A SHORT PROOF OF THE EXISTENCE OF JORDAN NORMAL FORM

MARK WILDON

Let V be a finite-dimensional complex vector space and let $T: V \rightarrow V$ be a linear map. A fundamental theorem in linear algebra asserts that there is a basis of V in which T is represented by a matrix in Jordan normal form

$$
\left(\begin{array}{cccc}
J_{1} & 0 & \ldots & 0 \\
0 & J_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & J_{k}
\end{array}\right)
$$

where each J_{i} is a matrix of the form

$$
\left(\begin{array}{ccccc}
\lambda & 1 & \ldots & 0 & 0 \\
0 & \lambda & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda & 1 \\
0 & 0 & \ldots & 0 & \lambda
\end{array}\right)
$$

for some $\lambda \in \mathbf{C}$.
We shall assume that the usual reduction to the case where some power of T is the zero map has been made. (See $[1, \S 58]$ for a characteristically clear account of this step.) After this reduction, it is sufficient to prove the following theorem.

Theorem 1. If $T: V \rightarrow V$ is a linear transformation of a finite-dimensional vector space such that $T^{m}=0$ for some $m \geq 1$, then there is a basis of V of the form

$$
u_{1}, T u_{1}, \ldots, T^{a_{1}-1} u_{1}, \ldots, u_{k}, T u_{k}, \ldots, T^{a_{k}-1} u_{k}
$$

where $T^{a_{i}} u_{i}=0$ for $1 \leq i \leq k$.
At this point all the proofs the author has seen (even Halmos' in [1, §57]) become unnecessarily long-winded. In this note we present a simple proof which leads to a straightforward algorithm for finding the required basis.

Proof. We work by induction on $\operatorname{dim} V$. For the inductive step we may assume that $\operatorname{dim} V \geq 1$. Clearly $T(V)$ is properly contained in V, since otherwise $T^{m}(V)=\cdots=T(V)=V$, a contradiction. Moreover, if T is the zero map then the result is trivial. We may therefore assume that $0 \subset T(V) \subset V$. By applying the inductive hypothesis to the map induced by T on $T(V)$ we may find $v_{1}, \ldots, v_{l} \in T(V)$ so that

$$
v_{1}, T v_{1}, \ldots, T^{b_{1}-1} v_{1}, \ldots, v_{l}, T v_{l}, \ldots, T^{b_{l}-1} v_{l}
$$

is a basis for $T(V)$ and $T^{b_{i}} v_{i}=0$ for $1 \leq i \leq l$.
For $1 \leq i \leq l$ choose $u_{i} \in V$ such that $T u_{i}=v_{i}$. Clearly $\operatorname{ker} T$ contains the linearly independent vectors $T^{b_{1}-1} v_{1}, \ldots, T^{b_{l}-1} v_{l}$; extend these to a basis of $\operatorname{ker} T$, by adjoining the vectors w_{1}, \ldots, w_{m} say. We claim that

$$
u_{1}, T u_{1}, \ldots, T^{b_{1}} u_{1}, \ldots, u_{l}, T u_{l}, \ldots, T^{b_{l}} u_{l}, w_{1}, \ldots, w_{m}
$$

is a basis for V. Linear independence may easily be checked by applying T to a given linear relation between the vectors. To show that they span V, we use dimension counting. We know that $\operatorname{dim} \operatorname{ker} T=l+m$ and that $\operatorname{dim} T(V)=$ $b_{1}+\ldots+b_{l}$. Hence, by the rank-nullity theorem,

$$
\operatorname{dim} V=\left(b_{1}+1\right)+\ldots+\left(b_{l}+1\right)+m,
$$

which is the number of vectors in our claimed basis. We have therefore constructed a basis for V in which T is in Jordan normal form.

We end by remarking that this proof can be modified to avoid the preliminary reduction. Let λ be an eigenvalue of T. By induction we may find a basis of $(T-\lambda I) V$ in which the map induced by T on $(T-\lambda I) V$ is in Jordan normal form. This basis can then be extended in a similar way to before to obtain a basis for V in which T is in Jordan normal form.

References

[1] P. R. Halmos, Finite-dimensional vector spaces, 2nd ed. Undergraduate Texts in Mathematics. Springer, 1987.

E-mail address: m.j.wildon@swan.ac.uk

