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Abstract. In this paper we study the modular structure of the per-

mutation module H(2n) of the symmetric group S2n acting on set par-

titions of a set of size 2n into n sets each of size 2, defined over a field

of odd characteristic p. In particular we characterize the vertices of the

indecomposable summands of H(2n) and fully describe all of its inde-

composable summands that lie in blocks of p-weight at most two. When

2n < 3p we show that there is a unique summand of H(2n) in the princi-

pal block of S2n and that this summand exhibits many of the extensions

between simple modules in its block.

1. Introduction

The symmetric group S2n acts on the collection of all set partitions of

{1, . . . , 2n} into n sets each of size two. Let H(2n) denote the correspond-

ing permutation representation of S2n, defined over a field F of odd prime

characteristic p. Equivalently, H(2n) is the FS2n-module induced from the

trivial representation of the imprimitive wreath product S2 o Sn ≤ S2n. We

call H(2n) a Foulkes module. In the main theorem of [8] the authors used

results on the indecomposable summands of Foulkes modules to determine

certain decomposition numbers of the symmetric group. In this paper we

study the structure of Foulkes modules more closely. In particular, we char-

acterize the vertices of the indecomposable summands of each H(2n) and give

a precise description of all summands in blocks of p-weight at most two.

Let Qt be a Sylow p-subgroup of S2 o Stp. By [8, Theorem 1.2], if U is an

indecomposable summand of H(2n) then U has vertex Qt for some t ∈ N0.

Our first main theorem gives the converse.

Theorem 1.1. Let n ∈ N0. For all t ∈ N0 such that t ≤ n/p there is an

indecomposable summand of H(2n) with vertex Qt.

To state the second main theorem we need some more definitions from [8].

When defined over a field of characteristic zero, H(2n) has ordinary character∑
χ2λ where the sum is over all partitions λ of n, and 2λ is the partition

obtained from λ by doubling each part. (For an elegant proof of this fact
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with minimal prerequisites, see [12].) We say that such partitions are even.

Given a p-core γ, let w(γ) be the minimum number of p-hooks that, when

added to γ, give an even partition. Let E(γ) be the set of even partitions

that can be obtained by adding w(γ) p-hooks to γ. For example, if p = 3,

then w
(
(3, 1)

)
= 2 and E

(
(3, 1)

)
=
{

(6, 4), (6, 2, 2), (4, 4, 2)
}

. Let B(γ,w)

denote the p-block of Sn with p-core γ and p-weight w, where n = |γ|+wp.

As a convenient shorthand, we write ν ∈ B(γ,w) to mean that the partition

ν has p-core γ and p-weight w. Let Sµ denote the Specht module labelled

by the partition µ. For µ a p-regular partition, let Pµ denote the projective

cover of the simple FSn-module Dµ, defined in [15, Corollary 12.2] as the

unique top composition factor of Sµ. Finally let dµν = [Sµ : Dν ].

Theorem 1.2. Let n ∈ N. Let γ be a p-core.

(i) Suppose that |γ| = 2n. There is a summand of H(2n) in B(γ, 0) if

and only if γ is even. In this case the unique summand is the simple

projective Specht module Sγ.

(ii) Suppose that |γ| = 2n− p. There is a summand of H(2n) in B(γ, 1) if

and only if w(γ) = 1. In this case E(γ) = {2λ, 2µ} for partitions λ, µ

with λ� µ, and the unique summand is P 2µ.

(iii) Suppose that |γ| = 2(n−p). There is a summand of H(2n) in B(γ, 2) if

and only if w(γ) = 0 or w(γ) = 2. If w(γ) = 2 the unique summand is

P 2µ, where 2µ is the unique maximal element of E(γ). If w(γ) = 0 the

unique summand has vertex Q1 and its Green correspondent is P ⊗Sγ

as a representation of NS2n(Q1)/Q1
∼= NS2p(Q1)/Q1×Sn−2p, where P

is the projective cover of the trivial FNS2p(Q1)/Q1-module.

If t = bn/pc then Qt is a Sylow p-subgroup of S2 oSn. The projective cover

of the trivial representation ofNS2n(Qt)/Qt has vertexQt as a representation

of NS2n(Qt); its Green correspondent is a summand of H(2n) with vertex Qt

lying in the principal block of S2n. This summand is an example of a Scott

module: see [9] or [3] for their definition and basic properties. Our third

main theorem describes these summands when 2n < 3p.

Theorem 1.3. Let 2k < p and let n = p+k. There is a unique summand U

of H(2n) in the principal block of S2n. This summand is the Scott module

with vertex Q1. The module U has three Loewy layers and

socU ∼= top U ∼=
⊕

2ν∈B((2k),2)
2ν 6=(2k,2p)

D2ν .

The Loewy layers of U are shown in Figure 1 overleaf, where each edge shows

a non split extension exhibited by this module.

Our final theorem counts the summands of H(2n) which, like the Scott

module summand, have the largest possible vertex.
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D〈2k〉 D〈p−2,p−1〉 D〈2k+1,2k+2〉 D〈2k−2,2k−1〉 D〈4,5〉 D〈2,3〉· · · · · ·

D〈2k〉 D〈p−2,p−1〉 D〈2k+1,2k+2〉 D〈2k−2,2k−1〉 D〈4,5〉 D〈2,3〉· · · · · ·

D〈2k,p−2〉 D〈p−4,p−2〉 D〈2k−2,2k+1〉 D〈2k−4,2k−2〉D〈2k+1,2k+3〉 D〈4,6〉 D〈2,4〉 D〈0,2〉

Figure 1. The three Loewy layers of the unique principal block summand

of H(2n) when n = 2(p+k) and 2 < 2k < p−1. The labels of simple modules

are defined in Section 7. If 2k ∈ {0, 2, p− 1} then the structure is the same

but minor changes must be made to the labels: see Figure 5 in Section 7.

Theorem 1.4. Let t = bn/pc and let r = n− tp. The number of indecom-

posable summands of H(2n) with vertex Qt is equal to the number of p-core

partitions that can be obtained by removing p-hooks from even partitions

of 2r. Each such summand lies in a different block of S2n.

In particular we note that if 0 ≤ 2r < p then the number of indecom-

posable summands of H(2n) with vertex Qt is simply the number of even

partitions of 2r. Another easy corollary of our theorems is the following.

Corollary 1.5. H(2n) is an indecomposable FS2n-module if and only if

n = 2 and p = 3.

Proof. By Theorem 1.1 there are summands of H(2n) with vertices Q0 and

Q1 whenever n ≥ p. When 4 ≤ n < p the partitions (2n), (2n − 2, 2) and

(2n − 4, 4) are not all in the same block, so H(2n) has summands in two

different blocks. By Theorem 1.2, if p = 3 then H(22) is indecomposable;

if p > 3 then H(22) ∼= S(4) ⊕ S(2,2). If p = 3 then H(23) has S(4,2) as the

unique summand in its block; if p = 5 then H(23) has S(2,2,2) as the unique

summand in its block; if p > 5 then H(23) ∼= S(6) ⊕ S(4,2) ⊕ S(2,2,2). �

The results in this paper show that the behaviour of Foulkes modules is

very different from the better studied Young permutation modules (see, for

instance, [6], [5], [11] and [13]). In particular, by Theorem 1.2, each Foulkes

module has at most one summand in each block of weight at most two. The

Young permutation modules M (r−s,s) also have multiplicity-free ordinary

characters, but it follows easily from [11, Theorem 3.3] that if p is odd,

0 ≤ c < p and p ≤ j ≤ p+ c/2 then M (2p+c−j,j) always has two summands,

namely the Young modules Y (2p+c) and Y (p+c,p), in the principal block of

S2p+c. By Corollary 1.5 there is only one non-trivial indecomposable Foulkes

module, whereas M (p−1,1) is always indecomposable. (The indecomposable

Young permutation modules are classified in [5, Theorem 2].) It would be
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interesting to know the decomposition of further permutation modules for

symmetric groups in prime characteristic.

Outline. In §2 we give the prerequisite material from [8]. In §3 we find w(γ)

for a special class of p-cores γ. This result is used in the proof of Theorem 1.1.

In §4 we recall Richards’ results [18] on decomposition numbers in blocks of

p-weight 2, and show that even partitions of p-weight 2 have a surprisingly

simple characterization using his definitions. These results are used in the

proof of Theorem 1.2(iii) and Theorem 1.3. In §5, §6 and §7 we prove

Theorem 1.1, Theorem 1.2 and Theorem 1.3 respectively. Theorem 1.4 is

obtained as a corollary of Theorem 1.2 in §6. We end in §8 with an example

to illustrate these theorems. The proofs in §3 and §4 are the most technical

in this paper; we suggest the reader returns to the proofs after seeing the

applications.

2. Prerequisites

The following results have short proofs using [8]. For background on local

representation theory we refer the reader to [1].

Proposition 2.1. Let γ be a p-core partition and let 2n = |γ| + pw. The

Green correspondence induces a bijection between the indecomposable sum-

mands of H(2n) in B(γ,w) with vertex Qt and the indecomposable projective

summands of H(2n−tp) in B(γ,w − 2t).

Proof. Let U be an indecomposable non-projective summand of H(2n) in

B(γ,w). By [8, Theorem 1.2], U has Qt as a vertex for some t ∈ N and its

Green correspondent has a tensor factorization V �W as a representation

of (NS2tp(Qt)/Qt) × S2(n−tp). Here V and W are projective and W is an

indecomposable summand of H(2n−tp). By [8, Theorem 2.7], which is proved

using the results in [3], W lies in the block B(γ,w − 2t) of S2(n−tp). The

map sending U to W therefore has the required properties. �

Proposition 2.2. Let γ be a p-core partition and let 2n = |γ|+ pw.

(i) All the summands of H(2n) in B
(
γ,w(γ)

)
are projective.

(ii) If 2µ is a maximal element of E(γ) then µ is p-regular and P 2µ is a

summand of H(2n) lying in B
(
γ,w(γ)

)
.

(iii) If P is an indecomposable projective summand of H(2n) in B(γ,w(γ))

then P = P 2ν for some 2ν ∈ E(γ) and the ordinary character of P

(defined using Brauer reciprocity) is
∑

2λ∈E χ
2λ for some E ⊆ E(γ).

Proof. Part (i) is Proposition 5.1 of [8]. Since this is a key result in this

paper, we briefly sketch the proof: if U is a non-projective summand in

B
(
γ,w(γ)

)
then, by Proposition 2.1, there is a projective summand ofH(2n−tp)
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in B
(
γ,w(γ) − 2t

)
for some t ∈ N. But this implies that there is an even

partition with p-core γ and p-weight w(γ)−2t, contradicting the definition of

w(γ). Parts (ii) and (iii) follow immediately from Proposition 1.3 of [8]. �

We use the following proposition in the proof of Theorem 1.2 to show

that, if w ≤ 2, then the summand identified in Proposition 2.2(ii) is the

unique summand of H(2n) lying in its block.

Proposition 2.3. Let γ be a p-core partition of n. If |E(γ)| < 2w(γ) + 1

then there is a unique summand of H(2n) in B(γ,w(γ)).

Proof. It was proved independently in [18, Theorem 2.8] and [2, Proposi-

tion 4.6(i)] that if ν is a p-regular partition of n lying in a block of p-weight w

then dµν > 0 for at least w + 1 partitions µ. By Proposition 2.2(i), all the

summands of H(2n) in B
(
γ,w(γ)

)
are projective. By Brauer reciprocity, the

ordinary character of each such summand contains at least w + 1 distinct

irreducible characters. The result now follows from Proposition 2.2(iii). �

3. Even partitions and the abacus

We make extensive use of James’ abacus notation, as defined in [14, page

78]. We number the abacus runners from 0 to p−1 and the abacus positions

by integers. By convention, our abaci have infinitely many beads with only

finitely many beads in positions after the first space. We say that beads

before the first space are initial. For r ∈ Z, we define row r to consist of

positions pr, . . . , pr + p − 1. By a single-step move we mean a move of a

bead into a space immediately below it.

Remark 3.1. Given a partition λ and an integer z ∈ Z, there exists a

unique abacus Az(λ) representing λ and having first space in position z.

Let x ∈ Z and let Ã be the abacus obtained from Az(λ) by moving the bead

in position y of Az(λ) to position y + x, for all y ∈ Z. It is easy to see that

Ã = Az+x(λ). We say that Ã is a rotation of A.

It is simple to recognise even partitions on the abacus.

Definition 3.2. Let A be an abacus. We say that beads in positions β and

β′ of A where β < β′ are consecutive and form a gap if there are spaces in

positions β+1, . . . , β′−1. This gap is odd if β′−β is even and even if β′−β
is odd. If β′−β = 1, then we say that the beads are adjacent, or in adjacent

positions.

Lemma 3.3. Let A be an abacus representing a partition ν. Then ν is even

if and only if A has no odd gaps. �
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The following proposition is helpful in determining w(γ). Informally, it

states that certain beads on an abacus representing γ need not be moved to

find a partition in E(γ).

Proposition 3.4. Let γ be a p-core partition and let A = A0(γ) be the

abacus representing γ with first space in position 0. Let B be an abacus

representing a partition λ ∈ E(γ) obtained by a sequence of single-step moves

on A. If x < −1 then B has a bead in position x.

Proof. Suppose, for a contradiction, that there exists x < −1 such that B

has a space in position x. Choose x minimal with this property. Since the

bead in position x− 1 of A is not moved, to avoid an odd gap, the bead in

position x+ 1 of A must be moved. By replacing the abacus A with A−x(γ)

we may assume that x = 0. Therefore positions 0 and 1 in B have spaces.

Let b be the highest bead on runner 0 of B below position 0, and let c

be the highest bead on runner 1 of B below position 1. If b and c are on

the same row then we may move b up to position 0 and c up to position 1

without changing the parity of any gap in B. (This holds because there is

a bead in position −1, and the gap between this bead and the consecutive

bead in B is even.) We therefore obtain an even partition with p-core γ and

strictly smaller p-weight, a contradiction.

Assume that c is on a strictly lower row than b; the other case is dealt

with symmetrically. Let b′ be the first bead in a greater numbered position

than b, and let c′ be the first bead in a greater numbered position than c.

Suppose that b′ is on runner u and c′ is on runner v. There are at most

2(p − 1) spaces between b and b′ since otherwise b′ can be moved two rows

up without changing the parity of any gaps. Hence either b′ is on the same

row as b, in which case u is odd, or b′ is on the row directly below, in which

case u is even. A similar remark applies to c and c′, swapping odd and even,

with one extra case when v = 0, in which case c′ is two rows below c.

We claim that there is a sequence of bead moves using the beads b and b′

and beads on runners u and v that gives a new abacus B?, representing a

partition of strictly smaller p-weight than λ, such that B? has no odd gaps.

This can be shown by considering the four cases for the parity of u and v.

The different parity cases are split into subcases u < v and u > v, as shown

in Figure 2, and the equal parity cases are split into subcases u = 0 and

u 6= 0, as shown in Figure 3. The indicated bead moves deal correctly with

the exceptional cases when u = 0, v = 0 or v = 1 and two runners coincide.

(Note that u = 1 is impossible because then b′ = c and b and c are in the

same row.) If v = 0 and u is odd then c′ is two rows below c, the bead

moves in the top right diagram in Figure 2 apply and a bead is moved into

the position vacated by b.
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We give full details for the case where B is the top-left abacus in Figure 2.

Thus c is on a strictly lower row than b, and b′ and c′ are in the same rows

as b and c, respectively. Let s be the row of bead b, t be the row of bead c

and let w be the p-weight of the partition λ. Let B′ be the abacus obtained

from B by moving beads b and c up to positions 0 and 1 respectively by a

sequence of single-step bead moves. Notice that B′ has no odd gaps in rows

1, . . . , s−1, and that B′ represents a partition of p-weight w− s− t. Let B′′

be the abacus obtained from B′ by making the unique series of single-step

moves of beads on runner u that has the final effect of swapping bead b′

with the space in position pt+u, in row t on runner u. (The bead that ends

in position pt+u in B′′ is therefore the lowest bead on runner u of B′ above

this position.) It is easily seen that B′′ has no odd gaps and represents a

partition of p-weight

w − s− t+ (t− s) = w − 2s.

This is clearly strictly less than w, the p-weight of λ, as required. �

0 1 u odd v even

. . . . . .

b b′

c c′

0 1 u oddv even

. . . . . .

b b′

c c′

0 1 u even v odd

. . . . . .

b

b′

c

c′

0 1 u evenv odd

. . . . . .

b

b′

c

c′

Figure 2. Bead moves on the abacus B used in the proof of Proposi-

tion 3.4 when u and v have different parity. White circles show spaces

in B that are present by hypothesis and are the target of bead moves; the

two adjacent spaces are positions 0 and 1. Thick arrows show even gaps

in B. Solid curved arrows show moves of the beads b and c on runners 0

and 1, respectively. On runners u and v dotted curved arrows show the

overall effect of a sequence of single-step upward or downward moves using

the marked bead and the beads between the marked bead and the target

space.
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0 1 u even v even

. . . . . .

b

b′

c c′

0 1 u odd v odd

. . . . . .

b b′

c

c′

v = 0 1 u even

. . . . . .

b

b′

c

c′

v = 0
u = 0 1

. . .

b

b′

c

c′

Figure 3. Bead moves on the abacus B used in the proof of Proposi-

tion 3.4 when u and v have equal parity. The conventions for arrows are as

described in the caption of Figure 2. The cases u = 0, v 6= 0 and u = v = 0

are dealt with separately: in the latter case at least four beads move, bead b′

is moved to the position vacated by bead b and a bead is moved into the

position vacated by bead b′.

Despite its special nature, the following result appears to require the full

power of Proposition 3.4.

Proposition 3.5. Let γ be a p-core partition. Suppose that the abacus A0(γ)

has t beads in positive positions on runner u, t′ beads in positive positions

on runner u′, where u < u′, and no beads in any other positive position.

(i) If u and u′ are both even then w(γ) = tt′ and a partition in E(γ)

can be obtained by moving each of the t′ beads in positive positions on

runner u′ down t steps.

(ii) If u is odd and u′ = p−1 then w(γ) = t(t′+ 1) and a partition in E(γ)

can be obtained by moving each of the t beads in positive positions on

runner u down t′ + 1 steps.

Proof. We prove case (i) and then indicate the changes needed for (ii). The

p-core γ is represented by the abacus A = A0(γ), in which the first space is

in position 0. The p initial beads occupying positions −p, . . . ,−1 are shown

on the diagram of A0(γ) below. (If t > t′ then runners u and u′ should be
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swapped.) Let b and b′ be the beads in positions u and u′ respectively and

let c and c′ be the lowest beads on runners u and u′ respectively.

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

0

· · ·
u u+1

· · ·
u′−1 u′

· · ·
p−1

· · · · · · · · ·
...

...
...

...
...

...

...
...

...
...

...
...

d

b

c

c′

b′

It is clear that t single-step moves of each of the t′ beads between b′ and c′

(inclusive, starting by moving bead c′) give an abacus representing an even

partition. Hence w(γ) ≤ tt′. It remains to show that tt′ moves are necessary.

Let B be an abacus representing a partition in E(γ) obtained from A by

a sequence of single-step moves. No bead in a negative position other than

−1 is moved, by Proposition 3.4. If the bead labelled d in position −1 is

moved, then to avoid an odd gap, the beads b and b′ must also be moved.

Let r ∈ N0 be the row containing bead d in B. Raising d back to position −1

and raising all the remaining beads in rows 0, 1, . . . , r in B up one row now

gives an abacus representing an even partition of smaller p-weight. Hence

the odd gaps between the beads on runners u and u′ are removed by moving

beads only on these runners. Therefore the abacus B has exactly t+t′ beads

in positive positions. Moreover, if two of these beads belong to the same

row, then this row has the form

0 · · · u u+1 · · · u′−1 u′ · · · p−1

· · · · · · · · ·

in which the beads on runners u and u′ form an odd gap, a contradiction.

Hence no two beads in positive positions belong to the same row of B. Let

r1, . . . , rt+t′ ∈ N0 be the t+ t′ distinct rows occupied by a bead in a positive

position in B. We deduce that

w(γ) =
(
r1 + r2 · · ·+ rt+t′

)
−
(
1 + · · ·+ (t− 1)

)
−
(
1 + · · ·+ (t′ − 1)

)
≥
(
1 + · · ·+ (t+ t′ − 1)

)
−
(
1 + · · ·+ (t− 1)

)
−
(
1 + · · ·+ (t′ − 1)

)
= tt′

hence we have w(γ) = tt′.

In case (ii) a similar argument applies. Since the bead in position −1 is

on runner p−1, it follows immediately from Proposition 3.4 that only beads

on runner u and runner p− 1 are moved. �



10 EUGENIO GIANNELLI AND MARK WILDON

4. Even partitions and blocks of p-weight 2

Let γ be a p-core and let ν ∈ B(γ, 2). Thus γ is obtained from ν by

removing two rim p-hooks. In [18, page 397], Richards defines δ(ν) to be

the absolute value of the difference of the leg-lengths of these rim p-hooks.

(This difference is independent of the choice of rim p-hooks, when such a

choice exists.) A partition ν such that δ(ν) = 0 either has two rim p-hooks,

or a unique rim p-hook and a rim 2p-hook. In the former case ν is black

if the larger leg-length is even, and white if it is odd. In the latter case ν

is black if the leg-length of the rim 2p-hook is congruent to 0 or 3 modulo

4, and otherwise white. If ν is p-regular, let ν◦ denote the largest partition

such that ν◦� ν and δ(ν◦) = δ(ν), and if δ(ν) = 0, such that ν and ν◦ have

the same colour. (Thus ν◦ = ν�
′

in Richards’ notation.)

The main result of [18] can be stated as follows.

Theorem 4.1 (Theorem 4.4 in [18]). Let γ be a p-core and let ν ∈ B(γ, 2)

be p-regular. Then dνν = dν◦ν = 1. If µ ∈ B(γ, 2) and µ 6∈ {ν, ν◦} then

dµν = 1 if ν◦ � µ� ν and δ(ν)− δ(µ) ∈ {1,−1}; otherwise dµν = 0.

In the proof of Theorem 1.2(iii) we also need part (ii) of the following

lemma. In the proof we use that the leg-length of a rim p-hook corresponding

to a single-step upward move of a bead b in position β on an abacus is the

number of beads in positions β − (p− 1), . . . , β − 1.

Lemma 4.2. Let γ be an even p-core represented by an abacus A and let

ν ∈ B(γ, 2).

(i) If ν is even then ν is obtained either by single-step moves of two con-

secutive beads in A, or by two single-step moves of the final bead in A.

(ii) If ν is even then δ(ν) = 0.

Proof. Suppose bead b in A is one of the beads moved to obtain an abacus

representing ν. If there is a bead, say c, after b, then a new odd gap is created

between the bead before b in the abacus and bead c. Hence one of these

beads must be moved. This proves (i). If the final bead is moved twice then

the leg-length of the corresponding rim 2p-hook is 0, so δ(ν) = 0. Otherwise

consecutive beads b and b′ are moved, where b and b′ are in positions β and

β′ with β < β′. Let µ be obtained from ν by removing the rim p-hook

corresponding to b′. By the observation before the lemma, the leg-lengths

of the rim p-hooks in ν and µ corresponding to bead b′ and b, respectively,

are equal to the number of beads in A in positions β, . . . , β+ (p− 1). Hence

δ(ν) = 0, as required for (ii). �

It is possible to sharpen Lemma 4.2(ii) so that the converse also holds.

For this we need one more statistic. If ν ∈ B(γ, 2) is obtained by single-step
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moves of distinct beads b and b′ on an abacus representing γ, let ∆(ν) be

the number of beads strictly between b and b′. (This is clearly independent

of the choice of abacus.) If ν has a rim 2p-hook then let ∆(ν) = δ(ν). The

proof of Lemma 4.2 shows that in all cases, if ∆(ν) = 0 then δ(ν) = 0.

Proposition 4.3. Let γ be an even p-core and let ν ∈ B(γ, 2). Then ν is

even if and only if ∆(ν) = 0 and ν is black.

Proof. Let A be an abacus representing γ. Let ν be a partition obtained

from A by two single-step moves, represented by the abacus B. We consider

two cases.

Case 1: Distinct beads. Suppose that distinct beads b and b′ are moved to

obtain B. Let b and b′ be in positions β and β′ of A, respectively, where

β < β′. If ν is even then, by Lemma 4.2(i), b and b′ are consecutive and so

∆(ν) = 0. Conversely, if b and b′ are consecutive then ∆(ν) = 0. It remains

to show that, if b and b′ are consecutive, then ν is even if and only if ν is

black.

The rim p-hook in ν with the longer leg-length corresponds to bead b′ in B.

Its leg-length, ` say, is the number of beads in positions β′ + 1, . . . , β + p

of B. Let a be the bead in the greatest position before position β in A and

let e be the bead in the greatest position before position β + p in B. Thus

a and b are consecutive beads in A, as are b and e.

If bead e is bead a then there are no beads except for b and b′ between

bead a and position β + p in B. In this case ` = 1 and so ν is white,

and, because of the gap in B between beads a and b, ν is not even. In the

remaining case bead e is in a position ε strictly between β′ and β + p. By

replacing the abaci A and B with appropriate rotations, we may assume

that bead e is on runner 0, and so the relevant rows of A are as shown in the

abacus below, where arrows indicate gaps affected by the moves of b and b′.

. . .

. . .e

a b
b′

Observe that between positions β and ε (inclusive) in A there are ` + 1

beads. Since A represents an even partition, all gaps between these beads

are even. Hence ` and ε− β have the same parity and ` and ε− β + p have

opposite parity. Therefore the gap between beads e and b in B of length

β + p − ε − 1 is even if and only if ` is even, so if and only if ν is black. If

there is no bead after position β + p in B then it is now clear that ν is even

if and only if ν is black. Suppose that bead a′ is the first bead after position

β + p in B. Let a′ be in position α′. Since A has a gap between positions ε
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and α′, we see that

α′ − ε = (α′ − (β′ + p)) + (β′ − β) +
(
(β + p)− ε)

)
is odd. Hence α′ − (β′ + p) and (β + p)− ε have the same parity. Thus the

gaps between beads e and b and beads b′ and a′ in B have the same parity.

The former gap has length β+ p− ε− 1; since this has the same parity as `,

it again follows that ν is even if and only if ν is black.

Case 2: One bead. Suppose that bead b is moved twice. If ν is even then,

by Lemma 4.2(i), bead b is the final bead in A, the leg-length of the rim

2p-hook is 0 and δ(ν) = 0. Hence ∆(ν) = 0 and ν is black.

Conversely, suppose that ∆(ν) = 0 and ν is black. Let b be in position β

of A. Since δ(ν) = 0, for each j such that 1 ≤ j ≤ p − 1, either there

are beads in both positions β + j and β + j + p, or spaces in both these

positions. Hence the leg-length of the rim 2p-hook corresponding to bead b

is even, and so is congruent to 0 modulo 4. The number of beads in positions

β + 1, . . . , β + (p− 1) of A is therefore even.

Suppose, for a contradiction, that there is a bead after position β. Let e

be the first bead after position β, and suppose that e is in position ε. The

positions β, . . . , ε + p in A begin and end with beads. So we have evenly

many beads in A in (
(ε+ p)− ε

)
+
(
ε− β

)
+ 1

positions. Since ε − β is odd, this number is odd. Therefore two of the

beads in these positions form an odd gap, a contradiction. Hence b is the

final bead in A and ν is even. �

5. Proof of Theorem 1.1

In this section we completely characterize the vertices of all the indecom-

posable summands of H(2n). The following lemma is required.

Lemma 5.1. Let n ∈ N. There exist k, ` ∈ N0 such that ` ≤ (k+1)(p−1)/2

and

(?) 2n = (k + 1)
(
2 +

p− 1

2
k
)

+ 2`.

Proof. For k ∈ N0 define θk = (k + 1)
(
2 + p−1

2 k
)
. Note that θk is even.

Choose k so that θk ≤ 2n < θk+1 and then define ` so that (?) holds. Since

θk+1− θk = 2 + (k+ 1)(p− 1), we have 2` ≤ (k+ 1)(p− 1), as required. �

Proof of Theorem 1.1. By Proposition 2.1 it is sufficient to prove that every

Foulkes module has a projective summand. In turn, by Proposition 2.2(i),

it is sufficient to prove that for all n there is an even partition 2λ of 2n with

p-core γ such that 2n = |γ|+ w(γ)p, or, equivalently, such that 2λ ∈ E(γ).
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We now construct such partitions. Let k and ` be as in Lemma 5.1. Define

λk,0 =
(
2 + k(p− 1), 2 + (k − 1)(p− 1), . . . , 2 + (p− 1), 2

)
.

Note that λk,0 is an even p-core partition of (k + 1)(2 + (p − 1)k/2). The

abacus A0(λk,0) has k + 1 beads in positive positions on runner 2 and no

beads in any other positive position. Define

λk,` = λk,0 +
(
(2(s+ 1))r, (2s)k+1−r)

where s and r are the unique natural numbers such that 0 ≤ r < k + 1,

0 ≤ s ≤ p−1
2 and ` = (k + 1)s+ r. Note that λk,` is an even partition of 2n.

Let γ be the p-core of λk,`. We consider three cases.

(1) If r = 0 and 0 ≤ s < p−1
2 then λk,` is a p-core partition. The abacus

A0(λk,`) has k + 1 beads in positive positions on runner 2s + 2.

Therefore λk,` = γ ∈ E(γ).

(2) If r = 0 and s = p−1
2 then A0(λk,`) has k + 1 beads in positive

positions on runner 1, in rows 1, . . . , k + 1, and no beads in any

other positive position. Now λk,` is obtained from its p-core γ by

the sequence of bead moves specified in Proposition 3.5(ii), taking

t = k + 1, t′ = 0 and u = 1. Therefore λk,` ∈ E(γ).

(3) If r > 0 then (k+1)s+r = ` ≤ (k+1)(p−1)/2 implies that s < p−1
2 .

(a) If 2s + 2 < p − 1 then A0(λk,`) has k + 1 − r beads in positive

positions on runner 2s+ 2 in rows 0, . . . , k − r and r beads in

positive positions on runner 2s + 4 in rows k + 1 − r, . . . , k,

Now λk,` is obtained from its p-core γ by the sequence of bead

moves specified in Proposition 3.5(i), taking t = k+1−r, t′ = r,

u = 2s+ 2 and u′ = 2s+ 4. Therefore λk,` ∈ E(γ).

(b) If 2s + 2 = p − 1 then A0(λk,`) has k + 1 − r beads on runner

p − 1 in rows 0, . . . , k − r and r beads on runner 1 in rows

k + 2 − r, . . . , k + 1. Now λk,` is obtained from its p-core γ

by the sequence of bead moves specified in Proposition 3.5(ii),

taking t = r, t′ = k + 1 − r, u = p − 1 and u′ = 1. Therefore

λk,` ∈ E(γ).

This completes the proof of Theorem 1.1. �

Remark 5.2. Let a, n ∈ N. Generalizing the Foulkes modules H(2n) al-

ready defined, let H(an) denote the FSan-module induced from the trivial

representation of Sa oSn. For t ∈ N0 let Pt be a Sylow p-subgroup of Sa oStp.
In [7] it is shown that if a < p and U is an indecomposable summand of

H(an), then there exists t ∈ N0 such that t ≤ n/p and Pt is a vertex of U .

It would be interesting to know if an analogue of Theorem 1.1 holds in this

general setting. More precisely, is it true that for every t ∈ N0 such that
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t ≤ n/p, there is an indecomposable summand of H(an) with vertex Pt? The

main obstacle in proving this for arbitrary a > 2 is the lack of knowledge of

the ordinary character of the Foulkes module H(an).

6. Proof of Theorems 1.2 and 1.4

Throughout this section let γ be a p-core. By reduction modulo p, the

composition factors of H(2n) are precisely the composition factors of the

Specht modules S2λ for λ a partition of n. A composition factor of S2λ lies

in the block B(γ,w) if and only if 2λ ∈ B(γ,w).

Blocks of p-weight 0. The unique module in the block B(γ, 0) is the simple

projective Specht module Sγ . It is a composition factor of H(2n) if and only

if γ is an even p-core. In this case, since Sγ is projective, it splits off as a

direct summand. This proves Theorem 1.2(i).

Blocks of p-weight 1. Suppose that there is a summand in the block

B(γ, 1). Then an even partition can be obtained from γ by adding a single

p-hook. Fix an abacus representing γ. Suppose the highest odd gap is

between beads b and b′ in positions β and β′ where β < β′. The only single-

step moves that can lead to an even partition are moves of b and b′. If b′

has a space below it then moving b′ gives an even partition only if b also

has a space below it. A similar argument applies if b has a space below it.

Therefore both b and b′ have spaces below them and a single-step move of

either bead gives an even partition. The two possible configurations are as

shown in Figure 4 below.

. . .
b b′

c

odd

even

. . . . . . . . .. . . . . .
b b′

odd

even even

Figure 4. A p-core γ such that w(γ) = 1 has an abacus of one of the

forms shown above. In the left diagram, there is a single odd gap, bead b′

is on runner p− 1, and the bead marked c is the final bead on the abacus.

(It is possible that c = b′.) In the right diagram there are two odd gaps. In

each diagram a single-step move of either b or b′ gives an even partition.

Let 2λ and 2µ be the even partitions obtained by moving b and b′, re-

spectively. Then E(γ) = {2λ, 2µ}. It now follows from Propositions 2.2(ii)

and 2.3 that P 2µ is the unique summand of H(2n) in B(γ, 1). This completes

the proof of Theorem 1.2(iii).
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Remark 6.1. By [19, §6, Example 1], B(γ, 1) is Morita equivalent to the

principal block of FSp by a Scopes functor. Since there are no beads between

b and b′, the partitions 2λ and 2µ are neighbours in the dominance order on

partitions in B(γ, 1). Since Scopes functors preserve the dominance order

on partitions, it follows that P 2µ has a Specht filtration with factors S2µ (at

the top) and S2λ (at the bottom). Thus P 2µ has the Loewy structure

D2µ

Dν ⊕D2λ

D2µ

where ν is the smallest partition greater than 2µ in the dominance order on

partitions in B(γ, 1). (If 2µ is greatest then omit Dν .)

Blocks of p-weight 2. Suppose that there is a summand in the block

B(γ, 2). Then either w(γ) = 2, or w(γ) = 0 and γ is an even p-core.

Case w(γ) = 2. Let A be an abacus for γ. Suppose that the consecutive

beads b and b′ form the highest odd gap in A. Since γ is a p-core, we can

assume (by replacing A with an appropriate rotation) that b and b′ lie in

the same row r. Suppose, for a contradiction, that neither bead b nor b′

is moved in a sequence of single-step bead moves leading to an abacus B

representing a partition in E(γ). Then there exists a bead c, in an earlier

position than bead b, that is moved into the gap between b and b′. Let c′ be

the greatest numbered bead before c and let c′′ be the least numbered bead

after c. Thus c′ and c are consecutive, as are c and c′′. If c is not in row

r − 1, then it is in row r − 2 and is moved twice. This leaves an odd gap

between beads c′ and c′′. Hence c lies in row r − 1. Let A′ be the abacus

obtained from A by a single-step move of bead c. The odd gap between c′

and c′′ in A′ cannot be removed by moving a bead d from row r − 2, since

this creates a new odd gap between the two beads consecutive to d in A′.

Hence either c′ or c′′ is moved. Therefore B has two beads in the positions

between b and b′, and so there is an odd gap in B involving b or b′.

We have shown that either bead b or bead b′ is moved. Suppose that

there is a bead d immediately below bead b′. Then there must be spaces in

the positions immediately below bead b and bead d. The partitions in E(γ)

are obtained as follows:

(i) two single-step moves of bead b,

(ii) single-step moves of beads b and d,

(iii) a single-step move of bead d followed by a single-step move of bead b′.

Hence |E(γ)| = 3 and the unique maximal partition in E(γ) is the partition

2µ given by the moves in (iii). By Propositions 2.2(ii) and 2.3, P 2µ is the

unique summand of H(2n) in B(γ, 2). A similar result holds if there is a
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bead immediately below bead b; in this case the unique maximal partition

is given by two single-step moves of bead b′. (This case occurs in the block

B
(
(3, 1), 2

)
when p = 3 in the example in §8 below.)

Now suppose there are spaces below beads b and b′. Let B be the abacus

obtained from A by a single-step move of bead b′. Let C be the abacus

obtained from B by swapping the bead b in B with the space in B in the

position occupied by bead b′ in A. Let γ? be the p-core represented by C.

The abaci B and C have the same pattern of odd and even gaps. Moreover,

a single-step move of bead b in B does not give an even partition, since

it restores the odd gap between beads b and b′ present in A. Therefore

w(γ?) = 1 and there is a bijection between the sequences of single-step

moves on B and on C that give even partitions. From the p-weight one case

we have |E(γ?)| = 2. Hence exactly two even partitions can be obtained by

starting with a single-step move of bead b′, leaving bead b fixed. A similar

argument deals with the case where bead b is moved. Therefore |E(γ)| = 4,

and by Propositions 2.2(ii) and 2.3, it follows that if 2µ is a maximal element

of E(γ) then P 2µ is the unique summand of H(2n) in B(γ, 2).

Example 6.2. We pause to give an example of the case where w(γ) = 2

and there are spaces below beads b and b′. Let p = 5 and let γ = (5, 1, 1, 1).

An abacus A representing γ, and the abacus C defined in the proof, are

shown below left and below right.

A

0 1 2 3 4

b b′
C

0 1 2 3 4

b

b′ d

Moving bead b′ or bead d in C gives an even partition. The corresponding

elements of E(γ), obtained by moving bead b in C back to position 0 are

(8, 6, 2, 2) and (10, 4, 2, 2), respectively. The other partitions in E(γ) are

found by moving b first; they are (6, 6, 2, 2, 2) and (10, 2, 2, 2, 2). Thus the

unique summand of H(29) in B(γ, 2) is P (10,4,2,2).

Case w(γ) = 0. Since H(2n−p) has Sγ as its unique summand in the block

B(γ, 0), it follows from Proposition 2.1 that there is a unique summand of

H(2n) in B(γ, 2) with vertex Q1. Since any summand in B(γ, 2) has a vertex

contained in the p-weight 2 defect group 〈(1, 2, . . . , p), (p + 1, . . . , 2p)〉 (see

[14, Theorem 6.2.45]), any other summand in this block must be projective.

Suppose that P ν is such a projective summand. By Proposition 2.2(iii), ν

is an even partition. By Lemma 4.2(ii), δ(ν) = 0. By Theorem 4.1 and

Proposition 2.3, the column of the decomposition matrix labelled by ν has

a non-zero entry in a row labelled by partition µ with δ(µ) = 1. By another

application of Lemma 4.2(ii), this partition µ is not even, contradicting

Proposition 2.2(iii). This completes the proof. �
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As a corollary, we are now ready to deduce Theorem 1.4.

Proof of Theorem 1.4. Let t = bn/pc and let r = n − tp. Since Qt per-

mutes 2tp points, if a block B(γ,w) of S2n contains a summand of H(2n)

with vertex Qt then wp ≥ 2tp, and so w = 2t. Let γ be a p-core such

that |γ| + 2tp = 2n. By Proposition 2.1, the number of indecomposable

summands of H(2n) with vertex Qt in B(γ, 2t) is equal to the number of in-

decomposable projective summands of H(2r) in the block B(γ,w−2t) of S2r.

Since r < p, it follows from Theorem 1.2 that H(2r) has at most one sum-

mand in B(γ,w − 2t), and that every such summand is projective. Hence

the number of indecomposable summands of H(2n) with vertex Qt is equal

to the number of blocks of H(2r) containing an even partition. This equals

the number of p-core partitions that can be obtained by removing p-hooks

from even partitions of 2r, as required. �

7. Proof of Theorem 1.3

Let n = k + p. By hypothesis 0 ≤ 2k < p. The p-core (2k) is represented

by the abacus shown below. (If k = 0 then the bead in the second row

should be deleted.)

0 1 2k−1 2k 2k+1 p−2 p−1

· · · · · ·

· · · · · ·

Following the notation used in [20], let 〈u〉 denote the partition obtained

by two single-step moves of the lowest bead on runner u. Let 〈u, u〉 denote

the partition obtained by a single-step move of the lowest bead on runner u

followed by a single-step move of the bead immediately above it. Finally let

〈u, v〉 denote the partition obtained by single-step moves of the lowest beads

on runners u and v.

It follows from Proposition 4.3, but can also easily be seen directly, that

if k 6= 0 then the even partitions in B
(
(2k), 2

)
are 〈2k〉, 〈p−1〉 and 〈j, j+ 1〉

where either j < 2k and j is even, or j > 2k and j is odd. If k = 0 then

they are 〈p − 1〉 and 〈j, j + 1〉 for j even. A convenient way to find the

composition factors of the corresponding Specht modules uses the chains in

the following lemma.

Lemma 7.1. Let P be the set consisting of all even partitions in B
(
(2k), 2

)
together with all partitions ν ∈ B

(
(2k), 2

)
such that δ(ν) = 1. Then P is

totally ordered by the dominance order. The elements of P are as follows.
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If 2 < 2k < p− 1 then

〈2k〉� 〈p− 1〉� 〈2k, p−2〉� 〈p− 2,p− 1〉� · · ·

· · ·� 〈2t+1,2t+2〉� 〈2t, 2t+2〉� 〈2t−1, 2t+1〉� 〈2t−1,2t〉� · · ·

· · ·� 〈2k+1,2k+2〉� 〈2k−1, 2k+2〉� 〈2k−2, 2k+1〉� 〈2k−2,2k−1〉� · · ·

· · ·� 〈2s,2s+1〉� 〈2s−1, 2s+1〉� 〈2s−2, 2s〉� 〈2s−2,2s−1〉� · · ·

· · ·� 〈2,3〉� 〈1, 3〉� 〈0, 2〉� 〈0,1〉� 〈1, 1〉;

if 2k = 0 then

〈p− 1〉� 〈p− 2〉� 〈p− 3, p− 1〉� 〈p− 3,p− 2〉� 〈p− 4, p− 2〉� · · ·

· · ·� 〈2, 4〉� 〈2,3〉� 〈1, 3〉� 〈0, 2〉� 〈0,1〉� 〈1, 1〉;

if 2k = 2 then

〈2〉� 〈p− 1〉� 〈2, p− 2〉� 〈p− 2,p− 1〉� 〈p− 3, p− 1〉� · · ·

· · ·� 〈3, 5〉� 〈3,4〉� 〈1, 4〉� 〈0, 3〉� 〈0,1〉� 〈1, 1〉;

and if 2k = p− 1 then

〈p− 1〉� 〈p− 2, p− 1〉� 〈p− 3〉� 〈p− 3,p− 2〉� 〈p− 4, p− 2〉� · · ·

· · ·� 〈2, 4〉� 〈2,3〉� 〈1, 3〉� 〈0, 2〉� 〈0,1〉� 〈1, 1〉.

The even partitions are shown in bold type.

Proof. It is routine to check that the partitions ν such that δ(ν) = 1 are as

claimed. Lemma 4.4 in [18], which states that 〈u, v〉 � 〈u′, v′〉 if and only

if u ≤ u′ and v ≤ v′, then gives the total order of the chains, except for

the cases involving partitions of the form 〈u〉, which have to be checked

separately. �

Proposition 7.2. Let µ ∈ B
(
(2k), 2

)
be even. Suppose that, in the relevant

chain of partitions in Lemma 7.1, we have adjacent partitions ζ�ρ�ν�µ�η

where ζ is even. Then

(i) µ is even and ζ◦ = µ and ν◦ = η;

(ii) if µ 6= 〈0, 1〉 then the composition factors of Sµ are Dζ , Dν and Dµ;

(iii) the composition factors of S〈0,1〉 are D〈2,3〉 and D〈0,2〉;

(iv) Ext1(Dζ , Dν) = Ext1(Dν , Dµ) = F ;

(v) if λ ∈ B
(
(2k), 2

)
and Ext1(Dµ, Dλ) 6= 0 then δ(λ) = 1.

Proof. Part (i) follows from the definition of the map ◦ and inspection of

the chains in Lemma 7.1. Then (ii) and (iii) are easy deductions from

Lemma 7.1 and Theorem 4.1. The Ext quivers of p-weight two principal

blocks of symmetric groups were found by Martin in [16]: parts (iv) and (v)
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can be read off from Figures 9 and 10 in the appendix. Alternatively these

parts follow from [4, Theorem 6.1]. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Theorem 1.2(iii), there is a unique indecompos-

able summand of H(2p+k) in the block B
(
(2k), 2

)
of S2(p+k). This sum-

mand, U say, is the Scott module of vertex Q1. By [3, (2.1)], U is self-dual

and has the trivial module in its socle. By Proposition 7.2(ii) and (iii), each

Dν labelled by a partition ν such that δ(ν) = 1 appears exactly once in U .

Hence if 2 < 2k < p− 1 then the heart of U is

D〈2k,p−2〉 ⊕D〈p−4,p−2〉 ⊕ · · ·

· · · ⊕D〈2k+1,2k+3〉 ⊕D〈2k−2,2k+1〉 ⊕D〈2k−4,2k−2〉 ⊕ · · · ⊕D〈0,2〉.

If 2k ∈ {0, 2, p − 1} then an analogous result holds with minor changes to

the labels, as indicated in Figure 5 below. Similarly, each simple module

D2λ labelled by a p-regular even partition 2λ appears exactly twice in U .

By Proposition 7.2(iv), the only extensions in U are between modules in

the heart of U and these D2λ. It is easily seen, either from the chains in

Lemma 7.1, or from Lemma 4.3 in [18] and our Lemma 4.2, that the unique

even partition in B
(
(2k), 2

)
that is not p-regular is (2k, 2p) (interpreted as

(2p) if k = 0). Hence U has three Loewy layers and

socU ∼= top U ∼=
⊕

2λ∈B((2k),2)
2λ6=(2k,2p)

D2ν .

If 2 < 2k < p − 1 then the structure of U is as shown in Figure 1. The

exceptional cases are shown in Figure 5 below. �

Remark 7.3. In [17], Paget proved that H(2n) has a filtration 0 = V0 ⊂
V1 ⊂ . . . ⊂ Vd = H(2n) such that Vi/Vi−1 ∼= S2λ(i), where λ(1) < . . . < λ(d)

are the partitions of n. By Proposition 13 in [21], which was proved using

the Hemmer–Nakano homological characterization of modules with a Specht

filtration (see [10]), it follows that the summand U has a Specht filtration,

provided p ≥ 5. This filtration can be seen in Figures 1 and 5: for 2k > 2, the

bottom Specht factor is S〈0,1〉 (with composition factors D〈0,2〉 and D〈2,3〉)

the next is S〈2,3〉 (with composition factors D〈2,3〉, D〈2,4〉, D〈4,5〉), and on on,

ending with the trivial module D〈2k〉 at the top.

It would be interesting to know other cases where a single indecompos-

able module exhibits a significant proportion of the extensions between two

classes of simple modules for the symmetric group.
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D〈p−1〉 D〈p−3,p−2〉 D〈4,5〉 D〈2,3〉· · ·

D〈p−1〉 D〈p−3,p−2〉 D〈4,5〉 D〈2,3〉· · ·

D〈2〉 D〈p−2,p−1〉 D〈5,6〉 D〈3,4〉· · ·

D〈2〉 D〈p−2,p−1〉 D〈5,6〉 D〈3,4〉· · ·

D〈p−3,p−1〉 D〈p−5,p−3〉 D〈4,6〉 D〈2,4〉 D〈0,2〉

D〈2,p−2〉 D〈p−4,p−2〉 D〈5,7〉 D〈3,5〉 D〈0,3〉

Figure 5. Loewy layers of the Scott module summand U of H(2n) in

the block B
(
(2k), 2

)
in the cases 2k = 0 (top) and 2k = 2 (bottom). If

2k = p − 1 then the diagram for 2k = 0 applies, replacing 〈p − 3, p − 1〉
with 〈p− 3〉.

8. Example: H(27) in characteristic 5

Let p = 5. The even partitions of 14 lie in the 5-blocks B
(
(4), 2

)
,

B
(
(2, 2), 2

)
, B
(
(3, 1), 2

)
, B
(
(14), 2

)
, B
(
(5, 2, 2), 1

)
and B

(
(4, 4, 2, 2, 2), 0

)
of

S14. The principal block summand, U say, is dealt with by Theorem 1.3.

Since w
(
(3, 1)

)
= w

(
(14)

)
= 2, w

(
(5, 2, 2)

)
= 1 and w

(
(4, 4, 2, 2, 2)

)
= 0, it

follows from Theorem 1.2 that the summands in these blocks are the pro-

jective modules P (10,4), P (8,2,2,2), P (10,2,2) and S(4,4,2,2,2), respectively. By

Theorem 1.2(iii), there is a unique summand, V say, in B
(
(2, 2), 2

)
. This

summand has vertex Q1. By Remark 7.3, V has a Specht filtration by

the Specht factors in this block, namely S(12,2), S(6,4,4) and S(27). Using

Theorem 4.1 to get the required decomposition numbers, one finds that

U ⊕ V ⊕ P (10,4) ⊕ P (8,2,2,2)

=

 S(14)

S(4,4,4,2)

S(4,25)

⊕
S(12,2)

S(6,4,4)

S(27)

⊕
S(10,4)

S(8,6)

S(8,4,2)

⊕
S(8,2,2,2)

S(6,4,2,2)

S(6,24)


=

 D(14) ⊕D(4,4,4,2)

D(7,5,1,1) ⊕D(4,3,2,2,2,1)

D(14) ⊕D(4,4,4,2)

⊕
 D(12,2) ⊕D(6,4,4)

D(7,4,3) ⊕D(3,3,3,2,1,1,1)

D(12,2) ⊕D(6,4,4)



⊕


D(10,4)

D(13,1) ⊕D(8,6)

D(10,4) ⊕D(8,4,2)

D(13,1) ⊕D(8,6)

D(10,4)


⊕


D(8,2,2,2)

D(9,2,2,1) ⊕D(6,4,2,2)

D(6,5,2,1) ⊕D(8,2,2,2) ⊕D(6,2,2,2,2)

D(9,2,2,1) ⊕D(6,4,2,2)

D(8,2,2,2)

.
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The Loewy layers of P (10,2,2) are given by Remark 6.1, while the other

summand, S(4,4,2,2,2) is simple. By Proposition 6.5 in [8], all these summands

have abelian endomorphism rings. We note that P (10,4) is the projective

summand used in the proof of Theorem 1.1.
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