
1. A short proof of Jordan normal form

Let T : V → V be a linear transformation of a finite dimensional complex
vector space. We shall outline a proof that there is basis of V in which T is
represented by a matrix in Jordan normal form

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ar


where each Ai is a Jordan block matrix Jt(λ) for some t ∈ N and λ ∈ C:

Jt(λ) =



λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


t×t.

1.1. Reduction to nilpotent maps. The first step is to reduce to the case
where T q = 0 for some q ≥ 1; that is, T is nilpotent. We need the following
lemma.

Lemma 1. If f(X) ∈ C[X] and g(X) ∈ C[X] are coprime polynomials
such that f(T )g(T ) = 0 then V = im f(T ) ⊕ im g(T ). Moreover the sub-
spaces in this decomposition are T -invariant and the minimal polynomial of
T restricted to im g(T ) divides f(T ).

Proof. If v = f(T )w then Tv = f(T )Tw so the subspaces are T -invariant.
By Euclid’s algorithm there exist two further polynomials a(X) and b(X)
such that a(X)f(X) + b(X)g(X) = 1. Hence for any v ∈ V ,

f(T )(a(T )v) + g(T )(b(T )v) = v.

This shows that f(T )a(T ) is a projection onto im f(T ) and that V =
f(T )V + g(T )V . If v ∈ im g(T ), with say v = g(T )w, then f(T )v =
f(T )h(T )w = 0 so the minimal polynomial of T on im g(T ) divides f(T ).
Finally, if v ∈ im f(T ) ∩ im g(T ) then v = a(T )(f(T )v) + b(T )(g(T )v) =
0 + 0 = 0. �

Suppose that the minimal polynomial of T factorises as

(X − λ1)a1 . . . (X − λr)ar

where the λi are distinct and each ai ≥ 1. By applying the lemma with
f(X) = (X − λi)ai and g(X) the product of the remaining factors, we can
split up V into subspaces V1 . . . Vr such that T : Vi → Vi has minimal
polynomial dividing (X − λi)ai . (This result is sometimes known as the
‘Primary Decomposition Theorem’.) By considering the maps T − λi1V we
may then reduce to the case where T acts nilpotently. We give two ways to
deal with this case.
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1.2. Jordan normal form for nilpotent maps (the quick way). We
work by induction on dim V . As T is nilpotent, dim im T < dim T . If
im T = 0 then T = 0 and the result is trivial, so we may assume that
im T 6= 0. By induction we may find u1, . . . , uk ∈ im T so that

u1, Tu1, . . . , T
a1−1u1, . . . , uk, Tuk, . . . , T

ak−1uk

is a basis for im T . (In this basis T : im T → im T is in Jordan normal form.)
For 1 ≤ i ≤ k choose vi ∈ V such that ui = Tvi. Clearly kerT ⊇〈

T a1−1u1, . . . , T
ak−1uk

〉
. Extend this basis to a basis of ker T , by w1, . . . , wl

say. We claim that the vectors

v1, T v1, . . . , T
a1u1, . . . , vk, T vk, . . . , T

akvk, w1, . . . , wl

form a basis for V . Linear independence may readily be checked by apply-
ing T to any given linear relation between the vectors. To show that they
span V , we use dimensional counting. We know that dim ker T = k + l and
dim im T = a1 + . . . + ak. Hence

dim T = (a1 + 1) + . . . + (ak + 1) + l,

which is the number of vectors above. Therefore we have constructed a basis
for V in which T : V → V is in Jordan normal form.

1.3. Jordan normal form for nilpotent maps (the slow way). Sup-
pose that T q = 0 and T q−1 6= 0. Let v ∈ V be any vector such that
T q−1v 6= 0. One can check that the vectors v, Tv, . . . , T q−1v are linearly
independent. Their span, U say, is an T -invariant subspace of V . With
respect to the given basis of U , the matrix of T : U → U is the Jordan block
Jq(0). Therefore, if we could find a T -invariant complement for U , an easy
induction on dim V would complete the proof.

To show that a suitable complement exists, we work by induction on q.
If q = 1, then T = 0 and any vector space complement to U will do. Now
suppose we can find complements when T q−1 = 0.

Consider im T ⊆ V . On im T , T acts as a nilpotent linear map such that
T q−1 = 0 and T q−2(Tv) 6= 0, so by induction on q we get

im T =
〈
Tv, . . . , T q−1v

〉
⊕W

for some T -invariant subspace W . Note that U ∩ W = 0. Our task is to
extend W to a suitable T -invariant complement for U in V .

Suppose first that W = 0. In this case, im T =
〈
Tv, . . . , T q−1v

〉
and

ker T ∩ im T =
〈
T q−1v

〉
. Extend T q−1v to a basis of kerT , say by v1, . . . , vs.

By the rank-nullity formula

v, Tv . . . , T q−1v, v1, . . . , vs

is a basis of V . The subspace spanned by v1, . . . , vs is an T -invariant com-
plement to U .

Now suppose that W 6= 0. Then T induces a linear transformation, T̄ say,
on V/W . Let v̄ = v + W . Since im T̄ =

〈
T̄ v̄, . . . , T̄ q−1v̄

〉
, the first case im-

plies that there is an T̄ -invariant complement in V/W to
〈
v̄, T̄ v̄, . . . T̄ q−1v̄

〉
.

The preimage of this complement in V is a suitable complement to U
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2. The structure theorem for finite abelian groups

The idea used in the ‘slow proof’ above can also be used to prove the
structure theorem for finite abelian groups. By induction on the order of
the group it will suffice to show that if H = 〈x〉 is a maximal cyclic subgroup
of a finite abelian group G then H has a complementary subgroup.

We work by induction on the order of H. If |H| = 1 then necessarily
|G| = 1, so we may suppose that |H| > 1. Let p be a prime factor of |H|.
Provided that pH is non-zero, one can check that pH is a maximal cyclic
subgroup of pG, so by induction, pH has a complement in pG. On the
other hand, if pH = 0 then we can just take pG as the complement. Let
pG = pH ⊕K. If K 6= 0 then G/K has order strictly less than |G|, so by a
further induction we have

G/K = 〈x + K〉 ⊕ L/K

for some complement L. As before, L provides a suitable complement to H
in G.

We are left with the case pG = pH. We may regard G/pG as a vector
space over the field with p-elements. Take any vector space complement to
x̄ = x + pG, say 〈ȳ1, . . . , ȳs〉. We would like to have pyj = 0 but all we
have at the moment is pyj ∈ pG = 〈px〉. However this is easily corrected: if
pyj = mpx then we replace yj with y′j = yi−mx. So G is a direct sum of H
with s cyclic groups of order p:

G = 〈x〉 ⊕
〈
y′1

〉
. . .⊕

〈
y′s

〉
. �

To classify finitely generated abelian groups we need a further splitting
theorem, namely that if G is a finitely generated abelian group and T ≤ G
is its torsion subgroup, that is, the set of elements of finite order, then there
is a free abelian subgroup K ≤ G such that G = T⊕K. As a free generating
set for G/T will lift to a free generating set for a complement of T in G, it
suffices to show that G/T is a free abelian group. This follows at once from
the following lemma:

Lemma 2. A finitely generated torsion free abelian group is free.

Proof. Suppose that G is a finitely generated torsion free abelian group that
is not free. Then any set of generators for G satisfies a non-trivial relation.
Choose, from all possible generating sets for the group and all the non-trivial
relations satisfied by these generating sets, a relation

a1g1 + . . . + angn

where |a1| + . . . + |an| is as small as possible. We may reorder and change
the sign of the generators so that a1 = max |ai| and a2 > 0. Consider the
new generating set g1, g1 + g2, . . . , gn. This satisfies the new relation

(a1 − a2)g1 + a2(g1 + g2) + . . . + angn = 0

in contradiction to our original choice. �
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