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Administration:

I Workshops begin next week.

I Sign-in sheet. Please return to the lecturer after each
lecture.
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Recommended Reading and Other Resources

[1] How to think like a mathematician. Kevin Houston,
Cambridge University Press, 2009.

[2] A concise introduction to pure mathematics. Martin Liebeck,
Chapman and Hall, 2000.

[3] Discrete Mathematics. Norman L. Biggs, Oxford University
Press, 2002.

I Printed notes. But you should also make your own notes.

I Handouts and slides on Moodle.

I Problem sheets. Each of the eight marked problem sheets is
worth 1.25% of your overall grade. This mark is awarded for
any reasonable attempt.

I Discuss questions with your colleagues.

I Web: planetmath.org, http://math.stackexchange.com.

I Check your answers to computational problems with computer
algebra packages such as Mathematica.



Part A: Sets, Functions and Complex Numbers

§1 Introduction: Sets of Numbers

One of the unifying ideas in this course is solving equations. I hope
we can all agree this is an useful and interesting thing to do. For
example, consider the equation

2x + 3y = 18.

How many solutions are there?
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Sets

A set is any collection of objects. These objects are called the
members or elements of the set.

If X is a set and x is an element of X then we write x ∈ X . (This
can be read as ‘x is in X ’, or ‘X contains x ’.) If y is not an
element of X then we write y 6∈ X . For example,
7 ∈ {2, 3, 5, 7, 11, 13} and 8 6∈ {2, 3, 5, 7, 11, 13}.

Exercise 1.1
True or false?

(i) 29 is a member of the set of prime numbers,

True

(ii) 87 is a member of the set of prime numbers,

False

(iii) {2, 3, 5, 7, 11} = {5, 7, 11, 2, 3}.

True
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Sets of Numbers

We write N for the set of natural numbers:

N = {1, 2, 3, 4, . . .}.

We write Z for the set of integers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

A number r/s with r ∈ Z, s ∈ Z and s 6= 0 is said to be rational.
We write Q for the set of rational numbers. Finally we write R for
the set of real numbers.

Some important real numbers are marked below.

πe1 20−1
√

2



Rational and Irrational Numbers
It is an important fact that there are real numbers that are not
rational numbers. For example

√
2 6∈ Q. We say that such

numbers are irrational. So what sort of numbers are rational?

Example 1.2 (See board)

Note that ‘ =⇒ ’ means ‘implies’. If A and B are mathematical
statements then

A =⇒ B

means ‘A implies B’ or equivalently

‘if A is true, then B is true’.

Using implies signs (and also importantly, words!) will help to
clarify the structure of your arguments.

Exercise 1.3′. Find a simple expression for 0.99999 . . .. Are you
happy with the answer? (For another exercise on Example 1.2, see
printed notes.)
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An Encouragement to Use Implication Signs ‘ =⇒ ’

√
x = x − 2, x = (x − 2)2, x2 − 5x + 4 = 0, x = 4 and x = 1.

This gets an incorrect answer. The logical structure is unclear and
it is unpleasant to read.

√
x = x − 2 =⇒ x = (x − 2)2

=⇒ x = x2 − 4x + 4

=⇒ x2 − 5x + 4 = 0

=⇒ (x − 4)(x − 1) = 0

=⇒ x = 4 or x = 1.

Now
√

4 = 2 = 4− 2 but
√

1 = 1 6= 1− 2. So x = 4 is the
unique solution.

The logical structure is clear and the answer is correct.



Number Systems Seen So Far

In this diagram, sets are drawn as regions in the plane.

Note that a set contains all the numbers in the sets drawn inside
it. It is therefore entirely correct to say that 1 is a real number, or
that −1 is a rational number.

NZ

Q R

1, 2, 3, . . .. . . ,−1, 0
1/2
−9/7

√
2

π



Quiz on Different Numbers
True or False:

(a)
√

3 is a real number
(b)
√

3 is a rational number
(c) 0.123456789 123456789 . . . is a rational number
(d) 3.141592 is a rational number
(e) 1 is a real number
(f) 0.3999 . . . (repeating 9s) is a rational number
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Closure
One important property of the natural numbers, which I hope you
will agree is obviously true, is that if m, n ∈ N then m + n ∈ N and
mn ∈ N.

Definition 1.4
Let X be a set of numbers. We say that X is

I closed under addition if x + y ∈ X whenever x ∈ X and y ∈ X ;

I closed under multiplication if xy ∈ X whenever x ∈ X and y ∈ X ;

I closed under subtraction if x − y ∈ X whenever x ∈ X and y ∈ X ;

I closed under division if x/y ∈ X whenever x ∈ X , y ∈ X and y 6= 0.

Assume that Z is closed under addition, subtraction and
multiplication. Let Z≤0 = {0,−1,−2,−3, . . .}.
Exercise 1.5

I Is N closed under division?

No: 1/2 6∈ N

I Is Z closed under division?

No: 1/2 6∈ N

I Is Z≤0 closed under addition?

Yes (but why?)

I Is Q closed under addition?

Yes (but why?)
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Discussion of Proof

Discussion: Does this proof make you more convinced that Q is
closed under addition?

Would you accept a bet for £10 at odds of
10000 to 1 that Q is closed under addition?

I ‘Why so many words? I thought we were here to do
mathematics.’ Reply: We are, and we did.

I ‘All we showed is that the sum of two fractions is a fraction.
Isn’t this just obvious?’ Reply: maybe it is. But many obvious
sounding statements have turned out to be false.

We will prove much more interesting results later in the
course.

I ‘In the proof you assumed that Z is closed under addition and
multiplication. How do we know this?’ Reply: good point.

But at least this proof reduces the problem of showing that Q
is closed under adddition to proving that Z is closed under
addition and multiplication (which you were told to assume).
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Solving equations

There is a close connection between the closure properties of a set
and the equations that can be solved using numbers from that set.

For example, 1− 2 /∈ N, and correspondingly, the equation
1 = 2 + x has no solution in N. Going the other way, the equation
3x = 4 has no solution in Z, and correspondingly, Z is not closed
under division.

Quiz

(i) Is the equation x2 = 2 soluble in (i) Q, (ii) R?

No, Yes

(ii) Is the equation x2 = −1 soluble in (i) Q, (ii) R?

No, No

(iii) Write down an equation that has exactly three solutions in R,
exactly one solution in Z, and no solutions in N.
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Subsets
If X and Y are sets and every element of X is an element of Y ,
then we say that X is a subset of Y , and write X ⊆ Y . In symbols
the condition X ⊆ Y is

x ∈ X =⇒ x ∈ Y .

For example N is a subset of Z, Z is a subset of Q and Q is a
subset of R. In symbols

N ⊆ Z ⊆ Q ⊆ R.

There is a special notation for defining subsets of a set. For
example if Y is the set of prime numbers and

X = {x ∈ Y : x ≤ 13}
then X is the set of prime numbers x such that x ≤ 13. The set Q
of rational numbers can be defined as

Q = {r/s : r ∈ Z, s ∈ Z, s 6= 0}.
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Example of Subsets

Example 1.6

Let

X = {x ∈ R : x ≥ 2 +
√

5.}
Y = {x ∈ R : x2 − 4x + 1 ≥ 2}

We will show that X ⊆ Y . Is it true that X = Y ?

Exercise 1.7
Give an example of English sentences A and B such that
P =⇒ Q is true, but Q =⇒ P is false.

If P =⇒ Q and Q =⇒ P then we write P ⇐⇒ Q, read as ‘if
and only if’.



Example of Subsets

Example 1.6

Let

X = {x ∈ R : x ≥ 2 +
√

5.}
Y = {x ∈ R : x2 − 4x + 1 ≥ 2}

We will show that X ⊆ Y . Is it true that X = Y ?

Exercise 1.7
Give an example of English sentences A and B such that
P =⇒ Q is true, but Q =⇒ P is false.

If P =⇒ Q and Q =⇒ P then we write P ⇐⇒ Q, read as ‘if
and only if’.



Venn Diagrams

A Venn diagram is a diagram, like the one on page 6, that
represents sets by regions of the plane. For example, the sets

U = {1, 2, 3, . . . , 9, 10}
X = {n ∈ U : n is even}
Y = {n ∈ U : n is a prime number}

are shown in the Venn diagram below. The region representing X
is shaded.

4, 6

8, 10
3, 5, 71, 9

X Y

U

2



Intersection, Union, Complement and de Morgan’s Laws
Let X and Y be sets.

I The intersection of X and Y , written X ∩ Y , is the set of
elements that are in both X and Y .

I The union of X and Y , written X ∪ Y , is the set of elements
in at least one of X and Y .

I If X is a subset of a set U then we define the complement of
X in U by X ′ = {y ∈ U : y 6∈ X}.

Exercise 1.8
Draw Venn diagrams representing X ∩ Y , X ∪ Y and X ′.

Claim 1.9 (De Morgan’s Laws)

Let X and Y be subsets of a set U. Then

(i) (X ∪ Y )′ = X ′ ∩ Y ′,

(ii) (X ∩ Y )′ = X ′ ∪ Y ′.
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Administration

I Student Representative Elections
[see www.su.rhul.ac.uk/voice/representation/]

Through discussions with their fellow students, Course Reps identify
the issues affecting their course and relate these back to staff
through informal meetings and the course boards or staff / student
committees. Course reps don’t only criticise when things go wrong,
but also provide positive and constructive feedback from students to
the course team letting them know what works well. They also have
an important role in feeding back information from these meetings
to their course mates — keeping everyone fully informed.

I Please take pages 11 to 18 of the handout and Problem
Sheet 2.

I Hand in Sheet 1 at the end of this lecture. Question 5 will be
done today (you are welcome to add another answer).

I Answers to Sheet 1 will be posted to Moodle shortly. I will
update these with feedback on common errors by Friday.



§2 Functions

We need an idea of a function that is broad enough to cover
everything that might be needed in pure mathematics, applied
mathematics, probability and statistics. For example, this should
definitely be a function:

h(t) =





1 if t ≤ 0

1 + 4t − 5t2 if 0 ≤ t ≤ 1

0 if t ≥ 1,

−0.5−1 0.5 1 1.5

0.5

1

1.5

2

time t in seconds

height in metres

h(t)



Definition of Functions

Definition 2.1
Let X and Y be sets. A function from X to Y is a black box such
that, when an element x ∈ X is put in, an element y ∈ Y comes
out. If the function is called f , then we write f : X → Y . The
output for the input x is written f (x).

•

•

•

••

••

X

•
•

•

Y

•

•x

f f (x)

Question: When should two functions be said to be equal?
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Example 2.2

Let f : {1, 2, 3, 4} → {0, 1, 2, 3, 4} be the function defined by

f (1) = 1, f (2) = 0, f (3) = 1, f (4) = 4.

Define g : {1, 2, 3, 4} → {0, 1, 2, 3, 4} by g(x) = (x − 2)2. Then
f = g , since f (x) = g(x) for all x ∈ {1, 2, 3, 4}.

4 •

3 •

2 •

1 •
X

• 4

• 3

• 2

• 1

• 0

Y

Definition 2.3
Let f : X → Y be a function. The set X of allowed inputs to f is
called the domain of f . The set Y of allowed outputs is called the
codomain of f . The set {f (x) : x ∈ X} of all outputs that actually
appear is called the range of f .



Administration

I Please take the handout

I Spare copies of Section 2 Printed Notes and Problem Sheet 2
at front

I Sheet 1 was mostly done very well. I have updated the
answers to Sheet 1 on Moodle with some feedback on
common errors. Your work will be returned tomorrow.



Bijective functions

Definition 2.5
Let X and Y be sets and let f : X → Y be a function. We say
that f is bijective if for all y ∈ Y there exists a unique x ∈ X such
that f (x) = y .

Example 2.6

The function f3 is the only bijective function below. For example f4
is not bijective because there does not exists any x ∈ X such that
f4(x) = 3, and f1 is not bijective because f (1) = f (2) = 1.

f1

4 •
3 •

2 •
1 •
X

• 3

• 2

• 1

Y

f3

4 •
3 •

2 •
1 •
X

• 4

• 3

• 2

• 1

Y
f4

3 •

2 •

1 •
X

• 4

• 3

• 2

• 1

Y



Quiz on Bijective Functions
Which of the following functions are bijective? In (b) and (c)
define R≥0 = {x ∈ R : x ≥ 0}.
(a) f2 : {1, 2, 3} → {1, 2, 3, 4} defined by the diagram below

f2

3 •

2 •

1 •
X

• 4

• 3

• 2

• 1

Y

(b) f : R≥0 → R≥0 where f (x) = x2,
(c) g : R→ R≥0 where g(x) = x2,

(d) h : N→ Z defined by h(n) =

{
n
2 if n is even

−n−1
2 if n is odd.

n 1 2 3 4 5 6 7 . . .

h(n) 0 1 −1 2 −2 3 −3 . . .
Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

5 10 15 20

-5

5

10



Bijective Functions and Inverse Functions
A bijective function is also called a bijection. For example, the
function f : R→ R defined by f (x) = x3 is a bijection.

Exercise 2.7
Let X = {x ∈ R : x ≥ 2}. What subset Y of R should you choose
so that the function f : X → Y defined by f (x) = x2 − 4x + 1 is
bijective?

Suppose that f : X → Y is a bijection. We define the inverse
function to f to be the function f −1 : Y → X such that f −1(y) is
the unique x ∈ X such that f (x) = y . In symbols

f −1(y) = x ⇐⇒ f (x) = y .

Exercise 2.8
Suppose that f : X → Y is represented by a diagram, as in
Example 2.6. How can you obtain the diagram representing the
inverse function f −1 : Y → X?
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Graph of a Bijective Function and its Inverse

Let R≥0 = {x ∈ R : x ≥ 0}. The graph below shows the function
f : R≥0 → R≥0 defined by f (x) = x2. The inverse function to f is
f −1(y) =

√
y .

1 2 3 4

1

2

3

4

0

f (x) = x2

f−1(y) =
√

y

(x, f (x))
= (x, x2)

(x2, f−1(x2))
= (x2, x)



Further Examples of Inverse Functions

Example 2.9

Let Y = {y ∈ R : 0 ≤ y < 2}. Let f : R≥0 → Y be the function
defined by f (x) = 2x/(1 + x). For y ∈ Y we have

2x

1 + x
= y ⇐⇒ y +xy = 2x ⇐⇒ y = x(2−y) ⇐⇒ y

2− y
= x .

Hence f (x) = y ⇐⇒ x = y/(2− y). Since y ≥ 0 and 2− y > 0,
the solution x = y/(2− y) is in the domain R≥0 of h.

Therefore f is a bijection with inverse f −1(y) = y/(2− y).

Example 2.10

Let Y = {y ∈ R : −1 ≤ y ≤ 1}. Consider sin : R→ Y . This
function is not bijective. For example, sin 0 = sin 2π = 0, so the
equation sin x = 0 does not have a unique solution. To find an
inverse we must first restrict the domain.
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Injective and Surjective Functions

Definition 2.11
Let f : X → Y be a function.

(i) We say that f is injective if for all x , x ′ ∈ X ,

f (x) = f (x ′) =⇒ x = x ′.

(ii) We say that f is surjective if for all y ∈ Y there exists x ∈ X
such that f (x) = y .



Example 2.12

Consider the functions from Example 2.6.

f1

4 •
3 •

2 •
1 •
X

• 3

• 2

• 1

Y

f2

3 •

2 •

1 •
X

• 4

• 3

• 2

• 1

Y

f3

4 •
3 •

2 •
1 •
X

• 4

• 3

• 2

• 1

Y
f4

3 •

2 •

1 •
X

• 4

• 3

• 2

• 1

Y

I f1 is not injective, since f (1) = f (2); f1 is surjective,
I f2 is not injective and not surjective,
I f3 is injective and surjective,
I f4 is injective; f4 is not surjective, since there does not exist

x ∈ X such that f (x) = 3 ∈ Y .
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Exercise on Injective, Surjective and Bijective Functions

We will see equivalent ways to state injective, surjective and
bijective in Lecture 5. In particular we will see that

f is bijective ⇐⇒ f is injective and f is surjective.

A sadly common error is to write ‘for all x ∈ X there exists a
unique y ∈ Y such that f (x) = y ’ to mean f is injective. This is
true by definition of a function, and is nothing to do with f
being injective.



Feedback on Sheet 1
A–J in blue folder, K–Z in green folder.

I Sheet 1 was mostly done very well. I have updated the
answers to Sheet 1 on Moodle with some feedback on
common errors.

I Q2 and Q3 were used for the numerical mark. Some people
gave examples when a general argument was needed. E.g.

I To show Q<0 is not closed under multiplication, one example
suffices, e.g. −1×−1 = 1;

I To show Q<0 is closed under addition, a general argument is
needed. One example is not enough.

I Many people had an extra ‘false’ solution in Q4(b). Correct
use of implication signs would have avoided this: see model
answers.

I In Q5, many answers showed that
z ∈ (X ∩ Y )′ =⇒ z ∈ X ′ ∪ Y ′, and so (X ∩ Y )′ ⊆ X ′ ∪ Y ′,
and then announced that (X ∩ Y )′ = X ′ ∪ Y ′. This does not
follow. You must also show X ′ ∪ Y ′ ⊆ (X ∩ Y )′.



Diagrams and the Horizontal Line Test

Exercise 2.13
Let f : X → Y be represented by a diagram. Then

f is injective ⇐⇒ no element of the codomain Y has two

(or more) arrows coming into it.

Give a similar condition for f to be surjective. Give a similar
condition for f to be bijective.

Exercise 2.14
By looking at the graph of a function f : X → R, where X ⊆ R,
we can detect whether f is injective by looking at the horizontal
lines going through (0, y) for each y ∈ R. This is called the
horizontal line test:

f is injective ⇐⇒ each horizontal line hits the graph of f at

most once.

Give similar conditions for f to be surjective and bijective.



Composing Functions
Let f : X → Y and g : Y → Z be functions. The composition of f
and g is the function gf : X → Z , defined by

(gf )(x) = g
(
f (x)

)
.

Note that gf means ‘do f , then do g ’. One has to get used to
reading function compositions from right to left.

Example 2.15

Let f : {1, 2, 3, 4} → {1, 2, 3} be the function f1 from Example 2.6.
Let g : {1, 2, 3} → {−1, 1} be defined by g(x) = (−1)x .

f

4 •
3 •

2 •
1 •
X

• 3

• 2

• 1

Y
g

Z

• − 1

• 1



Composing Functions

Lemma 2.16 (Examinable)

Let f : X → Y and g : Y → Z be functions.

(i) If f and g are injective then gf is injective.

(ii) If f and g are surjective then gf is surjective.

(iii) If f and g are bijective then gf is bijective.

For (ii) see Question 5(a) on Sheet 2.



Final Quiz on Injective, Surjective and Bijective Functions
Which of the functions f1, f2, f3 shown below are (a) injective, (b)
surjective, (c) bijective?

f1

2 •

1 •
X Y

• 2

• 1 f2

2 •

1 •
X Y

• 2

• 1
f3

3 •
2 •
1 •
X Y

• 1

• 2

Let X = {x ∈ R : 0 ≤ x ≤ 1}. Repeat for g1, g2, g3, g4 : X → X .

g1

0
1

1

1/2

1/2 g2

0
1

1

1/2

1/2 g3

0
1

1

1/2

1/2 g4

0
1

1

1/2

1/2

Injective Surjective Bijective

g1

No Yes No

g2

Yes No No

g3

Yes Yes Yes

g4

No No No
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Inverse of a Composition of Functions
By (c), if f : X → Y and g : Y → Z are bijections, then
gf : X → Z is a bijection, and so it has an inverse function. To
undo the composition gf : X → Z we must first undo g : Y → Z ,
then undo f : X → Y . Hence

(gf )−1 = f −1g−1.

This result can be useful when finding inverse functions.

Example 2.17

Let

f (x) =

√
2x2

1 + x2
.

We can write f as a composition: f = f3f2f1 where f1(x) = x2,
f2(x) = 2x/(1 + x) and f3(x) =

√
x . In the lecture we will sort out

the domains and codomains of f and f1, f2, f3, and hence find the
inverse to f .



Associativity and Identity Functions

The associative property of composition states that if f : X → Y ,
g : Y → Z and h : Z →W are any functions then

(hg)f = h(gf ) : X →W .

This has a one-line proof.

We will see associativity again in §10 of the course on rings.

Suppose f : X → Y is a bijection. We have seen that f has an
inverse function f −1 : Y → X , with the defining property

f −1(y) = x ⇐⇒ f (x) = y .

What happens when we compose f and f −1?

The identity function on a set X is the function idX : X → X
defined by idX (x) = x for all x ∈ X .
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Extra: Non-examinable, but Interesting Mathematics

Lemma 2.18
Let X and Y be non-empty sets and let f : X → Y be a function.

(a) f is injective ⇐⇒ there exists g : Y → X such that
gf = idX .

(b) f is surjective ⇐⇒ there exists h : Y → X such that
fh = idY .

Moreover, if gf = idX and fh = idY then f is bijective and
g = h = f −1.



§3 Complex Numbers

Introduce a new symbol i with the property that i2 = −1.

Definition 3.1
A complex number is defined to be a symbol of the form a + bi
where a, b ∈ R. If z = a + bi then we say that a is the real part of
z , and b is the imaginary part of z , and write Re z = a, Im z = b.
We write C for the set of all complex numbers.

Please interpret the ‘complex’ in complex number as meaning
‘made of more than one part’, rather than ‘difficult’. The word
‘imaginary’ is also standard—please do not be put off by it.

Exercise 3.2
Calculate (1 + i)3.
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Adding, Subtracting and Multiplying in C

The rules for adding, multiplying and subtracting complex numbers
follow from the property that i2 = −1. If a + bi and c + di ∈ C
are complex numbers in Cartesian form then

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)− (c + di) = (a− c) + (b − d)i

(a + bi)(c + di) = (ac − bd) + (ad + bc)i .

So the set C of complex numbers is closed under addition,
subtraction and multiplication.
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Argand Diagram: Adding 1 + 2i
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Argand Diagram: Adding 1 + 2i
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Complex Conjugate and Modulus

We define the modulus of z , written |z |, to be
√
a2 + b2. We

define the complex conjugate of z , written z , to be a− bi .

We read |z | as ‘mod z ’ and z as ‘z bar’.

Lemma 3.4 (Examinable)

Let z ∈ C. Then

(a) |z |2 = zz.

(b) If z 6= 0 then 1/z = z/|z |2.

(c) The set C of complex numbers is closed under division.



Number Systems So Far

NZ

Q R C

1, 2, 3, . . .. . . ,−1, 0
1/2
−9/7

√
2

π

i√
2− πi



Quiz

True or false?

(i) The equation z2 = −2 has a solution in C.

True: z2 = −2 ⇐⇒ z = i
√

2 or z = −i
√

2

(ii) Im(1 + i) = 1.

False: 1 + i = 1− i =⇒ Im(1 + i) = −1

(iii) (−1 + 3i) + (5− 3i) = 4.

(iv) z = 1 + 2i =⇒ zz = 5.

(v)
2

1 + i
= 1− i .
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I Please take work from Sheet 2: A–J in green folder, L–Z in
blue folder

I Uncollected work is left outside my office, making the
department look untidy. Please claim it.

I Link to answers to Sheet 1 on Moodle fixed. (Please email me
immediately if it seems something is missing.)

I Answers to Sheet 2 on Moodle updated with some feedback
on common errors.

I Q2 is basic: please check model answers.
I Q3 and Q4 were marked by the postgraduates.
I I looked at all Q5s. Many people made similar mistakes: see

feedback on Moodle. (They were also some very good
answers.)

Please see lecturer if you have any queries about the marking.



Example 3.5(2): Equation Solving in C

Consider the simultaneous equations |z | = 5 and z + z = 8.
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4i

5i

0

C = {z ∈ C : |z| = 5}
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Example 3.5(2): Equation Solving in C

Consider the simultaneous equations |z | = 5 and z + z = 8.

−1−2−3−4−5 1 2 3 4 5
−i

i

−2i

−3i

−4i

−5i

2i

3i

4i

5i

0

C = {z ∈ C : |z| = 5}

L = {z ∈ C : z + z̄ = 8}

C ∩ L = {4 + 3i, 4− 3i}



Polar Form and Arguments

Any complex number z can be written in the form

z = r(cos θ + i sin θ)

where r ∈ R≥0 and θ is an angle, measured in radians. This is
called the polar form of z . Observe that r = |z |. We say that θ is
an argument of z .

Definition 3.6
Let z ∈ C be non-zero. If z = r(cos θ + i sin θ) where 0 ≤ θ < 2π,
then we say that θ is the principal argument of z , and write
θ = Arg(z).

Example 3.7 (See board)

Quiz: What is the domain of the function Arg?

Arg is a function with domain {z ∈ C : z 6= 0} and codomain
{θ ∈ R : −π < θ ≤ π}. Is it injective? Is it surjective?
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Administration and Coulter McDowell Lecture

I Please take Problem Sheet 4

I Please take the rest of the Part A handout

Dr Vicky Neale (Cambridge) on

’7 Things you really need to know about prime numbers!’

Time: Wednesday 22nd October, 5.30pm (tea/cakes) for 6.15pm

Place: Windsor Building

Abstract: Prime numbers are fundamentally important in
mathematics. Join Dr Vicky Neale to discover some of the
beautiful properties of prime numbers, and learn about some of the
unsolved problems that mathematicians are working on today.



Principal Arguments

Example 3.7

We will find the principal arguments of the complex numbers shown
on the Argand diagram below in terms of the angles θ and φ.

2 + i

1 + 2i

1 − 2i−1 − 2i

−1 + 2i

θ φ

There is an often misapplied ‘rule’ that Arg(a + bi) = tan−1(b/a).
This only works when a > 0 and b > 0.



Multiplication (and Division) in Polar Form

Example 3.8 (See board)

Example 3.9

Let z = r(cos θ + i sin θ) and w = s(cosφ+ i sinφ) be complex
numbers in polar form. Using the formulae

cos(θ + φ) = cos θ cosφ− sin θ sinφ

sin(θ + φ) = cos θ sinφ+ sin θ cosφ

it follows that

zw = rs
(
cos(θ + φ) + i sin(θ + φ)

)
.

In short: to multiply numbers in polar form, multiply the moduli
and add the arguments.

Exercise 3.10
Let z and w be as in Example 3.10 and suppose that w 6= 0.
Express z/w in polar form.



De Moivre’s Theorem

If θ ∈ R and n ∈ N then

(cos θ + i sin θ)n = cos nθ + i sin nθ.

De Moivre’s Theorem can be proved using mathematical induction
and Example 3.9. We will shortly see a quicker proof, using the
exponential function.

Example 3.11

The n = 3 case of De Moivre’s Theorem implies that

cos 3θ = 4 cos3 θ − 3 cos θ

So we proved an identity about the real cosine function,
cos : R→ R using complex numbers.
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De Moivre’s Theorem can be proved using mathematical induction
and Example 3.9. We will shortly see a quicker proof, using the
exponential function.

Example 3.11

The n = 3 case of De Moivre’s Theorem implies that

cos 3θ = 4 cos3 θ − 3 cos θ

So we proved an identity about the real cosine function,
cos : R→ R using complex numbers.

Il apparut que, entre deux vérités du domaine réel, le
chemin le plus facile et le plus court passe bien souvent
par le domaine complexe

Paul Painlevé (1900)



De Moivre’s Theorem
If θ ∈ R and n ∈ N then

(cos θ + i sin θ)n = cos nθ + i sin nθ.

De Moivre’s Theorem can be proved using mathematical induction
and Example 3.9. We will shortly see a quicker proof, using the
exponential function.

Example 3.11

The n = 3 case of De Moivre’s Theorem implies that

cos 3θ = 4 cos3 θ − 3 cos θ

So we proved an identity about the real cosine function,
cos : R→ R using complex numbers.

It came to appear that, between two truths of the real
domain, the easiest and shortest path quite often passes
through the complex domain.

Paul Painlevé (1900)



A Cubic Equation

Example 3.12

Let f : R→ R be defined by f (x) = x3 − 12x − 8. Substitute
x = 4 cos θ. Then

f (x) = 0 ⇐⇒ 64 cos3 θ − 48 cos θ − 8 = 0

⇐⇒ 16(4 cos3 θ − 3 cos θ) = 8

⇐⇒ 16 cos 3θ = 8

⇐⇒ cos 3θ = 1/2.

Exercise: [this got rushed in the lecture on Tuesday: I will do
it carefully on Thursday] by drawing the graph for cos show that
cos 3θ = 1/2 ⇐⇒ 3θ = ±π/3 + 2nπ for some n ∈ Z. Deduce
that the roots of f are

4 cos π9 , 4 cos 7π
9 , 4 cos 13π

9 .



Graph of f (x) = x3 − 12x − 8

-4 -2 2 4

-60

-40

-20

20

40

4 cos 7π/9 4 cos 13π/9 4 cosπ/9



Quiz (relevant to Question 5 on Sheet 4)

The Argand diagram to the right shows
z1, z2, z3, z4, z5 ∈ C.

What is |z3 − z1|?

Answer: |z3 − z1| = 2
√

2. Geometrically,
|z3 − z1| is the length of the red line.

−1 1 2 3

−i

i

2i

3i

4i

0

z1 z2

z3

z4

z5

(A) (B) (C) (D)

The diagrams above are drawn with the same scale.

Which diagram shows iz1, iz2, iz3, iz4, iz5?

Which diagram shows z1, z2, z4, z4, z5?
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Complex Exponential Function

Definition 3.13
Let z = a + bi ∈ C be a complex number in Cartesian form. We
define the complex exponential function exp : C→ C by

exp(z) = ea(cos b + i sin b).

It is fine to write ez for exp(z).

Exercise 3.14
Show that exp(z + w) = exp z expw for all complex numbers z
and w . [Hint: write z = a + bi , w = c + di and use Example 3.9.]

A complex number written as reiθ where r ∈ R≥0 and θ ∈ R is
said to be in exponential form. It is easy to convert between polar
and exponential form:

z = r(cos θ + i sin θ) ⇐⇒ z = reiθ.
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Examples of the Complex Exponential Function

Example 3.15

(1) Put z = iπ in the complex exponential function. We get
eiπ = −1, or equivalently,

eiπ + 1 = 0.

This is Euler’s Identity. It relates five fundamental
mathematical constants: 0, 1, e, π and i .

(2) Let θ ∈ R. Put z = nθi in the complex exponential funtion to
get

cos nθ + i sin nθ = enθi = (eθi )n = (cos θ + i sin θ)n.

This proves De Moivre’s Theorem.



Examples of the Complex Exponential Function

Example 3.15

(1) Put z = iπ in the complex exponential function. We get
eiπ = −1, or equivalently,

eiπ + 1 = 0.

This is Euler’s Identity. It relates five fundamental
mathematical constants: 0, 1, e, π and i .

(2) Let θ ∈ R. Put z = nθi in the complex exponential funtion to
get

cos nθ + i sin nθ = enθi = (eθi )n = (cos θ + i sin θ)n.

This proves De Moivre’s Theorem.



Gaussian Primes (after Dr Vicky Neale’s Talk Yesterday)
Let S = {a + bi : a, b ∈ Z}. A similar argument to Question 4 on
Sheet 3 (the one about a + bi

√
3 with a, b ∈ Q) shows that S is

closed under addition and multiplication.

What are the prime numbers in S?

For example, 3 is an S-prime. So are

1 + 2i , 1 + 3i , 2− i , 5 + 4i , (1 + i)1203793 − 1, . . .

But 5 is not an S-prime, even though 5 is a prime in Z, because
5 = (1 + 2i)(1− 2i).
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3 with a, b ∈ Q) shows that S is

closed under addition and multiplication.

What are the prime numbers in S?

For example, 3 is an S-prime. So are

1 + 2i , 1 + 3i , 2− i , 5 + 4i , (1 + i)1203793 − 1, . . .

But 5 is not an S-prime, even though 5 is a prime in Z,

because
5 = (1 + 2i)(1− 2i).



Gaussian Primes (after Dr Vicky Neale’s Talk Yesterday)
Let S = {a + bi : a, b ∈ Z}. A similar argument to Question 4 on
Sheet 3 (the one about a + bi

√
3 with a, b ∈ Q) shows that S is

closed under addition and multiplication.

What are the prime numbers in S?

For example, 3 is an S-prime. So are

1 + 2i , 1 + 3i , 2− i , 5 + 4i , (1 + i)1203793 − 1, . . .

But 5 is not an S-prime, even though 5 is a prime in Z, because
5 = (1 + 2i)(1− 2i).



Using Exponential Form to Find Roots
The exponential form has the same lack of uniqueness as the polar
form: if r > 0 then

reiθ = seiφ ⇐⇒ r = s and φ = θ + 2nπ for some n ∈ Z.

Example 3.16

See board for solution to equation z3 = 8i .
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Log of a Complex Number

Let z = reiθ be a complex number in exponential form. If z = 0
then there is no w ∈ C such that ew = z , since |ea+bi | = ea and
ea > 0 for all a ∈ R. If z 6= 0 then

ew = z ⇐⇒ w = ln r + (θ + 2πn)i for some n ∈ Z.

Any such number w is called a logarithm of z .

Example 3.17

In exponential form 2i = 2eiπ/2. So the set of logarithms of 2i is

{
ln 2 + (

π

2
+ 2nπ)i for some n ∈ Z

}
.

Exercise 3.18
Consider exp : C→ C. What are the domain, codomain and range
of exp? Is exp surjective? Is exp injective?
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Quadratic Equations

I Please take Part B handout and Problem Sheet 5.

I Please leave Sheet 4 answers promptly at end of lecture.

You are probably familiar with how to solve quadratic equations
over the real numbers. Essentially the same method works over C.
Exponential form might be useful for finding square roots.

Lemma 3.19 (Examinable)

Let a, b, c ∈ C and suppose that a 6= 0. The solutions to the
quadratic equation az2 + bz + c = 0 are

z =
−b ± D

2a

where D ∈ C satisfies D2 = b2 − 4ac.

Bear in mind that
√
b2 − 4ac is ambiguous when b2 − 4ac 6∈ R≥0.

See Bonus Question A on Sheet 3 for one problem this causes.
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Example 3.20
Observe that z3 − 1 = (z − 1)(z2 + z + 1). So if z is a third root
of unity other than 1 then z is a solution of z2 + z + 1 = 0. Using
Lemma 3.19 we get

z = −1

2
±
√

3

2
i .

Since the third roots of unity are 1, e2πi/3 and e4πi/3, this shows

that cos 2π
3 = −1

2 and sin 2π
3 =

√
3
2 .

−1 0 1−1/2

−i

i
e2πi/3

e−2πi/3



Fundamental Theorem of Algebra

Theorem 3.21 (Fundamental Theorem of Algebra)

Let d ∈ N and let a0, a1, . . . , ad ∈ C with ad 6= 0. Then the
equation

adz
d + ad−1z

d−1 + · · ·+ a1z + a0 = 0

has a solution in C.



An Easyish Quartic

Exercise 3.22
Find all solutions to the quartic equation
z4 + 2z3 + 3z2 + 4z + 2 = 0. (Hint: one solution is in Z.)

Solution. Since

(−1)4 + 2(−1)3 + 3(−1)2 + 4(−1) + 2 = 0,

−1 is a root. So z − (−1) = z + 1 is a factor and

z4 + 2z3 + 3z2 + 4z + 2 = (z + 1)(z3 + z2 + 2z + 2).

Now −1 is again a root of the cubic z3 + z2 + 2z + 2, and we get

z3 + z2 + 2z + 2 = (z + 1)(z2 + 2).

Hence
z4 + 2z3 + 3z2 + 4z + 2 = (z + 1)2(z2 + 2)

and the roots are −1 (twice), i
√

2 and −i
√

2.
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Part B: Natural Numbers and Induction

§4 Induction

A proposition is a self-contained statement which is either true or
false. For example the statement

There is a real number x such that x2 + 1 = 0

is a false proposition. More briefly, we can write

P : The integers are closed under addition.

This defines P to be the true proposition that the integers are
closed under addition. Some statements are too vague or
subjective to be considered propositions. For instance:

Q : Houses in Englefield Green are too expensive.



More propositions
We often want to consider statements that depend on the value of
a variable. For example, for each x ∈ R, define

P(x): x2 − 4x + 1 ≥ 2.

This defines an infinite collection of propositions, one proposition
for each real number. Some of these propositions are true, and
others are false. For example P(6) and P(2 +

√
5) are true, and

P(1) is false.

Quiz: Define

Q(n): 2n ≥ 4n.

Which of the following are propositions?

(A) Q(4)

(B) Q(3)

(C) x2 + y2 = 25

(D) There exist x , y ∈ N such that x2 + y2 = 25
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More propositions
We often want to consider statements that depend on the value of
a variable. For example, for each x ∈ R, define
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More Propositions

Example 4.1

For n ∈ N define

P(n) :
The sum of the odd numbers from 1 up to and
including 2n − 1 is equal to n2.

Looking at small cases will probably convince you that P(n) is true
for all n ∈ N.

Example 4.2

For n ∈ N define
Q(n): n2 + n + 41 is a prime number

So we have defined propositions
Q(1): 12 + 1 + 41 is a prime number
Q(2): 22 + 2 + 41 is a prime number
Q(3): 32 + 3 + 41 is a prime number

and so on.

In this case Q(1),Q(2), . . . ,Q(39) are all true
propositions. But Q(40) and Q(41) are false.
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The Principle of Mathematical Induction

Suppose that P(n) is a proposition for each n ∈ N. The Principle
of Mathematical Induction states that if

I P(1) is true

I P(n) =⇒ P(n + 1) for each n ∈ N,

then P(n) is true for all n ∈ N.

Example 4.3

For all n ∈ N we have

1 + 2 + · · ·+ n =
n(n + 1)

2
.



Administration
I Please collect work:

I A–K in green folder
I L–Z in blue folder

I Questions 3, 5 and 6 were marked. All answers on Moodle.
I I will go through Question 5 today. Question 6 was done

better, but often the algebra could be simplified. E.g. for 6(b)

z = (a + bi)(a− bi)(c + di)(c − di)

=
(

(a + bi)(c + di)
)(

a− bi)(c − di)
)

=
(

(ac − bd) + (ad + bc)i
)(

(ac − bd)− (ad + bc)i
)

= (ac − bd)2 + (ad + bc)2

where the final step uses the identity

(x + iy)(x − iy) = x2 + y2.

I Please see the lecturer after the lecture or in office hours if
you have any queries about the marking, or want to discuss
any of the questions.



Sheet 4 Question 5
The Argand diagram below shows a triangle with vertices at 0,
r ∈ R and z ∈ C. Let s be the length of the side with vertices at 0
and z and let θ be the marked angle.

0 r

z

s

θ

(a) Express the lengths of the other two sides of the triangle in
terms of r and z . [Hint: for the side from r to z , Question
4(a) has a relevant idea.]

(b) Show that z + z = 2s cos θ. [Hint: what is z in polar form?]

(c) By expanding |z − r |2 = (z − r)(z − r) prove the cosine rule.



Induction: General Strategy and Example 4.4

(1) Formulate the statement you want to prove as a
proposition P(n), depending on a natural
number n.

(2) Prove P(1). This is called the base case.

(3) Prove that P(n) =⇒ P(n + 1) for each n ∈ N. In
other words: assume P(n) and use it to prove
P(n + 1). This is called the inductive step.

(4) Announce that you have finished!

For the inductive step: imagine you are given a card, that says:

‘The bearer of this card is faithfully promised
that P(n) is true’

You can play this card at any time in your proof of P(n + 1). You
can even play it more than once, if that seems helpful.

Remember, P(n) is a specific proposition concerning the number
n ∈ N. At A-level you might have written n = k to emphasise this.
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Changing the Base Case

Sometimes we need to take the base case to be P(b) for some
b > 1.

Example 4.5

If n ∈ N and n ≥ 4 then 2n ≥ 4n.



Towers of Hanoi

Problem 4.6 (Towers of Hanoi)

You are given a board with three pegs. On peg A there are n discs
of strictly increasing radius. The starting position for a four disc
game is shown below.

A B C

A move consists of taking a single disc at the top of the pile on
one peg, and moving it to another peg. At no point may a larger
disc be placed on top of a smaller disc. Your aim is to transfer
all the discs from peg A to one of the other pegs. How many
moves are required?

Exercise 4.7
Prove by induction on n that no solution can use fewer moves than
the solution found in lectures.



Towers of Hanoi: A Solution for Three Discs

start A B C
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Towers of Hanoi: A Solution for Three Discs
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I Please take Problem Sheet 6
I Please hand in Sheet 5 promptly at the end of this lecture, or

leave in the box outside my office (McCrea 240) before 5pm.

Towers of Hanoi: an Unexpected Pattern

n 0 1 2 3 4 5

2n − 1 0 1 3 7 15 31

n2 − (n − 1) 1 1 3 7 13 12

Question 2 on Sheet 6 asks you to complete the proof indicated on
Friday that 2n − 1 moves are necessary to move n discs from one
peg to another.

You can assume ‘without loss of generality’ that the aim is to
move n discs from Peg 1 to Peg 2.

Hint from Friday: to move n discs from Peg 1 to Peg 2, we must
at some point move the largest disc from Peg 1 to Peg 2. This can
only be done if all the other discs are on Peg 3.
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Sigma Notation

Let m, n ∈ Z with m ≤ n. If am, am+1, . . . , an are complex
numbers then we write their sum am + am+1 + · · ·+ an as

n∑

k=m

ak .

This is read as ‘the sum of ak for k from m to n’, or ‘sigma ak for
k from m to n’. We say that k is the summation variable, m is the
lower limit and n is the upper limit.

Exercise 4.8

(i) Express the sums 1 + 3 + · · ·+ (2n − 1) and
1 + 2 + 22 + · · ·+ 2n using Σ notation.

(ii) Calculate
∑3

m=−2m
2.
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More Examples of Sigma Notation

Example 4.9

Let z be a complex number. Then

(i)
∑n

k=1 z =

(ii)
∑n

k=1 k =

(iii)
∑n

k=1 n =

Quiz: (a)
∑2

k=0 k
22k−1 =

(A) 7 (B) 8 (C) 9 (D) something else

(b) If n ∈ N then
∑n

j=1 2j −∑n
k=2 2k−1 =

(A) 1 (B) 2 (C) 2n (D) 2n−1
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∑2

k=0 k
22k−1 =

(A) 7 (B) 8 (C) 9 (D) something else

(b) If n ∈ N then
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j=1 2j −∑n
k=2 2k−1 =

(A) 1 (B) 2 (C) 2n (D) 2n−1
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Rules for Manipulating Sigma Notation

(1) The summation variable can be renamed:

n∑

k=0

2k =
n∑

j=0

2j .

A similar renaming is possible for sets: {x ∈ R : x2 ≥ 2} is
exactly the same set as {y ∈ R : y2 ≥ 2}.

(2) In a product, expressions not involving the summation variable
can be taken outside the sum:

n∑

j=0

5(j + 1)2 = 5
n∑

j=0

(j + 1)2

and
n∑

j=0

5m(j + m)2 = 5m
n∑

j=0

(j + m)2.

(3) Sums can be split up and terms taken out.

(4) The limits can be shifted.



Example 4.10

Define

P(n) :
n∑

k=1

k2 = 1
6n(n + 1)(2n + 1).

Now consider
∑n+1

k=1 k
2. Split off the final summand using rule (3),

and then use the inductive assumption P(n) to get

n+1∑

k=1

k2 =
n∑

k=1

k2 + (n + 1)2 = 1
6n(n + 1)(2n + 1) + (n + 1)2.

Routine algebraic manipulations give

n+1∑

k=1

k2 = . . . = 1
6(n + 1)(n + 2)(2n + 3)

Hence P(n + 1) is true. Therefore P(n) =⇒ P(n + 1). By
induction P(n) is true for all n ∈ N.
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Full Calculation of
∫ 1

0 x2 dx
[On Tuesday: I wrote n rather than n − 1 as the upper limit
in the sum at least twice. This was pointed out, but I only
changed it once.]

By Example 4.10 we have

n−1∑

k=1

1

n

(k
n

)2
=

1

n3

n−1∑

k=1

k2 =
(n − 1)n(2n − 1)

6n3
=

1

3

(
1− 1

n

)(
1− 1

2n

)
.

Hence

1

3

(
1− 1

n

)(
1− 1

2n

)
≤
∫ 1

0
x2 dx ≤ 1

3

(
1− 1

n

)(
1− 1

2n

)
+

1

n
.

Now 1/n converges to 0 as n tends to infinity, and so the left-hand

side and right-hand side both converge to 1/3. Hence
∫ 1
0 x2 dx is

sandwiched between two sequences that converge to 1/3.
Therefore ∫ 1

0
x2 dx =

1

3
.



§5 Prime Numbers

In this section we will look at prime numbers and prime
factorizations.

Division with remainder should be familiar from school. It is stated
formally in the next theorem.

Theorem 5.1 (Examinable)

Let n ∈ Z and let m ∈ N. There exist unique integers q and r such
that n = qm + r and 0 ≤ r < m.

The proof shows that q = bn/mc where bxc is the floor function,
seen in Question 3 of Sheet 2. So the existence part of the proof
gives an effective way to find q.
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Integer Division

We say that q is the quotient, and r is the remainder when n is
divided by m. If r = 0 then we say that m divides n, or that n is a
multiple of m.

Example 5.2

(i) Let n = 44 and m = 6. Then 44/6 = 72
6 and so, when 44 is

divided by 6, the quotient is 7 and the remainder is 2. Note
that for this calculation it is better to leave the fractional part
as 2

6 than to simplify it to 1
3 .

(ii) Let n = 63 and m = 7. Then 63/7 = 9 so 7 divides 63. The
quotient is 9 and the remainder is 0.

(iii) Since −13 = −3× 6 + 5, when −13 is divided by 6 the
quotient is −3 and the remainder is 5.



Integer Division Exercise

Exercise 5.3
Find the quotient q and the remainder r when n is divided by m in
each of these cases:

(i) n = 20, m = 7, (ii) n = 21, m = 7, (iii) n = 22, m = 7

(iv) n = 7, m = 22, (v) m = −10, m = 7, (vi) n = 0, m = 1.

Answers:
(i) q = 2, r = 6, (ii) q = 3, r = 0, (iii) q = 3, r = 1

(iv) q = 0, r = 0, (v) q = −2, r = 4, (vi) q = 0, r = 0.
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Factorization Into Primes

Definition 5.4
Let n ∈ N and suppose that n > 1.

(i) We say that n is prime if the only natural numbers that divide
n are 1 and n.

(ii) We say that n is composite if it is not prime.

The first few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . . .

By Definition 5.4, the number 1 is neither prime nor composite.



Prime Factorization Example

Example 5.5

Take n = 1998. We might spot that n = 2× 999 and that
999 = 9× 111. Then 9 = 3× 3, and 111 = 3× 37, so

1998 = 2× 3× 3× 3× 37 = 2× 33 × 37.

The tree below records these steps. (For some reason
mathematical trees usually grow downwards.)

1998

2 999

9

3 3

111

3 37



Infinitely Many Primes

The next theorem, due to Euclid, needs only the existence of prime
factorizations, proved above.

Theorem 5.6 (Examinable)

There are infinitely many prime numbers.

Exercise 5.7
The first five prime numbers are p1 = 2, p2 = 3, p3 = 5, p4 = 7,
p5 = 11, p6 = 13. Show that p1 + 1, p1p2 + 1, p1p2p3 + 1,
p1p2p3p4 + 1 and p1p2p3p4p5 + 1 are all prime, but

p1p2p3p4p5p6 + 1 = 2× 3× 5× 7× 11× 13 + 1 = 59× 509.

So the number N in Euclid’s proof is not always prime.
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Please Collect Work from Sheet 5
I A–K in green folder
I L–Z in red folder
I Older work: folders at front (please claim)

Questions 2, 4 and 5 were marked. Please see me if you have any
queries. I have updated the model answers on Moodle with some
feedback on common errors. Question 4 on exp : C→ C:

(a) Not surjective since exp z = 0 has no solution.

(b) Not injective since exp 0 = exp(2πi) = 1. (Or in Question 3
you should have found infinitely many z such that
exp z = 1 + i .)

(c) L = {2 + ib : b ∈ R} =⇒
{exp z : z ∈ L} = {e2eib : b ∈ R}

= {e2(cos b + i sin b) : b ∈ R}
= circle of radius e2.

(d) See model answers: restrict imaginary part to a range of 2π.



Divisibility by 3
Let n ∈ Z. You may have seen this rule before:

n is divisible by 3 ⇐⇒ the sum of the (decimal) digits
of n is divisible by 3.

Quiz:

(A) Is 123 divisible by 3?
(B) Is 1001 divisible by 3?
(C) Is 123456789123456789 divisible by 3?
(D) What is the remainder when 1267 is divided by 3?

The point of proofs is to try to show why things are true. Without
using the dread word ‘proof’, I will try to show you why the rule
works. Example:
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Divisibility by 3
Let n ∈ Z. You may have seen this rule before:

n is divisible by 3 ⇐⇒ the sum of the (decimal) digits
of n is divisible by 3.

Quiz:

(A) Is 123 divisible by 3? Yes
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works. Example:

1267 = 1× 1000 + 2× 100 + 6× 10 + 7× 1

= 1× (3× 333 + 1) + 2× (3× 33 + 1) + 6× (3× 3 + 1) + 7× 1

= 3× (1× 333 + 2× 33 + 6× 3) + 1× 1 + 2× 1 + 6× 1 + 7× 1

= 3× (1× 333 + 2× 33 + 6× 3) + (1 + 2 + 6 + 7)



Unique factorization

Let N0 be the set {0, 1, 2, 3, . . .} of the natural numbers together
with 0.

Theorem 5.8 (Fundamental Theorem of Arithmetic)

Let n ∈ N. Let p1, p2, p3, . . . be the primes in increasing order.
There exists unique ei ∈ N0 such that

n = pe11 pe22 pe33 . . . .

Writing out prime factorizations in the form in this theorem is a bit
long-winded. For example

31460 = 22 × 30 × 51 × 70 × 112 × 131 × 170 × 190 . . . ,

where all the exponents of the primes 17 or more are zero. But
thinking about prime factorizations in this way is useful in proofs.
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Irrational Numbers (Proved Using Unique Factorization)

Example 5.9

A manufacturer of cheap calculators claims to you that√
3 = 2148105

1240209 . Calculate the prime factorizations of 2148105 and
1240209 (in principle you could do this by repeated division, even
using one of his cheapest calculators). Hence show that he is
wrong.

The prime factorizations are

2148105 = 3× 5× 71× 2017

1240209 = 32 × 41× 3361.

Now
√

3 =
2148105

1240209
=⇒

√
3× 1240209 = 2148105

=⇒ 3× 12402092 = 21481052

=⇒ 3× 34 × 412 × 33612 = 32 × 52 × 712 × 20172.

This contradicts unique factorization.
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I Please hand in work for Sheet 6 promptly at the end of the
lecture.

I If you miss me, please leave in the box outside my office by
5pm.

Claim 5.10√
3 is an irrational number.

We will prove Claim 5.10 using proof by contradiction. While
related, this is not the same proof by contradiction you will have
seen if you are doing 194 Numbers and Functions.

All we do in the proof is generalize the pattern from Example 5.9.
Suppose someone claims to you that

√
3 =

362

209
.

This implies that
3× 2092 = 3622.

Take prime factorizations and get contradiction.

3× 112 × 192 = 22 × 1812.



Binary and Other Bases

Example 5.11

To write 145 in base 3:

Divide 145 by 3: 145 = 48× 3 + 1
Divide the quotient 48 by 3: 48 = 16× 3 + 0
Divide the quotient 16 by 3: 16 = 5× 3 + 1
Divide the quotient 5 by 3: 5 = 1× 3 + 2
Divide the quotient 1 by 3: 1 = 0× 3 + 1

We now stop, because the last quotient was 0. Reading the list of
remainders from bottom to top we get

145 = 1× 34 + 2× 33 + 1× 32 + 0× 31 + 1× 30.

Hence 145 is 12101 in base 3. We write this as 145 = 121013.

Our usual way of writing numbers uses base 10. If no base is
specified, as is usually the case, then base 10 is intended.



Writing a Number in Base b

The example above should suggest a general algorithm.

Algorithm 5.12

Let n ∈ N and let b ∈ N. To write n in base b, divide n by b, then
divide the quotient by b, and so on, until the quotient is 0. If
r0, r1, r2, . . . , rk is the sequence of remainders then

n = rkb
k + rk−1b

k−1 + · · ·+ r1b + r0

and n = (rk rk−1 . . . r1r0)b.

In Example 5.11, the base was 3 and the sequence of remainders
was r0 = 1, r1 = 0, r2 = 1, r3 = 2 and r4 = 1.

If time permits we will prove that the algorithm is correct by
induction on k , taking as the base case k = 0.



Binary
Base 2 is known as binary. Binary is particularly important because
computers store and process data as sequences of the binary digits,
or bits, 0 and 1.

Exercise 5.13
Show that 21 = 101012 and write 63, 64 and 65 in binary.

Exercise 5.14
Let n = rk rk−1 . . . r1r0 be a number written in binary. Describe, in
terms of operations on the string of bits rk rk−1 . . . r1r0, how to

(i) Multiply n by 2,

(ii) Add 1 to n,

(iii) Subtract 1 from n,

(iv) Find the quotient and remainder when n is divided by 2.

[Hint: for base 10, you probably learned how to do these at school.
The Mathematica command BaseForm[n,2] will write n ∈ N0

in binary.]



Binary and Computers
In a modern computer, everything is stored as a lists of the bits
(binary digits) 0 and 1.

For example, the number 12 could be
stored as 1100, corresponding to the sequence of answers ‘Yes’,
‘No’, ‘Yes’, ‘Yes’.

Books, music, videos, computer programs, bitcoins . . . , are all
stored as bits.
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In a modern computer, everything is stored as a lists of the bits
(binary digits) 0 and 1. For example, the number 12 could be
stored as 1100, corresponding to the sequence of answers ‘Yes’,
‘No’, ‘Yes’, ‘Yes’.

Books, music, videos, computer programs, bitcoins . . . , are all
stored as bits.

01100010 00101011 11101010 00101111 00101110 10101100 11101011 10101010
00100000 10101101 00101111 11101011 00101011 10101011 00101001 10101100
00101110 00101111 11101011 00100000 10101010 11101011 00100000 10101101
10101111 11101011 10101100 10101100 00101001 00100000 00101010 11101010
00101001 00100000 10101101 10101011 11101010 01101001 01101010 10101101
00100000 00101011 01101000 00001110 11000000 10101100 00101011 10101010
10101010 00101111 10101101 00100000 11101011 00101110 00100000 00101010
11101010 01101001 01101011 00100000 00101011 01101000 00101110 00100000
11101010 01101001 00100000 10101100 00101011 01101010 10101000 11101011
11101010 00100000 10101101 01101001 00101110 10100011 00100000 10101100
00101011 01101000 00101110 00101011 01101000 10001111 11000000 11100100
11101010 11101011 01101001 00101110 10101101 00101011 00101111 00101101
00100000 00101011 01101000 00101110 00100000 10101101 01101001 00100000
00101110 00101001 01101000 00101110 00100000 11100100 00101011 10101000
00100000 11101011 00101110 00100000 00101110 11101011 11101010 00100000
10101100 11101011 00100000 01100010 00101011 10101000 00100000 11101011
00001110

William Shakespeare (approx 1600)

To be, or not to be: that is the question:
Whether ’tis nobler in the mind to suffer
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Anonymous Microsoft Programmer (2010?)

Part of the machine code for Microsoft Word 2011.
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Part C: Logic and sets

§6 Logic and proofs

In pairs discuss the meaning of the following sentences. Each has
two interpretations that are logically reasonable.

(1) The picture of the woman in the museum.
(2) The lady hit the man with an umbrella.
(3) Nurses help dog bite victim.
(4) Walk to Windsor or swim the Channel and climb the

Matterhorn.
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Part C: Logic and sets

§6 Logic and proofs

In pairs discuss the meaning of the following sentences. Each has
two interpretations that are logically reasonable.

(1) The picture of the woman in the museum.
(2) The lady hit the man with an umbrella.
(3) Nurses help dog bite victim.
(4) Walk to Windsor or swim the Channel and climb the

Matterhorn.

The ambiguities in everyday language are often resolved, either
from the context, or because we are conditioned to expect one
meaning. In mathematics we instead try to avoid ambiguity by
careful use of mathematical language and symbols.



‘And’, ‘or’ and ‘not’
One word that is used in mathematics in a way that may seem
non-standard is ‘or’. Let P and Q be propositions.

(i) P or Q, written P ∨Q, means at least one of P and Q is true.
(ii) P and Q, written P ∧ Q, means P and Q are both true.
(iii) not P, written ¬P, means that P is false.

There is a correspondence between the logical operations ∧, ∨ and
¬ and the set operations ∩, ∪ and set complement.

Example 6.1

Consider the following propositions, depending on a natural
number n.

P(n) : n is even

Q(n) : n is a multiple of 3

R(n) : n is prime
Will discuss

(a) ¬P(n) ∧ Q(n) (b) P(n) ∧ Q(n) (c) ¬P(n)

and find {n ∈ {1, 2, . . . , 10} : P(n) ∧
(
Q(n) ∨ R(n)

)
}.



Truth Tables and Implication
A concise way to specify a logical operation such as ∨, ∧ or ¬ is by
a truth table, such as the one below for ∨.

P Q P ∨ Q

T T T
T F T
F T T
F F F

Recall that P =⇒ Q means ‘if P is true then Q is true’. For the
sake of argument, assume that =⇒ has a truth table. Question:
what is it?

Answer: Think of P =⇒ Q as a promise. The only time this
promise is broken is if P is true and Q is false. So

P =⇒ Q is false when P is true and Q is false, and
true in all other cases
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Please Collect Work from Sheet 6
I A–K in green folder
I L–Z in red folder
I Older work: folders at front (please claim)

Questions 4, 5 and 6 were marked and I looked briefly at Questions
2 and 7. Please see me if you have any queries. Will update model
answers with feedback soon.

Question 2 on Towers of Hanoi. The point was to show that
2n − 1 moves are necessary to move n discs.

I Where are the discs? Many answers made no reference to the discs
or pegs. Such an answer cannot be right.

I Why nothing faster? Many answers showed 2n − 1 moves suffice,
but didn’t show that there was no faster method.

I Several people wrote P(n) = 2n − 1. But P(n) should be a
proposition: ‘2n − 1 moves are necessary to move n discs’, not a
number.

I Some people assumed a recurrence relation f (n) = 2f (n) + 1,
almost always without defining f . Not convincing.

I There were also a few excellent answers.



Exercise 6.2
Recall that P ⇐⇒ Q means that P =⇒ Q and Q =⇒ P. Use the
truth tables for =⇒ and ∧ to find the truth table for ⇐⇒ .

Exercise 6.3
Which of the following propositions are true for all x ∈ R?

(a) P(x): x ≥ 4 =⇒ x ≥ 3,

(b) Q(x): x ≥ 3 =⇒ x ≥ 4,

(c) R(x): x2 − 2x − 3 = 0 =⇒ x = −1, x = 3 or x = 37,

(d) S(x): x ≥ 0 and x2 − 2x − 3 = 0 =⇒ x = 3,

Which of the following propositions are true for all x , y ∈ R?

(e) T (x , y): x2 = y2 =⇒ x = y ,

(f) U(x , y): x3 = y3 =⇒ x = y .

In which of (c) and (d) can =⇒ be replaced with ⇐⇒ ?
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Logically P =⇒ Q says nothing about Q =⇒ P. This was already
seen in Example 1.6 and in (c) above.



Example 6.4

Suppose we want to find all x ∈ R such that

√
x + 3 = x + 1.

There is a correct chain of implications:
√
x + 3 = x + 1 =⇒

x + 3 = (x + 1)2 =⇒ x2 + x − 2 = 0 =⇒ (x + 2)(x − 1) = 0. But
because the first implication sign is not reversible, it does not
follow that both −2 and 1 are solutions.

Exercise 6.5
Each of Persons A, B, C is either a Knight who always tells the
truth, or a Knave, who always lies.

(a) Person A says ‘If I’m a Knight then I’ll give you £1000’.
What do you conclude?

(b) Person B says of Person C: ‘If C is a Knight then I am a
Knave’. Deduce the identities of B and C.



Logical equivalence and Tautologies

Definition 6.6
Let P and Q be propositions. If P ⇐⇒ Q is true then we say
that P and Q are logically equivalent. If a proposition is always
true, then it is said to be a tautology.

Claim 6.7 (De Morgan’s Laws for propositions)

Let P and Q be propositions. Then the following are tautologies:

(i) ¬(P ∨ Q) ⇐⇒ ¬P ∧ ¬Q,

(ii) ¬(P ∧ Q) ⇐⇒ ¬P ∨ ¬Q.

The proof of (ii) is left to you in Question 2(c) on Sheet 7. It can
be more illuminating not to use truth tables. Example: will show
that (

(P =⇒ Q) ∧ (Q =⇒ R)
)

=⇒ (P =⇒ R)

is a tautology. (This is Question 2(f) on Sheet 7.)



Proof by Contrapositive
The next claim can be proved easily using a truth table. But I am
going to give you a direct proof since this seems best to explain
why it is true.

Claim 6.8
Let P and Q be propositions. Then P =⇒ Q and ¬Q =⇒ ¬P are
logically equivalent.

Switching to the contrapositive can be useful first step in a proof,
particularly when statements appear in negated form.

Claim 6.9
Let a ∈ Q be non-zero and let x ∈ R. If x 6∈ Q then ax 6∈ Q.

Example 6.10 (See printed notes)

If f : X → Y and g : Y → Z are functions then

gf surjective =⇒ g surjective.



Quiz

(1) Cards. You are shown a number of cards. Each card has a
letter printed on one side, and a number printed on the other.
Four cards are put on a table. You can see:

(A) o (B) t (C) 5 (D) 6

Which cards would you turn over to test the conjecture: ‘If a card
has a vowel on one side then it has a prime on the other’? (Turn
over all the cards that might disprove the conjecture.)

(2) Alcohol. In the far-off land of Erewhon, only people over the
age of 18 are allowed to drink alcohol in public. If your job is to
enforce this law, who of the following would you investigate?

(A) A person drinking a glass of wine

(B) A person drinking coke

(C) Someone clearly over 50 with an unidentifable drink

(D) Someone who looks about 16 with an unidentifiable drink

(Investigate all the people who might be committing an offence.)
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Quiz (Wason Selection Task)
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Proof by Contradiction
Let P be a proposition. In a proof by contradiction, we suppose
that P is false, so ¬P is true. We then show that ¬P =⇒ C where
C is a false statement. Since a true statement does not imply a
false statement, ¬P must be false. So P is true.

Example 6.11

The function f : R→ R>0 defined by f (x) = 2x is bijective, so
there exists a unique t ∈ R such that 2t = 3. We will use proof by
contradiction to show that t is irrational.

−1−2 1 2

−1

1

2

3

4

0 t

(t, 2t)

f(x) = 2x



‘For all’ and ‘exists’
Let P(x) be a propositions depending on an element x of a set X .

• If P(x) is true for all x ∈ X , then we write (∀x ∈ X )P(x).

• If there exists an element x ∈ X such that P(x) is true, then
we write (∃x ∈ X )P(x).

The negation of

• (∀x ∈ X )P(x) is (∃x ∈ X )¬P(x).

• (∃x ∈ X )P(x) is (∀x ∈ X )¬P(x).

Exercise 6.12
State the truth value of each of the propositions below. Justify
your answers.

P : (∀m ∈ Z)(4 divides m2)

Q : (∃m ∈ Z)(4 divides m2)

R : (∀m ∈ Z)(∃n ∈ N)(m + n is even)

S : (∃m ∈ Z)(∀n ∈ N)(m + n is even)

[Hint for S: it may be easier to argue that ¬S is true.]
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More Quantifiers

Exercise 6.13
Sometimes the set X in ∀x ∈ X is indicated by inequalities.

(∀ε > 0)Q(ε) means that Q(ε) is true for all ε in the set of
positive real numbers,

(∀n > N)S(n) means that S(n) is true for all n ∈ N such that
n > N.

Let a1, a2, a3, . . . be real numbers. Let ` ∈ R. Write down the
negation of

(∀ε > 0)(∃N ∈ N)(∀n ≥ N) |an − `| < ε.

Exercise 6.14
Let X be the set of people doing 181 and for x ∈ X let P(x) be
the proposition ‘x submitted answers to Sheet 6’. Show that

(∃x ∈ X )
(
P(x) =⇒ (∀x ∈ X )P(x)

)
.

This is the ‘Drinkers Principle’: see §250 in Smullyan’s book.



More Quantifiers

Exercise 6.13
Sometimes the set X in ∀x ∈ X is indicated by inequalities.

(∀ε > 0)Q(ε) means that Q(ε) is true for all ε in the set of
positive real numbers,

(∀n > N)S(n) means that S(n) is true for all n ∈ N such that
n > N.

Let a1, a2, a3, . . . be real numbers. Let ` ∈ R. Write down the
negation of

(∀ε > 0)(∃N ∈ N)(∀n ≥ N) |an − `| < ε.

Exercise 6.14
Let X be the set of people doing 181 and for x ∈ X let P(x) be
the proposition ‘x submitted answers to Sheet 6’. Show that

(∃x ∈ X )
(
P(x) =⇒ (∀x ∈ X )P(x)

)
.

This is the ‘Drinkers Principle’: see §250 in Smullyan’s book.



Extras: Exercise 6.15. Assume P , Q, R .
P: If it is raining then the sky is cloudy.

RAIN =⇒ CLOUD

Q: If it rains in the morning then Prof. X carries his umbrella all day.

MORNING RAIN =⇒ UMBRELLA

R: People who carry umbrellas never get soaked.

UMBRELLA =⇒ NOT SOAKED

Which of the following statements can be deduced from P, Q and R?

A: A cloudy sky is a necessary condition for rain.

B: A cloudy sky is a sufficient condition for rain.

C : It is raining only if the sky is cloudy.

D: Rain in the morning is a necessary condition for Prof. X to carry his
umbrella.

E : Rain in the morning is a sufficient condition for Prof. X to carry his
umbrella.

F : Rain falling implies that the sky is cloudy.

G : The sky is cloudy implies that rain is falling.

H: If Prof. X is soaked then it did not rain this morning.



Extras: Exercise 6.15. Assume P , Q, R .
P: If it is raining then the sky is cloudy.

RAIN =⇒ CLOUD

Q: If it rains in the morning then Prof. X carries his umbrella all day.
MORNING RAIN =⇒ UMBRELLA

R: People who carry umbrellas never get soaked.
UMBRELLA =⇒ NOT SOAKED

Which of the following statements can be deduced from P, Q and R?

A: A cloudy sky is a necessary condition for rain.

B: A cloudy sky is a sufficient condition for rain.

C : It is raining only if the sky is cloudy.

D: Rain in the morning is a necessary condition for Prof. X to carry his
umbrella.

E : Rain in the morning is a sufficient condition for Prof. X to carry his
umbrella.

F : Rain falling implies that the sky is cloudy.

G : The sky is cloudy implies that rain is falling.

H: If Prof. X is soaked then it did not rain this morning.



Extras: Exercise 6.15. Assume P , Q, R .
P: If it is raining then the sky is cloudy.
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Q: If it rains in the morning then Prof. X carries his umbrella all day.
MORNING RAIN =⇒ UMBRELLA

R: People who carry umbrellas never get soaked.
UMBRELLA =⇒ NOT SOAKED

Which of the following statements can be deduced from P, Q and R?

A: A cloudy sky is a necessary condition for rain. True

B: A cloudy sky is a sufficient condition for rain. False

C : It is raining only if the sky is cloudy. True

D: Rain in the morning is a necessary condition for Prof. X to carry his
umbrella. False

E : Rain in the morning is a sufficient condition for Prof. X to carry his
umbrella. True

F : Rain falling implies that the sky is cloudy. True

G : The sky is cloudy implies that rain is falling. False

H: If Prof. X is soaked then it did not rain this morning. True



§7 Sets and Counting

Definition 7.1
Let X be a set. We say that X is finite if it has finitely many
elements, and infinite otherwise. The size of a finite set X is its
number of elements. We denote the size of X by |X |,
Note that |X | is read as ‘mod X ’.



Elements, Subsets and Sizes

Exercise 7.2
State the truth value (true or false) of each of these propositions.

(a) 1 is an element of N.

(b) {1} is an element of N.

(c) | x ∈ R : x3 = 1}| = 1.

(d) |{z ∈ C : z3 = 1}| = 1.

(e) The set of natural numbers is infinite.

(f) The empty set is a subset of every set.

(g) The empty set is an element of every set.



Proving that Two Sets are Equal

Claim 7.3
Let X , Y and Z be sets. Then

(i) (X ∪ Y ) ∩ Z = (X ∩ Z ) ∪ (Y ∩ Z ),

(ii) (X ∩ Y ) ∪ Z = (X ∪ Z ) ∩ (Y ∪ Z ).

Recall that, by the definition on page 7,

X ⊆ Y ⇐⇒ (x ∈ X =⇒ x ∈ Y ).

We will also use the following fact:

X = Y ⇐⇒ X ⊆ Y and Y ⊆ X .



Feedback on Sheet 7 and Quiz and a Correction
I A–K in green folder (unclaimed work is at front)
I L–Z in red folder

Questions 3, 5 and 6 were used for the numerical mark. Please see
me if you have any queries. Extensive feedback is on Moodle.

Question 2(e): Let A be (P =⇒ Q) =⇒ R and B be (Q =⇒ R).
Is A =⇒ B a tautology? You need a truth table for A =⇒ B.

I Many people compared the column for A and the column for
B. These are not the same, but A =⇒ B is still always true.

I The columns for A and B are the same if and only if
A ⇐⇒ B is a tautology. This is a different question.

Correction. In Question 3 on Sheet 8, the hint should suggest
∃n ∈ Z, not ∃n ∈ N.

Quiz. Let X = {1, {1, 6}, 5,N}. True or False?
I {1, 5} ⊆ X ,
I 2 ∈ X .
I {1, 5} ∈ X ,

What is the size of X?
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Principle of Inclusion and Exclusion

Let X and Y be finite sets. In the sum |X |+ |Y | we count each
element of X once, and each element of Y once. So the elements
of X ∩ Y are counted twice, once as elements of X , and once as
elements of Y . If we subtract |X ∩ Y | to correct for this
overcounting, we get

|X ∪ Y | = |X |+ |Y | − |X ∩ Y |.

For example, if z ∈ X ∩ Y then z is counted in |X |, |Y | and in
|X ∩ Y |, for a total contribution of 1 + 1− 1 = 1.

If X and Y are contained in a universe set U then, since

|(X ∪ Y )′| = |U| − |X ∪ Y |

we have
|(X ∪ Y )′| = |U| − |X | − |Y |+ |X ∩ Y |.
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Exercise on Inclusion / Exclusion

Exercise 7.4
At the University of Erewhon, there are 100 students. At each
algebra lecture there are 65 students and at each analysis lecture
that are 70 students. Let b be the number of students doing both
algebra and analysis.

(i) If b = 50, how many students are doing neither algebra nor
analysis?

(ii) What is the greatest possible value of b?

(iii) What is the least possible value of b?



Principle of Inclusion and Exclusion for Three Sets

Claim 7.5
If X , Y and Z are finite sets then

|X∪Y ∪Z | = |X |+|Y |+|Z |−|X∩Y |−|Y ∩Z |−|Z∩X |+|X∩Y ∩Z |.

Exercise 7.6
Suppose that X , Y , Z are subsets of a finite universe set U. Use
Claim 7.5 to write down a formula for the size of

∣∣(X ∪ Y ∪ Z )′
∣∣.

Example 7.7

Define f : N→ N so that f (n) is the number of dots in the nth
diagram below. So f (1) = 1, f (2) = 7, f (3) = 19, f (4) = 37, and
so on.

, , , , . . .

We will use Claim 7.5 to find a formula for an.



Multiplying Choices

Suppose you have offers from RHUL, QMUL and UCL. In each
case you can do either Maths or Physics. How many options do
you have?

Answer: 6. There are 3 choices for university, 2 choices for the
course, and 3× 2 = 6.

RHUL QMUL UCL

(RHUL, Maths) (RHUL, Physics) (QMUL, Maths) (QMUL, Physics) (UCL, Maths) (UCL, Physics)
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Counting Subsets

There are four subsets of {1, 2}, namely ∅, {1}, {2}, {1, 2}.
Exercise: Write down all the subsets of {1} and {1, 2, 3}. How
many are there in each case?

The principle that numbers of independent choices can be
multiplied to find the size of a set, is very useful when solving
combinatorial problems.

Example 7.9

A menu has three starters, four main courses and six desserts.

(a) How many ways are there to choose a three course meal,
having a starter, main course and dessert?

(b) How many two course meals, each having exactly one main
course, can be chosen?
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Example Menu
Starters

(1) Bruschetta

(2) Ravioli di granchio

(3) Zucchini fritti

Main courses

(1) Daube de boeuf

(2) Sole meunière

(3) Risotto des légumes et truffes noires

(4) Truite sauce vierge

Desserts

(1) Sticky toffee pudding

(2) Vanilla icecream

(3) Chocolate icecream

(4) Banana pancakes

(5) Cheeseboard

(6) Affogato



Cartesian Products

Exercise 7.10
Let

X = {x ∈ R : 1 ≤ x ≤ 3}
Y = {y ∈ R : 1 ≤ y ≤ 2}.

Decide on the truth value of the following propositions.

(a) (1, 2) = (2, 1)

(b) {1, 2} = {2, 1}
(c) (5/2, 3/2) ∈ X × Y

(d) (3/2, 5/2) ∈ X × Y

(e) Y × Y ⊆ X × Y

(f) X ⊆ Y

(g) ∅× X ⊆ ∅× Y
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Part D: Integers and rings

§8 Euclid’s Algorithm and Congruences

Definition 8.1
Let m, n ∈ N. We say that d ∈ N is the greatest common divisor
of m and n, and write gcd(m, n) = d , if d is the greatest natural
number that divides both m and n.

Example 8.2′ See board

Exercise 8.3
Find gcd(m, n) in each of these cases:

(i) m = 310, n = 42,

(ii) m = 23, n = 46,

(iii) m = 31460, n = 41 991 752.

Hint: on page 38 we saw that 31460 = 22 × 5× 112 × 13. You do
not need to factor n completely to find the gcd. You can use

41 991 752 = 121× 347039 + 33 = 3230134× 13 + 10.
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Sheet 8

Please take answers to Sheet 8:

I A–J in red folder

I K–Z in green folder

Mostly well done! Questions 4, 5 and 6 were marked. Model
answers are on Moodle.

I Note that quantifiers should come before the thing they
quantify. So

(∃n ∈ Z)(b = π/2 + 2nπ)

is correct, and
(b = π/2 + 2nπ)∃n ∈ Z

is probably comprehensible, but is strictly speaking wrong.

If you have not yet completed a questionnaire please take one at
end.



Euclid’s Algorithm

Lemma 8.4 (Examinable)

Let m, n ∈ N. If n = qm + r where q, r ∈ Z, then

{d ∈ N : d divides n and m} = {d ∈ N : d divides m and r}.

In particular, the greatest elements of these sets are equal, so

gcd(n,m) = gcd(m, r).

Algorithm 8.5 (Euclid’s Algorithm)

Let n, m ∈ N. Find the quotient q and the remainder r when n is
divided by m.

• If r = 0 then m divides n and gcd(n,m) = m.

• Otherwise repeat from the start with m and r .
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Example 8.6

Let n = 3933 and let m = 389. The equations below show the
quotient and remainder at each step of Euclid’s Algorithm:

3933 = 10× 389 + 43

389 = 9× 43 + 2

43 = 21× 2 + 1

2 = 2× 1.

Hence gcd(3933, 389) = 1.

Example 8.7: Work backwards to get

1 = 43− 21× 2

= 43− 21× (389− 9× 43)

= 190× 43− 21× 389

= 190× (3933− 10× 389)− 21× 389

= 190× 3933− 1921× 389.
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quotient and remainder at each step of Euclid’s Algorithm:

3933 = 10× 389 + 43

389 = 9× 43 + 2

43 = 21× 2 + 1

2 = 2× 1.

Hence gcd(3933, 389) = 1.

Example 8.7: Work backwards to get

1 = 43− 21× 2

= 43− 21× (389− 9× 43)

= 190× 43− 21× 389

= 190× (3933− 10× 389)− 21× 389

= 190× 3933− 1921× 389.



Congruences

Definition 8.8
Let m ∈ N. Let n, n′ ∈ N. If n and n′ have the same remainder on
division by m then we say that n is congruent to n′ modulo m, and
write n ≡ n′ mod m.

{. . . ,−5, 0, 5, . . .}

{. . . ,−4, 1, 6, . . .}
{. . . ,−3, 2, 7, . . .}

{. . . ,−2, 3, 8, . . .}
{. . . ,−1, 4, 9, . . .}

Example 8.9

(a) Since 17 and −4 both have remainder 3 on division by 7, we
have 17 ≡ −4 mod 7.

(b) Since 19− 12 is divisible by 7, 19 and 12 have the same
remainder on division by 7. Hence 19 ≡ 12 mod 7.

(c) We have 0 + 0 ≡ 0 mod 2, 0 + 1 ≡ 1 mod 2, 1 + 0 ≡ 1 mod 2
and 1 + 1 ≡ 0 mod 2.



The Square Code
The square code is the set of all sequences

{
(u1, u2, u3, u4, u1+u2, u3+u4, u1+u3, u2+u4) : u1, u2, u3, u4 ∈ {0, 1}

}

where the addition is done mod 2, as in Example 8.9(c). The name
comes from the representation of the sequences as a square of four
message bits, (u1, u2, u3, u4), surrounded by four check bits.

u1 u2 u1 + u2
u3 u4 u3 + u4

u1 + u3 u2 + u4

The elements of the square code are called codewords.

Example 8.10

Suppose we want to send 7. Since 7 is 111 in binary, we put in an
initial 0 to get 0111, so u1 = 0 and u2 = u3 = u4 = 1. The sent
codeword is 01111010.



Decoding using the Square Code

If at most one position in the sent codeword gets flipped (either
from 0 to 1 or from 1 to 0) then the receiver will still be able to
work out what number was sent.

Example 8.11

(i) Suppose you receive 01011100. What number was probably
sent?

(ii) Suppose you receive 10000011. What number was probably
sent?



Solving congruence equations
Observe that 27× 33 ≡ 7× 33 ≡ 7× 3 ≡ 1 mod 10.

Exercise 8.12
What is 23427× 973249 mod 10?

Lemma 8.13 (Examinable)

Let m ∈ N and let r , r ′, s, s ′ ∈ Z. If r ≡ r ′ mod m and s ≡ s ′ mod
m then

(i) r + s ≡ r ′ + s ′ mod m,

(ii) rs ≡ r ′s ′ mod m.

Lemma 8.12 justifies many other manipulations with congruences.

For example, 36 ≡ 9 mod 10 =⇒ 37 ≡ 9× 3 ≡ 7 mod 10. The
only calculation needed is 9× 3 = 27: there is no need to
calculate 37.

Exercise 8.14
Find 32014 mod 10.
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Solving Congruences

Exercise 8.15

(a) Find x ∈ Z such that 0 ≤ x < 11 and x + 9 ≡ 7 mod 12.

x = 10 is the unique such x

(b) Find an x ∈ Z such that 3x ≡ 2 mod 5.

x = 4, or x = −1, or x = 9 or . . .

(c) Find all x ∈ Z such that 3x ≡ 2 mod 5.

{−1, 4, 9, . . .} = {x ∈ Z : x ≡ 4 mod 5} [corrected]

When the modulus m is larger, Euclid’s algorithm can be used.

Example 8.16′ See board.

The printed notes have a similar example using larger numbers.

Not all congruences can be solved. For example 2x ≡ 3 mod 4 has
no solution, because 2x is always even, but any number congruent
to 3 modulo 4 is odd.
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The Square Code as a Party Trick

Question i can be stated more briefly as: is the ith position of the
codeword for your number equal to 1?

1 Is your number 8, 9, 10, 11, 12, 13, 14 or 15?
2 ” ” ” 4, 5, 6, 7, 12, 13, 14 or 15?
3 ” ” ” 2, 3, 6, 7, 10, 11, 14 or 15?
4 ” ” ” 1, 3, 5, 7, 9, 11, 13 or 15?
5 ” ” ” 4, 5, 6, 7, 8, 9, 10 or 11?
6 ” ” ” 1, 2, 5, 6, 9, 10, 13 or 14?
7 ” ” ” 2, 3, 6, 7, 8, 9, 12 or 13?
8 ” ” ” 1, 3, 4, 6, 9, 11, 12 or 14?



§9 Relations and the Integers Modulo m

The following definition generalizes the congruence relation.

Definition 9.1
Let X be a set. A relation on X is a black box which, given an
ordered pair (x , x ′) where x , x ′ ∈ X , outputs either yes or no. A
yes means x is related to x ′, and a no means x is not related to x ′.

≡
(x , x ′)

yes or no

Two relations on a set X are equal if they agree on all ordered
pairs (x , x ′). As for functions, it is irrelevant how the black box
arrives at its answer.



Examples of Relations

Example 9.2

(i) Fix m ∈ N. Let n, n′ ∈ Z. For the input (n, n′), let the black
box output yes if n ≡ n′ mod m and no otherwise. This
defines the congruence modulo m relation on Z.

(ii) Let P be the set of all subsets of {1, 2, 3}. Given an ordered
pair (X ,Y ) of elements of P, let the black box output yes if
X ⊆ Y and no otherwise.

Relations can be defined more briefly. For example, suppose that
X = {1, 2, 3, 4, 5, 6}. Then

x relates to y ⇐⇒ x < y

defines the relation ‘strictly less than’ on X . An analogous relation
can be defined replacing X with any other subset of R.



Diagrams

Let X be a set and let ∼ be a relation defined on X . To represent
∼ on a diagram, draw a dot for each element of X . Then for each
x , y ∈ X such that x ∼ y , draw an arrow from x to y . If x ∼ x
draw a loop from x to itself.

Example 9.3

Let X = {1, 2, 3, 4, 5, 6}. The relation x ≡ y mod 2 on X is:

1 2

3 4

5 6

Exercise: Draw a similar diagram for the relation on
{1, 2, 3, 4, 5, 6} defined by

x ∼ y ⇐⇒ x − y is even and x > y .
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Feedback on Sheet 9
Please take answers to Sheet 9:

I A–K in red folder
I L–Z in green folder

Questions 2, 4 and 5 were marked. Model answers are on Moodle.
(Updated with missing answers to Question 2.)

Note there is no 0/1 or 1/1 mark: the first eight sheets will be
used for the eight marks.

I Size of square code: there are 2 independent choices for each
of u1, u2, u3, u4 so 2× 2× 2× 2 = 24 codewords.

u1 u2 u1 + u2
u3 u4 u3 + u4

u1 + u3 u2 + u4
I Congruences: mostly done well.
I Write a question on functions: some good efforts. Difficulty

usually underestimated.

There are some revision questions on Moodle. Answers to come.



Properties of relations

Definition 9.4
Let ∼ be a relation on a set X . We say that ∼ is

(i) reflexive if x ∼ x for all x ∈ X ;

(ii) symmetric if for all x , y ∈ X ,

x ∼ y =⇒ y ∼ x ;

(iii) transitive if for all x , y , z ∈ X ,

x ∼ y and y ∼ z =⇒ x ∼ z .

A relation that is reflexive, symmetric and transitive is said to be
an equivalence relation.

Example 9.5

Fix m ∈ N. The congruence relation n ≡ n′ mod m is an
equivalence relation on Z.



More on Relations

In general a relation can have any combination of the properties
reflexive, symmetric and transitive. See Question 2 of Sheet 10.

Exercise 9.7
Let X be the set of people sitting in a full lecture room. For each
of the following relations, decide whether it is (i) reflexive, (ii)
symmetric and (iii) transitive.

(a) x ∼ y if x and y are sitting in the same row,

(b) x ∼ y if x is sitting in a strictly higher row than y ,

(c) x ∼ y if x and y are friends.



Equivalence relations and partitions
Suppose that ∼ is an equivalence relation on a set X . For x ∈ X ,
we define the equivalence class of x to be the set of all elements of
X that relate to x . In symbols

[x ] = {z ∈ X : z ∼ x}.

For example, the equivalence classes for the relation x ≡ y mod 2
on the set {1, 2, 3, 4, 5, 6} are

[0] = [2] = [4] = {0, 2, 4}
[1] = [3] = [5] = {1, 3, 5}

1 2

3 4

5 6



Main Theorem on Equivalence Classes

Theorem 9.8
Let ∼ be an equivalence relation on a set X . Let x , y ∈ X .

(i) x ∈ [x ]∼,

(ii) x ∼ y ⇐⇒ [x ]∼ = [y ]∼,

(ii) x 6∼ y ⇐⇒ [x ]∼ ∩ [y ]∼ = ∅.

Thus, by (i), every element of X lies in an equivalence class, and
by (ii) and (iii), X is a disjoint union of the distinct equivalence
classes.

The proof of Theorem 9.8 is non-examinable and will be skipped if
time is pressing. See Theorem 31.13 in How to think like a
mathematician for a careful (and exhaustively analysed) proof.



Administration

I Please take
I Final installment of Part D handout

I Answers to Question 1 to 4 on Sheet 10 are now on Moodle.

I Answers to Questions 5 to 10 will be added on Friday.

I You need not hand in answers to Sheet 10: you should be
able to check Questions 1 to 4 using the model answers. Or
see lecturer after a lecture or in an office hour.

I Revision questions and answers are now on Moodle (top of
page).



The Number System Zm of Integers Modulo m.
Fix m ∈ N. Let

Zm = {[n] : n ∈ Z}
be the set of equivalence classes for congruence modulo m.

For example, Z5 = {[0], [1], [2], [3], [4]}.

[0] = [5] = [−5] = . . .

[1] = [6] = . . .

[−3] = [2] = . . .

[−2] = [3] = . . .

[4] = [9] = [−1] = . . .

0
5

10

−5

−10

1
6

16

−4

−9

2

7

−3

3 8
−2 4

9−1
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Addition and Multiplication in Zm

We turn the set Zm of equivalence classes into a number system
by defining addition and multiplication as follows.

Definition 9.9
Fix m ∈ N. Given [r ], [s] ∈ Zm we define [r ] + [s] = [r + s] and
[r ][s] = [rs].



Addition and Multiplication Tables

Example 9.10

The addition and multiplication tables for Z5 are shown below. For
example, the entry in the addition table in the row for [4] and the
column for [3] is

[4] + [3] = [2]

since 4 + 3 = 7 and 7 ≡ 2 mod 5.

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

× [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4]

[2] [0] [2] [4] [1] [3]

[3] [0] [3] [1] [4] [2]

[4] [0] [4] [3] [2] [1]

You may omit [0] from the multiplication table if you prefer.



Sums of squares

Exercise 9.11
Recall that a square number is a number of the form n2 where
n ∈ N.

(i) Calculate 12, 22, 32, 42, 52, 62, 72, . . . modulo 4. State and
prove a conjecture on the pattern you observe.

(ii) Is 2015 the sum of two square numbers?



§10 Rings
Definition 10.1
Suppose that R is a set on which addition and multiplication are
defined, so that given any two elements x , y ∈ R, their sum x + y
and product xy are elements of R. Then R is a ring if

(1) (Commutative law of addition) x + y = y + x for all x , y ∈ R,

(2) (Existence of zero) There is an element 0 ∈ R such that 0 + x = x for all
x ∈ R,

(3) (Existence of additive inverses) For each x ∈ R there exists an element
−x ∈ R such that −x + x = 0, where 0 is the element in property (2),

(4) (Associative law of addition) (x + y) + z = x + (y + z) for all x , y , z ∈ R,

(5) (Existence of one) There exists an element 1 ∈ R such that 1x = x1 = x
for all x ∈ R,

(6) (Associative law of multiplication) (xy)z = x(yz) for all x , y , z ∈ R,

(7) (Distributivity) x(y + z) = xy + xz and (x + y)z = xz + yz for all
x , y , z ∈ R.

The number systems Z, Q, C and Zm for m ∈ N are rings.



Fields

Definition 10.2

(i) A ring R is commutative if xy = yx for all x , y ∈ R.

(ii) A commutative ring R is a field if for all non-zero x ∈ R there
exists an element y ∈ R such that xy = yx = 1, where 1 is
the one element in property (5). We say that y is the
multiplicative inverse (or just inverse, for short) of x and
write y = x−1.

(iii) A commutative ring R is an integral domain if for all x , y ∈ R,

xy = 0 =⇒ x = 0 or y = 0.

Some familiar examples of fields are Q, R and C. More
interestingly, Z5 is a field.

Theorem 10.3 (Examinable [omitted from printed notes])

If p is prime then Zp is a field.



Properties of Rings
See Question 8, Sheet 10 for (ii), (vii), (viii) and (ix).

Lemma 10.5
Let R be a ring.

(i) There is a unique zero element in R satisfying property (2).

(ii) There is a unique one element in R satisfying property (5).

(iii) For each x ∈ R there exists a unique y ∈ R such that
y + x = x + y = 0.

(iv) If x , z ∈ R and x + z = x then z = 0.

(v) We have 0x = 0 = x0 for all x ∈ R.

(vi) We have −x = (−1)x = x(−1) for all x ∈ R.

(vii) For all x ∈ R we have −(−x) = x .

(viii) For all x , y ∈ R we have

−(xy) = (−x)y = y(−x) and (−x)(−y) = xy .

(ix) 0 = 1 if and only if R = {0}.



Fields and Integral Domains

Exercise 10.6
Show that if R is a field then R is an integral domain, making it
clear which ring axioms you use.

Theorem 10.3 is a special case of the following result which gives a
partial converse to the previous exercise.

Theorem 10.7
If R is a finite integral domain then R is a field.



Polynomial Rings

We define polynomial rings over an arbitrary field: the main
examples to bear in mind are Q, R, C and Zp for prime p.

Definition 10.8
Let F be a field. Let F [x ] denote the set of all polynomials

f (x) = adx
d + ad−1x

d−1 + · · ·+ a1x + a0

where d ∈ N0 and a0, a1, a2, . . . , ad ∈ F . If d = 0, so f (x) = a0,
then f (x) is a constant polynomial.

When writing polynomials we usually omit coefficients of 1, and do
not include powers of x whose coefficient is 0. For example,
in Z2[x ], we write x2 + [1] rather than [1]x2 + [0]x + [1].

The x in f (x) is called an indeterminate. You can think of it as
standing for an unspecified element of F .
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Ring Structure of F [x ]

Polynomials are added and multiplied in the expected way.

Example 10.9

In Z3[x ], we have

(x4 + [2]x3 + [1]) + ([2]x4 + x2 + [1])

= ([1]x4 + [2]x3 + [1]) + ([2]x4 + [1]x2 + [1])

= ([1] + [2])x4 + [2]x3 + [1]x2 + ([1] + [1])

= [0]x4 + [2]x3 + [1]x2 + [2]

= [2]x3 + x2 + [2]

and

(x + [1])(x + [2]) = x2 + ([1] + [2])x + [1][2] = x2 + [2].
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= [0]x4 + [2]x3 + [1]x2 + [2]

= [2]x3 + x2 + [2]

and

(x + [1])(x + [2]) = x2 + ([1] + [2])x + [1][2] = x2 + [2].



Polynomial Division

Definition 10.10
Let F be a field and f (x) = a0 + a1x + a2 + · · ·+ adx

d be a
polynomial with ad 6= 0.

(i) The degree of f (x) is d . This is written deg f (x) = d .

(ii) The constant coefficient of f (x) is a0.

(iii) The leading coefficient of f (x) is ad .

(iv) If ad = 1 then we say that f (x) is monic.

The degree of zero polynomial f (x) = 0 is undefined.

Theorem 10.11
Let F be a field, let f (x) ∈ F [x ] be a non-zero polynomial and let
g(x) ∈ F [x ]. There exist polynomials q(x), r(x) ∈ F [x ] such that

g(x) = q(x)f (x) + r(x)

and either r(x) = 0 or deg r(x) < deg f (x).
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Examples of Polynomial Division

Example 10.12

(1) Working in Q[x ], let g(x) = 3x2 + 2x − 1 and let
f (x) = 2x + 1. Then

g(x) = (32x + 1
4)f (x)− 5

4

so the quotient is q(x) = 3
2x + 1

4 and the remainder is
r(x) = −5

4 . If instead we take h(x) = x + 1 then

g(x) = (3x − 1)h(x).

So when g(x) is divided by h(x) the quotient is 3x − 1 and
the remainder is 0.

(2) Working in Z3[x ], let g(x) = x4 + x3 + [2]x2 + x + 1 and let
f (x) = x2 + x . Then

g(x) = (x2 + [2]x)f (x) + 2[x ] + 1.

So the quotient when g(x) is divided by f (x) is x2 + [2]x and
the remainder is 2[x ] + 1.



Remainder Theorem

Theorem 10.13
Let F be a field and let f (x) ∈ F [x ] be a polynomial. Let c ∈ F .
Then

f (x) = q(x)(x − c) + r

for some polynomial q(x) ∈ F [x ] and some r ∈ F. Moreover
f (c) = 0 if and only if r = 0.



Example of Remainder Theorem

Example 10.14

Working in Z3[x ], let g(x) = x4 + x3 + [2]x2 + x + [1] as in
Example 10.10(2). Since

g([1]) = [1] + [1] + [2] + [1] + [1] = [6] = [0],

the Factor Theorem says that x − [1] divides g(x). Division gives

g(x) = (x − [1])(x3 + [2]x2 + x + [2]).

The cubic x3 + [2]x2 + x + [2] also has [1] as a root. Dividing it by
x − [1] gives

g(x) = (x − [1])2(x2 + [1]).

Therefore g(x) has [1] as a root with multiplicity 2, and no other
roots in Z3.



Polynomials in C[x ]

We end with a corollary of Theorem 10.9 that gives a stronger
version of the Fundamental Theorem of Algebra (Theorem 3.21).

Corollary 10.15

Let g(x) ∈ C[x ] be a polynomial of degree d . There exist distinct
w1,w2, . . . ,wr ∈ C and m1, . . . ,mr ∈ N such that
m1 + · · ·+ mr = d and

adz
d+ad−1z

d−1+· · ·+a1z+a0 = ad(z−w1)m1(z−w2)m2 . . . (z−wr )mr .


