that ytA ≥ 0 and ytb = −1.

In geometric language, Farkas’ Lemma says that either b is in the positive

cone made by the column vectors Ae1, . . . , Aen ∈ Rm, where e1, . . . , en is

the standard basis of Rn, or there is a hyperplane H = {v ∈ Rm : ytv = 0}
such that every point of the cone is on the positive side of H (algebraically,

ytAx ≥ 0), and b is on the negative side of H (algebraically, ytb = −1). It

is obvious that at most one of these possibilities can hold.

Proof of Farkas’ Lemma. Let C = {Ax : x ∈ Rn, x ≥ 0} and suppose that

the ‘or’ case fails to hold, so b 6∈ C. Let B be the closed ball of radius R

about b, where R ≥ ||b||, so B∩C 6= ∅. Since C is closed and B is compact,

there is a closest vector w ∈ B∩C to b. If u 6∈ B then ||b−u|| ≥ R, whereas

||b− w|| ≤ R, so w is a closest vector in C to b.

Take any v ∈ C and consider the line segment joining v to w. Since C is

convex, this segment lies in C. Therefore for any α such that 0 ≤ α ≤ 1, we

have

||w − b||2 ≤ ||αv + (1− α)w − b||2

= ||α(v − w) + (w − b)||2

= α2||v − w||2 + 2α〈v − w,w − b〉+ ||w − b||2.

Hence, taking α to be small and positive, we see that 〈v − w,w − b〉 ≥ 0.

Set z = w − b. Setting v = 0 we get 〈w, z〉 ≤ 0, and so

〈b, z〉 = 〈b− w, z〉+ 〈w, z〉 = −||w − b||2 + 〈w, z〉 < 0.

Hence there exists γ < 0 such that

〈v, z〉 ≥ 〈w, z〉 > γ > 〈b, z〉

for all v ∈ C. Fix v ∈ C. Since 〈λv, z〉 > γ for all λ ≥ 0 we have 〈v, z〉 > γ/λ

for all λ > 0. Taking λ large we see that 〈v, z〉 ≥ 0. Therefore y = z/|〈z, b〉|
satisfies the required conditions for the ‘either’ case. �

Date: December 8, 2020.



2 NOTES ON FARKAS’ LEMMA

Variant Farkas’ Lemma. For the application to the strong duality theo-

rem we need a slightly different version of Farkas’ Lemma.

Lemma 1. Let b ∈ Rm. Either there exists x ∈ Rn such that Ax ≤ b, or

there exists y ∈ Rm such that y ≥ 0, ytA = 0 and ytb = −1.

This lemma also has a geometric interpretation, although it maybe takes

a bit more effort to see. Note that if y ≥ 0 (and y 6= 0) then the hyperplane

H = {v ∈ Rm : ytv = 0} contains no v ∈ Rm such that v ≥ 0 or v ≤ 0,

except for v = 0. Say, just for this paragraph, that such hyperplanes are

tilted. Note that a non-tilted hyperplane always contain some αei + βej
with i < j and α, β > 0. So if H is a hyperplane such that v 6≤ b for all

v ∈ H, then v is tilted. Lemma 1 says that either there exists v ∈ imA such

that v ≤ b, or imA is contained in a tilted hyperplane H that has b on its

negative side, and so Ax 6≤ b for all x ∈ Rn. Again it is obvious that at

most one of these possibilities can hold.

Algebraic proof of equivalence of Farkas’ Lemma and Lemma 1. Suppose

that Farkas’ Lemma holds. If the ‘or’ case of Lemma 1 fails to hold then

there is no y ∈ Rm such that

yt
(
A Im

)
≥ 0

and ytb = −1. Hence, by Farkas’ Lemma, there exists x ∈ Rn and z ∈ Rm

such that that x ≥ 0, z ≥ 0 and(
A Im

)(x
z

)
= b

Therefore Ax ≤ b and the ‘either’ case of Lemma 1 holds.

Suppose that Lemma 1 holds. If the ‘either’ case of Farkas’ Lemma fails

to hold then there is no x ∈ Rn such that x ≥ 0 and(
A −b

)(x
1

)
= 0.

Let c = (0, . . . , 0, 1) ∈ Rn+1. By scaling, and transposing, it follows that

there is no w ∈ Rn+1 such that w ≥ 0,

wt

(
At

−bt

)
= 0

and −wtc = −1. Hence, by Lemma 1, there exists y ∈ Rm such that y ≥ 0

and (
At

−bt

)
y ≤ c.

Thus Aty ≤ 0 and bty ≥ 1. By scaling we may assume that bty = 1, as

required for the ‘or’ case of Farkas’ Lemma.
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Primal and dual problems. In the remainder of this note we consider the

following two standard optimization problems. Let b ∈ Rm and let c ∈ Rn.

Primal. Maximize ctx for x ∈ Rn subject to x ≥ 0, Ax ≤ b.

Dual. Minimize ytb for y ∈ Rm subject to y ≥ 0, ytA ≥ ct.

As usual, we say that the primal problem is feasible if there exists x ∈ Rn

such that x ≥ 0 and Ax ≤ b. We say that the primal problem is unbounded

if there exist feasible x ∈ Rn such that ctx takes arbitrarily large values.

We define feasible and unbounded for the dual problem similarly.

Theorem 2 (Weak Duality). If x is feasible for the primal problem and y

is feasible for the dual problem then ctx ≤ ytb.

Proof. From Ax ≤ b and ct ≤ ytA we get ctx ≤ ytAx ≤ ytb, as required. �

In particular if the primal problem is feasible then the dual problem is

bounded, and if the dual problem is feasible then the primal problem is

bounded. The converses to these statements do not hold, because it is pos-

sible that both primal and dual problems are infeasible (and so, immediately

from the definition, they are both bounded): for example, take

A =

(
1 0

0 −1

)
, b =

(
−1

0

)
, c =

(
0

1

)
.

Then for any x ∈ R2 such that x ≥ 0 we have Ax 6≤ b, and for any y ∈ R2

such that y ≥ 0 we have ytA 6≥ ct. The theorem below gives the strongest

possible converse.

Theorem 3. The primal problem is feasible and bounded if and only if the

dual problem is feasible and bounded.

Proof. By the Weak Duality Theorem, if the primal problem is unbounded

then the dual problem is infeasible. Suppose that the primal problem is

infeasible. So there exists no x ∈ Rn such that x ≥ 0 and Ax ≤ b. Hence

there exists no x ∈ Rn such that(
A

−In

)
x ≤

(
b

0

)
.

By Lemma 1 there exist y ∈ Rm and z ∈ Rn such that (yt zt) ≥ 0,

(yt zt)

(
A

−In

)
= 0

and ytb = −1. If the dual problem is infeasible we are done, so we may

suppose that there exists a feasible y? ∈ Rm for the dual problem. We have

(yt? + λyt)A ≥ ct + λzt ≥ ct and (yt? + λyt)b = yt?b − λ. Taking λ large we

see that the dual problem is unbounded. The converse has a very similar

proof. �
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This motivates restricting to the case where both the primal problem and

the dual problem are feasible.

Theorem 4 (Strong Duality Theorem). If both the primal and dual problems

are feasible then they have the same optimal value.

We prove this theorem by extending the argument used to prove Theo-

rem 3.

Proof of Strong Duality Theorem. Let τP ∈ R be the optimal value of the

primal problem and let τ = τP + ε. Since there exists no x ∈ Rn such that

Ax ≤ b, ctx ≥ τ , there exists no x ∈ Rn such that A

−In
−ct

x ≤

 b

0

−τ

 .

By Lemma 1 there exist y ∈ Rm, z ∈ Rn and α ∈ R such that (yt zt α) ≥ 0,

(yt zt α)

 A

−In
−ct

 = 0

and ytb−ατ < 0. (It is more convenient to have an inequality here to permit

scaling later.) Thus ytA = zt + αct and ytb < ατ .

Suppose that α = 0. Then, since ytA = zt ≥ 0 and ytb = −1, it follows as

in the proof of Theorem 3 that the dual problem is either infeasible or un-

bounded. This contradicts the Weak Duality Theorem since, by hypothesis,

both problems are feasible. Therefore α 6= 0 and by scaling we may assume

that α = 1. So ytA ≥ ct and ytb < τ . Hence if τD ∈ R is the optimal value

of the dual problem then τD < τ = τP + ε. By the Weak Duality Theorem

it follows that τP ≤ τD < τP + ε. Since ε was arbitrary we have τP = τD, as

required. �

In practice it suffices to find x ∈ Rn and y ∈ Rm such that ctx ≥ ytb.

Then by the Weak Duality Theorem ctx = ytb is the common optimal value

of the primal and dual problems.


