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Theorem 1.5 in [1] characterizes the maximal partitions λ such that sλ
appears with non-zero multiplicity in the plethysm sν ◦sµ of two Schur func-

tions. The purpose of this note it to document some related Haskell [2] code

and to give a small example showing how this theorem also gives information

about certain non-maximal constituents.

1. Background

1.1. Plethystic semistandard tableaux. For a fixed partition µ, we de-

fine a total order< on the set of semistandard µ-tableaux by s < t if and only

if, in the rightmost column where s and t differ, the largest integer entry

not appearing in both tableaux lies in t. In [1, Definition 1.4] a plethys-

tic semistandard tableau of shape µν was defined to be a semistandard ν-

tableau whose entries are semistandard µ-tableaux, where the semistandard

µ-tableaux entries are ordered by<. The weight of a plethystic semistandard

tableau is the sum of the weights (i.e. contents) of its µ-tableau entries. Let

PSSYT(µν , λ) denote the set of plethystic semistandard tableaux of shape

µν and weight λ. For example

PSSYT
(
(2)(3), (2, 2, 2)

)
=



1 1 2 2 3 3

1 1 2 3 2 3

1 2 1 2 3 3

1 2 1 3 2 3

2 2 1 3 1 3


.

Here the final tableau has weight (0, 2, 0) + (1, 0, 1) + (1, 0, 1) = (2, 2, 2).

These tableaux were enumerated using the Haskell [2] programs Plethys-

ticSemistandardSkewTableaux7.hs and the command

display $ psssytsW ([3], []) ([2], []) [2,2,2].

The Appendix gives some further notes on this code, which may be obtained

from the author. (Since it is a work in progress, I have not yet put it on the

web.)
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2. Maximal plethystic semistandard tableaux

The output of

display $ maximalPSkewTableaux 6 ([1,1,1,1,1],[]) ([2,1],[])

shows that there are five plethystic skew-tableaux of shape (2, 1)(1
5) and

maximal weight, namely
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Their weights are (10, 16), (9, 3, 1, 1, 1), (8, 4, 2, 1), (8, 4, 2, 1) and (7, 5, 3),

respectively. (In particular we get an example where there is more than

one tableaux of the same maximal weight.) By Theorem 1.5 in [1], these

weights label the maximal constituents of the plethysm s(15)◦s(2,1) that have

at most 6 rows. Thus

s(15) ◦ s(2,1) = s(10,1,1,1,1,1) + s(9,3,1,1,1) + 2s(8,4,2,1) + s(7,5,3) + · · · .

It is clear from inspection of the tableaux of weight (10, 16) that no plethystic

semistandard tableau of shape (2, 1)(1
5) and maximal weight can have an

entry exceeding 6, therefore these are all the maximal constituents.

Example 2.1. Three of the plethystic semistandard skew-tableaux of shape

(2, 1)(2
5) and weight (16, 8, 4, 2) are obtained by concatenating two of the

plethystic semistandard skew-tableaux of shape (2, 1)(1
5) and weight (8, 4, 2, 1):
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If instead we concatenate the plethystic semistandard skew tableaux of shape

(2, 1)(1
5) and weights (9, 3, 1, 1, 1) and (7, 5, 3), we obtain
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which has weight (16, 8, 4, 1, 1). Call this tableau T . Observe that decre-

menting any entry other than 1 in a (2, 1)-tableau entry of T either creates

a column repeat in this (2, 1)-tableau or creates two equal (2, 1)-tableaux in

the same column of T . It follows that the GL-polytabloid F (T ), as defined

in [1, Definition 2.3], is a highest-weight vector in ∇(25)∇(2,1)E, where E

is a 5-dimensional (or greater) complex vector space. (See Remark 3.2 for

the general case, which is somewhat more technical.) Hence s(25) ◦ s(2,1) has

s(16,8,4,1,1) as a non-maximal constituent. In fact

s(25) ◦ s(2,1) = s(20,2,2,2,2,2) + s(19,4,2,2,2,1) + s(18,6,2,2,2)

+ 2s(17,7,3,2,1) + 3s(16,8,4,2) + 2s(15,9,5,1) + s(14,10,6) + · · ·

where all other constituents are non-maximal.

This example shows that the methods in [1] also give information about

non-maximal constituents of plethysms.

3. Appendix: computational notes

PlethysticSemistandardSkewTableaux7.hs. The algorithm employed

by psssytsW to construct all plethystic semistandard tableaux of shape µν

and weight γ has some features of interest. As a first step, we make a list(
t1,wt(t1)

)
, . . . ,

(
tk,wt(tk)

)
where t1 < t2 < . . . < tk are the semistandard µ-tableaux with entries

from {1, . . . , `(γ)}. We then enumerate all semistandard ν-tableaux with

entries from {1, . . . , k}; replacing i with ti turns each such ν-tableau into a

plethystic semistandard tableau. The ν-tableaux are constructed iteratively,

starting at a removable box of [ν]: if at any point the weight, considering

the µ-tableau entries placed so far, exceeds γ in some position, then the

partially constructed tableau is abandoned.
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The special case when γ has one long part (corresponding to entries of 1)

and a small number of short other parts arises when considering stability

results. In this case the algorithm is efficient in practice. For example

[(p, monomialCoefficient [4,4] [3,2] p) | p <- stablePartitions 40 22 2]

finds [xγ ](s(4,4) ◦ s(3,2)) for all partitions γ of 40 of the form (18, γ2, γ3)

in under a minute, by explicitly constructing the corresponding plethystic

semistandard tableaux. The alternative using Magma would be to construct

the entire plethysm s(4,4)◦s(3,2); while permitting further computations, this

takes over an hour on my laptop.

No very fast enumerative algorithm can be expected because the number

of plethystic semistandard tableaux may be exponentially large. For exam-

ple, [x(1
nm)](s(1n)◦s(1m)) is the number of ways to partition {1, . . . ,mn} into

n disjoint subsets each of size m, namely (mn)!/m!nn!. (This is also the de-

gree of the Foulkes character φ(m
n).) One might instead ask for an algorithm

that gives the coefficient [xγ ](sν◦sµ) without explicit enumeration. However,

the problem of deciding, given the list of weights wt(t1), . . . ,wt(tk), whether

some subset has sum γ is NP-complete. (This is the multi-dimensional knap-

sack problem.) Therefore determining whether [xγ ](s(1n) ◦ sµ) is non-zero is

an NP-complete problem. Determining the coefficient itself is, of course, at

least as hard.

Another sign the enumeration problem is non-trivial is the incompatibility

between the natural partial orders on semistandard µ-tableaux that respect

weights (for example, the dominance order) and the total order <. For

instance

1 1 1 1
2 2

< 1 1 1 2
a b

< 1 1 2 2
2 2

for any a, b ≥ 2, showing that tableaux of almost arbitrary weight can

appear between tableaux of maximal, or near maximal, weight. Adapting

this example, consider the plethystic semistandard tableau

1 1 1
2 2

1 1 1
3 3

1 1 1
3 3

1 1 2
2 2

of weight (11, 5, 4), which has as a subtableau

1 1 1
2 2

1 1 1
3 3

1 1 1
3 3

of non-partition weight (9, 2, 4). This rules out at least one ‘greedy’ algo-

rithm for enumeration. It appears impossible to resolve this problem by

another choice of <.
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PlethysticSemistandardTableauxDecInc3. Let t be a semistandard µ-

tableau t. We say that a semistandard µ-tableau t− is a decrement of t if

there exists (i, j) such that

t−(i′,j′) =

{
t(i′,j′) if (i′, j′) 6= (i, j)

t(i,j) − 1 if (i′, j′) = (i, j).

We define an increment t+ of a semistandard µ-tableau t analogously.

Lemma 3.1. Let T be a plethystic semistandard tableau of shape µν and

maximal weight. Let (I, J) ∈ [ν]. Let t = T(I,J). If t has t− as a decrement

then t− appears in column J of T .

Proof. Let T− be the plethystic tableau obtained from T by replacing the

entry t in position (I, J) with t−. If t− is not already in this column then

column standardising T− gives a column standard plethystic tableau U , with

semistandard µ-tableau entries, and of weight dominating wt(T ). Let d be

the maximum entry of a µ-tableau entry in T and let E be a d-dimensional

complex vector space. By the model in §3 of [1], we may straighten the

GL-polytabloid F (U) ∈ ∇ν∇µE to write F (U) as a non-zero integral linear

combination of plethystic semistandard GL-polytabloids F (S) each of weight

dominating wt(T ). Therefore T does not have maximal weight. �

Say that a plethystic semistandard tableau is maximal if it has maximal

weight for its shape and closed if it has the property in Lemma 3.1. By this

lemma, maximal plethystic semistandard tableaux are closed.

Remark 3.2. The closure property just defined is not sufficient to guar-

antee that F (T ) is a highest weight vector, because one must also consider

decrements of T that do not preserve the semistandardness of its µ-tableau

entries. This technical point is illustrated in Example 7.4 of [1], where

the 11 semistandard (2, 2)-tableaux shown form a plethystic semistandard

tableau T of shape (2, 2)(1
11) which is closed in the sense just defined, but

F (T ) is not a highest-weight vector, and correspondingly, wt(T ) is not max-

imal.

Lemma 3.1 leads to the following algorithm for constructing closed semi-

standard plethystic tableaux of shape µν and entries from {1, . . . , d}. Say

that a box of a skew diagram [ν]/[ν?] is inner if it is an addable box of [ν?].

(1) Suppose, inductively, that the µ-tableau entries in a candidate closed

semistandard plethystic tableau has been chosen in boxes in ν? where

[ν?] ⊆ [ν]. If ν? = ν then stop. Otherwise choose an inner box (I, J)

of [ν]\[ν?]. By Lemma 3.1, if there is a closed plethystic semistandard

tableau having the semistandard µ-tableau t in position (I, J) then

• either t = tµ, the unique µ-tableau with no decrement;
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• or t = s+ for some s already in column J , and moreover any

decrement t− of t is already in column J .

(2) For each t passing the test in (1a), check whether putting t in position

(I, J) gives a plethystic semistandard tableau T+. (The shape of T+

is ν?+
µ where [ν?+] = [ν?]∪{(I, J)}.) Continue (1) with each such T+.

To obtain maximal tableaux one then filters the list of closed tableaux,

taking those that really do have maximal weight. For example,

display $ closedPSkewTableaux 6 ([1,1,1,1,1],[]) ([2,1],[])

gives the five plethystic tableaux of shape (2, 1)(1
5) shown in §2 and the three

further non-maximal but closed tableaux
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1 2
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2 2
3

,
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1 4
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2

.

of weights (7, 5, 2, 1), (6, 6, 3) and (6, 6, 1, 1, 1), respectively. This shows that

the final filtering step is necessary. For a smaller example with the same

behaviour, replace (2, 1)(1
5) with (2, 1)(1

3); the closed plethystic tableaux

are then

1 1
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1 1
3

1 1
4
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of weights (6, 1, 1, 1), (5, 3, 1) and (4, 4, 1), and the final one is not maximal.

The function closedPlethysticSkewTableauxFrom d bs gs ts imple-

ments steps (1) and (2) using breadth first searching to avoid repeatedly

generating the same plethystic semistandard tableaux. Here bs is the list

for [ν]\[ν?], gs is the singleton list representing {tµ}, and ts is the list of par-

tially constructed candidate closed plethystic semistandard tableaux. (The

reason for the generality in gs will be seen shortly.)
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Plethystic semistandard tableaux of arbitrary depth. In fact Plethystic-

SemistandardTableauxDecInc3 solves a more general problem. Define a

plethystic semistandard tableau t of shape (µ) and depth 1 to be a semistan-

dard µ-tableau with integer entries, and a plethystic semistandard tableau

of depth D and shape (µ(1), . . . , µ(D−1), ν) to be a semistandard ν-tableau

whose entries are inductively defined plethystic semistandard tableaux of

depth D − 1 and shape (µ(1), . . . , µ(D−1)). The entries, of depth D − 1, are

ordered by the total order, defined inductively. For example,

1 2 2 3 2 2 2 3 < 2 2 1 3 1 3 2 3

since, comparing on the rightmost entries, each plethystic semistandard

tableaux of shape
(
(2), (2)

)
, we have

2 2 2 3 < 1 3 2 3
.

The definition of weight extends in the obvious way. Note that if D = 2 then

plethystic semistandard tableaux of shape (µ, ν) are the same as plethystic

semistandard tableaux of shape µν , as already defined.

The definitions of increment and decrement extend to these more general

objects: note however that the unique undecrementable tableau of shape µ

is tµ, but when D > 2 there are usually many undecrementable tableaux of

shape (µ(1), . . . , µ(D−1)). The algorithm as presented above must therefore

be modified by replacing the condition t 6= tµ in (1) with t 6∈ T , where T
is the set of all undecrementable plethystic semistandard tableaux of shape

(µ(1), . . . , µ(D−1)). This set is generated as a one-off preliminary computa-

tion in a new step (0).

Example 3.3. The function maximalQSkewTableau d zs ys xs constructs

all plethystic semistandard tableaux of depth 3 of shape (µ, ν, ξ), correspond-

ing to [zs, ys, xs]. For example the output of

display $ maximalQSkewTableaux 3 ([2,1],[]) ([2,1],[]) ([2,1],[])

shows the four maximals below:
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of weights (18, 5, 4), (17, 8, 2), (16, 10, 1) and (14, 13), respectively. Compu-

tation in Magma shows that

s(2,1) ◦ s(2,1) ◦ s(2,1) = s(18,5,4) + s(17,8,2) + s(16,10,1 + s(14,13) + s(18,6,2,1) + · · ·

where the final maximal constituent may be found by replacing 3 with 4 (to

allow entries from {1, 2, 3, 4}) above.

Further implementation notes. The function

sssyts :: (Ord a) => [a] -> SkewPartition -> [SSYT a]

enumerates all semistandard tableaux with entries from a given totally or-

dered set, of the given shape. The algorithm used builds from the rightmost

removable box of the partition, working leftwards: conveniently this gives

semistandard tableaux in the total order <. For example, the plethystic

semistandard tableaux of shape
(
(2), (2), (2)

)
above appear in the output of

sssyts (sssyts (sssyts [1,2,3::Int] ([2],[])) ([2],[])) ([2],[]).

There are in total 231 such tableaux.

The function

display :: ShowT a => a -> IO ()

is defined in ShowTableaux2.hs using instances for the type class ShowT,

whose unique member is showT :: a -> String. These instances have

to be defined individually for each possible depth because of the different

types involved. For example, plethystic semistandard tableaux of shape(
(2), (2), (2)

)
have Haskell type SSYT (SSYT (SSYT Int)). Once the ShowT

instances are defined, there is a unified way to write the display function:

class Display a where

displayC :: a -> IO ()

data DType a = D a

instance (ShowT a) => Display (DType a) where

displayC (D x) = putStrLn $ showT x

display :: (ShowT a) => a -> IO ()

display x = displayC (D x)
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It is necessary to introduce the auxiliary type DType because instance

(ShowT a) => Display a) is not decidable by the type-checker. (Consider

a later declaration: instance (Display a) => Show T a; clearly this cre-

ates a potential loop.)
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