CONJUGATE-SEMISTANDARD TABLEAU FAMILIES

This is a self-contained Haskell module for generating semistandard and conjugate semistandard tableau and tableau families. It implements Algorithm 9.5 in [1], and may also be used to verify Example 8.3.

1. Preliminaries

```
module TableauFamilies where
import qualified Data.Map as M
import Data.List (delete, nub, sort, sortBy, transpose)
```

Partitions and compositions. Use sum to get the size of a partition.

```
type Part \(=\) Int
type Partition \(=[\) Part \(]\)
type SizeOfPartition \(=\) Int
type NumberOfRows \(=\) Int
type NumberOfColumns \(=\) Int
partitionsInBox :: NumberOfRows \(\rightarrow\) NumberOfColumns \(\rightarrow\) SizeOfPartition \(\rightarrow\) [Partition]
partitionsInBox _ _ \(0=[[]]\)
partitionsInBox 0 - - = []
partitionsInBox r m \(n=\left[c:\right.\) rest \(\mid c \leftarrow\left[1 . . m^{‘}\right.\) min \(\left.^{‘} n\right]\),
                                    rest \(\leftarrow\) partitionsInBox \((r-1) c(n-c)\) ]
partitions :: SizeOfPartition \(\rightarrow\) [Partition \(]\)
partitions \(n=\) partitionsInBox \(n n n\)
conjugatePartition :: Partition \(\rightarrow\) Partition
conjugatePartition [] = []
conjugatePartition \(p @(a:-)=[f j \mid j \leftarrow[1 . . a]]\)
    where \(f j=\) length \(\$\) takeWhile \((\geqslant j) p\)
type Composition \(=[\) Part \(]\)
type SizeOfComposition \(=\) Int
compositions :: NumberOfRows \(\rightarrow\) SizeOfComposition \(\rightarrow\) [Composition]
```

[^0]```
compositions _ \(0=[[]]\)
compositions \(0_{-}=[]\)
compositions \(k n=[m: c \mid m \leftarrow[0 \ldots n], c \leftarrow\) compositions \((k-1)(n-m)]\)
```


## Dominance order on compositions.

```
dominates :: Composition \(\rightarrow\) Composition \(\rightarrow\) Bool
\(p^{\prime}\) dominates‘ \(q=\) and \(\$\) zipWith \((\geqslant)(\) partialSums \(p)(\) partialSums \(q)\)
```


## Young Diagrams.

```
type Row = Int
```

type Column $=$ Int
type $B o x=($ Row, Column $)$
type YoungDiagram $=[$ Box $]$
youngDiagram :: Partition $\rightarrow$ YoungDiagram
youngDiagram $p=[(i, j) \mid(i, x) \leftarrow z i p[1 .] p,. j \leftarrow[1 \ldots x]]$

## 2. Tableaux

```
type Entry \(=\) Int
type TableauRow \(=[\) Int \(]\)
type Tableau \(=[\) TableauRow \(]\)
maximumEntry :: Tableau \(\rightarrow\) Int
maximumEntry [] = error "maximumEntry: empty tableau"
maximumEntry \(t=\) maximum \(\$\) concat \([\) es \(\mid\) es \(\leftarrow t]\)
```

Mathematically a tableau is a function from the Young diagram to the set of entries. This corresponds to a Haskell map.

```
type TableauM = M.Map Box Entry
```

tableauTo TableauM :: Tableau $\rightarrow$ TableauM
tableauToTableauM $t=M$.fromList $\$$ concat $\$[$ pairsForRow ixs $\mid(i, x s) \leftarrow z i p[1 .] t$.
where pairsForRow $i x s=[((i, j), x) \mid(j, x) \leftarrow$ zip [1..] xs $]$
tableauMToTableau :: TableauM $\rightarrow$ Tableau
tableauMTo Tableau $t M=[$ row $i \mid i \leftarrow[1 \ldots k]]$
where row $i=[t M M .!(i, j) \mid j \leftarrow[1 .$. lengthOfRow $i]]$
lengthOfRow $i=$ maximum $\left[j \mid\left(i^{\prime}, j\right) \leftarrow\right.$ M.keys $\left.t M, i^{\prime} \equiv i\right]$
$k \mid M$.null $t M=0$
$\mid$ otherwise $=$ maximum $\left[i \mid\left(i,{ }_{-}\right) \leftarrow M\right.$.keys $\left.t M\right]$
changeEntry :: TableauM $\rightarrow$ Box $\rightarrow$ Entry $\rightarrow$ TableauM

```
changeEntry tM (i,j)x=M.adjust (\\ ->) (i,j)tM
insertMany :: TableauM }->[(\mathrm{ Box, Entry)] }->\mathrm{ TableauM
insertMany tM [] = tM
insertMany tM ((b,x) : rest) = insertMany tM' rest
 where tM' = M.insert b x tM
```


## 3. Total column colexicographic order on tableaux

Let $\Omega$ be totally ordered under $\leq$. Let $X=\left\{x_{1}, \ldots, x_{d}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{d}\right\}$ be multisubsets of $\Omega$, written so that $x_{1} \leq \ldots \leq x_{d}$ and $y_{1} \leq \ldots \leq y_{d}$. The colexicographic order on multisubsets of $\Omega$ is defined by $X<Y$ if and only if for some $q$ we have $x_{q}<y_{q}$ and $x_{q+1}=y_{q+1}, \ldots, x_{d}=y_{d}$. It is a total order.

$$
\begin{aligned}
& \text { colexGreater }::(\text { Ord } a) \Rightarrow[a] \rightarrow[a] \rightarrow \text { Bool } \\
& \text { colexGreater ys } x s=\text { comparePairsLex }(>) \$ \text { zip }(\text { reverse ys })(\text { reverse } x s)
\end{aligned}
$$

$$
\text { comparePairsLex }::(E q a) \Rightarrow(a \rightarrow a \rightarrow \text { Bool }) \rightarrow[(a, a)] \rightarrow \text { Bool }
$$

$$
\text { comparePairsLex }_{-}[]=\text {True }
$$

$$
\text { comparePairsLex ord }((x, y) \text { : abs })
$$

$$
\mid x \equiv y=\text { comparePairsLex ord abs }
$$

$$
\mid \text { otherwise }=x^{‘} \text { ord' }^{6} y
$$

We define a total order on column semistandard tableau as follows: let $s$ and $t$ be distinct such tableaux, take the rightmost column where they differ, and compare these columns under the colexicographic order.

```
columnGreater \(::\) Tableau \(\rightarrow\) Tableau \(\rightarrow\) Bool
columnGreater \(t s=\) comparePairsLex colexGreater \(\$\) zip (reverse \(\left.t^{\prime}\right)\left(\right.\) reverse \(\left.s^{\prime}\right)\)
where \(t^{\prime}=\) transpose \(t ; s^{\prime}=\) transpose \(s\)
```

For use in sortBy convert columnGreater to type Ordering (see $\S 10$ below).

```
totalOrdering \(::\) Tableau \(\rightarrow\) Tableau \(\rightarrow\) Ordering
totalOrdering \(t s\)
 \(\mid t \equiv s=E Q\)
 \(\mid t\) 'columnGreater' \(s=G T\)
 \(\mid\) otherwise \(=L T\)
```


## 4. Majorization order

Let $X=\left\{x_{1}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{r}\right\}$ be subsets of a totally ordered set $\Omega$, with the notation chosen so that $x_{1}<x_{2}<\ldots<x_{r}$ and $y_{1}<y_{2}<\ldots<y_{r}$. We say that $Y$ majorizes $X$, and write $X \preceq Y$, if $x_{1}<y_{1}, x_{2}<y_{2}, \ldots, x_{r}<y_{r}$.

```
majorizesList \(::(\) Ord \(a) \Rightarrow[a] \rightarrow[a] \rightarrow\) Bool
majorizesList ys xs \(=\) and \(\$\) zipWith \((\geqslant)\) ys xs
```

If $s$ and $t$ are conjugate-semistandard tableaux then we say that $t$ majorizes $s$ if each row of $t$ majorizes the corresponding row of $s$.

```
majorizes \(::\) Tableau \(\rightarrow\) Tableau \(\rightarrow\) Bool
majorizes \(t s=\) and \(\$\) zipWith majorizesList \(t s\)
incomparable \(s t=\neg(\) majorizes \(s t) \wedge \neg(\) majorizes \(t s)\)
```

Neighbours in the majorization order. The neighbours of a conjugate-semistandard tableau are obtained by considering each position in turn, and decrementing the entry in this position when this gives a conjugate-semistandard tableau.

```
type ConjugateSemistandardTableau \(=\) Tableau
downNeighbours :: ConjugateSemistandardTableau \(\rightarrow\) [ConjugateSemistandardTableau]
downNeighbours \(t=\)
 [tableauMToTableau \(t M \mid t M \leftarrow\) downNeighboursM \$ tableauToTableauM t]
downNeighboursM :: TableauM \(\rightarrow\) [TableauM]
downNeighboursM \(t M=\left[t M^{\prime} \mid(i, j) \leftarrow M\right.\).keys \(t M\),
 Just \(t M^{\prime} \leftarrow[\) decrement \(\left.t M(i, j)]\right]\)
decrement \(::\) TableauM \(\rightarrow\) Box \(\rightarrow\) Maybe TableauM
decrement \(t M(i, j) \mid e \not \equiv 1 \wedge\) rowCheck \(\wedge\) columnCheck \(=\) Just \(t M^{\prime}\)
 \(\mid\) otherwise \(=\) Nothing
 where \(e=t M M .!(i, j)\)
 rowCheck \(=j \equiv 1 \vee e>t M M .!(i, j-1)+1\)
 columnCheck \(=i \equiv 1 \vee e>t M M .!(i-1, j)\)
 \(t M^{\prime}=\) changeEntry \(t M(i, j)(e-1)\)
```

Closed families. A closed conjugate-semistandard tableaux family is a set of conjugatesemistandard tableau downwardly closed under the majorization order. We say such sets are downsets; any downset is determined by its maximal elements.

Take a list $\mathcal{T}$ of conjugate-semistandard tableaux, with head $t$. We take $t$ if it is maximal in $\mathcal{T}$ and, in either case, continue with the tableaux not majorized by $t$. This ensures that if $s$ is not maximal, or appears multiple times in $\mathcal{T}$, then either $s$ is thrown out because it is majorized by some earlier tableau, or it thrown out when it reaches the head of the list, and is majorized by some later tableau.
type Maximal $=$ ConjugateSemistandardTableau

```
maximals \(::[\) ConjugateSemistandardTableau \(] \rightarrow[\) Maximal \(]\)
maximals [] = []
maximals \((x: x s) \mid x\) Maximal \(=x:\) maximals \(x s^{\prime}\)
 \(\mid\) otherwise \(=\) maximals \(x s^{\prime}\)
where \(x\) Maximal \(=\) and \(\left[\neg\left(y^{\prime}\right.\right.\) 'majorizes' \(\left.\left.^{\prime}\right) \mid y \leftarrow x s, y \not \equiv x\right]\)
 \(x s^{\prime}=\left[y \mid y \leftarrow x s, \neg\left(x^{\prime}\right.\right.\) majorizes \(\left.\left.^{‘} y\right)\right]\)
```

Given a list of incomparable conjugate-semistandard tableaux $\mathcal{M}$, the downset having these tableaux as its maximal elements may be constructed as follows:
(1) Put all tableaux in $\mathcal{M}$ in the family;
(2) Let $\mathcal{T}$ be the list of tableaux one step below a maximal $s \in \mathcal{M}$, in the majorization order. Repeat (1) with the maximal elements of $\mathcal{T}$.

Note that if tableaux $t, u \in \mathcal{T}$ satisfy $t \succeq u$ then we will see $u$ in the downset on $t$, so it is safe to discard $u$. Indeed, this ensures that no conjugate-semistandard tableau can appear twice, because whenever we put tableaux into the family, they are all incomparable, and (except in the first step) each is majorized by a tableau already in the family

```
type TableauFamily \(=[\) ConjugateSemistandardTableau \(]\)
downSetSorted \(::\) [Maximal \(] \rightarrow\) TableauFamily
downSetSorted ss \(=\) sortBy totalOrdering (downSetOnMaximals ss)
downSetOnMaximals :: [Maximal] \(\rightarrow\) TableauFamily
downSetOnMaximals [] = []
downSetOnMaximals ss \(=s s+\) downSetOnMaximals ss"
 where \(s s^{\prime}=\) concat [downNeighbours \(s \mid s \leftarrow s s\)]
 \(s s^{\prime \prime}=\) maximals \(s s^{\prime}\)
```

downSet :: ConjugateSemistandardTableau $\rightarrow$ TableauFamily
downSet $t=$ downSetOnMaximals $[t]$

This gives a convenient way to generate all conjugate-semistandard tableau of a given shape that is not much slower than more sophisticated methods using iterated Pieri's rule removal of boxes (see $\S 9.2$ below).

```
type MaximumPermittedEntry = Int
conjugateSemistandardTableauxByMaj :: Partition }->\mathrm{ MaximumPermittedEntry
 [ConjugateSemistandardTableau]
conjugateSemistandardTableauxByMaj [] _ = [[]]
conjugateSemistandardTableauxByMaj p@(a:_) k
```

```
 \(\mid a>k=[]\)
 \(\mid\) otherwise \(=\) downSet \([[k-a+1 . . k] \mid a \leftarrow p]\)
totalOrderCSSYTs :: Partition \(\rightarrow\) MaximumPermittedEntry
 \(\rightarrow\) [ConjugateSemistandardTableau]
totalOrderCSSYTs p \(m=\) sortBy totalOrdering (conjugateSemistandardTableaux \(p\) m)
numberOfCSSYTs :: Partition \(\rightarrow\) MaximumPermittedEntry \(\rightarrow\) Int
numberOfCSSYTs p \(m=\) length \(\$\) conjugateSemistandardTableaux p \(m\)
```

For example, printTableaux \$ totalOrderCSSYTs [2, 2] 4 evaluates to

| 1 | 2 | | | |
|---|---|---|---|---|
| 1 | 2 |, | 1 | 2 |
| :--- | :--- |
| 1 | 3 |, | 1 | 2 |
| :--- | :--- |
| 2 | 3 |, | 1 | 3 |
| :--- | :--- |
| 2 | 3 |, | 1 | 2 |
| :--- | :--- |
| 3 | 4 |, | 1 | 3 |
| :--- | :--- |
| 2 | 4 |.

## 5. Constructing Conjugate-Semistandard tableau families

We use a refinement of the algorithm used to generate the downset on a conjugatesemistandard tableau. Start with a list of candidate maximal tableaux $\mathcal{M}$ and the empty family. If $s$ is at the head of $\mathcal{M}$ then either

- declare that $s$ is not in the family, or
- insert the downset on $s$ into the family and remove all candidate maximal tableau $t$ from $\mathcal{M}$ that are comparable to $s$.
Then repeat with the tail of $\mathcal{M}$.

```
type \(N=\) Int
type SizeOfFamily = Int
type CandidateMaximal \(=\) ConjugateSemistandardTableau
tableauFamiliesMS :: \(N \rightarrow\) ([CandidateMaximal],[Maximal], SizeOfFamily)
 \(\rightarrow[[\) Maximal \(]]\)
tableauFamiliesMS \(n([], t s, l)\)
 \(\mid l \equiv n=[t s]\)
 | otherwise = []
tableauFamiliesMS \(n((s: m s), t s, l)\)
 \(\mid l>n=[]\)
 \(\mid l \equiv n=[t s]\)
 \(\mid\) otherwise \(=\) tableauFamiliesMS \(n\left(m s^{\prime}, t s^{\prime}, l^{\prime}\right)+\) tableauFamiliesMS \(n(m s, t s, l)\)
 where \(m s^{\prime}=\left[s^{\prime} \mid s^{\prime} \leftarrow m s, s^{\prime}\right.\) incomparable \(\left.s^{\prime}\right]\)
 \(t s^{\prime}=s: t s\)
 \(l^{\prime}=l+\) length \([u \mid u \leftarrow\) downSet \(s\), and [\(u\) 'incomparable‘ \(\left.t \mid t \leftarrow t s]\right]\)
tableauFamiliesM :: Partition \(\rightarrow N \rightarrow\) MaximumPermittedEntry \(\rightarrow\) [[Maximal \(]\)]
```

```
tableauFamiliesM p n k= tableauFamiliesMS n (ms, [],0)
```

where $m s=$ conjugateSemistandardTableaux $p k$

```
tableauFamilies :: Partition }->N->\mathrm{ MaximumPermittedEntry }->\mathrm{ [TableauFamily]
tableauFamilies p n k = [downSetSorted ss |ss \leftarrowtableauFamiliesM p n k
```


## 6. Weights and types of tableau and tableau families

```
type Weight = [Multiplicity]
type Multiplicity = Int
```

```
weightT :: Tableau }->\mathrm{ [Multiplicity]
```

weightT :: Tableau }->\mathrm{ [Multiplicity]
weightT }t=[\mathrm{ numberOf }x|x\leftarrow[1···maximumEntry t]]
weightT }t=[\mathrm{ numberOf }x|x\leftarrow[1···maximumEntry t]]
where numberOf x = sum [countR x r | r \leftarrowt]
where numberOf x = sum [countR x r | r \leftarrowt]
countR x r = length [ }y|y\leftarrowr,y\equivx

```
 countR x r = length [}y|y\leftarrowr,y\equivx
```

weight $::[$ ConjugateSemistandardTableau $] \rightarrow$ Weight
weight $t s=$ sumWeights $[$ weight $T \quad t \leqslant t s]$
weightM $::[$ Maximal $] \rightarrow$ Weight
weightM ss $=$ weight $\$$ downSetOnMaximals ss
addWeights $::$ Weight $\rightarrow$ Weight $\rightarrow$ Weight
addWeights $u v \mid$ length $u<$ length $v=$ addWeights $v u$
$\mid$ otherwise $=$ zip With $(+) u v+$ drop $($ length $v) u$
sumWeights $::$ [Weight] $\rightarrow$ Weight
sum Weights $p s=$ foldr1 addWeights ps
type PType $=$ Partition
ptype :: [ConjugateSemistandardTableau] $\rightarrow$ Partition
ptype $t s=$ conjugatePartition $\$$ weight $t s$
ptypeM :: [Maximal] $\rightarrow$ Partition
ptypeM ss $=$ ptype $\$$ downSetOnMaximals ss

## 7. TABLEAU FAMILIES OF MAXIMAL WEIGHT (EQUIVALENTLY, MINIMAL TYPE)

A tableau family of maximal weight (equivalently minimal type) is closed. To select the closed families of maximal weight we use a similar trick to maximals to throw
out families of non-maximal weight, with a small change because there may be several different families with the same maximal weight

```
type \(M u=\) Partition
type \(N u=\) Partition
closedWeightsM :: Mu \(\rightarrow N \rightarrow\) MaximumPermittedEntry \(\rightarrow[(\) Weight, \([\) Maximal \(])]\)
closedWeightsM p \(n k=\) sort \([(\) weightM ss,ss) |ss tableauFamiliesM \(p\) n \(k\)]
maximalWeightsM \(:: M u \rightarrow N \rightarrow\) MaximumPermittedEntry \(\rightarrow[(\) Weight, \([\) Maximal \(])]\)
maximalWeightsM p \(n k=\) takeMaximalWeights \(\$\) closedWeightsM \(p n k\)
maximalWeights \(:: M u \rightarrow N \rightarrow\) MaximumPermittedEntry \(\rightarrow\) [Weight]
maximalWeights p \(n k=\left[w \mid\left(w,{ }_{-}\right) \leftarrow\right.\) maximalWeightsM p \(\left.n k\right]\)
takeMaximalWeights \(::[(\) Weight,\([\) Maximal \(])] \rightarrow[(\) Weight,\([\) Maximal \(])]\)
takeMaximalWeights [] = []
takeMaximalWeights ((u,ss):uss)
 \(\mid\) pMaximal \(=(u, s s):\) takeMaximalWeights uss \({ }^{\prime}\)
 \(\mid\) otherwise \(=\) takeMaximalWeights uss \({ }^{\prime}\)
 where \(p\) Maximal \(=\) and \(\left[\neg\left(v^{\prime}\right.\right.\) dominates‘ \(\left.\left.u\right) \mid\left(v,{ }_{-}\right) \leftarrow u s s, v \not \equiv u\right]\)
 \(u s s^{\prime}=\left[(v, t s) \mid(v, t s) \leftarrow u s s, u \equiv v \vee \neg\left(u^{\prime}\right.\right.\) dominates‘\(\left.\left.v\right)\right]\)
minimalTypes \(:: M u \rightarrow N \rightarrow\) MaximumPermittedEntry \(\rightarrow\) [PType]
minimalTypes p \(n k=\) sort [conjugatePartition \(q \mid q \leftarrow\) maximalWeights \(p n k\)]
```

The greatest entry in a conjugate-semistandard tableau family of shape $\mu^{n}$ is $m+n-1$.

```
minimalTypes \(A:: M u \rightarrow N \rightarrow\) [PType]
minimalTypes \(A\) p \(n=\) minimalTypes \(p n(\operatorname{sum} p+n-1)\)
maximalWeights \(A:: M u \rightarrow N \rightarrow[\) PType \(]\)
maximalWeightsA \(p n=\) maximalWeights \(p n(\operatorname{sum} p+n-1)\)
```

minMaxs $:: M u \rightarrow N \rightarrow$ [PType]
minMaxs $p n=$ minimalTypesA $p n^{\prime}$ meet' $^{\text {maximalWeights } A(\text { conjugatePartition } p) n}$

Case $\mu=(3)$. Identify conjugate-semistandard (3)-tableau with 3 -subsets of $\mathbf{N}$. The downset on $\{a, b\}$ where $a<b$ consists of all $\{1,2\}, \ldots,\{1, a\}, \ldots,\{a, a+1\}, \ldots,\{a, b\}$. The sets with common least element $m$ contain $2(b-m)$ elements, so the type of the downset is a partition of $\sum_{m=1}^{a} 2(b-m)=a(2 b-a-1)$. It follows that the downset on $\{r, a, b\}$ contains $(a-r)(2 b-a-r-1)$ sets with least element $r$. Therefore $\{r, a, b\}$ is a candidate maximal in a set family of size $n$ only if $(a-r)(2 b-a-r-1)<3 n$.
threeFamiliesCandidateMaximals $n=m s^{\prime}$

$$
\begin{aligned}
& \text { where } m s=\text { conjugateSemistandardTableaux }[3](n+2) \\
& \qquad m s^{\prime}=[t \mid t @[[r, a, b]] \leftarrow m s,(a-r) *(2 * b-a-r-1) \leqslant 3 * n]
\end{aligned}
$$

threeFamilies $n=$
tableauFamiliesMS $n$ (threeFamiliesCandidateMaximals $n,[], 0)$
threeTypes $n=$ collectSorted $\$$ sort $\$[$ ptypeM $m s \mid m s \leftarrow$ threeFamilies $n]$
threeTypesMultiple $n=[(p, m) \mid(p, m) \leftarrow$ threeTypes $n, m \geqslant 2]$
three TypesClosedNonMinimal $n=[($ conjugatePartition $w, m s) \mid(w, m s) \leftarrow v s$ 'diff'vs']
where $v s=[($ weightM ms, ms $) \mid m s \leftarrow$ threeFamilies $n]$ $v s^{\prime}=$ takeMaximalWeights vs
7.1. Closed non-maximal families. It is an open question whether every closed conjugate-semistandard tableau family corresponds to a summand of a generalized Foulkes module.

```
closedNonMaximalWeightsM :: Mu \(\rightarrow N \rightarrow\) MaximumPermittedEntry
 \(\rightarrow[(\) Weight,\([\) Maximal \(])]\)
closedNonMaximalWeightsM p \(n k\)
 \(=\) closedWeightsM p \(n k\) ‘diff' maximalWeightsM pnk
closedNonMaximalWeights \(:: M u \rightarrow N \rightarrow\) MaximumPermittedEntry \(\rightarrow\) [Weight \(]\)
closedNonMaximalWeights p \(n k\)
 \(=\left[w \mid\left(w,{ }_{-}\right) \leftarrow\right.\) closedNonMaximalWeightsM \(\left.p n k\right]\)
```

7.2. Unique families. Corollary 9.10 in [1] characterizes the partitions $\mu$ and $n \in \mathbf{N}$ such that there is a unique conjugate-semistandard tableau family of shape $\mu^{n}$.
uniqueFamily $p @\left(a:{ }_{2}\right) n=l \equiv 1$
where $l=$ length $\$$ maximalWeights $p n(n+a-1)$

## 8. Example 8.3 In [1]

Define

$$
u=\begin{array}{|l|l}
\hline 1 & 2 \\
\hline 4 &
\end{array}, v=\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline 2 &
\end{array}, w=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 3 &
\end{array}, x=\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 2 & \\
\hline
\end{array} .
$$

These tableaux are incomparable in the majorization order.

$$
u=[[1,2],[4]] ; v=[[2,3],[2]] ; w=[[1,3],[3]] ; x=[[1,4],[2]]
$$

The tableaux majorized by one of $u, v, w, x$ are constructed below.

$$
\begin{aligned}
& t s=\text { sortBy totalOrdering } \$ \text { downSetOnMaximals }[u, v, w, x] \\
& {[t 1, t 2, t 3, t 4, t 5, t 6, t 7, t 8, t 9, t 10]=t s} \\
& \text { checkLabels }=\left(u \equiv t_{4}\right) \wedge\left(v \equiv t^{r}\right) \wedge(w \equiv t 8) \wedge(x \equiv t 10)
\end{aligned}
$$

It is convenient to have these tableaux printed in this notation.

$$
\begin{aligned}
\text { showExT }:: & \text { ConjugateSemistandardTableau } \rightarrow \text { String } \\
\text { showExT } s & \mid s \equiv u=" \mathrm{u} " \\
& \mid s \equiv v=" \mathrm{v} " \\
& \mid s \equiv w=" \mathrm{w} \\
& \mid s \equiv x=" \mathrm{x} " \\
& \mid s \in t s=" \mathrm{t} "+\text { show }(\text { position } s \text { ts }+1) \\
& \mid \text { otherwise }=\text { error } \$ \text { "showExT: " }+ \text { show } s
\end{aligned}
$$

The conjugate-semistandard tableau families and conjugte-semistandard tableau family tuples defined in Example 8.3 are as follows.

```
\(s m=t s{ }^{‘}\) diff' \([u, v, w, x]\)
add ss ys \(=\) sortBy totalOrdering \(\$\) ss \(+y s\)
\(s s 1=s m^{`} a d d^{`}[u, v] ; s s 2=s m^{`} a d d^{`}[w, x] ; s s 3=s m^{`} a d d^{`}[u, x]\)
\(s s 4=s m^{`} a d d^{‘}[v, w] ; s s 5=s m^{`} a d d^{`}[u, w] ; s s 6=s m^{‘} a d d^{‘}[v, x]\)
\(t f t 1=[s s 1, s s 2] ; t f t 2=[s s 3, s s 4] ; t f t 3=[s s 5, s s 6] ; t f t 4=[s s 1, s s 5] ; t f t 5=[s s 6, s s 2]\)
```

We claim that these are all closed conjugate-semistandard tableau family tuples of shape $(2,2)^{(8,8)}$ and type $\left(4^{4}, 3^{5}, 2^{5}, 1^{7}\right)$.
exampleWeight $=$ conjugatePartition $[4,4,4,4,3,3,3,3,3,2,2,2,2,2,1,1,1,1,1,1,1]$
closedWeightsM88 = closedWeightsM $[2,1] 84$

$$
\begin{aligned}
\text { exampleTuplesM }=\left[\left((p, m s),\left(p^{\prime}, m s^{\prime}\right)\right) \mid\right. & (p, m s) \leftarrow \text { closedWeightsM88, } \\
& \left(p^{\prime}, m s^{\prime}\right) \leftarrow \text { closedWeightsM88, } \\
& p \leqslant p^{\prime}, \\
& \left.p^{\prime} \text { addWeights‘ } p^{\prime} \equiv \text { exampleWeight }\right]
\end{aligned}
$$

exampleTuplesF
$=\left[\left(\right.\right.$ downSetSorted $m s$, downSetSorted $\left.m s^{\prime}\right)$
$\mid\left((-, m s),\left(-, m s^{\prime}\right)\right) \leftarrow$ exampleTuplesM]
exampleTuplesFT $=[($ identifyFamily $t s$, identifyFamily ss,ts,ss)|(ts,ss)$\leftarrow$ exampleTuplesF $]$
exampleTupleLabels $=\left[(i, j) \mid\left(\right.\right.$ Just $i$, Just $\left.j,{ }_{-},{ }_{-}\right) \leftarrow$ exampleTuplesFT $]$

```
identifyFamily ss \(\mid\) ss \(\in\) sss \(=\) Just \(\$ 1+\) position ss sss
 \(\mid\) otherwise \(=\) Nothing
```

where $s s s=[s s 1, s s 2, s s 3, s s 4, s s 5, s s 6]$
exampleTupleLabels evaluates to $[(4,3),(6,5),(6,2),(1,5),(1,2)]$. Thus the first tableau family tuple found by Haskell is (ss4, ss3), which is up to the order of the two families, the same as tft2 above, and so on.

## 9. Tableau families of lexicographically minimal type

In this section we implement Algorithm 9.5 in [1].
9.1. Entry order on conjugate-semistandard tableau. A further order will be useful: we first compare the multisets of entries colexicographically, then use the total column colexicographic order to break ties.

```
entryGreater :: Tableau \(\rightarrow\) Tableau \(\rightarrow\) Bool
entryGreater \(t s \mid x s \equiv y s=\) columnGreater \(t s\)
 \(\mid\) otherwise \(=\) colexGreater ys xs
 where \(x s=\operatorname{sort}(\) concat \(s)\)
 \(y s=\operatorname{sort}(\) concat \(t)\)
entryOrdering :: Tableau \(\rightarrow\) Tableau \(\rightarrow\) Ordering
entryOrdering \(t s\)
 \(\mid t \equiv s=E Q\)
 \(t^{\prime}{ }^{\text {'entryGreater' }} s=G T\)
 | otherwise \(=L T\)
entryOrderCSSYTs :: Partition \(\rightarrow\) MaximumPermittedEntry
 \(\rightarrow\) [ConjugateSemistandardTableau]
entryOrderCSSYTs p \(k\)
 \(=\operatorname{sortBy}\) entryOrdering (conjugateSemistandardTableaux pk)
```


### 9.2. Young and Pieri removal of boxes.

type NumberOfBoxesToRemove $=$ Int
type PartitionChain $=[$ Partition $]$
type ReversedComposition $=$ Composition

```
youngRemove :: NumberOfBoxesToRemove \(\rightarrow\) Partition \(\rightarrow\) [Partition]
youngRemove \(0 p=[p]\)
youngRemove \(r[]=[]\)
youngRemove \(r[x] \mid x>r=[[x-r]]\)
 \(\mid r \equiv x=[[]]\)
```

```
 \(\mid\) otherwise \(=[]\)
youngRemove \(r(x: y: z s)\)
 \(=\left[\left(x-r^{\prime}\right): p \mid r^{\prime} \leftarrow\left[0 \ldots(x-y)^{\prime}\right.\right.\) min' \(\left.^{‘} r\right], p \leftarrow\) youngRemove \(\left.\left(r-r^{\prime}\right)(y: z s)\right]\)
pieriRemove :: NumberOfBoxesToRemove \(\rightarrow\) Partition \(\rightarrow\) PartitionChain
pieriRemove r \(p=[\) conjugatePartition \(q \mid q \leftarrow\) youngRemove \(r \$\) conjugatePartition \(p]\)
pieriRemoveMany \(::\) ReversedComposition \(\rightarrow\) Partition \(\rightarrow\) [PartitionChain]
pieriRemoveMany [] \(p=[[p]]\)
pieriRemoveMany (\(c: c s\)) \(p=\)
 \([p: q s \mid q \leftarrow\) pieriRemove \(c p, q s \leftarrow\) pieriRemoveMany cs \(q]\)
```

To construct tableaux it is most useful to have the boxes removed at each step.

```
type BoxChain \(=[[\) Box \(]]\)
partitionChainToBoxChain :: PartitionChain \(\rightarrow\) BoxChain
partitionChainToBoxChain \(q s=\) differences [youngDiagram \(q \mid q \leftarrow q s\)]
differences :: [YoungDiagram \(] \rightarrow[[\) Box \(]]\)
differences [] = []
differences \([d]=[]\)
differences \(\left(d: d^{\prime}:\right.\) es \()=d^{\prime}\) diff' \(d^{\prime}:\) differences \(\left(d^{\prime}:\right.\) es \()\)
```

Conjugate semistandard tableau of given weight. Pieri removal gives a faster way to generate all conjugate semistandard tableaux then the method seen in §4. Note that the weight is reversed in the second function below: boxes removed first get the greatest number.

```
cssytsWith Weight \(::\) Weight \(\rightarrow\) Partition \(\rightarrow\) [ConjugateSemistandardTableau]
cssyts With Weight \(w p=\)
 [partitionChainToTableau bss \(\mid\) bss \(\leftarrow\) pieriRemoveMany (reverse w) \(p]\)
boxChainToTableauM :: BoxChain \(\rightarrow\) TableauM
boxChainToTableauM bss = insertMany (M.empty) bxs
 where \(b x s=\) concat \([[(b, k) \mid b \leftarrow b s] \mid(b s, k) \leftarrow\) zip bss \((\) reverse \([1 \ldots k])]\)
 \(k=\) length \(b s s\)
```

partitionChainToTableau :: PartitionChain $\rightarrow$ Tableau
partitionChainToTableau $=$ tableauMToTableau $\circ$ boxChainTo TableauM
- partitionChainToBoxChain

$$
\begin{array}{rl}
\text { conjugateSemistandardTableaux }:: & \text { Partition } \rightarrow \text { MaximumPermittedEntry } \\
& \rightarrow[\text { ConjugateSemistandardTableau }] \\
\text { conjugateSemistandardTableaux } p & k
\end{array}
$$

9.3. $k$ statistic. At step $j$ we have $\left(k_{1}, \ldots, k_{j-1}\right)=\left(\ell_{1}^{c_{1}}, \ldots, \ell_{s}^{c_{s}}\right)$ and the target is to find $d$ more conjugate-semistandard tableaux. We choose the maximum $k$ such that

$$
\sum|\operatorname{CSSYT}(\vartheta, k)| \leq d
$$

where the the sum is over all chains

$$
\mu \rightarrow_{c_{1}} \vartheta_{1} \rightarrow_{c_{2}} \cdots \rightarrow_{c_{\ell-1}} \vartheta_{\ell-1} \rightarrow_{c_{\ell}} \vartheta
$$

ending in the partition $\vartheta$; here the notation indicates that we perform a Pieri removal of $c_{1}$ boxes from $\mu$, then $c_{2}$ boxes from the resulting partition $\vartheta_{1}$, and so on. (The first step when $j=1$ is distinguished in the description of Algorithm 9.5 in [1], but simply corresponds to the case when the only chain considered is the trivial one, ending in $\mu$.)

```
chainsWithSizes \(:: M u \rightarrow[\) NumberOfBoxesToRemove \(] \rightarrow\) MaximumPermittedEntry
 \(\rightarrow[(\) PartitionChain, Int \()]\)
chainsWithSizes p cs \(k=\)
 \([(q\) Chain, numberOfCSSYTs (last qChain \() k) \mid q\) Chain \(\leftarrow\) pieriRemoveMany cs \(p]\)
chainSize \(:: M u \rightarrow[\) NumberOfBoxesToRemove \(] \rightarrow\) MaximumPermittedEntry \(\rightarrow\) Int
chainSize \(p\) cs \(k=\operatorname{sum}\left[t \mid\left(_, t\right) \leftarrow\right.\) chainsWithSizes \(p\) cs \(\left.k\right]\)
```

For example, chainsWithSizes $[2,2][] 3$ evaluates to [([[2,2]],6)], corresponding to the 6 conjugate-semistandard (2,2)-tableaux with maximum entry 3 (these can be produced using printTableaux \$ totalOrderCSSYTs [2, 2] 3), and chainsWithSizes [2, 2] [1, 1] 2 evaluates to $[([[2,2],[2,1],[1,1]], 3),([[2,2],[2,1],[2]], 1)]$, corresponding to the tableaux of the two forms

$$
\begin{array}{|l|l|}
\hline \star & x \\
\hline \star & y \\
\hline \star & \star \\
\hline x & y \\
\hline
\end{array}
$$

where $x<y$ and $\star$ denotes an unspecified entry not exceeding 2. There are 3 tableaux of the first form, and a unique tableau of the second.

```
type \(K=\) Int
type NumberOfNewTableaux \(=\) Int
type Target \(=\) Int
kPair \(:: M u \rightarrow[\) NumberOfBoxesToRemove \(] \rightarrow\) Target
 \(\rightarrow\) Maybe (K,NumberOfNewTableaux)
\(k\) Pair \(p\) cs target \(=\) maybeLast \(\$\) takeWhile \((\lambda(-, b) \rightarrow b \leqslant\) target \()\)
 \([(k\), chainSize \(p\) cs \(k) \mid k \leftarrow[0 .]\).
```

9.4. Chains to tableau families. Each box removed in the step $\vartheta_{r-1} \rightarrow_{c_{\ell}} \vartheta_{r}$ is filled with $\ell_{r}+1$. For example partitionChainToFamily $[[4,2],[3,1],[2,1]] 3[5,3]$ evaluates to

with $5+1=6$ placed in the boxes of $(4,2) /(3,1), 3+1$ placed in the unique box of $(3,1) /(2,1)$; the remaining boxes form a conjugate-semistandard tableau with maximum entry 3 .
type $L=$ Int
partitionChainToFamily :: PartitionChain $\rightarrow K \rightarrow[L] \rightarrow[$ Tableau $]$
partitionChainToFamily qs $k l s=$ sortBy entryOrdering [putInPlusEntries lbss $t \mid t \leftarrow t s$ ]
where $t s=$ entryOrderCSSYTs (last qs) $k$
bss $=$ partitionChainToBoxChain qs $l b s s=z i p l s b s s$
putInPlusEntries $::[(L,[$ Box $])] \rightarrow$ Tableau $\rightarrow$ Tableau
putInPlusEntries lbss $t=$ tableauMToTableau \$ putInPlusEntriesM lbss \$ tableauTo TableauM t
putInPlusEntriesM [] $t M=t M$
putInPlusEntriesM $\left((l, b s)\right.$ : rest) $t M=$ putInPlusEntriesM rest $t M^{\prime}$
where $t M^{\prime}=$ insertMany $t M[(b, l+1) \mid b \leftarrow b s]$

### 9.5. Examples.

(1) In Example 9.6 in [1], we find the lexicographically minimal conjugate-semistandard tableau family of shape $(3,1)^{7}$. At Step 4 , we have $k_{1}=3, k_{2}=2, k_{3}=1$ and we require just one more tableau, and there are three partition chains:

$$
\begin{aligned}
& (3,1) \rightarrow_{1}(3) \rightarrow_{1}(2) \rightarrow_{1}(1), \\
& (3,1) \rightarrow_{1}(2,1) \rightarrow_{1}(2) \rightarrow_{1}(1), \\
& (3,1) \rightarrow_{1}(2,1) \rightarrow_{1}(1,1) \rightarrow_{1}(1) .
\end{aligned}
$$

Taking $k_{4}=1$ they give the three tableau below:

| 1 | 2 | 3 | | | | |
|---|---|---|---|---|---|---|
| 4 |  |  |, | 1 | 2 | 4 |
| :--- | :--- | :--- |
| 3 |  |  |, | 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 |  |  |.

This is one too many, so $k_{4}=0$, and correspondingly kPair $[3,1][1,1,1] 2$ evaluates to Just $(0,0)$. Exactly the same tableaux correspond to the chains $(3,1) \rightarrow_{1}$ $\cdots \rightarrow_{1} \rightarrow \varnothing$, and since there is a unique empty conjugate-semistandard tableau,
even taking $k_{5}=0$ gives too many tableau. Therefore $k$ Pair $[3,1][1,1,1,1]$ evaluates to Nothing. (This is the only 'failure' case.)
(2) We give a further example to show the case when $k_{1}=k_{2}$; then the partition chains at Step 3 are given by the Pieri removal of two boxes from $\mu$, reflecting that both will get the entry $k_{1}+1$. Take $\mu=(2,1)$ and $n=7$. In Step 1 , since there are 8 conjugate-semistandard tableau with maximum permitted entry 3 , we take $k_{1}=2$, getting

$$
\begin{array}{|l|l|l|l|}
\hline 1 & 2 & . &
\end{array}
$$

In Step 2 the chains $(2,1) \rightarrow_{1}(2)$ and $(2,1) \rightarrow_{1}(1,1)$ correspond to tableaux of the forms

$$
\begin{array}{|l|l|}
\hline \star & \star \\
\hline 3 & \\
\hline
\end{array} \begin{array}{c|c|}
\hline \star & 3 \\
\hline \star & \\
\hline
\end{array}
$$

(Here $3=k_{1}+1$ is inserted by the code immediately above.) Since $k_{1}=3$ was too big on Step 2, we have $k_{2} \leq 2$, and taking $k_{2}=2$ gives

$$
\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 1 & \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 2 & 3 \\
\hline 2 & \\
\hline
\end{array} .
$$

One more tableau is required, and in Step 3 we remove a Pieri chain of 2 boxes, and take $k_{3}=1$, getting

\[

\]

The algorithm, as coded below, continues with $k_{4}=0$ (and no tableaux are taken in the final step). After Step 2, the function newCLS below updates the tuple $\left(k_{1}\right)=(2)=\left(\ell_{1}^{c_{1}}\right)=\left(2^{1}\right)$ to $\left(k_{1}, k_{2}\right)=(2,2)=\left(\ell_{1}^{c_{1}^{\prime}}\right)=\left(2^{2}\right)$. The full output of the algorithm can be seen using printAlg $\$$ lexMinimalFamilyAll $[2,1] 7$.
9.6. Algorithm 9.5.

```
oneStep :: Partition }->[(\mathrm{ NumberOfBoxesToRemove, L)] }->\mathrm{ Target }->(K,[\mathrm{ Tableau])
oneStep p cls target =
 case kPair p cs target of
 Just (k,a) -> (k, combine [partitionChainToFamily qs k ls
 \| (q s , \mp@code {) } \leftarrow c h a i n s W i t h S i z e s ~ p ~ c s ~ k])
 Nothing }->(-1,\mathrm{ combine [partitionChainToFamily qs (-1) ls
 | (qs,_)}\leftarrow\mathrm{ chainsWithSizes p cs (-1)])
```

    where \(c s=\left[c \mid\left(c,,^{\prime}\right) \leftarrow c l s\right]\)
    \(l s=[l \mid(-, l) \leftarrow c l s]\)
    combine \(=\) sortBy entryOrdering \(\circ\) concat
    newCLS :: [(NumberOfBoxesToRemove, $L)] \rightarrow K \rightarrow[($ NumberOfBoxesToRemove, $L$ ) $]$
newCLS []$k=[(1, k)]$

```
newCLS cls \(k \mid l \equiv k=\) dropLast 1 cls \(+[(c+1, k)]\)
 \(\mid\) otherwise \(=\) cls \(+[(1, k)]\)
 where \((c, l)=\) last cls
oneStepFull \(::\) Partition \(\rightarrow[(\) NumberOfBoxesToRemove, L) \(] \rightarrow\) Target
 \(\rightarrow([(\) NumberOfBoxesToRemove, \(L)]\), Target, \([\) Tableau \(])\)
oneStepFull \(p\) cls target \(=(\) newCLS cls \(k\), target - length \(t s, t s)\)
 where \((k\), ts \()=\) oneStep \(p\) cls target
type NumberOfSteps \(=\) Int
sSteps :: Partition \(\rightarrow[(\) NumberOfBoxesToRemove, \(L)] \rightarrow\) Target \(\rightarrow\) NumberOfSteps
 \(\rightarrow([(\) NumberOfBoxesToRemove, L)], Target, [[Tableau]])
sSteps _ cls \(t 0=(c l s, t,[])\)
sSteps p cls \(t s=\left(c l s^{\prime \prime}, t^{\prime \prime}, t s: t s^{\prime}\right)\)
 where \(\left(c l s^{\prime}, t^{\prime}\right.\), ts \()=\) oneStepFull \(p\) cls \(t\)
 \(\left(c l s^{\prime \prime}, t^{\prime \prime}, t s^{\prime}\right)=\) sSteps \(p c l s^{\prime} t^{\prime}(s-1)\)
lexMinimalFamilyAll :: Partition \(\rightarrow\) Target
 \(\rightarrow([(\) NumberOfBoxesToRemove, \(L)],[\) NumberOfNewTableaux \(],[[\) Tableau \(]],[\) Tableau \(])\)
lexMinimalFamilyAll \(p\) target \(=\)
 let \(\left(\right.\) cls, target \({ }^{\prime}\), tss \()=\) sSteps \(p[]\) target \((\) sum \(p)\)
 \(\left(-, t s^{\prime}\right)=\) oneStep \(p\) cls target \({ }^{\prime}\)
 as \(=\) map length tss \(+\left[\right.\) target \(\left.{ }^{\prime}\right]\)
 in (cls, as, tss, ts \({ }^{\prime}\))
allLexMinimalFamilies \(::\) Partition \(\rightarrow\) Target \(\rightarrow\) [[Tableau \(]]\)
allLexMinimalFamilies \(p t=\) let \(\left(-\right.\), as, tss, \(\left.t^{\prime}\right)=\) lexMinimalFamilyAll \(p t\)
 in [concat tss \(+t s \mid t s \leftarrow\) subsequencesOfLength (last as) ts']
finalChoices \(p t=\) subsequencesOfLength (last as) ts \({ }^{\prime}\)
 where \(\left(-, a s, t s s, t s^{\prime}\right)=\) lexMinimalFamilyAll \(p t\)
leastLexMinimalFamily \(::\) Partition \(\rightarrow\) Target \(\rightarrow\) [Tableau \(]\)
leastLexMinimalFamily \(p t=\operatorname{let}\left({ }_{-}\right.\), as, tss, \(\left.t^{\prime}\right)=\) lexMinimalFamilyAll pt
 in concat tss + take (last as) ts \({ }^{\prime}\)
```

For example, printFamilies $\$$ allLexMinimalFamilies $[2,1] 10$ evaluates to


The first of these is the least family (the tie in the entry order is broken by the total column order). The two tableau in the final position that complete the families are the output of Step F of Algorithm 9.5, and can be constructed using finalChoices $[2,1] 10$.

### 9.7. Printing output of Algorithm 9.5.

```
printSteps :: ([(NumberOfBoxesToRemove,L)],[[Tableau]]) ->IO()
printSteps (cls,tss) =
 do putStrLn $ show cls
 sequence_[printTableaux ts |ts\leftarrowtss]
```

printAlg :: ([(NumberOfBoxesToRemove, L) ], [NumberOfNewTableaux $]$,
[[Tableau]], [Tableau]) $\rightarrow$ IO ()
printAlg $\left(c l s, a s, t s s, t s^{\prime}\right)=$
do putStrLn $\$$ show cls
putStrLn $\$$ show as + " $\backslash \mathrm{n} "$
sequence_ [printTableaux ts $\gg$ putStrLn "" $\mid t s \leftarrow t s s, t s \not \equiv[]]$
printTableaux ts ${ }^{\prime}$

## Pretty printing of tableaux.

```
printList \(::(\) Show \(a) \Rightarrow[a] \rightarrow I O()\)
printList xs \(=\) putStrLn \(\$\) unlines \(\$\) map show xs
printListMagma \(::(\) Show \(a) \Rightarrow[a] \rightarrow I O()\)
printListMagma \(x s=\) putStrLn \(\$\) " [" + (dropLast \(2 \$\) unlines \(\$[\) show \(x+", " \mid x \leftarrow x s])+\) "] \(\mathrm{n} "\)
```

showTableau :: Tableau $\rightarrow$ String
showTableau $t=$ concat $[$ showTableauRow es $+\mathrm{H} \backslash \mathrm{n} " \mid e s \leftarrow t]$
showTableauRow :: [Entry] $\rightarrow$ String
showTableauRow es $=$ concat $[f e \mid e \leftarrow e s]+$ " "
where $f 0=" . " ; f 10=" \mathrm{~T} " ; f 11=$ "J"; $f 12=$ "Q"; $f 13=$ "K";
$f 14=$ "A" $; f 15=$ "F"; $f e=$ show $e$
printTableauxNoLn :: [Tableau] $\rightarrow$ IO ()
printTableauxNoLn ts $=$ putStr $\$$ showTableaux ts

```
printTableaux :: [Tableau] \(\rightarrow\) IO ()
printTableaux ts \(=\) putStrLn \(\$\) showTableaux ts
showTableaux :: [Tableau] \(\rightarrow\) String
showTableaux [] = ""
showTableaux ts \(\mid\) length \(t s \leqslant 10=l s\)
 \(\mid\) otherwise \(=l s+\) "\n" + showTableaux (drop 10 ts)
 where \(l s=\) unlines \((\) linesTableauxB \((\) take \(10 t s))\)
linesTableauPadding \(t=[\operatorname{pad}(s-\) length \(l) l \mid l \leftarrow l s]\)
 where \(l s @\left(l: _\right)=\)lines \((\)showTableau \(t)\)
 \(s=\) length \(l+2\)
linesTableauxB ts \(=\left[\right.\) concat \(\left.l \mid l \leftarrow l s^{\prime}\right]\)
 where \(l s^{\prime}=\) transpose [linesTableauPadding \(\left.t \mid t \leftarrow t s\right]\)
pad sl\(=l+\) take s spaces
 where spaces \(=\) repeat,\(~\),
printFamilies tss \(=\) sequence_ \(^{[p r i n t T a b l e a u x ~} t s \gg\) putStrLn \(\left." \| \mid t s \leftarrow t s s\right]\)
```


## 10. Utility functions

```
xs ‘diff‘ \(y s=[x \mid x \leftarrow x s, \neg(x \in y s)]\)
xs 'meet' \(y s=[x \mid x \leftarrow x s, x \in y s]\)
partialSums : \((\) Num \(a) \Rightarrow[a] \rightarrow[a]\)
partialSums \(=\) scanl1 \((+)\)
fromJust \((\) Just \(x)=x\)
fromJust Nothing \(=\) error "fromJust: Nothing"
maybeLast [] = Nothing
maybeLast \(x s=\) Just (last xs)
position \(x\) xs \(=\) fromJust \(\$\) lookup \(x(z i p x s[0 .]\).
dropLast \(k\) xs reverse \(\$\) drop \(k \$\) reverse xs
subsequencesOfLength \(0_{-}=[[]]\)
subsequencesOfLength _ [] \(=\) []
subsequencesOfLength \(k(y: y s)=\)
```

$[y: y s \mid y s \leftarrow$ subsequencesOfLength $(k-1) y s]+$ subsequencesOfLength $k$ ys

```
collectSorted [] = []
collectSorted \((x:[])=[(x, 1)]\)
collectSorted \((x: y s)=(x, m):\) collectSorted ys \({ }^{\prime}\)
 where \(m=1+\) length (takeWhile \((\equiv x)\) ys)
 \(y s^{\prime}=\) dropWhile \((\equiv x) y s\)
```


## References

[1] Rowena Paget and Mark Wildon, Generalized Foulkes modules and maximal and minimal constituents of plethysms of Schur functions, arXiv:1608.04018 (2016), 42 pages.


[^0]:    Date: January 8, 2017.

