
MT182 MATRIX ALGEBRA

MARK WILDON

These notes are intended to give the logical structure of the course; proofs
and further examples and remarks will be given in lectures. Further in-
stallments will be issued as they are ready. All handouts and problem
sheets will be put on Moodle.

These notes are based in part on notes for similar courses run by Dr
Rainer Dietmann, Dr Stefanie Gerke and Prof. James McKee. I would
very much appreciate being told of any corrections or possible improve-
ments.

You are warmly encouraged to ask questions in lectures, and to talk to
me after lectures and in my office hours. I am also happy to answer ques-
tions about the lectures or problem sheets by email. My email address is
mark.wildon@rhul.ac.uk.

Lectures: Monday noon (QBLT), Friday 10am (QBLT), Friday 3pm (BLT1).

Office hours in McCrea 240: Monday 4pm, Wednesday 10am and Friday
4pm.

Workshops for MT172/MT182: Mondays or Wednesdays, from Week 2.

Date: Second Term 2015/16.
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MATRIX ALGEBRA

This course is on vectors and matrices, the fundamental objects of alge-
bra. You will learn the material mainly by solving problems, in lectures,
in workshops and in your own time.

Outline.

(A) Vectors in R3: vector notation, displacement vectors, dot product
and vector product. Lines and planes. Use in solving geometric
problems.

(B) Introduction to matrices: matrix addition and multiplication. Rota-
tions and reflections in R2 and R3. Eigenvectors and eigenvalues,
characteristic polynomial, trace and determinant. Diagonaliza-
tion with applications.

(C) Determinants: permutations and disjoint cycle decomposition. Def-
inition of the determinant of an n× n matrix. Application: invert-
ing a matrix.

(D) Solving equations: elementary row operations, echelon form and
row-reduced echelon form, rank. Application to solving equation
and computing inverse of a matrix.

(E) Vector spaces: abstract vector spaces, linear independence, span-
ning, dimension, subspaces. Bases of vector spaces.

Recommended Reading. All these books are available on short-term loan
from the library. If you find there are not enough copies, email me.

[1] Linear algebra (Schaum’s outlines), Seymour Lipschutz, McGraw-
Hill (1968), 510.76 LIP. Clear and concise with lots of examples.

[2] Undergraduate algebra: A first course, Christopher Norman, Oxford
University Press (1986), 512.11 NOR. Very clear, good for Part (E)
of the course.

[3] Linear algebra: a modern introduction, David Poole, Brooks/Cole
(2011), 3rd edition, 512.3 POO. Simple and straightforward, good
for first four parts of course.

[4] Linear algebra, Stephen H. Freidberg, Arnold J. Insel, Laurence
E. Spence, Pearson Education (2002), 515.5 FRI. More advanced,
good for further reading.

Also you will find a link on Moodle to Prof. James McKee’s notes. These
will give you a different view of the course material with more detail than
these notes.
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Problem sheets. There will be 8 marked problem sheets; the first is due
in on Friday 22nd January. To encourage you to work hard during the
term, each problem sheet is worth 1.25% of your overall grade. Note
that this mark is awarded for any reasonable attempt at the sheet. (There is
a link on Moodle to the document explaining this policy in more detail.)

Moodle. All handouts, problem sheets and answers will be posted on
Moodle. You should find a link under ‘My courses’, but if not, go to
moodle.rhul.ac.uk/course/view.php?id=406.

Exercises in these notes. Exercises set in these notes are mostly simple
tests that you are following the material. Some will be used for quizzes
in lectures. Doing the others will help you to review your notes.

Optional questions and extras. The ‘Bonus question’ at the end of each
problem sheet, any ‘optional’ questions, and any ‘extras’ in these notes
are included for interest only, and to show you some mathematical ideas
beyond the scope of this course. You should not worry if you find them
difficult.

If you can do the compulsory questions on problem sheets, know the
definitions and main results from lectures, and can prove the results
whose proofs are marked as examinable in these notes, then you should
do very well in the examination.
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(A) Vectors in R3

1. INTRODUCTION TO VECTORS

Lecture 1 VECTORS AND DISPLACEMENT VECTORS.

Definition 1.1. R3 is the set of all ordered triples (x, y, z) of real numbers.

The notation (x, y, z) means that we care about the order of the entries.
For example (1, 2, 3) 6= (2, 1, 3). Ordered triples are not sets.

We think of (x, y, z) ∈ R3 as the point in three-dimensional space with
coordinates x, y and z in the x, y and z directions. For example, the dia-
gram below shows a cube with one vertex at the origin O = (0, 0, 0).

(0,0,1)

(0,0,0)

(0,1,0)

(1,0,0)

z

x

y

We can also write elements of R3 as vectors in column notation. As
vectors, (0, 0, 0), (1, 0, 0), (0, 0, 1) and (0, 0, 1) are

0 =




0
0
0


, i =




1
0
0


, j =




0
0
1


, k =




0
0
1


.

Vectors are written in bold; when handwritten, they are underlined. We
will see a more general definition of vectors later in the course.

Exercise 1.2. Label each vertex of the cube by the corresponding vector.

Suppose that A and B are distinct points in R3. Starting from A we can
walk to B. The displacement vector

−→
AB, gives the distance we move in each

coordinate direction. For example if A = (1, 2, 3) and B = (3, 2, 1) then

A = (1, 2, 3)

(3, 2, 1) = B

−→
AB =




2
0
−2




since we move 3− 1 = 2 in the x-direction, 2− 2 = 0 in the y-direction
and 1− 3 = −2 in the z-direction.
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Problem 1.3.

(a) What is the displacement vector from (1, 0, 0) to (0, 0, 1)?
(b) If we apply this displacement starting at (1, 1, 0), where do we

finish?
(c) If we finish at (12,−3, 2) after applying this displacement, where

must we have started?
(d) What is the displacement vector from the origin O to (1, 1, 0)?

VECTOR SUM AND PARALLELOGRAM RULE.

Problem 1.4. Let B = (1, 0, 0) and let C = (0, 1, 0). Start at the origin O
and apply the displacement vector

−→
OB. Where do we finish? Now apply−→

OC. Let D be the finishing point. Find D.

B = (1, 0, 0)

C = (0, 1, 0)

O = (0, 0, 0)

−→
OB =




1
0
0


,

−→
OC =




0
1
0


.

This motivates the following definition.

Definition 1.5. Let u =




a
b
c


 and v =




x
y
z


 be vectors. We define the

sum of u and v by

u + v =




a + x
b + y
c + z


 .

Generalizing Problem 1.4, let A, B, C, D be points. If we start at A,
and apply the displacement vectors

−→
AB then

−→
AC, we end up at D where−→

AD =
−→
AB +

−→
AC. This is called the parallelogram rule.

A

B

C

D−→
AD

−→
AB

−→
AC

Exercise 1.6. Which displacement vectors label the sides BD and CD of
the parallelogram? What is

−→
AB +

−→
BA? What is

−→
AB +

−→
BC +

−→
CD +

−→
DA?
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SCALAR MULTIPLICATION AND LINEAR COMBINATIONS. Elements of R

are called scalars.

Definition 1.7. Let v be as in Definition 1.6, and let α ∈ R. We define the

scalar multiplication of α and v by αv =




αx
αy
αz


.

Using this we can perform more complicated vector computations.
Lecture 2

Example 1.8. Let A = (1, 0, 1) and B = (1, 2, 3) and let u and v be the
corresponding vectors. Then

2u− 3v = 2




1
0
1


− 3




1
2
3


 =



−1
−6
−7


 = −




1
6
7




Exercise: Find v− u. Note that v− u =
−→
OB−−→OA =

−→
AB. Find α such

that the z-coordinate of αu + v is zero.−→
OA

−→
OB

−→
AB

O A

B

A sum of the form αu + βv is called a linear combination of the vectors
u and v. More generally, α1u1 + · · ·+ αrvr is a linear combination of the
vectors v1, . . . , vr.

Problem 1.9. Let u and v be as in Example 1.8. Express u as a linear
combination of the vectors i, j, k. Express v as a linear combination of
i, i + j, k.

Problem 1.10. There is a unique plane Π containing (0, 0, 0), (1,−1, 0)
and (0, 1,−1). Is (1, 0,−1) in this plane? Is (1, 1,−3) in this plane?

DOT PRODUCT. You might have seen another definition of vector, as some-
thing having both magnitude and direction. Exercise: criticize this defi-
nition.

Definition 1.11. The length of a vector v =




x
y
z


 is ||v|| =

√
x2 + y2 + z2.

The notation |v| is also used. This can be confused with the absolute
value of a real number, or the modulus of a complex number, so ||v|| is
probably better.

Example 1.12. Consider the cube shown on page 4. The length of a diag-
onal across a face, and the length of a space diagonal are

∣∣∣∣∣∣

∣∣∣∣∣∣




1
1
0



∣∣∣∣∣∣

∣∣∣∣∣∣
=
√

2 and

∣∣∣∣∣∣

∣∣∣∣∣∣




1
1
1



∣∣∣∣∣∣

∣∣∣∣∣∣
=
√

3.

How can we compute the angle between two non-zero vectors?
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By convention, the angle is between 0 and π. It is π/2 if and only if
the vectors are orthogonal.

Example 1.13. We will find the angle between
√

3i+ j and
√

3i− j by con-
sidering the triangle with vertices at (0, 0, 0), (

√
3, 1, 0) and (

√
3,−1, 0).

The key property that we used was ||
√

3i + j|| = ||
√

3i − j|| = 2, so
the triangle is isosceles. We can reduce to this case by scaling each vector.

Exercise 1.14. Show that if v ∈ R3 and α ∈ R then ||αv|| = |α| ||v||.
Deduce that v/||v|| has length 1. (Such vectors are said to be unit vectors.)

Lecture 3
Theorem 1.15. Let u = ai + bj + ck and let v = xi + yj + zk be non-zero
vectors. Let θ be the angle between u and v. Then

cos θ =
ax + by + cz
||u||||v|| .

The diagram used in the proof is below: û = u/||u|| = a′i + b′j + c′k
and v̂ = v/||v|| = x′i + y′j + z′k.

(
a′, b′, c′

)

(
x′, y′, z′

)

(0, 0, 0)
θ/2

1

t/2

This motivates the following definition.

Definition 1.16. Let u = ai + bj + ck and v = xi + yj + zk ∈ R3. The dot
product of u and v is

u · v = ax + by + cz.

PROPERTIES OF THE DOT PRODUCT.

Lemma 1.17. Let n, v ∈ R3 be non-zero vectors [corrected in lecture]. Let
θ be the angle between n and v.

(a) v · v = ||v||2.
(b) n · v = ||n|| ||v|| cos θ

(c) n · v = 0 if and only if n and v are orthogonal.
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(d) Suppose that ||n|| = 1. Let w = (n · v)n. Then v = w + (v−w)
where w is parallel to n and v−w is orthogonal to n.

(e) Let u ∈ R3 and let α, β ∈ R. Then n · (αu + βv) = αn · u + βn · v.

In words, (d) says that the component of v in the direction of n has
length n · v. Note ||n|| = 1 is required. (You can always scale n.)

v

n
n · v

Example 1.18. Let ` be the line through the points A = (1, 0, 0) and B =

(0, 0, 1). Let `′ be a line with direction i +
√

2j − k intersecting `. The
angle between ` and `′ does not depend on where the intersection is.
Since the direction of ` is

−→
AB = −i + k, the angle θ is determined by

cos θ =
(−i + k) · (i +

√
2j− k)

|| − i + k|| ||i +
√

2j− k||
=

−2√
2× 2

= −
√

2
2

.

So the obtuse angle is 3π/4 and the angle we want is π/4.

You need to know the standard values of sine and cosine. The table in
the margin may be a useful reminder.

θ 0 π
6

π
4

π
3

π
2

sin θ 0 1
2

√
2

2

√
3

2 1

cos θ 1
√

3
2

√
2

2
1
2 0

Part (a) of Lemma 1.17 is surprisingly useful. As an application of (a)
and (b) we prove the cosine rule. We need Example 1.8:

−→
OB−−→OA =

−→
AB.

−→
OA

−→
OB

−→
AB

O A

B

Lecture 4 Exercise 1.19. Let A, B ∈ R3 be points such that OAB is a triangle. Let
u =

−→
OA and v =

−→
OB and let θ be the angle between u and v. Find the

length of the side AB by using (a) to compute

||−→AB||2 = ||−→OB−−→OA||2 = ||v− u||2.

A more challenging exercise is to use (d) and (e) in Lemma 1.17 to show
that the altitudes of a triangle meet at a point. This is a bonus question
on Sheet 2.

LINES AND PLANE ANGLE AND INTERSECTION. At A-level you saw that
the plane through a ∈ R3 with normal direction n ∈ R3 is {v ∈ R3 :
n · v = n · a}.

Problem 1.20. What is the angle θ between the planes

{v ∈ R3 : (−i + j + 2k) · v = 1} and {v ∈ R3 : (−i + k) · v = −1}?

A line always makes an angle between 0 and π/2 (a right angle) with
a plane.
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Lemma 1.21. Let Π be a plane with normal n. Let ` be a line with direction c
meeting Π at a unique point. The angle θ between Π and ` satisfies

sin θ = |n̂ · ĉ|
where n̂ = n/||n|| and ĉ = c/||c||.

Problem 1.22. Let Π be the xz-plane, so Π = {xi + zk : x, z ∈ R}. Let `
be the line passing through 0 and i +

√
2/3j− k. What are the minimum

and maximum angles between ` and a line in Π passing through 0?

(0, 0, 0)

i +
√

2/3j− k =




1√
2/3
−1




`

z

x

y

Π

Where does Π meet the line through (−1,−1, 0) and (0, 1, 1)? (You can
use the same method for Question 4(b) on Sheet 1.)

2. THE VECTOR PRODUCT

Lecture 5MOTIVATION. To solve Problem 1.22 we needed a vector orthogonal to
the xz-plane. In this case the normal vector j was obvious.

Problem 2.1. Let Π be the plane containing i, 2i + j and 4i + 2j + k. Find
a normal vector to Π.

By Lemma 1.17(c),




x
y
z


 is orthogonal to both




a
b
c


 and




r
s
t


 if and

only if

ax + by + cz = 0

rx + sy + tz = 0.

Multiply the first equation by t, the second by c and subtract to get

(at− cr)x + (bt− cs)y = 0.

This suggests we might take x = bt− cs and y = cr− at. Substituting in
we find that both equations hold when z = as− br.
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DEFINITION AND PROPERTIES OF THE VECTOR PRODUCT.

Definition 2.2. The vector product of vectors




a
b
c


 and




r
s
t


 is defined by




a
b
c


×




r
s
t


 =




bt− cs
cr− at
as− br


 .

If you remember the top entry is bt− cs you can obtain the others using
the cyclic permutations a 7→ b 7→ c 7→ a and r 7→ s 7→ t 7→ r. Sometimes
∧ is used rather than ×.

Exercise 2.3.
(a) Show that v× v = 0 for all v ∈ R3.
(b) Show that i× j = k, j× k = i and k× i = j. Hence find (i + j)×

(i− k).

Note that in each case, if u× v = w then the vectors u, v and w form a
right-handed system with (as expected) w orthogonal to u and v. Chang-
ing u and v by a small displacement does not change the orientation of
the system, so the system is always right-handed.

v

u

u× v

Lecture 6 It remains to find the length of u× v.

Theorem 2.4. Let u and v be non-zero vectors. Let θ be the angle between u
and v. Then

||u× v|| = ||u|| ||v|| sin θ.

AREA OF TRIANGLES. The identity

||u× v||2 = ||u||2||v||2 − (u · v)2

seen in the proof of Theorem 2.4 is useful and of independent interest.

Problem 2.5. Let B = (1, 8, 2) and C = (8, 2, 1). Let
−→
OD =

−→
OB +

−→
OC.

(a) What is the area of the parallelogram OBDC?
(b) What is the area of the triangle OBC?

Suppose that ABC is a triangle with sides and angles as shown in the
margin. Using Theorem 2.4 and the argument for (b), its area is

1
2 ||
−→
AB|| ||−→AC|| sin α = 1

2 bc sin α.

Repeating this argument with the other sides gives 1
2 bc sin α = 1

2 ca sin β =
1
2 ab sin γ. Now divide through by 1

2 abc to get the sine rule.

α

γ

β

A B

C

c

b a
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Lecture 7 EQUATION OF A PLANE. If Π is a plane and n is a normal vector to Π
then we have already used that

Π = {v ∈ R3 : n · v = α}
for some α ∈ R. (This will be proved later in the course.) We can find v
and α using the vector product.

Example 2.6. Let Π be the plane through A = (1, 2, 3), B = (3, 1, 2) and
C = (2, 3, 1). Then

Π = {−→OA + λ
−→
AB + µ

−→
AC : λ, µ ∈ R}.

(Compare Problem 1.10, where we could take A = O, so
−→
OA = 0.) A

normal vector is

−→
AB×−→AC =




2
−1
−1


×




1
1
−2


 =




3
3
3


 .

We can scale the normal vector as we like, so dividing by 3, we take n =
i + j + k. Since

n · −→OA =




1
1
1


 ·




1
2
3


 = 6

we have Π = {v ∈ R3 : (i + j + k) · v = 6}.

INTERSECTION OF PLANES.

Problem 2.7. Let Π be the plane through 0 with normal i + j. Let Π′ be
the plane through j with normal i + 2j + k. Let ` = Π ∩Π′. Find a and
c ∈ R3 such that

` = {a + λc : λ ∈ R}.

SHORTEST DISTANCES.

Problem 2.8. Let A = (2, 3, 1). What is the shortest distance between A
and a point P on the plane Π through 0 with normal direction i + j + k?

The solution using Lemma 1.17(d) needed that 0 ∈ Π. One can always
translate the plane and point to reduce to this case: see Question 4(b) on
Sheet 2.

Recall that the line through a with direction c is {a + λc : λ ∈ R}.
Lecture 8Problem 2.9. Let ` be the line through −j and i + j + k.

(a) Does ` meet the line through 0 with direction i + k? [Corrected
from i− j.]

(b) Does ` meet the line `′ through 0 with direction i + j?
(c) What is the shortest distance between ` and `′?
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The argument used for (c) generalizes to prove the following lemma.

Lemma 2.10. Let ` be the line through a with direction c. Let `′ be the line
through a′ with direction c′. The shortest distance between ` and `′ is

∣∣ c× c′

||c× c′|| · (a
′ − a)

∣∣.

In particular, ` and `′ intersect if and only if (c× c′) · (a′− a) = 0. This
motivates the following section.

THE SCALAR TRIPLE PRODUCT.

Problem 2.11. What is the volume of the parallelepiped formed by the
vectors i + k, 2i, 1

3 i + j, shown in the figure below?

2i

i + k

1
3 i + j

z

x

y

More generally there is the following result.
Lecture 9

Theorem 2.12. Let a, b, c ∈ R3. The volume of the parallelepiped formed by
a, b, c ∈ R3 is |(a× b) · c|.

Exercise 2.13. Deduce from Theorem 2.12 that

(a× b) · c = (b× c) · a = (c× a) · b.

What is the geometric interpretation of the sign of (a× b) · c?

The scalar (a× b) · c is called the scalar triple product of a, b, c.



(B) Introduction to matrices

3. MATRICES AND VECTORS

VECTORS IN ANY DIMENSION. We now generalize the definition of ‘vec-
tor’ to mean an element of Rn, for any n ∈ N. If u ∈ Rn we write ui for
the ith coordinate of u. As usual vectors are written in column form.

Definition 3.1. The length of u ∈ Rn is defined by

||u|| =
√

u2
1 + · · ·+ u2

n.

The dot product of vectors u, v ∈ Rn is defined by

u · v = u1v1 + u2v2 + · · ·+ unvn.

The sum of vectors u and v ∈ Rn and the scalar multiplication of v ∈ Rn

by α ∈ R are defined by the obvious generalization of Definition 1.7.

For example if P = (0, 1, 2, 3) and Q = (3, 2, 1, 0) ∈ R4 and u =
−→
OP,

v =
−→
OQ, then v1 = 3, v2 = 2, v3 = 1, v4 = 0 and

u =




0
1
2
3


 , v =




3
2
1
0


 , v− u =




3
2
1
0


−




0
1
2
3


 =




3
1
−1
−3


 , 2v =




0
2
4
6


 .

All the properties of the dot product proved in Lemma 1.17 hold in
any dimension. In particular ||u||2 = u · u for any vector u, and if θ is the
angle between u and v then ||u|| ||v|| cos θ = u · v.

Problem 3.2. Let S =
{
(x, y, z, w) : x, y, z, w ∈ {0, 1}

}
⊆ R4 be the set of

vertices of the hypercube of side 1.

(a) What is the angle between (1, 1, 0, 0) and (0, 1, 1, 0)?
(b) What is the angle between (1, 1, 0, 0) and (0, 0, 1, 1)?
(c) What is the set of distances between points in S?

Shapes in high dimensions can be unintuitive. For instance, the maxi-
mum distance between two vertices in an n-dimensional cube with side
length 1 is

√
n: it is maybe surprising that this tends to infinity with n.

Part of the power of algebra is that it lets us reason about these shapes
without having to visualize them.
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Lecture 10MATRICES.

Definition 3.3. Let m, n ∈ N. An m× n matrix is an array with m rows
and n columns of real numbers.

Matrices are useful simply as containers.

Problem 3.4. The matrix below records the stock prices of British Land,
Glencore and Whitbread in the first weeks of 2012 and 2016, all in pence.1

2012
2016

(
360 395 1589
741 77 4130

)
.

Suppose an investor has a portfolio consisting of (5, 2, 1) units of each
stock. What is her portfolio worth in 2012? In 2016?

LINEAR MAPS FROM R2 TO R2 AND 2× 2 MATRICES.

Definition 3.5. A linear map from R2 to R2 is a function f : R2 −→ R2 of
the form (

x
y

)
7→
(

ax + by
cx + dy

)

where a, b, c, d are some fixed real numbers.

Problem 3.6.
(a) Take a = 0, b = 1, c = 1, d = 0. We obtain the linear map

(
x
y

)
7→
(

y
x

)
.

What, geometrically, does this linear map do to a vector v ∈ R2?

(b) Let f : R2 → R2 be defined so that f
(

x
y

)
records the values,

in 2012 and 2016, of a portfolio consisting of x Glencore shares
and y Whitbread shares. Show that f is a linear map. What are
the coefficients a, b, c, d?

The coefficients a, b, c, d in a linear map f can be recorded in a 2× 2
matrix. We define the product of a 2× 2 matrix and vector in R2 by

(
a b
c d

)(
x
y

)
=

(
ax + by
cx + dy

)
.

By definition of the product, if A =

(
a b
c d

)
then

(
x
y

)
f7→ A

(
x
y

)
.

1British Land is a real estate investment trust: they own the ‘Cheesegrater’;
Glencore is a mining conglomerate; Whitbread owns Costa Coffee, Premier Inn,
and other brands.
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Example 3.7. The matrix
(

2 1
3 1

)
represents the linear map

(
x
y

)
7→
(

2x + y
3x + y

)

Note that the entries a, b in the first row of the matrix appear in the
first row of the result, and similarly for c and d.

Problem 3.8. Let f : R2 → R2 be defined so that f (v) is v rotated by
π/4. (Remember that a positive angle means an anticlockwise rotation.)
For example,

f
(

1
0

)
=

√
2

2

(
1
1

)
.

Find a formula for f
(

x
y

)
and show that f is a linear map.

The solution using complex numbers to this problem generalizes to
show that rotation by θ is the linear map

(
x
y

)
7→
(

cos θ − sin θ

sin θ cos θ

)(
x
y

)

You are asked to prove this on Question 2 on Problem Sheet 4.

Lecture 11
MATRIX MULTIPLICATION FOR 2× 2 MATRICES. In Problem 3.6(a), sup-

pose that two investors have portfolios
(

r
t

)
and

(
s
u

)
. Using approx-

imate prices in pounds, the values of their portfolios in 2012 and 2016
are
(

4 16
1 40

)(
r
t

)
=

(
4r + 16t
r + 40t

)
and

(
4 16
1 40

)(
s
u

)
=

(
4s + 16u
s + 40u

)
.

It would be more convenient if we could compute all four values in one
operation.

Definition 3.9. We define the product of 2× 2 matrices
(

a b
c d

)
and

(
r s
t u

)

by (
a b
c d

)(
r s
t u

)
=

(
ar + bt as + bu
cr + dt cs + du

)
.

For example,
(

4 16
1 40

)(
r s
t u

)
=

(
4r + 16t 4s + 16u
r + 40t s + 40u

)

agreeing with the matrix times vector calculations above.
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Example 3.10. Let θ, φ ∈ R. The matrix representing rotation by θ + φ is

Mθ+φ =

(
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

)
.

We can rotate by θ +φ by first rotating by φ, then by θ. The corresponding
matrices are

Mθ =

(
cos θ − sin θ

sin θ cos θ

)
and Mφ =

(
cos φ − sin φ

sin φ cos φ

)

Exercise: Check that Mθ+φ = Mθ Mφ.

More generally, we have the following lemma.

Lemma 3.11. Let f : R2 → R2 and g : R2 → R2 be linear maps represented
by the matrices A and B, respectively. Then g f : R2 → R2 is a linear map,
represented by the matrix BA.

Problem 3.12. Let θ ∈ R. Let g : R2 → R2 be defined so that g(v) is v
reflected in the line y = (tan θ)x. Show that g is a linear map and find the
matrix representing g.

(
x
y

)

g
(

x
y

)

θ
•

•
y = (tan θ)x

In the special case θ = 0, we reflect in the x-axis, and so

g
(

x
y

)
=

(
x
−y

)
=

(
1 0
0 −1

)(
x
y

)
.

We can reduce the general case to this by using matrix multiplication to
‘conjugate’ by a rotation by −θ.

Lecture 12
INVERSES OF LINEAR MAPS AND 2× 2-MATRICES. Recall that if S and T
are sets and f : S → T is a bijective function then the inverse of f is the
function f−1 : T → S defined by f−1(t) = s⇐⇒ f (s) = t.

For example, the inverse of rotation by θ is rotation by−θ. A reflection
is its own inverse. But the linear map

(
x
y

)
7→
(

x + y
x + y

)
=

(
1 1
1 1

)(
x
y

)

is not bijective, so has no inverse.
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Lemma 3.13. The linear map f : R2 → R2 represented by the matrix
(

a b
c d

)

is invertible if and only if ad− bc 6= 0. In this case the inverse f−1 : R2 → R2

is the linear map represented by the matrix 1
ad−bc

(
d −b
−c a

)
.

We say that 1
ad−bc

(
d −b
−c a

)
is the inverse of

(
a b
c d

)
. This will be

related to inverses in the sense of rings in the following section.

DETERMINANTS OF 2× 2 MATRICES. The quantity ad− bc appearing in
Lemma 3.12 has a geometric interpretation.

Problem 3.14. Let β > 0 be a real number. Let f , g, and h : R2 → R2 be
rotation by π/4, a stretch of β in the x-direction, and reflection in the x
axis.

(a) What is the matrix representing hg f ?
(b) What is the image of the square with vertices at (0, 0), (1, 0), (0, 1)

and (1, 1) under hg f ?
(c) How does the area change?

More generally we have the following lemma. Perhaps surprisingly,
the shortest proof for us will use vectors in R3.

Lemma 3.15. The image of the unit square under the linear transformation

represented by
(

a b
c d

)
has area |ad− bc|. Moreover, ad− bc > 0 if and only

if the vectors 


a
b
0


 ,




c
d
0


 ,




0
0
1




form a right-handed system.

We define the determinant of
(

a b
c d

)
by det

(
a b
c d

)
= ad− bc.

By Lemma 3.13, a 2× 2 matrix M is invertible if and only if det M 6= 0.

Let A and B be 2× 2-matrices. By Lemma 3.14, when we apply AB to
the unit square, the image has signed area det AB. On the other hand,
when we apply B the signed area is multiplied by det B, and when we
apply A the signed area is multiplied by det A. Hence

det AB = (det A)(det B).

You are asked to give an algebraic proof of this on Sheet 4.
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The determinant gives a convenient criterion for a matrix to send a
non-zero vector to 0.

Lecture 13
Lemma 3.16. Let M be a 2× 2-matrix. There is a non-zero vector v such that
Mv = 0 if and only if det M = 0.

EIGENVECTORS AND EIGENVALUES OF 2× 2-MATRICES. Let f : R2 → R2

be the linear map defined by

f
(

x
y

)
=

(
x + 2y
2x + y

)

for x, y ∈ R. Observe that

f
(

1
1

)
=

(
3
3

)
= 3

(
1
1

)
and f

(
1
−1

)
=

(−1
1

)
= −

(
1
−1

)
.

The diagram below shows the images of these special vectors.

(
1
1

)(−1
1

)

f−→

(
3
3

)

(
1
−1

)

Thus f is a stretch by 3 in the direction
(

1
1

)
followed by a reflection in

the line with this direction.

Definition 3.17. Let A be a 2× 2-matrix. We say that a non-zero vector
v ∈ R2 is an eigenvector of A with eigenvalue λ if Av = λv.

For example,
(

1 2
2 1

)
has eigenvectors

(
1
1

)
and

(
1
−1

)
with eigenval-

ues 1 and −1. It is a special feature of this example that the eigenvectors
are orthogonal. (This happens if and only if A is symmetric.)

Exercise: why do we require v to be non-zero in Definition 3.17?

The sum of 2× 2-matrices and the product of a 2× 2-matrix by a scalar
were defined on Question 1 of Sheet 4. Let I denote the 2 × 2 identity

matrix
(

1 0
0 1

)
. We have

v is an eigenvector of A with eigenvalue λ⇐⇒ Av = λv

⇐⇒ (λI − A)v = 0



19

Hence, by Lemma 3.16,

A has an eigenvector with eigenvalue λ⇐⇒ det(λI − A) = 0.

This gives a practical way to find eigenvectors and eigenvalues.

Lecture 14

Example 3.18. Let A =

(
8 5
−10 −7

)
. Then

det(λI − A) = det
(

λ− 8 −5
10 λ + 7

)

= (λ− 8)(λ + 7) + 50

= λ2 − λ− 6

= (λ + 2)(λ− 3).

Hence A has eigenvalues −2 and 3. To find corresponding eigenvectors,
we put λ = −2 and λ = 3 in the equation

(λI − A)

(
x
y

)
=

(
0
0

)

and solve for x and y. For λ = −2 the equations are
(

10 5
−10 −5

)(
x
y

)
=

(
0
0

)

with solutions
(

x
y

)
= α

(−1
2

)
for α ∈ R. So u =

(−1
2

)
is an eigenvector

for the eigenvalue −2.

Exercise 3.19. Show that v =

(
1
−1

)
is an eigenvector of A with eigen-

value 3.

It is no surprise that we found infinitely many solutions to both equa-
tions: if Av = λv then A(αv) = λ(αv) for any α ∈ R. The eigenvectors
of A are the non-zero vectors on the two lines below.

(
1
−1

)

(−1
2

)

{β
(

1
−1

)
: β ∈ R} = {v ∈ R2 : Av = 3v}

{α
(−1

2

)
: α ∈ R} = {v ∈ R2 : Av = −2v}

Since eigenvectors are not unique, it is good style to write ‘an eigenvec-
tor with eigenvalue 3’, rather than ‘the eigenvector with eigenvalue 3’.
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DIAGONALIZATION. Let A be as in Example 3.18 and let

P =

(−1 1
2 −1

)

be the matrix whose columns are the eigenvectors u and v of A found
above. Writing (u v) for the matrix with columns u and v, and so on, we
have

AP = A(u v) = (Au Av) = (−2u 3v) = (u v)
(−2 0

0 3

)
= P

(−2 0
0 3

)
.

Since det P = 1, Lemma 3.13 implies that P has an inverse. Multiplying
on the right by P−1, we get

A = P
(−2 0

0 3

)
P−1.

We say that A is diagonalized by P. (Compare the conjugation trick used
in Problem 3.12.)

Problem 3.20. Compute A2016.

Not all matrices can be diagonalized. A necessary and sufficient condi-
tion is that the matrix has two non-proportional eigenvectors, as defined
below. (If time permits, this will be proved in Part E.)

Definition 3.21. Let n ∈N. Vectors u and v ∈ Rn are proportional if there
exist α and β ∈ R, not both zero, such that αu = βv.

Thus 0 and v are proportional for any v ∈ Rn, and non-zero vectors
(such as eigenvectors in R2) are proportional if and only if they point in
the same direction.

We will prove that if a matrix has two distinct eigenvalues then it is
diagonalizable. For this we need the following two lemmas.

Lemma 3.22. Let A be a 2× 2 matrix. Suppose that A has distinct real eigen-
values λ and µ with eigenvectors u and v, respectively. Then u and v are not
proportional.

So eigenvectors with different eigenvalues point in different directions.
Lecture 15

Lemma 3.23. If u and v ∈ R2 are not proportional then the matrix (u v) with
columns u and v is invertible.

The converse of Lemma 3.23 is also true: you are asked to prove this
on Sheet 5.
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Proposition 3.24. Let A be a 2× 2 matrix. Suppose that A has distinct eigen-
values λ and µ with eigenvectors u and v, respectively. Let P = (u v) be the
matrix formed by these eigenvectors. Then P is invertible and

A = P
(

λ 0
0 µ

)
P−1.

A VERY SIMPLE WEATHER MODEL. If today is sunny then tomorrow is
sunny with probability 3/4. If today is rainy then tomorrow is equally
likely to be sunny and rainy.

Example 3.25. Suppose Monday is sunny. Then Tuesday is sunny with
probability 3/4. The probability that Wednesday is sunny is

P[Tuesday is sunny] 3
4 + P[Tuesday is rainy] 1

2 .

Since P[Tuesday is rainy] = 1− 3
4 = 1

4 , the probability that Wednesday is
sunny is 3

4 × 3
4 +

1
4 × 1

2 = 9
16 +

1
8 = 11

16 .

More generally,

P[day n + 1 is sunny] = P[day n is sunny] 3
4 + P[day n is rainy] 1

2 .

So, setting pn = P[day n is sunny], we get pn+1 = 3
4 pn +

1
2(1− pn).

1
2

1
2
1
4

3
4

S

R

S

R

Exercise 3.26. Show that 1− pn+1 = 1
4 pn +

1
2(1− pn).

The equations for pn+1 and 1− pn+1 can be written in matrix form:
(

pn+1
1− pn+1

)
= A

(
pn

1− pn

)
where A =

(
3
4

1
2

1
4

1
2

)
.

We have pn = pn+1 if and only if
(

pn
1− pn

)
is an eigenvector of A with

eigenvalue 1. Equivalently,
(

0
0

)
= (I − A)

(
pn

1− pn

)
=

(
− 1

4
1
2

1
4 − 1

2

)(
pn

1− pn

)
=

(
− 1

4 pn +
1
2(1− pn)

1
4 pn − 1

2(1− pn)

)
.

Hence pn = 2(1− pn) and pn = 2
3 . So the long-term proportion of sunny

days is 2
3 .

4. MATRICES AND LINEAR MAPS IN HIGHER DIMENSIONS

Lecture 16DEFINITIONS. Matrices were defined in Definition 3.3. If A is an m× n
matrix we write Aij for the entry of A in row i and column j. For example
if A is the 2× 3 matrix (

2 3 4
3 4 5

)

then A23 = 5 and, more generally, Aij = i + j for all i ∈ {1, 2} and
j ∈ {1, 2, 3}.
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Definition 4.1. Let m, n ∈ N and let A be an m× n matrix. Let v ∈ Rn.
We define the product of A and v by

A




v1
v2
...

vn


 =




A11v1 + A12v2 + · · ·+ A1nvn
A21v1 + A22v2 + · · ·+ A2nvn

...
Am1v1 + Am2v2 + · · ·+ Amnvn




Equivalently, (Av)i = ∑n
j=1 Aijvj for each i ∈ {1, 2, . . . , m}.

Exercise 4.2. Check that Definition 4.1 generalizes the definition on page 14
of the product of a 2× 2 matrix and a vector in R2.

We also generalize Definition 3.5.

Definition 4.3. Let m, n ∈ N. A function f : Rn → Rm is a linear map if
there is an m× n matrix A such that f (v) = Av for all v ∈ Rn.

Note that Rn is the domain of f and Rm is the codomain of f .

We saw earlier that if f : R2 → R2 is a linear map then the matrix
representing f is

(
a b
c d

)
where

(
a
c

)
= f

(
1
0

)
and

(
b
d

)
= f

(
0
1

)
.

This is true more generally: if f : Rn → Rm is a linear map represented
by the matrix A then column j of A is the image of the vector in Rn with 1
in position j and zero in all other positions.

EXAMPLES.

Example 4.4. Let M be the stock price matrix in Problem 3.4. Suppose an
investor has x, y and z shares in each company. The function f : R3 → R2

defined by

f




x
y
z


 =

(
360 395 1589
741 77 4130

)


x
y
z


 =

(
360x + 395y + 1589z
741x + 77y + 4130z

)

is linear; the top component is the value of the portfolio in 2012, and the
bottom component is the value of the portfolio in 2016. Note that the
columns of the matrix are f (i), f (j) and f (k).
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Example 4.5. Let f : R3 → R3 be defined by f (v) = (i + 2j + 3k)× v.
We have

f




x
y
z


 =




1
2
3


×




x
y
z


 =




2z− 3y
3x− z
y− 2x


 =




0 −3 2
3 0 −1
−2 1 0






x
y
z


 .

Hence f is a linear map, represented by the 3× 3 matrix

A =




0 −3 2
3 0 −1
−2 1 0


 .

Note that the columns of A are f (i), f (j) and f (k). Now let g : R3 → R

be defined by g(v) = (i − j) · v. We will show that the 1 × 3 matrix
B = (1 −1 0) represents g, and answer these questions:

Lecture 17(a) What is the matrix representing the composition g f ?
(b) What is the matrix representing the composition f f ?

PRODUCTS OF MATRICES.

Definition 4.6. If B is an m× n matrix and A is an n× p matrix then the
product BA is the m× p matrix defined by

(BA)ij =
n

∑
k=1

Bik Akj for 1 ≤ i ≤ m and 1 ≤ j ≤ p.

Written out without the Sigma notation,

(BA)ij = Bi1A1j + Bi2A2j + · · ·+ Bin Anj.

So to calculate (BA)ij go left-to-right along row i of B and top-to-bottom
down column j of A, multiplying each pair of entries. Then take the sum.

Exercise 4.7. Continuing Example 4.5, check that the matrix
(
−3 −3 3

)

found in (a) representing g f is BA.

In each case matrix multiplication corresponds to composition of linear
maps. The general proof is non-examinable, and will be skipped if time
is pressing. (See Lemma 3.11 for the 2× 2 case.)

Lemma 4.8. Let f : Rp → Rn and g : Rn → Rm be linear maps, represented
by the n× p matrix A and the m× n matrix B, respectively. Then g f : Rp →
Rm is a linear map, represented by the matrix BA.

Proof. By definition of A, if v ∈ Rp then f (v) = Av. Similarly by defini-
tion of B, if w ∈ Rn then f (w) = Bw. Hence

(g f )(v) = g( f (v)) = g(Av) = B(Av) for all v ∈ Rp.
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So to show that g f is represented by BA, it is sufficient to prove that
(BA)v = B(Av) for all v ∈ Rp. Let 1 ≤ i ≤ m. Then

(
B(Av)

)
i =

n

∑
j=1

Bij(Av)j =
n

∑
j=1

Bij

p

∑
k=1

Ajkvk

=
p

∑
k=1

( n

∑
j=1

Bij Ajk
)
vk =

p

∑
k=1

(BA)ikvk =
(
(BA)v

)
i

Therefore B(Av) = (BA)v, as required. �

RINGS OF MATRICES. The sum of m× n matrices B and C is defined, as
you would expect, by (B + C)ij = Bij + Cij. The set of all n× n matrices
(for a fixed n) forms a ring, as defined in 181 Number Systems. The zero
element is the all-zeros matrix, and the one element is the n× n identity
matrix

I =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


.

The proposition below shows that two of the ring axioms hold. We will
assume the rest.

Proposition 4.9.
(a) If A, B, C are matrices then C(BA) = (CB)A, whenever either side is

defined. (Associativity.)
(b) If A is an n × p matrix and B and C are m × n matrices then (B +

C)A = BA + CA. (Distributivity)

For the left-handed version of (b) see Problem Sheet 6. Since matrix
multiplication is not commutative, an independent proof is needed.

Lecture 18 EIGENVECTORS AND EIGENVALUES. Eigenvectors and eigenvalues of a
square matrix are defined by the expected generalization of Definition 3.17.

Definition 4.10. Let A be a n× n matrix. A non-zero vector v ∈ Rn is an
eigenvector of A with eigenvalue λ if Av = λv.

Example 4.11. Let f : R3 → R3 be rotation by π/4 with axis k and
g : R3 → R3 be rotation by π/2 with axis j. The planes orthogonal to
these vectors are shown in the diagram overleaf.
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(0, 0, 0)

v

f (v)

π
4

z

x

y

It is a theorem (no need to remember it beyond this example) that the
composition of two rotations of R3 is another rotation. Moreover, if C is
a 3× 3 matrix representing a rotation by θ then the sum of the diagonal
entries of C is 1 + 2 cos θ. (You can check this holds for f and g.)

Assuming these results, we will find the axis of the rotation g f and its
angle.

The final example is included for interest only, and will be skipped it
time is pressing.

Example 4.12. The diagram below shows a tiny part of the World Wide
Web. Each dot represents a website; an arrow from site A to site B means
that site A links to site B. (Internal links are not considered.)

•

•

•

• •

1

2

3

4 5

Suppose we start at site 1 and surf the web by following links at random.
So we might visit 3, then 4, then 2, then 1, and so on.

Exercise 4.13. Simulate a surfer who clicks 10 links. Where do you finish?

Let p(n)i be the probability we are at site i after n steps. For example,
since we are equally likely to visit 3 and 5 from 1, and from 3 we can go
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to 1, 2 or 4, whereas from 5 we must go back to 1, we have

p(0) =




1
0
0
0
0




, p(1) =




0
0
1
2
0
1
2




, p(2) =




4
6
1
6
0
1
6
0




.

More generally, a similar argument to the Purple Fever problem on Sheet 5
shows that

p(n + 1) =




0 1
2

1
3

1
3 1

0 0 1
3

1
3 0

1
2

1
2 0 0 0

0 0 1
3 0 0

1
2 0 0 1

3 0




p(n)

for all n ∈ N0. For n large, p(n) is close to an eigenvector of this 5× 5
matrix with eigenvalue 1. (This can be checked using the MATHEMATICA

notebook available from Moodle.) We find this eigenvector by solving the
equations



p1
p2
p3
p4
p5




=




0 1
2

1
3

1
3 1

0 0 1
3

1
3 0

1
2

1
2 0 0 0

0 0 1
3 0 0

1
2 0 0 1

3 0







p1
p2
p3
p4
p5




, p1 + p2 + p3 + p4 + p5 = 1.

The unique solution is



p1
p2
p3
p4
p5




=
1
38




14
4
9
3
8




.

A measure of how important a website is the proportion of time we spend
at it. As you might expect, this analysis shows site 1 is the most important
(every other site links to it) and site 4 (reachable only via site 3) is the least
important.

This is essentially how Google’s Pagerank Algorithm works.



(C) Solving equations

5. ROW OPERATIONS

Lecture 19MOTIVATION. Many mathematical problems come down to solving lin-
ear equations. In this section we will see how matrices gives a systematic
way to do this. Here are two illustrative examples.

Example 5.1. Suppose that

2x + y + 3z = 11

2x + 4y + 6z = 20.

There are infinitely many solutions, since for each z ∈ R, the equations
2x + y = 11− 3z and 2x + 4y = 20− 6z have the unique solution

x = 4− z, y = 3− z

(Proof: subtract the two equations, to get 3y = 9− 3z, hence y = 3− z,
then substitute to find x.) Is there a solution with x− y = 2?

It is routine to convert simultaneous equations into matrix form. For
example, the equations above can be written as

(
2 1 3
2 4 6

)


x
y
z


 =

(
11
20

)
.

An important special case is the equation Ax = 0, where A is an m× n
matrix, x ∈ Rm and 0 ∈ Rn denotes, as usual, the all-zero vector.

Example 5.2. Consider the linear equations Ax = 0 and A′x = 0 below




4 8 0 −4
2 4 −1 −1
−1 −2 3 −2







x1
x2
x3
x4


 = 0(1)




1 2 0 −1
0 0 1 −1
0 0 0 0







x1
x2
x3
x4


 = 0.(2)

The solutions to (2) can be found very easily: using the 1s marked in bold,
we see that x2 and x4 uniquely determine x1 and x3. The solution set is








−2x2 + x4
x2
−x4
x4


 : x2, x4 ∈ R





.

Exercise: show that (1) has the same set of solutions.
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Remarkably, any system Ax = 0 can be transformed, as in Example 5.2,
so that it has the form of the second system, without changing its solution
set. We prove this in Corollary 5.5 below. This gives a systematic way to
solve linear equations.

ROW OPERATIONS. Fix m, n ∈N and let A be an m× n matrix.

Definition 5.3. An elementary row operation (ERO) on an m× n matrix
A is one of the following:

(a) Multiply a row of A by a non-zero scalar.
(b) Swap two rows of A.
(c) Add a multiple of one row of A to another row of A.

For example, the matrix A in Example 5.2(1) can be converted to the
matrix A′ in Example 5.2(2) by a sequence of EROs beginning as follows:

2




4 8 0 −4
2 4 −1 −1
−1 −2 3 −2


 1 7→ 1 /4
7−−−−−→




1 2 0 −1
2 4 −1 −1
−1 −2 3 −2




2 7→ 2 −2 1

7−−−−−→



1 2 0 −1
0 0 −1 1
−1 −2 3 −2




3 7→ 3 + 1

7−−−−−→



1 2 0 −1
0 0 −1 1
0 0 3 −3


 .

Exercise: apply two more EROs to reach A′.

Elementary row operations on an m × n matrix are performed by left
multiplication by suitable m × m matrices. Importantly, these matrices
are all invertible.

Lemma 5.4. Let A be an m× n matrix. Let 1 ≤ k, ` ≤ m with k 6= `. Let I be
the identity m×m matrix. Let α ∈ R, with α 6= 0.

(a) Let S be I with the 1 in row k replaced with α. Then SA is A with row
k scaled by α.

(b) Let P be I with rows k and ` swapped. Then PA is A with rows k and `
swapped.

Lecture 20 (c) Let Q be I with the entry in row k and column ` changed from 0 to α.
Then QA is A with row k replaced with the sum of row k and α times
row `.

Moreover, S, P and Q are invertible.

For example, applying the row operations corresponding to



1
4 0 0
0 1 0
0 0 1


 ,




1 0 0
−2 1 0
0 0 1


 ,




1 0 0
0 1 0
1 0 1


 ,




1 0 0
0 1 0
0 0 1

3


 ,




1 0 0
0 1 0
0 1 1



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of type S, Q, Q, S, Q reduce A in Example 5.2(1) to A′.

Corollary 5.5. Let A be an m× n matrix and let A′ be obtained from A by a
sequence of elementary row operations. Then

{x ∈ Rn : Ax = 0} = {x ∈ Rn : A′x = 0}.

The analogous result holds for Ax = b, provided b is transformed
along with A. See Questions 2 and 3 on Sheet 7 and Example 5.9 below.

ECHELON FORM AND ROW-REDUCED ECHELON FORM. Example 5.2 sug-
gests what to aim for when doing row operations.

Definition 5.6. Let A be an m× n matrix. We say that A is in echelon form
if both of the following conditions hold.

(i) All zero rows are at the bottom.
(ii) Suppose i < m. If row i of A is non-zero, and the leftmost non-

zero entry of row i is in column j then all the non-zero entries of
row i + 1 of A are in columns j + 1, . . . , n.

We say that A is in row-reduced echelon form if A is in echelon form and

(iii) If row i is non-zero and its leftmost non-zero entry is in column j,
then Aij = 1, and this 1 is the unique non-zero entry in column j.

If j is a column as in (iii) then we say that j is a pivot column.

For example, (
1 2 1 0
0 1 3 1

)

is in echelon form, but not row-reduced echelon form, because of the
entry 2. It can be put in row-reduced echelon form by the row operation

1 7→ 1 − 2 2 . The matrix in Example 5.2(2) is in row-reduced echelon
form with pivot columns 1 and 3.

Lecture 21

Proposition 5.7. Let A be an m× n matrix in row-reduced echelon form. Sup-
pose that the first r rows of A are non-zero and the rest are zero. Thus A has r
pivot columns and n− r non-pivot columns, say columns `1, . . . , `n−r. Given
any α1, . . . , αn−r ∈ R there is a unique solution x ∈ Rn to the equation

Ax = 0

such that x`s = αs for each s with 1 ≤ s ≤ n− r.

Stated informally, the solution space of a system of n equations in m
variables is n− r dimensional, for some r ≤ m, n.
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Example 5.8. If A′ is an in Example 5.2 then A′ has pivot columns 1 and 3,
and non-pivot columns `1 = 2 and `2 = 4. So r = 2. The unique solution
x ∈ R4 to the equation A′x = 0 with given x2 and x4 was found earlier to

be x =




−2x2 + x4
x2
−x4
x4


. Note x1 and x3 are determined by x2 and x4.

The more general version of Proposition 5.7 for the equation Ax = b is
illustrated in the problem below.

Problem 5.9. Find all solutions to the system

x1 − x3 − x4 = −4

x1 + x2 − x4 = −1

x1 − x2 − 2x3 = −1

2x1 − 3x2 − 5x3 = β

where β ∈ R. Row reducing the augmented matrix



1 0 −1 −1 −4
1 1 0 −1 −1
1 −1 −2 0 −1
2 −3 −5 0 β




we get



1 0 −1 0 2
0 1 1 0 3
0 0 0 1 6
0 0 0 0 β + 5




The equation for the final row is 0x1 + 0x2 + 0x3 + 0x4 = β + 5. So if
β 6= −5 then the equations are inconsistent and there is no solution.

When β = −5 the pivot columns are 1, 2 and 4, so given x3, there exist
unique x1, x2 and x4 such that x ∈ R4 is a solution. From row 3 of the
reduced matrix, we get x4 = 6. From row 2 we get x2 + x3 = 3, hence
x2 = 3− x4. From row 1 we get x1 − x3 = 2, hence x1 = 2 + x3. The
solution set is 







2 + x3
3− x3

x3
6


 : x3 ∈ R





Intuitively, we can say that the solution set is 2-dimensional, correspond-
ing to the 2 non-pivot columns.
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Lecture 22 APPLICATION: INVERTING A MATRIX.

Problem 5.10. Let A =




1 2 3
1 3 3
1 2 4


. What is A−1? We form the aug-

mented matrix (A | I) and perform row operations putting it into row-
reduced echelon form, getting (I | B). As seen in the proof of Corol-
lary 5.5, this corresponds to multiplying (A | I) by a sequence of invert-
ible 3× 3 matrices E1, . . . , Et. Setting R = Et . . . E2E1, we have

R(A | I) = (I | B).
Hence RA = I and so R = A−1.

What happens if we apply the method of Problem 5.10 to a non-invertible
matrix?

Example 5.11. By row operations we can transform

A =




1 0 1
0 1 1
1 −1 0


 to A′ =




1 0 1
0 1 1
0 0 0




in row-reduced echelon form. So there is an invertible matrix R such that
RA = A′. If A is invertible then so is RA, since

(RA)−1 = A−1R−1.

But A′ is not invertible, because it is not surjective. For example

A′




x
y
z


 =




x + z
y + z

0


 6=




0
0
1




for any x, y, z ∈ R.

EXTRAS: LEFT VERSUS RIGHT INVERSES (NON-EXAMINABLE). By defi-
nition, the inverse of an n × n matrix A is an n × n matrix B such that
AB = BA = I, the n× n identity matrix.

Exercise: show that B is unique if it exists.

Suppose that, by applying the method in Problem 5.10 to a matrix A,
we get R = Et . . . E2E1 such that RA = I. Each Ei is invertible, by
Lemma 5.4, so multiplying on the left by E−1

1 E−1
2 . . . E−1

t , we get

A = E−1
1 E−1

2 . . . E−1
t .

Hence AR = (E−1
1 E−1

2 . . . E−1
t )(Et . . . E2E1) = I and R is indeed the in-

verse of A.
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Generalizing this argument and Example 5.11 gives most of the proof
of the following proposition. Say that a matrix is elementary if it is one of
the matrices in Lemma 5.4.

Proposition 5.12. Let n ∈ N. Let A be an n× n matrix. The following are
equivalent:

(i) A is invertible,
(ii) A is surjective,

(iii) A is equal to a product of elementary matrices.

Proof. It is sufficient to prove that (i) =⇒ (ii) =⇒ (iii) =⇒ (i). Suppose (i)
holds. Then A(A−1v) = v for each v ∈ R3, so A is surjective.

Suppose (ii) holds. Let A′ = Et . . . E2E1A = RA be in row-reduced
echelon form. If A′ has a zero row then A′ is not surjective. Choose v
such that A′u 6= v for any u ∈ Rn. Since

Au = R−1v =⇒ A′u = RAu = R(R−1v) = v

we see that A is not surjective, a contradiction. Hence A′ is a square
matrix in row-reduced echelon form with no zero rows, and so A′ = I.
Therefore A = E−1

1 E−1
2 . . . E−1

t is a product of elementary matrices.
Suppose (iii) holds. Then A is a product of invertible matrices, so in-

vertible. �

Exercise 5.13. Show that (ii) can be replaced with (ii)′ A is injective.

Therefore a linear map f : Rn → Rn is injective if and only if it is
surjective if and only if it is bijective. Nothing like this is true for general
functions.
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Lecture 23

6. PERMUTATIONS AND DETERMINANTS

MOTIVATION. We saw in Lemma 3.15 that if A is a 2× 2 matrix then the
image of the unit square with vertices at

(
0
0

)
,
(

1
0

)
,
(

0
1

)
,
(

1
1

)

under A has area |det A|.
Now suppose that A is a 3× 3 matrix, with columns a, b, c. As seen in

Example 4.5, the columns of A are the images of i, j and k under A. That
is,

Ai =




A11 A12 A13
A21 A22 A23
A31 A32 A33






1
0
0


 =




A11
A21
A31


 = a

and similarly Aj = b and Ak = c. Thus the unit cube is sent to the
parallelepiped formed by a, b, c. By Theorem 2.12 and Exercise 2.13 the
volume of this parallelepiped is |a · (b× c)|.

Definition 6.1. Let A be a 3× 3 matrix with columns a, b, c. We define

det A = a · (b× c).

Two alternative forms for det A are given in the next lemma.

Lemma 6.2. Let A be a 3× 3 matrix. Then

det A = A11 det
(

A22 A23
A32 A33

)
− A21 det

(
A12 A13
A32 A33

)
+ A31 det

(
A12 A13
A22 A23

)

= A11A22A33 + A12A23A31 + A13A21A32

− A12A21A33 − A13A22A31 − A11A23A32.

The diagram below shows the patterns of signs: products coming from
lines on the left get +, products from lines on the right get −.

A33

A23

A13

A32

A22

A12

A31

A21

A11

A33

A23

A13

A32

A22

A12

A31

A21

A11

Note that each of the six summands takes one entry from each row and
each column of A. For example−A11A23A32 takes the entries in columns
1, 3 and 2 from rows 1, 2 and 3 respectively. So we have

det A = ∑
σ

±A1σ(1)A2σ(2)A3σ(3)
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where the sums is over all bijections σ : {1, 2, 3} → {1, 2, 3} and ± is the
appropriate sign for each of these bijections.

PERMUTATIONS. To define the determinant for n × n matrices we need
to know the correct sign to attach to each bijection σ : {1, 2, . . . , n} →
{1, 2, . . . , n}. We call such bijections permutations.

Example 6.3. It is convenient to write permutations in two-line notation.
For example, the permutation σ of {1, 2, 3, 4, 5, 6} defined by σ(1) = 6,
σ(2) = 1, σ(3) = 5, σ(4) = 4, σ(5) = 3, σ(6) = 2 is written as

(
1 2 3 4 5 6
6 1 5 4 3 2

)
.

Another way to write permutations uses the following definition.

Definition 6.4. A permutation σ of {1, 2, . . . , n} is an r-cycle if there exist
distinct x1, x2, . . . , xr ∈ {1, 2, . . . , n} such that

σ(x1) = x2, σ(x2) = x3, . . . σ(xr) = x1

and σ(y) = y for all y 6∈ {x1, x2, . . . , xr}. We write

σ = (x1, x2, . . . , xr).

For example, (1, 6, 2) is a 3-cycle and (3, 5) is a 2-cycle, or transposition.
Note that the same cycle can be written in different ways. For example,

(1, 6, 2) = (6, 2, 1) = (2, 1, 6).

More informally, we can represent this 3-cycle by a diagram as in the
margin. The notation for cycles clashes with the notation for tuples: one
has to rely on the context to make it clear what is intended.

•

• •6

1

2

As a small example of composing cycles, consider
(
(1, 2)(2, 3)

)
1 = (1, 2)

(
(2, 3)(1)

)
= (1, 2)(1) = 2

(
(1, 2)(2, 3)

)
2 = (1, 2)

(
(2, 3)(2)

)
= (1, 2)(3) = 3

(
(1, 2)(2, 3)

)
3 = (1, 2)

(
(2, 3)(3)

)
= (1, 2)(2) = 1

hence (1, 2)(2, 3) = (1, 2, 3).

There are n! permutations of {1, 2, . . . , n}. To see this, let X = {1, 2, . . . , n}
and think about constructing a bijection σ : X → X step-by-step.

• We may choose any element of X for σ(1).
• For σ(2) we may choose any element of X except σ(1).

...
• Finally for σ(n) we have a unique choice, the unique element of

X not equal to any of σ(1), . . . , σ(n− 1).
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Hence the number of permutations is n(n− 1) . . . 1 = n!.

Lecture 24Any shuffle of a deck of cards can be achieved by repeatedly swapping
two chosen cards. Correspondingly, any permutation is a composition of
transpositions. For example, (1, 2, 3, 4) = (1, 2)(2, 3)(3, 4).

Definition 6.5. Let σ be a permutation. We define the sign of σ by

• sgn(σ) = 1 if σ is equal to a composition of an even number of
transpositions;
• sgn(σ) = −1 if σ is equal to a composition of an odd number of

transpositions.

By Question 7 (optional) on Sheet 8 the sign of a permutation is well-
defined. That is, no permutation is expressible both as a composition of
evenly many and oddly many transpositions. The examples above show
that sgn(1, 2) = −1,

sgn(1, 2, 3) = sgn
(
(1, 2)(2, 3)

)
= (−1)2 = 1

and sgn(1, 2, 3, 4) = (−1)3 = −1. See Lemma 6.10 for the general result.

SLIDING BLOCK PUZZLE. A (somewhat unfair) sliding block puzzle has
these initial and target positions.

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Here shows the empty space.

Claim 6.6. There is no sequence of slides going from the initial position to the
target position.

Proof. A sequence of slides corresponds to a composition of transposi-
tions each involving the empty space . For example, the permutation
corresponding to sliding 14 right, 11 down, 12 left and 14 up is

(14, )(11, )(12, )(14, ) = (14, 12, 11).

Any slide sequence leaving in its original position has even length,
since must move right the same number of times it moves left, and up
the same number of times it moves down. The corresponding permuta-
tion therefore has sign +1. But the initial and target positions differ by
the transposition (14, 15) which has sign −1. �
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In fact any permutation of {1, 2, . . . , 15, } of sign +1 that fixes can
be obtained by a suitable sequence of slides. A special case is proved in
(optional) Question 8 on Sheet 8.

Lemma 6.7. Let σ, τ be permutations of {1, 2, . . . , n}. Then

sgn(στ) = sgn(σ) sgn(τ).

In particular, 1 = sgn(id) = sgn(σσ−1) = sgn(σ) sgn(σ−1), and so
sgn(σ) = sgn(σ−1) for any permutation σ. Moreover, if σ is any permu-
tation and τ is a transposition then sgn(σ) = − sgn(στ).

DISJOINT CYCLE DECOMPOSITION. We say that two cycles (x1, . . . , xk)
and (y1, . . . , y`) are disjoint if {x1, . . . , xk} ∩ {y1, . . . , y`} = ∅.

Exercise 6.8. Let τ = (4, 5) and let σ = (1, 4, 7)(2, 5)(6, 8). To write τσ as
a composition of disjoint cycles we start with 1 and find that (τσ)(1) =
τ
(
σ(1)

)
= τ(4) = 5, (τσ)(5) = τ

(
σ(5)

)
= τ(2) = 2, and so on, forming

the cycle (1, 5, 2, 4, 7). We then repeat with the smallest number not yet
seen, namely 3, which is fixed. Finally 6 is in the 2-cycle (6, 8). Hence

τσ = (1, 5, 2, 4, 7)(3)(6, 8) = (1, 5, 2, 4, 7)(6, 8).

(It is fine to omit the 1-cycle (3), since it is the identity permutation.)

Lecture 25 The algorithm in this exercise can be used to write any permutation as
a composition of disjoint cycles.

Lemma 6.9. A permutation σ of {1, 2, . . . , n} can be written as a composition
of disjoint cycles. The cycles in this composition are uniquely determined by σ.

COMPUTING SIGNS.

Lemma 6.10. Let τ = (x1, x2, . . . , x`) be an `-cycle. Then sgn(τ) = (−1)`−1.

Thus cycles of odd length have sign 1 and cycles of even length have
sign −1.

Corollary 6.11. If σ is a permutation of {1, 2, . . . , n} then

sgn(σ) =

{
1 if σ has an even number of cycles of even length
−1 if σ has an odd number of cycles of even length

in its disjoint cycle decomposition.

Exercise 6.12. By Exercise 6.8, if τ = (4, 5), σ = (1, 4, 7)(2, 5)(6, 8) then
τσ = (4, 7, 1, 5, 2)(6, 8) = (1, 5, 2, 4, 7)(6, 8). Find sgn(τ), sgn(σ), sgn(σ−1)
and sgn(τσ) using either Lemma 6.7 or Corollary 6.11.
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Lecture 26 DEFINITION OF THE DETERMINANT. We are now ready to define the de-
terminant of a general n× n matrix.

Definition 6.13. Let A be an n× n matrix. We define the determinant of A
by

det A = ∑
σ

sgn(σ)A1σ(1)A2σ(2) . . . Anσ(n)

where the sum is over all permutations σ of {1, 2, . . . , n}.

Thus a permutation σ of {1, 2, . . . , n} corresponds to the summand
where we choose the entry in row i and column σ(i) of A for each i ∈
{1, 2, . . . , n}.

Exercise 6.14.

(a) Check that if A is a 2× 2 matrix then Definition 6.13 agrees with
the definition given immediately after Lemma 3.15.

(b) List all permutations of {1, 2, 3} and state their signs. Hence check
that Definition 6.13 agrees with Lemma 6.2.

(c) Compute det




1 1 0 0
0 1 1 0
0 0 1 1
β 0 0 1


 for each β ∈ R.

[Hint: only a few of the 4! = 24 permutations of {1, 2, 3, 4} give a
non-zero summand.]

7. PROPERTIES OF THE DETERMINANT

In this section we see some effective way to compute the determinant
of a general n× n matrix. Some proofs will be omitted or given only in a
special case that shows the key idea.

ROW OPERATIONS AND DETERMINANTS. Recall that AT denotes the trans-
pose of A, defined on Question 3 of Sheet 6 by (AT)ij = Aji.

Proposition 7.1. Let A be an n× n matrix.

(i) If A′ is obtained from A by swapping two rows then det A′ = −det A.
(ii) If A′ is obtained from A by scaling a row by α ∈ R then det A′ =

α det A.
(iii) det AT = det A.
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In particular, if E is an elementary matrix (see Lemma 5.4) that swaps
two rows then, since E is obtained from the identity matrix by swapping
these rows, det E = −1. Similarly if E scales a row by α then det E = α.

By (iii) applied to (i) and (ii), we get the analogous results for columns.
You could use them in the following exercise, or use the alternative def-
inition of the 3 × 3 determinant using the vector product (see Defini-
tion 6.1).

Exercise 7.2. Let A be a 3 × 3 matrix with columns a, b, c. Let A′ =
(a c b) and let A′′ = (b 3c 2a) Express det A′ and det A′′ in terms
of det A.

For the third elementary row operation, adding a multiple of one row
to another, we need the following two lemmas.

Lemma 7.3. If A is an n× n matrix with two equal rows then det A = 0.

Lecture 27 Lemma 7.4. Let Aij ∈ R for 2 ≤ i ≤ n and 1 ≤ j ≤ n. If α1, α2, . . . , αn and
β1, β2, . . . , βn ∈ R then

det




α1 α2 . . . αn
A21 A22 . . . A2n

...
... . . . ...

An1 An2 . . . Ann


 + det




β1 β2 . . . βn
A21 A22 . . . A2n

...
... . . . ...

An1 An2 . . . Ann


 =

det




α1 + β1 α2 + β2 . . . αn + βn
A21 A22 . . . A2n

...
... . . . ...

An1 An2 . . . Ann


 .

A more general version of Lemma 7.4 holds when each entry in an
arbitrary row k is given as a sum. It can be proved by swapping row 1
with row k using Proposition 7.2(i), applying Lemma 7.4 as above, and
then swapping back.

Proposition 7.5. Let A be an n× n matrix. Let 1 ≤ k, ` ≤ n with k 6= `. Let
A′ be obtained from A by replacing row k with the sum of row k and α times
row `. Then det A′ = det A.

In particular, the elementary matrix corresponding to the row opera-
tion in Proposition 7.5 has determinant 1.

Example 7.6. We will use row operations to show that

det




α β γ

β γ α

γ α β


 = (α + β + γ)(αβ + βγ + γα− α2 − β2 − γ2).
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Question 4 on Problem Sheet 9 can be done in a similar way.

The proof of the following corollary is non-examinable and will be
skipped if time is pressing.

Corollary 7.7. Let B be an n× n matrix.

(i) If E is one of the elementary matrices in Lemma 5.4 then det EB =
Lecture 28det E det B.

(ii) If Q is a product of elementary n×n matrices then det QB = det Q det B.
(iii) If A is an n× n matrix then det AB = det A det B.
(iv) det B 6= 0 if and only if B is invertible.

Proof. (i) If E scales a row by α ∈ R then, by Proposition 7.1(ii) and the
following remark, det EB = α det B = det E det B.

The proof is similar if E swaps two rows, or adds one multiple of one
row to another, using Proposition 7.1(i) and Proposition 7.5.

(ii) Suppose Q = E1 . . . Et. By repeated applications of (i), we have

det QB = det E1(E2 . . . Et A) = det E1 det(E2 . . . EtB) = . . .

= det E1 det E2 . . . det Et−1(det EtB) = det E1 det E2 . . . det Et det B.

In particular, taking B = I, we get det Q = det E1 det E2 . . . det Et. Hence,
det QB = det Q det B, as required.

(iii) Let E1, . . . , Et be elementary matrices such that Et . . . E1A = A′ is
in row-reduced echelon form. Let Q = E−1

1 . . . E−1
t ; by Lemma 5.4, Q is a

product of elementary matrices. By (ii) we have

(?) det AB = det QA′B = det Q det A′B.

We now consider two cases.

• If A′ has no zero rows then A has a pivot in every column and
so A′ = I and Q = A. Hence, by (?), det AB = det QB =
det Q det B = det A det B.
• If A′ has a zero row then so does A′B. Hence det A′B = 0 for any

B. So by (?), det AB = 0. Taking B = I, we get det A = 0. Hence
det AB = det A det B = 0.

(iv) If B is invertible then, by (iii), det I = det(BB−1) = det B det B−1.
Hence det B 6= 0. Conversely, if B is not invertible then we saw in Exam-
ple 5.11 and Sheet 8, Question 1(c), that there is a product of elementary
matrices Q such that QB has a zero row. Hence det Q det B = det QB = 0.
Since Q is invertible, det Q 6= 0. Hence det B = 0. �
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LAPLACE EXPANSION AND THE ADJUGATE.

Definition 7.8. Let A be an n× n matrix with n ≥ 2 and let 1 ≤ k, ` ≤ n.
The minor of A in row k, column `, denoted M(k, `), is the (n− 1)× (n− 1)
matrix obtained from A by deleting row k and column `.

For example, the minors of the 3× 3 matrix A =




A11 A12 A13
A21 A22 A23
A31 A32 A33


 are

M(1, 1) =
(

A22 A23
A32 A33

)
, M(1, 2) =

(
A21 A23
A31 A33

)
, . . . , M(3, 3) =

(
A11 A12
A21 A22

)
.

Proposition 7.9. Let A be an n× n matrix. Then

det A = A11 det M(1, 1)−A12 det M(1, 2)+ · · ·+(−1)n+1A1n det M(1, n).

The proof is slightly fiddly so will be omitted: see the bonus questions
on Sheet 10 for an outline.

Definition 7.10. Let A be an n× n matrix. The adjugate of A is the n× n
matrix defined by

(adj A)k` = (−1)`+k M(`, k).

Note that the k and ` are swapped on the right-hand side. The pattern
of signs is shown in the margin for the 3× 3 case.



+ − +
− + −
+ − +




Example 7.11. Let A =




1 1 1
2 4 4
3 5 6


 be the matrix in Sheet 8, Question 1(a).

We have

adj A =




det
(

4 4
5 6

)
−det

(
1 1
5 6

)
det

(
1 1
4 4

)

−det
(

2 4
3 6

)
det

(
1 1
3 6

)
−det

(
1 1
2 4

)

det
(

2 4
3 5

)
−det

(
1 1
3 5

)
det

(
1 1
2 4

)




=




4 −1 0
0 3 −2
−2 −2 2


 .

Comparing with A−1 =




2 − 1
2 0

0 3
2 −1

−1 −1 1


, we see that adj A = 2A−1 =

(det A)A−1.
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This is a special case of the following result. While of some interest,
for large matrices, computing the inverse using the adjugate is far slower
than using row operations.

Proposition 7.12. If A is a square matrix then

A adj(A) = (det A)I.

Hence if det A 6= 0 then A−1 = 1
det A adj A.

Exercise 7.13. Find adj
(

a b
c d

)
and hence check that Proposition 7.12

holds in the 2× 2 case.

EIGENVALUES AND EIGENVECTORS. We saw earlier on page 19 that the
eigenvalues of a 2× 2 matrix are the roots of the characteristic polynomial
det(λI − A). This is true in general.

Proposition 7.14. Let A be a square matrix. Then λ is an eigenvalue of A if
and only if det(λI − A) = 0.

In the 2 × 2 case we saw that if A has distinct eigenvalues then it is
diagonalizable. For n ≥ 3 if A has n distinct eigenvalues then it is di-
agonalizable; the proof is beyond the scope of this course. [Correction:
this was worded rather vaguely in the issued version of these notes, and
might have suggested the wrong result.]

The following example is illustrative.

Example 7.15. Let α ∈ R and let A =




2 0 0
1 1 α

0 0 1


. Hence

λI − A =




λ− 2 0 0
−1 λ− 1 −α

0 0 λ− 1


 .

Since we have to take the λ − 2 in the top-left corner to get a non-zero
summand in det(λI − A) we have

det(λI − A) = (λ− 2)det
(

λ− 1 −α

0 λ− 1

)
= (λ− 2)(λ− 1)2

Hence the eigenvalues of A are 1 and 2. When λ = 2 we have

(2I − A)




x
y
z


 =




0 0 0
−1 1 −α

0 0 1






x
y
z


 =




0
−x + y− αz

z


 =




0
0
0




if and only if z = 0 and x = y. So




1
1
0


 is an eigenvector with eigen-

value 2. When λ = 1 we have
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(I − A)




x
y
z


 =



−1 0 0
−1 0 −α

0 0 0






x
y
z


 =



−x

−x− αz
0


 .

(i) If α = 0 then all we need is x = 0, so there are two non-parallel
eigenvectors with eigenvalue 1, for example, j and k in the usual
notation. Let P be the matrix whose columns are these chosen
eigenvectors, so

P =




1 0 0
1 1 0
0 0 1


 .

Then, for the same reasons seen in the 2× 2 case on page 20,

AP = P




2 0 0
0 1 0
0 0 1




and P−1AP is diagonal. Thus A is diagonalizable.

(ii) If α 6= 0 then we need x = z = 0, so the only eigenvectors with
eigenvalue 1 are the non-zero scalar multiples of j. In this case A
is not diagonalizable.
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8. VECTOR SPACES AND SUBSPACES

The following definition abstracts the key properties of sets such as Rn

or planes in R3. You do not need to memorize it.

Definition 8.1. A vector space is a set V of vectors with an addition rule
and zero element 0 such that

(A1) (Addition is associative) u + (v + w) = (u + v) + w,
(A2) (Addition is commutative) u + v = v + u,
(A3) (Zero is the identity for addition) u + 0 = 0 + u = u,

for all u, v, w ∈ V. Moreover there is a rule for multiplying a vector by a
scalar such that

(M1) (Scalar multiplication is associative) α(βv) = (αβ)v,
(M2) (One is the identity for scalar multiplication) 1v = v ,
(M3) (Action of zero) 0v = 0,

(D) (Distributivity) (α + β)v = αv + βv,

for all v ∈ V and α, β ∈ R.

Note that (A1), (A2), (A3) refer only to the additive structure on V,
while (M1), (M2), (M3) refer only to scalar multiplication. The only axiom
combining both is (D). Compare the axioms for rings you saw in MT181.

By (M2), (D) and (M3), applied in that order, if V is a vector space and
v ∈ V then

(−1)v + v = (−1)v + (1v) =
(
(−1) + 1

)
v = 0v = 0.

Thus each v ∈ V has an additive inverse, namely (−1)v. This vector is
usually written −v.

In this part we will follow the convention that Greek letters are used
for scalars.

Example 8.2.

(1) Let n ∈N. Then Rn is a vector space.
(2) Let n ∈N. The set of all n× n matrices is a vector space.
(3) The set of all real polynomials,

R[x] = {a0 + a1x + · · ·+ adxd : a0, a1, . . . , ad ∈ R, d ∈N0}
is a vector space.

(4) The line ` = {λ
(

1
1

)
: λ ∈ R} is a vector space.

(5) The translated line `′ = {
(

1
0

)
+ λ

(
1
1

)
: λ ∈ R} is not a vector

space.



44

LINEAR INDEPENDENCE, SPANNING AND BASES. These definitions re-
quire some thinking about, and will be explored in much greater depth
in MT280 linear algebra.

Definition 8.3. Let V be a vector space. Vectors u1, . . . , ur ∈ V
(i) are linearly dependent if there exist α1, α2, . . . , αr ∈ R, not all equal

to zero, such that

α1u1 + α2u2 + · · ·+ αrur = 0;

(ii) are linearly independent if they are not linearly dependent;
(iii) span V if for all v ∈ V there exist β1, . . . , βr ∈ R such that

v = β1u1 + β2u2 + · · ·+ βrur;

(iv) are a basis for V if they are linearly independent and span V.
Finally if V has a basis of size d we say that V has dimension d.

Any two bases of a finite-dimensional vector space have the same size.
(A proof is given in the optional extras below.) So dimension is well-
defined.

Some vector spaces, for example R[x], are not finite-dimensional.

Example 8.4. Let

V =
{



x
y
z


 ∈ R3 : x + z = 0

}

be the plane in R3 through the origin with normal i + k. Let

u1 =




1
0
−1


 , u2 =




0
1
0


 , u3 =




1
1
−1


 .

Then
(i) u1, u2, u3 are linearly dependent;

(ii) u1, u2 are linearly independent;
(iii) u1, u2 span V;
(iv) u1, u2 are a basis of W, so V has dimension 2.

Note that we found a linear dependence between u1, u2, u3 by solving
the equation α1u1 + α2u2 + α3u3 = 0. As a matrix equation it is




1 0 1
0 1 1
−1 0 −1






α1
α2
α3


 =




0
0
0




and it can solved systematically by putting the matrix above into row-
reduced echelon form. (Here only one row operation is needed.) More
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generally, the row-reduced echelon form of (u1, u2, . . . , un) has a zero
row if and only if the vectors u1, u2, . . . , un are linearly dependent.

We also saw a good way to find a basis for a vector space: write down
vectors that span it, then delete vectors until those that remain are lin-
early independent.

SUBSPACES.

Definition 8.5. Let W be a vector space. A subset V of W is a subspace
of W if

(i) 0 ∈ V and
(ii) for any u, v ∈ V and α, β ∈ R, we have αu + βv ∈ V.

Note the universal quantifier in (ii): it is not enough to check that αu +
βv ∈ V for some particular choice of α, β and u, v.

Example 8.6. Let n ∈ R3 be non-zero and let

V =
{

v ∈ R3 : n · v = 0
}

be the plane in R3 through the origin with normal n. Then V is a subspace
of R3 of dimension 2.

Note the requirement that a subspace contains 0. For example, the
translated plane

{
v ∈ R3 : (i + k) · v = 1

}
is not a subspace of R3,

because it does not contain 0.

Proposition 8.7. If V is a subspace of a vector space W then V is a vector space.

This gives an effective way to prove that a subset of Rn is a vector
space. For example, since Rn is itself a vector space, the plane in Exam-
ple 8.4 is now proved to be a vector space.

EXTRAS: DIMENSION IS WELL-DEFINED. There is a very beautiful proof
that the dimension of a finite-dimensional vector space does not depend
on the choice of basis. Like many important proofs, it is the seed of some-
thing more general: the very keen might like to search for ‘matroid’ on
the web. We need the following lemma.

Lemma 8.8 (Steinitz Exchange Lemma). Let V be a vector space. Suppose
that u1, u2, . . . , ur are linearly independent vectors in V and v1, v2, . . . , vs
span V. Either u1, u2, . . . , us is a basis of V, or there exists j ∈ {1, . . . , s}
such that u1, u2, . . . , ur, vj are linearly independent.

Proof. Suppose u1, u2, . . . , us is not a basis of V. Then the set

U = {β1u1 + β2u2 + · · ·+ βsus}
is a subspace of V not equal to V. (Exercise: check U is a subspace.) If
vj ∈ U for all j ∈ {1, 2, . . . , s} then, since U is a subspace of V, we have
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γ1v1 + γ2v2 + · · ·+ γsvs ∈ U for all γ1, γ2, . . . , γs ∈ R. But v1, v2, . . . , vs
span V, so this implies that U contains V, a contradiction.

Hence there exists j such that vj 6∈ U. Since u1, u2, . . . , ur are linearly
independent, if

α1u1 + α2u2 + · · ·+ αrur + βvj = 0

where not all the scalars are zero, then β 6= 0. Hence

vj = −
1
β
(α1u1 + α2u2 + · · ·+ αrur)

and so vj ∈ U, contrary to the choice of j. Therefore u1, u2, . . . , ur, vj are
linearly independent. �

By repeatedly applying Lemma 8.8, any linearly independent set can
be extended to a basis. Note this goes in the opposite direction to the way
we found a basis in Example 8.4.

Corollary 8.9. Any two bases of a finite-dimensional vector space V have the
same size.

Proof. Let u1, . . . , ur and v1, . . . , vs be bases of V. Thinking of u1, . . . , ur
as linearly independent and the v1, . . . , vs as spanning, the remark after
Lemma 8.8 shows that r ≤ s. By symmetry s ≤ r. Hence r = s. �

It would perhaps be more in the spirit of this course to prove the fol-
lowing related result which also implies Corollary 8.9.

Lemma 8.10. Let U be the subspace of Rd spanned by u1, u2, . . . , un. Let
A = (u1, u2, . . . , un) be the matrix having these vectors as columns. Let A′

be the row-reduced echelon form of A. If the pivot columns in A′ are columns
j1, . . . , jr then U has uj1 , . . . , ujr as a basis.

Proof of Lemma 8.10 using row-reduced echelon form. Let `1, . . . , `n−r be the
non-pivot columns of A′. By Proposition 5.7, given any α1, . . . , αn−r there
exist unique x1, x2, . . . , xn such that

(?) x1u1 + x2u2 + · · ·+ xnun = 0

and x`s = αs for each s. Taking α1 = 1, α2 = . . . = αn−r = 0 gives a lin-
ear relation expressing the non-pivot column u`1 as a linear combination
of the pivot columns uj1 , . . . , ujr . We argue similarly for u`2 , . . . , u`n−r .
Hence uj1 , . . . , ujr span U. By the exercise below, they are linearly inde-
pendent, and so form a basis. �

Exercise 8.11. Taking α1 = . . . = αn−r = 0, Proposition 5.9 implies that
the unique solution to (?) is x1 = . . . = xn = 0. Deduce that uj1 , . . . , ujr
are linearly independent.


