
CONJUGATE-SEMISTANDARD TABLEAU FAMILIES

This is a self-contained Haskell module for generating semistandard and conjugate

semistandard tableau and tableau families. It implements Algorithm 9.5 in [1], and may

also be used to verify Example 8.3.

1. Preliminaries

module TableauFamilies where

import qualified Data.Map as M

import Data.List (delete,nub, sort , sortBy , transpose)

Partitions and compositions. Use sum to get the size of a partition.

type Part = Int

type Partition = [Part ]

type SizeOfPartition = Int

type NumberOfRows = Int

type NumberOfColumns = Int

partitionsInBox :: NumberOfRows → NumberOfColumns → SizeOfPartition → [Partition ]

partitionsInBox 0 = [[ ]]

partitionsInBox 0 = [ ]

partitionsInBox r m n = [c : rest | c ← [1 . .m ‘min‘ n ],

rest ← partitionsInBox (r − 1) c (n − c)]

partitions :: SizeOfPartition → [Partition ]

partitions n = partitionsInBox n n n

conjugatePartition :: Partition → Partition

conjugatePartition [ ] = [ ]

conjugatePartition p@(a : ) = [f j | j ← [1 . . a ]]

where f j = length $ takeWhile (> j ) p

type Composition = [Part ]

type SizeOfComposition = Int

compositions :: NumberOfRows → SizeOfComposition → [Composition ]
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compositions 0 = [[ ]]

compositions 0 = [ ]

compositions k n = [m : c | m ← [0 . .n ], c ← compositions (k − 1) (n −m)]

Dominance order on compositions.

dominates :: Composition → Composition → Bool

p ‘dominates‘ q = and $ zipWith (>) (partialSums p) (partialSums q)

Young Diagrams.

type Row = Int

type Column = Int

type Box = (Row ,Column)

type YoungDiagram = [Box ]

youngDiagram :: Partition → YoungDiagram

youngDiagram p = [(i , j ) | (i , x )← zip [1 . .] p, j ← [1 . . x ]]

2. Tableaux

type Entry = Int

type TableauRow = [Int ]

type Tableau = [TableauRow ]

maximumEntry :: Tableau → Int

maximumEntry [ ] = error "maximumEntry: empty tableau"

maximumEntry t = maximum $ concat [es | es ← t ]

Mathematically a tableau is a function from the Young diagram to the set of entries.

This corresponds to a Haskell map.

type TableauM = M .Map Box Entry

tableauToTableauM :: Tableau → TableauM

tableauToTableauM t = M .fromList $ concat $ [pairsForRow i xs | (i , xs)← zip [1 . .] t ]

where pairsForRow i xs = [((i , j ), x ) | (j , x )← zip [1 . .] xs ]

tableauMToTableau :: TableauM → Tableau

tableauMToTableau tM = [row i | i ← [1 . . k ]]

where row i = [tM M . ! (i , j ) | j ← [1 . . lengthOfRow i ]]

lengthOfRow i = maximum [j | (i ′, j )← M .keys tM , i ′ ≡ i ]

k | M .null tM = 0

| otherwise = maximum [i | (i , )← M .keys tM ]

changeEntry :: TableauM → Box → Entry → TableauM
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changeEntry tM (i , j ) x = M .adjust (\ → x ) (i , j ) tM

insertMany :: TableauM → [(Box ,Entry)]→ TableauM

insertMany tM [ ] = tM

insertMany tM ((b, x ) : rest) = insertMany tM ′ rest

where tM ′ = M .insert b x tM

3. Total column colexicographic order on tableaux

Let Ω be totally ordered under ≤. Let X = {x1, . . . , xd} and Y = {y1, . . . , yd} be

multisubsets of Ω, written so that x1 ≤ . . . ≤ xd and y1 ≤ . . . ≤ yd. The colexicographic

order on multisubsets of Ω is defined by X < Y if and only if for some q we have xq < yq
and xq+1 = yq+1, . . . , xd = yd. It is a total order.

colexGreater :: (Ord a)⇒ [a ]→ [a ]→ Bool

colexGreater ys xs = comparePairsLex (>) $ zip (reverse ys) (reverse xs)

comparePairsLex :: (Eq a)⇒ (a → a → Bool)→ [(a, a)]→ Bool

comparePairsLex [ ] = True

comparePairsLex ord ((x , y) : abs)

| x ≡ y = comparePairsLex ord abs

| otherwise = x ‘ord ‘ y

We define a total order on column semistandard tableau as follows: let s and t be distinct

such tableaux, take the rightmost column where they differ, and compare these columns

under the colexicographic order.

columnGreater :: Tableau → Tableau → Bool

columnGreater t s = comparePairsLex colexGreater $ zip (reverse t ′) (reverse s ′)

where t ′ = transpose t ; s ′ = transpose s

For use in sortBy convert columnGreater to type Ordering (see §10 below).

totalOrdering :: Tableau → Tableau → Ordering

totalOrdering t s

| t ≡ s = EQ

| t ‘columnGreater ‘ s = GT

| otherwise = LT

4. Majorization order

Let X = {x1, . . . , xr} and Y = {y1, . . . , yr} be subsets of a totally ordered set Ω, with

the notation chosen so that x1 < x2 < . . . < xr and y1 < y2 < . . . < yr. We say that Y

majorizes X, and write X � Y , if x1 < y1, x2 < y2, . . . , xr < yr.
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majorizesList :: (Ord a)⇒ [a ]→ [a ]→ Bool

majorizesList ys xs = and $ zipWith (>) ys xs

If s and t are conjugate-semistandard tableaux then we say that t majorizes s if each

row of t majorizes the corresponding row of s.

majorizes :: Tableau → Tableau → Bool

majorizes t s = and $ zipWith majorizesList t s

incomparable s t = ¬ (majorizes s t) ∧ ¬ (majorizes t s)

Neighbours in the majorization order. The neighbours of a conjugate-semistandard

tableau are obtained by considering each position in turn, and decrementing the entry

in this position when this gives a conjugate-semistandard tableau.

type ConjugateSemistandardTableau = Tableau

downNeighbours :: ConjugateSemistandardTableau → [ConjugateSemistandardTableau ]

downNeighbours t =

[tableauMToTableau tM | tM ← downNeighboursM $ tableauToTableauM t ]

downNeighboursM :: TableauM → [TableauM ]

downNeighboursM tM = [tM ′ | (i , j )← M .keys tM ,

Just tM ′ ← [decrement tM (i , j )]]

decrement :: TableauM → Box → Maybe TableauM

decrement tM (i , j ) | e 6≡ 1 ∧ rowCheck ∧ columnCheck = Just tM ′

| otherwise = Nothing

where e = tM M . ! (i , j )

rowCheck = j ≡ 1 ∨ e > tM M . ! (i , j − 1) + 1

columnCheck = i ≡ 1 ∨ e > tM M . ! (i − 1, j )

tM ′ = changeEntry tM (i , j ) (e − 1)

Closed families. A closed conjugate-semistandard tableaux family is a set of conjugate-

semistandard tableau downwardly closed under the majorization order. We say such sets

are downsets; any downset is determined by its maximal elements.

Take a list T of conjugate-semistandard tableaux, with head t. We take t if it is

maximal in T and, in either case, continue with the tableaux not majorized by t. This

ensures that if s is not maximal, or appears multiple times in T , then either s is thrown

out because it is majorized by some earlier tableau, or it thrown out when it reaches the

head of the list, and is majorized by some later tableau.

type Maximal = ConjugateSemistandardTableau
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maximals :: [ConjugateSemistandardTableau ]→ [Maximal ]

maximals [ ] = [ ]

maximals (x : xs) | xMaximal = x : maximals xs ′

| otherwise = maximals xs ′

where xMaximal = and [¬ (y ‘majorizes‘ x ) | y ← xs, y 6≡ x ]

xs ′ = [y | y ← xs,¬ (x ‘majorizes‘ y)]

Given a list of incomparable conjugate-semistandard tableaux M, the downset having

these tableaux as its maximal elements may be constructed as follows:

(1) Put all tableaux in M in the family;

(2) Let T be the list of tableaux one step below a maximal s ∈M, in the majoriza-

tion order. Repeat (1) with the maximal elements of T .

Note that if tableaux t, u ∈ T satisfy t � u then we will see u in the downset on t,

so it is safe to discard u. Indeed, this ensures that no conjugate-semistandard tableau

can appear twice, because whenever we put tableaux into the family, they are all in-

comparable, and (except in the first step) each is majorized by a tableau already in the

family

type TableauFamily = [ConjugateSemistandardTableau ]

downSetSorted :: [Maximal ]→ TableauFamily

downSetSorted ss = sortBy totalOrdering (downSetOnMaximals ss)

downSetOnMaximals :: [Maximal ]→ TableauFamily

downSetOnMaximals [ ] = [ ]

downSetOnMaximals ss = ss ++ downSetOnMaximals ss ′′

where ss ′ = concat [downNeighbours s | s ← ss ]

ss ′′ = maximals ss ′

downSet :: ConjugateSemistandardTableau → TableauFamily

downSet t = downSetOnMaximals [t ]

This gives a convenient way to generate all conjugate-semistandard tableau of a given

shape that is not much slower than more sophisticated methods using iterated Pieri’s

rule removal of boxes (see §9.2 below).

type MaximumPermittedEntry = Int

conjugateSemistandardTableauxByMaj :: Partition → MaximumPermittedEntry

→ [ConjugateSemistandardTableau ]

conjugateSemistandardTableauxByMaj [ ] = [[ ]]

conjugateSemistandardTableauxByMaj p@(a : ) k
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| a > k = [ ]

| otherwise = downSet [[k − a + 1 . . k ] | a ← p ]

totalOrderCSSYTs :: Partition → MaximumPermittedEntry

→ [ConjugateSemistandardTableau ]

totalOrderCSSYTs p m = sortBy totalOrdering (conjugateSemistandardTableaux p m)

numberOfCSSYTs :: Partition → MaximumPermittedEntry → Int

numberOfCSSYTs p m = length $ conjugateSemistandardTableaux p m

For example, printTableaux $ totalOrderCSSYTs [2, 2] 4 evaluates to

1 2
1 2

, 1 2
1 3

, 1 2
2 3

, 1 3
2 3

, 1 2
3 4

, 1 3
2 4

.

5. Constructing conjugate-semistandard tableau families

We use a refinement of the algorithm used to generate the downset on a conjugate-

semistandard tableau. Start with a list of candidate maximal tableauxM and the empty

family. If s is at the head of M then either

• declare that s is not in the family, or

• insert the downset on s into the family and remove all candidate maximal tableau

t from M that are comparable to s.

Then repeat with the tail of M.

type N = Int

type SizeOfFamily = Int

type CandidateMaximal = ConjugateSemistandardTableau

tableauFamiliesMS :: N → ([CandidateMaximal ], [Maximal ],SizeOfFamily)

→ [[Maximal ]]

tableauFamiliesMS n ([ ], ts, l)

| l ≡ n = [ts ]

| otherwise = [ ]

tableauFamiliesMS n ((s : ms), ts, l)

| l > n = [ ]

| l ≡ n = [ts ]

| otherwise = tableauFamiliesMS n (ms ′, ts ′, l ′) ++ tableauFamiliesMS n (ms, ts, l)

where ms ′ = [s ′ | s ′ ← ms, s ‘incomparable‘ s ′ ]

ts ′ = s : ts

l ′ = l + length [u | u ← downSet s, and [u ‘incomparable‘ t | t ← ts ]]

tableauFamiliesM :: Partition → N → MaximumPermittedEntry → [[Maximal ]]
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tableauFamiliesM p n k = tableauFamiliesMS n (ms, [ ], 0)

where ms = conjugateSemistandardTableaux p k

tableauFamilies :: Partition → N → MaximumPermittedEntry → [TableauFamily ]

tableauFamilies p n k = [downSetSorted ss | ss ← tableauFamiliesM p n k ]

6. Weights and types of tableau and tableau families

type Weight = [Multiplicity ]

type Multiplicity = Int

weightT :: Tableau → [Multiplicity ]

weightT t = [numberOf x | x ← [1 . .maximumEntry t ]]

where numberOf x = sum [countR x r | r ← t ]

countR x r = length [y | y ← r , y ≡ x ]

weight :: [ConjugateSemistandardTableau ]→Weight

weight ts = sumWeights [weightT t | t ← ts ]

weightM :: [Maximal ]→Weight

weightM ss = weight $ downSetOnMaximals ss

addWeights :: Weight →Weight →Weight

addWeights u v | length u < length v = addWeights v u

| otherwise = zipWith (+) u v ++ drop (length v) u

sumWeights :: [Weight ]→Weight

sumWeights ps = foldr1 addWeights ps

type PType = Partition

ptype :: [ConjugateSemistandardTableau ]→ Partition

ptype ts = conjugatePartition $ weight ts

ptypeM :: [Maximal ]→ Partition

ptypeM ss = ptype $ downSetOnMaximals ss

7. Tableau families of maximal weight (equivalently, minimal type)

A tableau family of maximal weight (equivalently minimal type) is closed. To se-

lect the closed families of maximal weight we use a similar trick to maximals to throw
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out families of non-maximal weight, with a small change because there may be several

different families with the same maximal weight

type Mu = Partition

type Nu = Partition

closedWeightsM :: Mu → N → MaximumPermittedEntry → [(Weight , [Maximal ])]

closedWeightsM p n k = sort [(weightM ss, ss) | ss ← tableauFamiliesM p n k ]

maximalWeightsM :: Mu → N → MaximumPermittedEntry → [(Weight , [Maximal ])]

maximalWeightsM p n k = takeMaximalWeights $ closedWeightsM p n k

maximalWeights :: Mu → N → MaximumPermittedEntry → [Weight ]

maximalWeights p n k = [w | (w , )← maximalWeightsM p n k ]

takeMaximalWeights :: [(Weight , [Maximal ])]→ [(Weight , [Maximal ])]

takeMaximalWeights [ ] = [ ]

takeMaximalWeights ((u, ss) : uss)

| pMaximal = (u, ss) : takeMaximalWeights uss ′

| otherwise = takeMaximalWeights uss ′

where pMaximal = and [¬ (v ‘dominates‘ u) | (v , )← uss, v 6≡ u ]

uss ′ = [(v , ts) | (v , ts)← uss, u ≡ v ∨ ¬ (u ‘dominates‘ v)]

minimalTypes :: Mu → N → MaximumPermittedEntry → [PType ]

minimalTypes p n k = sort [conjugatePartition q | q ← maximalWeights p n k ]

The greatest entry in a conjugate-semistandard tableau family of shape µn is m+n− 1.

minimalTypesA :: Mu → N → [PType ]

minimalTypesA p n = minimalTypes p n (sum p + n − 1)

maximalWeightsA :: Mu → N → [PType ]

maximalWeightsA p n = maximalWeights p n (sum p + n − 1)

minMaxs :: Mu → N → [PType ]

minMaxs p n = minimalTypesA p n ‘meet ‘ maximalWeightsA (conjugatePartition p) n

Case µ = (3). Identify conjugate-semistandard (3)-tableau with 3-subsets of N. The

downset on {a, b} where a < b consists of all {1, 2}, . . . , {1, a}, . . . , {a, a+ 1}, . . . , {a, b}.
The sets with common least element m contain 2(b −m) elements, so the type of the

downset is a partition of
∑a

m=1 2(b−m) = a(2b− a− 1). It follows that the downset on

{r, a, b} contains (a− r)(2b− a− r − 1) sets with least element r. Therefore {r, a, b} is

a candidate maximal in a set family of size n only if (a− r)(2b− a− r − 1) < 3n.
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threeFamiliesCandidateMaximals n = ms ′

where ms = conjugateSemistandardTableaux [3] (n + 2)

ms ′ = [t | t@[[r , a, b ]]← ms, (a − r) ∗ (2 ∗ b − a − r − 1) 6 3 ∗ n ]

threeFamilies n =

tableauFamiliesMS n (threeFamiliesCandidateMaximals n, [ ], 0)

threeTypes n = collectSorted $ sort $ [ptypeM ms | ms ← threeFamilies n ]

threeTypesMultiple n = [(p,m) | (p,m)← threeTypes n,m > 2]

threeTypesClosedNonMinimal n = [(conjugatePartition w ,ms) | (w ,ms)← vs ‘diff ‘ vs ′ ]

where vs = [(weightM ms,ms) | ms ← threeFamilies n ]

vs ′ = takeMaximalWeights vs

7.1. Closed non-maximal families. It is an open question whether every closed

conjugate-semistandard tableau family corresponds to a summand of a generalized Foulkes

module.

closedNonMaximalWeightsM :: Mu → N → MaximumPermittedEntry

→ [(Weight , [Maximal ])]

closedNonMaximalWeightsM p n k

= closedWeightsM p n k ‘diff ‘ maximalWeightsM p n k

closedNonMaximalWeights :: Mu → N → MaximumPermittedEntry → [Weight ]

closedNonMaximalWeights p n k

= [w | (w , )← closedNonMaximalWeightsM p n k ]

7.2. Unique families. Corollary 9.10 in [1] characterizes the partitions µ and n ∈ N

such that there is a unique conjugate-semistandard tableau family of shape µn.

uniqueFamily p@(a : ) n = l ≡ 1

where l = length $ maximalWeights p n (n + a − 1)

8. Example 8.3 in [1]

Define

u = 1 2
4

, v = 2 3
2

, w = 1 3
3

, x = 1 4
2

.

These tableaux are incomparable in the majorization order.

u = [[1, 2], [4]]; v = [[2, 3], [2]]; w = [[1, 3], [3]]; x = [[1, 4], [2]]

The tableaux majorized by one of u, v, w, x are constructed below.
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ts = sortBy totalOrdering $ downSetOnMaximals [u, v ,w , x ]

[t1 , t2 , t3 , t4 , t5 , t6 , t7 , t8 , t9 , t10 ] = ts

checkLabels = (u ≡ t4 ) ∧ (v ≡ t7 ) ∧ (w ≡ t8 ) ∧ (x ≡ t10 )

It is convenient to have these tableaux printed in this notation.

showExT :: ConjugateSemistandardTableau → String

showExT s | s ≡ u = "u"

| s ≡ v = "v"

| s ≡ w = "w"

| s ≡ x = "x"

| s ∈ ts = "t" ++ show (position s ts + 1)

| otherwise = error $ "showExT: " ++ show s

The conjugate-semistandard tableau families and conjugte-semistandard tableau family

tuples defined in Example 8.3 are as follows.

sm = ts ‘diff ‘ [u, v ,w , x ]

add ss ys = sortBy totalOrdering $ ss ++ ys

ss1 = sm ‘add ‘ [u, v ]; ss2 = sm ‘add ‘ [w , x ]; ss3 = sm ‘add ‘ [u, x ]

ss4 = sm ‘add ‘ [v ,w ]; ss5 = sm ‘add ‘ [u,w ]; ss6 = sm ‘add ‘ [v , x ]

tft1 = [ss1 , ss2 ]; tft2 = [ss3 , ss4 ]; tft3 = [ss5 , ss6 ]; tft4 = [ss1 , ss5 ]; tft5 = [ss6 , ss2 ]

We claim that these are all closed conjugate-semistandard tableau family tuples of shape

(2, 2)(8,8) and type (44, 35, 25, 17).

exampleWeight = conjugatePartition [4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1]

closedWeightsM88 = closedWeightsM [2, 1] 8 4

exampleTuplesM = [((p,ms), (p ′,ms ′)) | (p,ms)← closedWeightsM88 ,

(p′,ms ′)← closedWeightsM88 ,

p 6 p′,

p ‘addWeights‘ p ′ ≡ exampleWeight ]

exampleTuplesF

= [(downSetSorted ms, downSetSorted ms ′)

| (( ,ms), ( ,ms ′))← exampleTuplesM ]

exampleTuplesFT

= [(identifyFamily ts, identifyFamily ss, ts, ss) | (ts, ss)← exampleTuplesF ]

exampleTupleLabels = [(i , j ) | (Just i , Just j , , )← exampleTuplesFT ]
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identifyFamily ss | ss ∈ sss = Just $ 1 + position ss sss

| otherwise = Nothing

where sss = [ss1 , ss2 , ss3 , ss4 , ss5 , ss6 ]

exampleTupleLabels evaluates to [(4,3),(6,5),(6,2),(1,5),(1,2)]. Thus the first

tableau family tuple found by Haskell is (ss4, ss3), which is up to the order of the

two families, the same as tft2 above, and so on.

9. Tableau families of lexicographically minimal type

In this section we implement Algorithm 9.5 in [1].

9.1. Entry order on conjugate-semistandard tableau. A further order will be use-

ful: we first compare the multisets of entries colexicographically, then use the total

column colexicographic order to break ties.

entryGreater :: Tableau → Tableau → Bool

entryGreater t s | xs ≡ ys = columnGreater t s

| otherwise = colexGreater ys xs

where xs = sort (concat s)

ys = sort (concat t)

entryOrdering :: Tableau → Tableau → Ordering

entryOrdering t s

| t ≡ s = EQ

| t ‘entryGreater ‘ s = GT

| otherwise = LT

entryOrderCSSYTs :: Partition → MaximumPermittedEntry

→ [ConjugateSemistandardTableau ]

entryOrderCSSYTs p k

= sortBy entryOrdering (conjugateSemistandardTableaux p k)

9.2. Young and Pieri removal of boxes.

type NumberOfBoxesToRemove = Int

type PartitionChain = [Partition ]

type ReversedComposition = Composition

youngRemove :: NumberOfBoxesToRemove → Partition → [Partition ]

youngRemove 0 p = [p ]

youngRemove r [ ] = [ ]

youngRemove r [x ] | x > r = [[x − r ]]

| r ≡ x = [[ ]]
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| otherwise = [ ]

youngRemove r (x : y : zs)

= [(x − r ′) : p | r ′ ← [0 . . (x − y) ‘min‘ r ], p ← youngRemove (r − r ′) (y : zs)]

pieriRemove :: NumberOfBoxesToRemove → Partition → PartitionChain

pieriRemove r p = [conjugatePartition q | q ← youngRemove r $ conjugatePartition p ]

pieriRemoveMany :: ReversedComposition → Partition → [PartitionChain ]

pieriRemoveMany [ ] p = [[p ]]

pieriRemoveMany (c : cs) p =

[p : qs | q ← pieriRemove c p, qs ← pieriRemoveMany cs q ]

To construct tableaux it is most useful to have the boxes removed at each step.

type BoxChain = [[Box ]]

partitionChainToBoxChain :: PartitionChain → BoxChain

partitionChainToBoxChain qs = differences [youngDiagram q | q ← qs ]

differences :: [YoungDiagram ]→ [[Box ]]

differences [ ] = [ ]

differences [d ] = [ ]

differences (d : d ′ : es) = d ‘diff ‘ d ′ : differences (d ′ : es)

Conjugate semistandard tableau of given weight. Pieri removal gives a faster way to

generate all conjugate semistandard tableaux then the method seen in §4. Note that

the weight is reversed in the second function below: boxes removed first get the greatest

number.

cssytsWithWeight :: Weight → Partition → [ConjugateSemistandardTableau ]

cssytsWithWeight w p =

[partitionChainToTableau bss | bss ← pieriRemoveMany (reverse w) p ]

boxChainToTableauM :: BoxChain → TableauM

boxChainToTableauM bss = insertMany (M .empty) bxs

where bxs = concat [[(b, k) | b ← bs ] | (bs, k)← zip bss (reverse [1 . . k ])]

k = length bss

partitionChainToTableau :: PartitionChain → Tableau

partitionChainToTableau = tableauMToTableau ◦ boxChainToTableauM

◦ partitionChainToBoxChain
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conjugateSemistandardTableaux :: Partition → MaximumPermittedEntry

→ [ConjugateSemistandardTableau ]

conjugateSemistandardTableaux p k

= concat [cssytsWithWeight w p | w ← compositions k (sum p)]

9.3. k statistic. At step j we have (k1, . . . , kj−1) = (`c11 , . . . , `
cs
s ) and the target is to

find d more conjugate-semistandard tableaux. We choose the maximum k such that∑
|CSSYT(ϑ, k)| ≤ d

where the the sum is over all chains

µ→c1 ϑ1 →c2 · · · →c`−1
ϑ`−1 →c` ϑ

ending in the partition ϑ; here the notation indicates that we perform a Pieri removal

of c1 boxes from µ, then c2 boxes from the resulting partition ϑ1, and so on. (The first

step when j = 1 is distinguished in the description of Algorithm 9.5 in [1], but simply

corresponds to the case when the only chain considered is the trivial one, ending in µ.)

chainsWithSizes :: Mu → [NumberOfBoxesToRemove ]→ MaximumPermittedEntry

→ [(PartitionChain, Int)]

chainsWithSizes p cs k =

[(qChain,numberOfCSSYTs (last qChain) k) | qChain ← pieriRemoveMany cs p ]

chainSize :: Mu → [NumberOfBoxesToRemove ]→ MaximumPermittedEntry → Int

chainSize p cs k = sum [t | ( , t)← chainsWithSizes p cs k ]

For example, chainsWithSizes [2, 2] [ ] 3 evaluates to [([[2, 2]], 6)], corresponding to the

6 conjugate-semistandard (2, 2)-tableaux with maximum entry 3 (these can be produced

using printTableaux $ totalOrderCSSYTs [2, 2] 3), and chainsWithSizes [2, 2] [1, 1] 2

evaluates to [([[2, 2], [2, 1], [1, 1]], 3), ([[2, 2], [2, 1], [2]], 1)], corresponding to the tableaux

of the two forms
? x
? y

? ?
x y

,

where x < y and ? denotes an unspecified entry not exceeding 2. There are 3 tableaux

of the first form, and a unique tableau of the second.

type K = Int

type NumberOfNewTableaux = Int

type Target = Int

kPair :: Mu → [NumberOfBoxesToRemove ]→ Target

→ Maybe (K ,NumberOfNewTableaux )

kPair p cs target = maybeLast $ takeWhile (λ( , b)→ b 6 target)

[(k , chainSize p cs k) | k ← [0 . .]]
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9.4. Chains to tableau families. Each box removed in the step ϑr−1 →c` ϑr is filled

with `r + 1. For example partitionChainToFamily [[4, 2], [3, 1], [2, 1]] 3 [5, 3] evaluates

to

1 2 4 6
1 6

, 1 2 4 6
2 6

, 1 3 4 6
1 6

, 1 2 4 6
3 6

, 1 3 4 6
2 6

, 2 3 4 6
2 6

, 1 3 4 6
1 6

, 2 3 4 6
3 6

.

with 5 + 1 = 6 placed in the boxes of (4, 2)/(3, 1), 3 + 1 placed in the unique box of

(3, 1)/(2, 1); the remaining boxes form a conjugate-semistandard tableau with maximum

entry 3.

type L = Int

partitionChainToFamily :: PartitionChain → K → [L]→ [Tableau ]

partitionChainToFamily qs k ls = sortBy entryOrdering [putInPlusEntries lbss t | t ← ts ]

where ts = entryOrderCSSYTs (last qs) k

bss = partitionChainToBoxChain qs

lbss = zip ls bss

putInPlusEntries :: [(L, [Box ])]→ Tableau → Tableau

putInPlusEntries lbss t = tableauMToTableau $ putInPlusEntriesM lbss

$ tableauToTableauM t

putInPlusEntriesM [ ] tM = tM

putInPlusEntriesM ((l , bs) : rest) tM = putInPlusEntriesM rest tM ′

where tM ′ = insertMany tM [(b, l + 1) | b ← bs ]

9.5. Examples.

(1) In Example 9.6 in [1], we find the lexicographically minimal conjugate-semistandard

tableau family of shape (3, 1)7. At Step 4, we have k1 = 3, k2 = 2, k3 = 1 and

we require just one more tableau, and there are three partition chains:

(3, 1)→1 (3)→1 (2)→1 (1),

(3, 1)→1 (2, 1)→1 (2)→1 (1),

(3, 1)→1 (2, 1)→1 (1, 1)→1 (1).

Taking k4 = 1 they give the three tableau below:

1 2 3
4

, 1 2 4
3

, 1 3 4
2

.

This is one too many, so k4 = 0, and correspondingly kPair [3, 1] [1, 1, 1] 2 evalu-

ates to Just (0, 0). Exactly the same tableaux correspond to the chains (3, 1)→1

· · · →1→ ∅, and since there is a unique empty conjugate-semistandard tableau,
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even taking k5 = 0 gives too many tableau. Therefore kPair [3, 1] [1, 1, 1, 1]

evaluates to Nothing . (This is the only ‘failure’ case.)

(2) We give a further example to show the case when k1 = k2; then the partition

chains at Step 3 are given by the Pieri removal of two boxes from µ, reflecting

that both will get the entry k1 + 1. Take µ = (2, 1) and n = 7. In Step 1, since

there are 8 conjugate-semistandard tableau with maximum permitted entry 3,

we take k1 = 2, getting

1 2
1

1 2
2

.

In Step 2 the chains (2, 1)→1 (2) and (2, 1)→1 (1, 1) correspond to tableaux of

the forms
? ?
3

? 3
?

.

(Here 3 = k1 + 1 is inserted by the code immediately above.) Since k1 = 3 was

too big on Step 2, we have k2 ≤ 2, and taking k2 = 2 gives

1 2
3

, 1 3
1

, 1 3
2

, 2 3
2

.

One more tableau is required, and in Step 3 we remove a Pieri chain of 2 boxes,

and take k3 = 1, getting

1 3
1

.

The algorithm, as coded below, continues with k4 = 0 (and no tableaux are taken

in the final step). After Step 2, the function newCLS below updates the tuple

(k1) = (2) = (`c11 ) = (21) to (k1, k2) = (2, 2) = (`′
c′1
1 ) = (22). The full output of

the algorithm can be seen using printAlg $ lexMinimalFamilyAll [2, 1] 7.

9.6. Algorithm 9.5.

oneStep :: Partition → [(NumberOfBoxesToRemove,L)]→ Target → (K , [Tableau ])

oneStep p cls target =

case kPair p cs target of

Just (k , a)→ (k , combine [partitionChainToFamily qs k ls

| (qs, )← chainsWithSizes p cs k ])

Nothing → (−1, combine [partitionChainToFamily qs (−1) ls

| (qs, )← chainsWithSizes p cs (−1)])

where cs = [c | (c, )← cls ]

ls = [ l | ( , l)← cls ]

combine = sortBy entryOrdering ◦ concat

newCLS :: [(NumberOfBoxesToRemove,L)]→ K → [(NumberOfBoxesToRemove,L)]

newCLS [ ] k = [(1, k)]
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newCLS cls k | l ≡ k = dropLast 1 cls ++ [(c + 1, k)]

| otherwise = cls ++ [(1, k)]

where (c, l) = last cls

oneStepFull :: Partition → [(NumberOfBoxesToRemove,L)]→ Target

→ ([(NumberOfBoxesToRemove,L)],Target , [Tableau ])

oneStepFull p cls target = (newCLS cls k , target − length ts, ts)

where (k , ts) = oneStep p cls target

type NumberOfSteps = Int

sSteps :: Partition → [(NumberOfBoxesToRemove,L)]→ Target → NumberOfSteps

→ ([(NumberOfBoxesToRemove,L)],Target , [[Tableau ]])

sSteps cls t 0 = (cls, t , [ ])

sSteps p cls t s = (cls ′′, t ′′, ts : ts ′)

where (cls ′, t ′, ts) = oneStepFull p cls t

(cls ′′, t ′′, ts ′) = sSteps p cls ′ t ′ (s − 1)

lexMinimalFamilyAll :: Partition → Target

→ ([(NumberOfBoxesToRemove,L)], [NumberOfNewTableaux ], [[Tableau ]], [Tableau ])

lexMinimalFamilyAll p target =

let (cls, target ′, tss) = sSteps p [ ] target (sum p)

( , ts ′) = oneStep p cls target ′

as = map length tss ++ [target ′ ]

in (cls, as, tss, ts ′)

allLexMinimalFamilies :: Partition → Target → [[Tableau ]]

allLexMinimalFamilies p t = let ( , as, tss, ts ′) = lexMinimalFamilyAll p t

in [concat tss ++ ts | ts ← subsequencesOfLength (last as) ts ′ ]

finalChoices p t = subsequencesOfLength (last as) ts ′

where ( , as, tss, ts ′) = lexMinimalFamilyAll p t

leastLexMinimalFamily :: Partition → Target → [Tableau ]

leastLexMinimalFamily p t = let ( , as, tss, ts ′) = lexMinimalFamilyAll p t

in concat tss ++ take (last as) ts ′
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For example, printFamilies $ allLexMinimalFamilies [2, 1] 10 evaluates to

1 2
1

, 1 2
2

, 1 3
1

, 1 2
3

, 1 3
2

, 2 3
2

, 1 3
3

, 2 3
3

, 1 4
1

, 1 2
4

1 2
1

, 1 2
2

, 1 3
1

, 1 2
3

, 1 3
2

, 2 3
2

, 1 3
3

, 2 3
3

, 1 4
1

, 1 4
2

The first of these is the least family (the tie in the entry order is broken by the total

column order). The two tableau in the final position that complete the families are the

output of Step F of Algorithm 9.5, and can be constructed using finalChoices [2, 1] 10.

9.7. Printing output of Algorithm 9.5.

printSteps :: ([(NumberOfBoxesToRemove,L)], [[Tableau ]])→ IO ()

printSteps (cls, tss) =

do putStrLn $ show cls

sequence [printTableaux ts | ts ← tss ]

printAlg :: ([(NumberOfBoxesToRemove,L)], [NumberOfNewTableaux ],

[[Tableau ]], [Tableau ])→ IO ()

printAlg (cls, as, tss, ts ′) =

do putStrLn $ show cls

putStrLn $ show as ++ "\n"

sequence [printTableaux ts >> putStrLn "" | ts ← tss, ts 6≡ [ ]]

printTableaux ts ′

Pretty printing of tableaux.

printList :: (Show a)⇒ [a ]→ IO ()

printList xs = putStrLn $ unlines $ map show xs

printListMagma :: (Show a)⇒ [a ]→ IO ()

printListMagma xs = putStrLn $ "[" ++ (dropLast 2 $ unlines $ [show x ++ "," | x ← xs ]) ++ "]\n"

showTableau :: Tableau → String

showTableau t = concat [showTableauRow es ++ "\n" | es ← t ]

showTableauRow :: [Entry ]→ String

showTableauRow es = concat [f e | e ← es ] ++ " "

where f 0 = "."; f 10 = "T"; f 11 = "J"; f 12 = "Q"; f 13 = "K";

f 14 = "A"; f 15 = "F"; f e = show e

printTableauxNoLn :: [Tableau ]→ IO ()

printTableauxNoLn ts = putStr $ showTableaux ts
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printTableaux :: [Tableau ]→ IO ()

printTableaux ts = putStrLn $ showTableaux ts

showTableaux :: [Tableau ]→ String

showTableaux [ ] = ""

showTableaux ts | length ts 6 10 = ls

| otherwise = ls ++ "\n" ++ showTableaux (drop 10 ts)

where ls = unlines (linesTableauxB (take 10 ts))

linesTableauPadding t = [pad (s − length l) l | l ← ls ]

where ls@(l : ) = lines (showTableau t)

s = length l + 2

linesTableauxB ts = [concat l | l ← ls ′ ]

where ls ′ = transpose [ linesTableauPadding t | t ← ts ]

pad s l = l ++ take s spaces

where spaces = repeat ’ ’

printFamilies tss = sequence [printTableaux ts >> putStrLn "" | ts ← tss ]

10. Utility functions

xs ‘diff ‘ ys = [x | x ← xs,¬ (x ∈ ys)]

xs ‘meet ‘ ys = [x | x ← xs, x ∈ ys ]

partialSums :: (Num a)⇒ [a ]→ [a ]

partialSums = scanl1 (+)

fromJust (Just x ) = x

fromJust Nothing = error "fromJust: Nothing"

maybeLast [ ] = Nothing

maybeLast xs = Just (last xs)

position x xs = fromJust $ lookup x (zip xs [0 . .])

dropLast k xs = reverse $ drop k $ reverse xs

subsequencesOfLength 0 = [[ ]]

subsequencesOfLength [ ] = [ ]

subsequencesOfLength k (y : ys) =
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[y : ys | ys ← subsequencesOfLength (k − 1) ys ] ++ subsequencesOfLength k ys

collectSorted [ ] = [ ]

collectSorted (x : [ ]) = [(x , 1)]

collectSorted (x : ys) = (x ,m) : collectSorted ys ′

where m = 1 + length (takeWhile (≡ x ) ys)

ys ′ = dropWhile (≡ x ) ys
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