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Abstract. We use the hook lengths of a partition to define two rect-

angular tableaux. We prove these tableaux have equal entries, first by

elementary combinatorial arguments, and then using Stanley’s Hook

Content Formula and symmetric polynomials.

1. Introduction

This paper presents two proofs of an appealing corollary of Stanley’s

Hook Content Formula [3, Theorem 7.21.2] for the number of semistandard

Young tableaux: the first is self-contained and entirely elementary, while the

second uses Stanley’s result and symmetric polynomials. The author hopes

the paper will be useful as an introduction to this interesting circle of ideas.

The following definitions are standard. A partition of n ∈ N0 is a sequence

(λ1, . . . , λk) of natural numbers such that λ1 ≥ . . . ≥ λk and λ1 + · · · +
λk = n. The size of λ is n. We define `(λ) = k and a(λ) = λ1, setting

`(∅) = a(∅) = 0. The Young diagram of λ, denoted [λ], is the set of boxes

{(i, j) : 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi}.
We fix throughout r, c ∈ N. Let D = {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ c}.

We orient D by compass directions, thus (r, 1) is the box in its south-west

corner and (1, c) is the box in its north-east corner. As a running example,

the Young diagram of (7, 5, 4, 3, 3, 2), shown as a subset of D when r = 6

and c = 8, is below.

The hatched squares show the hooks on (2, 2) and (5, 6), as defined formally

in the definition below.

Definition. Let λ be a partition with `(λ) ≤ r and a(λ) ≤ c. Let (i, j) ∈ D.
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(i) The hook on (i, j), denoted H(i,j)(λ), is

{(i, j)} ∪
{

(i′, j) ∈ [λ] : i′ > i
}
∪
{

(i, j′) ∈ [λ] : j′ > j
}

if (i, j) ∈ [λ] and

{(i, j)} ∪
{

(i′, j) ∈ D\[λ] : i′ < i
}
∪
{

(i, j′) ∈ D\[λ] : j′ < j
}

if (i, j) ∈ D\[λ]. We define the hook length of (i, j), denoted h(i,j)(λ),

to be |H(i,j)(λ)|.
(ii) The distance of (i, j), denoted d(i,j)(λ), is the number of boxes in

any walk by steps south and west to (r, 1) if (i, j) ∈ [λ], or of any

walk by steps north and east to (1, c) if (i, j) ∈ D\[λ].

Our result concerns two ways to fill the boxes of D with natural numbers.

Formally, these are specified by two functions from D to N, assigning to

each box of D a corresponding entry in N.

Definition. Let λ be a partition with `(λ) ≤ r and a(λ) ≤ c. Let (i, j) ∈ D.

The hook/distance tableau for λ has entry in box (i, j){
h(i,j)(λ) if (i, j) ∈ [λ]

d(i,j)(λ) if (i, j) ∈ D\[λ].

The distance/hook tableau for λ has entry in box (i, j){
d(i,j)(λ) if (i, j) ∈ [λ]

h(i,j)(λ) if (i, j) ∈ D\[λ].

Theorem 1. For any partition λ with `(λ) ≤ r and a(λ) ≤ c, the multisets

of entries of the hook/distance tableau for λ and the distance/hook tableau

for λ are equal.

In our running example, the hook/distance tableau (below left) and dis-

tance/hook tableau (below right) both have, for instance, six entries of 1,

three entries of 8, and 12 as their unique greatest entry.

12 11 9 6 4 2 1 1

9 8 6 3 1 4 3 2

7 6 4 1 6 5 4 3

5 4 2 8 7 6 5 4

4 3 1 9 8 7 6 5

2 1 11 10 9 8 7 6

6 7 8 9 10 11 12 1

5 6 7 8 9 1 2 4

4 5 6 7 1 3 4 6

3 4 5 1 3 5 6 8

2 3 4 2 4 6 7 9

1 2 1 4 6 8 9 11

In §2 we give an elementary combinatorial proof of Theorem 1, working

by induction on the size of λ. Then in §3 we put the theorem in its proper

context by giving a shorter algebraic proof using Stanley’s Hook Content

Formula and a bijection due to King [1, §4].



A COROLLARY OF STANLEY’S HOOK CONTENT FORMULA 3

2. An elementary combinatorial proof of the main theorem

We work by induction on n, the size of λ. If n = 0, so λ = ∅, then the

hook/distance tableau has the distances i+ c− 1,. . . , i from west to east in

row i, while the distance/hook tableau has the hook lengths i, . . . i + c − 1

from west to east in row i. Therefore the multisets of entries agree.

Suppose the theorem holds for the partition λ of n where n < rc. Let

(a, b) ∈ D\[λ] be a box such that [λ] ∪ {(a, b)} is the Young diagram of a

partition, denoted λ′. As a visual aid, we define the hook/hook tableau to

have entry h(i,j)(λ) in box (i, j) if (i, j) ∈ [λ] and entry h(i,j)(λ
′) in box (i, j)

if (i, j) ∈ D\[λ′]. No entry is assigned to the exceptional box (a, b). The

hook/hook tableau in our running example with (a, b) = (2, 6) is below.

12 11 9 6 4 2 1 1

9 8 6 3 1 1 3

7 6 4 1 1 2 4 6

5 4 2 1 3 4 6 8

4 3 1 2 4 5 7 9

2 1 1 4 6 7 9 11

The following lemma is used below to express the hook lengths of λ′ in

terms of those of λ. The hook/hook tableau above shows that the sets R,

R′, C and C′ in this lemma are {1, 3, 6, 8, 9}, {2, 4, 5, 7}, {2} and {1, 3}.

Lemma 2.

(i) Let R = {h(a,j)(λ) : 1 ≤ j < b} and let R′ = {h(i,b)(λ′) : a < i ≤ r}.
Then R∪R′ = {1, . . . r − a+ b− 1} where the union is disjoint.

(ii) Let C = {h(i,b)(λ) : 1 ≤ i < a} and let C′ = {h(a,j)(λ′) : b < j ≤ c}.
Then C ∪ C′ = {1, . . . , c− b+ a− 1} where the union is disjoint.

Proof. It is clear from the diagram below and the hook/hook tableau that

no hook length in R can equal a hook length in R′.

. .
.

(a,b)(a,j)

(i,b)

(i′,b)

Therefore R and R′ are disjoint. If `(λ) = r then the greatest hook length in

R∪R′ is h(a,1) = (r−a)+(b−1) ∈ R, measured by walking north from (r, 1)

to (a, 1) then east to (a, b− 1). Otherwise it is h(r,b) = b+ (r− a− 1) ∈ R′,
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measured by walking east from (r, 1) to (r, b) then north to (a+ 1, b). Since

|R| + |R′| = (b − 1) + (r − a), this proves (i); the proof of (ii) is entirely

analogous. �

Given a multiset X of natural numbers, let X+ = {x + 1 : x ∈ X}.
Let ∪ denote the union of multisets. Thus {2, 2, 3}+ = {3, 3, 4} and {1, 2}∪
{2, 2, 3} = {1, 2, 2, 2, 3}.

We are now ready for the inductive step. Define

HNW = {h(i,j)(λ) : (i, j) ∈ [λ]} H′NW = {h(i,j)(λ′) : (i, j) ∈ [λ′]}
HSE = {h(i,j)(λ) : (i, j) ∈ D\[λ]} H′SE = {h(i,j)(λ′) : (i, j) ∈ D\[λ′]}

and let DNW,DSE,D′NW,D′SE be defined analogously, replacing hook lengths

with distances.

If (i, j) ∈ [λ′] then

h(i,j)(λ
′) =


h(i,j)(λ) if i 6= a and j 6= b

h(i,j)(λ) + 1 if i = a or j = b but not both

1 if i = a and j = b

and similarly if (i, j) ∈ D\[λ′] then

h(i,j)(λ
′) =

{
h(i,j)(λ) if i 6= a and j 6= b

h(i,j)(λ)− 1 if i = a or j = b but not both.
.

The equations for h(i,j)(λ
′) above show that H′NW is obtained from HNW

by removing each hook length in R ∪ C and inserting each hook length in

R+ ∪C+ ∪{1}. Similarly H′SE is obtained from HSE by removing each hook

length in R′+∪C ′+∪{1} and inserting each hook length inR′∪C′. Therefore,

using the multiset union,

H′NW ∪R ∪ C = HNW ∪R+ ∪ C+ ∪ {1}

H′SE ∪R′+ ∪ C ′+ ∪ {1} = HSE ∪R′ ∪ C′.

We now manipulate these equations so that the inductive hypothesis

HNW ∪ DSE = DNW ∪ HSE applies. Recall from Lemma 2 that R ∪ R′ =

{1, . . . , r− a+ b− 1} and C ∪ C′ = {1, . . . , c− b+ a− 1}. Hence, taking the

multiset union of both sides of the two equations above with R′ ∪ C′ and

R+ ∪ C+, respectively, we get

H′NW ∪ {1, . . . , r − a+ b− 1} ∪ {1, . . . , c− b+ a− 1} = HNW ∪ Y ∪ {1}
H′SE ∪ {2, . . . , r − a+ b} ∪ {2, . . . , c− b+ a} ∪ {1} = HSE ∪ Y

where Y = R+∪C+∪R′∪C′. Setting Z = {1, . . . , r−a+b−1}∪{2, . . . , c−
b+ a}, it follows that

H′NW ∪ Z ∪ {1} = HNW ∪ Y ∪ {1, c− b+ a}(1)

H′SE ∪ Z ∪ {r − a+ b} = HSE ∪ Y.(2)
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Since d(a,b)(λ
′) = r−a+b and d(a,b)(λ) = c−b+a we have D′SE∪{c−b+a} =

DSE and D′NW = DNW∪{r−a+ b}. Taking the multiset union of both sides

of (1) with D′SE ∪ {c− b+ a} and (2) with D′NW, we get

H′NW ∪ D′SE ∪ Z ∪ {1, c− b+ a} = HNW ∪ DSE ∪ Y ∪ {1, c− b+ a}
H′SE ∪ D′NW ∪ Z ∪ {r − a+ b} = HSE ∪ DNW ∪ Y ∪ {r − a+ b}.

Cancelling the elements of {1, c − b + a} and {r − a + b}, we get H′NW ∪
D′SE ∪Z = HNW ∪DSE ∪Y and H′SE ∪D′NW ∪Z = HSE ∪DNW ∪Y. By our

inductive hypothesis, the right-hand sides are equal. ThereforeH′NW∪D′SE =

D′NW ∪H′SE, as required.

3. A symmetric polynomials proof of the main theorem

3.1. Background. Fix a partition λ. A λ-tableau is a function [λ] → N

assigning to each box of [λ] an entry in N. A λ-tableau t is semistandard if

its rows are weakly increasing, when read from west to east, and its columns

are strictly increasing, when read from north to south. Let SSYTr(λ) de-

note the set of semistandard λ-tableaux with maximum entry at most our

fixed number r. For t ∈ SSYTr(λ), let xt denote the monomial xe11 . . . xerr
where ek is the number of entries of t equal to k. By definition, the Schur

polynomial sλ in r variables is

sλ(x1, . . . , xr) =
∑

t∈SSYTr(λ)

xt.

A fundamental result states that sλ(x1, . . . , xr) is symmetric under per-

mutation of x1, . . . , xr. This has an elegant proof by the Bender–Knuth

involution: see for instance Theorem 7.10.2 in [3].

Let |t| denote the sum of the entries of t ∈ SSYTr(λ). Specializing sλ by

xk 7→ qk we obtain

(3) sλ(q, . . . , qr) =
∑

t∈SSYTr(λ)

q|t|.

The minimum possible value of |t| for t ∈ SSYTr(λ) is B(λ) =
∑`(λ)

i=1 iλi.

Stanley’s Hook Content Formula may be stated as

(4) sλ(q, . . . , qr) = qB(λ)
∏

(i,j)∈[λ]

qr+j−i − 1

qh(i,j)(λ) − 1

where the hook lengths h(i,j)(λ) for (i, j) ∈ [λ] are as we have defined.

(The term ‘content’ refers to the powers of q in the numerators.) Stanley’s

formula was first proved in [2, Theorem 15.3]; for the statement above see

[3, Theorem 7.21.2] and the following discussion. For example,

s(3,2,1)(q, q
2, q3) = q10 + 2q11 + 2q12 + 2q13 + q14
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enumerates the semistandard tableaux

1 1 1
2 2
3

1 1 1
2 3
3

1 1 2
2 2
3

1 1 2
2 3
3

1 1 3
2 2
3

1 2 2
2 3
3

1 1 3
2 3
3

1 2 3
2 3
3

.

The central symmetry about x12 in the coefficients in this example is a

special case of the following basic and well-known lemma, left to the reader

in Exercise 7.75 in [3].

Lemma 3. Let λ be a partition of n. Then

sλ(q, q2, . . . , qr) = q(r+1)nsλ(q−1, q−2, . . . , q−r).

Proof. Let f(x1, x2, . . . , xr) be a symmetric polynomial. If xe11 . . . xerr is a

monomial in f then so is xer1 . . . xe1r , and the coefficients agree. Under the

specialization xk 7→ qk the first becomes qe1+···+rer and the second qer+···+re1 .

Observe that the sum of exponents is (r + 1)(e1 + · · · + er) = (r + 1)n.

Therefore the coefficients of qd and q(r+1)n−d in f(q, q2, . . . , qr) agree for

each d. Taking f = sλ this easily implies the lemma. �

The end of our proof requires the following unique factorization theorem,

implicitly used in (4.8) in [1].

Lemma 4. Let E and E ′ be finite multisubsets of N. In the ring C[q],∏
e∈E(q

e − 1) =
∏
e′∈E ′(q

e′ − 1) if and only if E = E ′.

Proof. If either E or E ′ is empty the result is obvious. In the remaining

cases, let u be maximal such that
∏
e∈E(q

e − 1) has e2πi/u as a root. By

maximality, qu − 1 is a factor in the left-hand side. Since e2πi/u is then also

a root of
∏
e′∈E ′(q

e′ − 1) the same argument shows that qu − 1 is a factor in

the right-hand side. Therefore u = max E = max E ′. It follows inductively

by cancelling qu − 1 from both sides that E = E ′. �

Let λ◦ denote the partition defined by deleting any final zeroes from

(c− λr, . . . , c− λ1); here if i > `(λ) we take λi = 0.

We require the following bijection which is indicated in [1, §4]; we give a

complete proof.

Proposition 5. There is a bijection

SSYTr(λ)→ SSYTr(λ
◦)

defined by sending t ∈ SSYTr(λ) to the unique λ◦-tableau t◦ having as its

entries in column j the complement in {1, . . . , r} of the entries of t in column

c+ 1− j, arranged in increasing order from north to south.

Proof. It suffices to prove that t◦ is semistandard. Suppose, for a contra-

diction, that columns c − j − 1 and c − j of t◦ have entries `◦1 ≤ k◦1, . . . ,

`◦i−1 ≤ k◦i−1 and `◦i > k◦i read from north to south. Let columns j and j + 1

of t read from north to south have entries k1 ≤ `1, . . . , kh ≤ `h where h is
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maximal such that `h < `◦i . Then {`◦1, . . . , `◦i−1, `1, . . . , `h} are all the num-

bers strictly less than `◦i in {1, . . . , r}, since, by choice of h, if `h+1 is defined

then `h+1 > `◦i . But from the chain `◦i > k◦i > . . . > k◦1 and the inequalities

`◦i > `h ≥ `j ≥ kj for j ∈ {1, . . . , h}, we see that `i is strictly greater than

i+ h distinct numbers, a contradiction. �

3.2. Proof of Theorem 1. Observe that if t ∈ SSYTr(λ) then |t|+ |t◦| =
r(1 + · · ·+ c) = rc(c+ 1)/2. Therefore by (3), the bijection in Proposition 5,

and then Lemma 3, we have

sλ◦(q, . . . , q
r) =

∑
u∈SSYTr(λ◦)

q|u|

=
∑

t∈SSYTr(λ)

q(r+1)rc/2−|t|

= qr(r+1)c/2sλ(q−1, . . . , q−r)

= q(r+1)(rc/2−n)sλ(q, . . . , qr).

Applying Stanley’s Hook Content Formula (4) to each side we obtain

qB(λ◦)
∏

(i,j)∈[λ◦]

qr+j−i − 1

qh(i,j)(λ
◦) − 1

= q(r+1)(rc/2−n)+B(λ)
∏

(i,j)∈[λ]

qr+j−i − 1

qh(i,j)(λ) − 1
.

We now relate the numerators to the distances in Theorem 1, using the

bijection from [λ◦] to D\[λ] defined by (i, j) 7→ (i′, j′) where i′ = r + 1 − i
and j′ = c+1−j. We have h(i′,j′)(λ) = h(i,j)(λ

◦). Moreover, d(i′,j′)(λ) is the

number of boxes in any walk by steps north and east from (r+1−i, c+1−j)
to (1, c), namely r − i+ j. Therefore the left-hand side is

qB(λ◦)
∏

(i′,j′)∈D\[λ]

qd(i′,j′)(λ) − 1

qh(i′,j′)(λ) − 1
.

If (i, j) ∈ [λ] then d(i,j)(λ) is the number of boxes in any walk by steps south

and west to (r, 1), again r − i+ j. Therefore, cancelling the powers of q we

obtain ∏
(i′,j′)∈D\[λ]

qd(i′,j′)(λ) − 1

qh(i′,j′)(λ) − 1
=

∏
(i,j)∈[λ]

qd(i,j)(λ) − 1

qh(i,j)(λ) − 1
.

Theorem 1 now follows by multiplying through by the denominators and

applying Lemma 4.
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