
MT181 Number Systems: Answers to Revision Questions

For further questions and questions on congruences and relations see
Sheet 10 and How to think like a mathematician by Kevin Houston
(Cambridge University Press, 2009), or the other books in the recom-
mended reading.

You should also practice by doing past January Tests.

Functions. Let X and Y be sets. Recall from Definitions 2.5 and 2.11
that a function f : X → Y is

(i) bijective if for all y ∈ Y there exists a unique x such that
f(x) = y,

(ii) injective if f(x) = f(x′) =⇒ x = x′,
(iii) surjective if for each y ∈ Y there exists some x ∈ X such

that f(x) = y,

Equivalently

• f is injective if for all y ∈ Y there exists at most one x such
that f(x) = y,
• f is bijective if and only if f is injective and surjective.

You are welcome to use these as alternative definitions. Definitions
must be accurately stated to get marks in an exam.

These properties can be recognized from the graph of a function.
For example, let R>0 = {x ∈ R : x > 0} and consider f : R>0 → R>0

defined by f(x) = 1/x. The graph is shown below.

Since for each y ∈ R>0 the horizontal line of height y meets the graph
at a unique point, the function is bijective.

If instead we define g : R>0 → R by g(x) = 1/x then g has the same
graph as f , but g is no longer surjective. For instance, −1 is in the
codomain of g and g(x) 6= −1 for any x ∈ R>0. Correspondingly, the
horizontal line of height −1 does not meet the graph above.

This underlines the point that when defining a function it is essen-
tial to specify the domain and codomain.
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1. For each of the diagrams below decide whether the function it repre-
sents is (1) injective, (2) surjective, (3) bijective.

Top left:

(1) not injective since f(1) = f(4) = 3;
(2) surjective since for all y ∈ {1, 2, 3} there exists x ∈ {1, 2, 3, 4}

such that f(x) = y (specifically: f(2) = 1, f(3) = 2, f(4) = 3);
(3) not bijective, since not injective.

Top right:

(1) not injective since f(1) = f(2) = 1;
(2) not surjective: there is no x ∈ {1, 2, 3, 4} such that f(x) = 2;
(3) not bijective since not injective.

Bottom left:

(1) injective;
(2) not surjective: there is no x ∈ {1, 2, 3, 4} such that f(x) = 3;
(3) not bijective since not surjective.

Bottom right: (1) injective; (2) surjective; (3) hence bijective.

2. Let X = {x ∈ R : 0 ≤ x ≤ 2} and let Y = {y ∈ R : −1 ≤ y ≤ 1}. The
graphs below show three functions f : X → Y . Decide for each each
graph whether the function it shows is (1) injective, (2) surjective, (3)
bijective.
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Left function: (1) injective, (2) surjective and so (3) bijective.

Middle function:

(1) not injective: for example there exists x < 1 such that f(x) =
f(2) = 0;

(2) surjective;
(3) not bijective since not injective.

Right function:

(1) injective;
(2) not surjective, for instance the horizontal line through −1/2

does not meet the graph so there is no x ∈ [0, 2] such that
f(x) = −1/2;

(3) not bijective since not surjective.

Exercise. Let X and Y be as above. Sketch the graph of a function
f : X → Y that is neither injective nor surjective.

3. Let X = {x ∈ R : x 6= −1} and let Y = {y ∈ R : y 6= 0}. Let
g : X → Y be the function defined by

g(x) =
1

x+ 1

Show that g is bijective and find a formula for g−1 : Y → X.

Let y ∈ Y . We have

g(x) = y ⇐⇒ 1

x+ 1
= y ⇐⇒ x+ 1 =

1

y
⇐⇒ x =

1

y
− 1

Since 1/y 6= 0 we have 1/y− 1 ∈ X. Hence for each y ∈ Y there exists
a unique x ∈ X such that g(x) = y. Thus g is bijective and

g−1(y) =
1

y
− 1

for all y ∈ Y .

Complex Numbers.

4. (a) Write −1− i in polar and exponential forms.

(b) Let φ = tan−1 2. Plot 1+2i, 2+i, −2+i and −1−2i on an Argand
diagram, and convert these numbers to polar form, writing your
answers in terms of φ and multiples of π.

(c) Let z = 1
2
− i

√
3
2

. Write z in polar and exponential forms.

(d) What are Arg(i) and Arg(−i)? Put i and −i in exponential form.

(e) Convert e−πi/6 to Cartesian form.
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(a) Since | − 1 − i| =
√

(−1)2 + (−1)2 =
√

2 and Arg(−1 − i) =
π + π/4 = 5π/4 we have

−1− i =
√

2(cos 5π/4 + i sin 5π/4) =
√

2ei5π/4.

It would also be entirely correct to write −1 − i =
√

2(cos 3π/4 −
i sin 3π/4) =

√
2e−i3π/4, using that −3π/4 is also an argument of −1−i.

(b) See the diagram below.

From this diagram we see that all the numbers have modulus
√

5
and that

Arg(1 + 2i) = φ

Arg(−2 + i) = φ+ π/2

Arg(−1− 2i) = φ+ π

Arg(2− i) = φ+ 3π/2.

Hence

1 + 2i =
√

5
(
cosφ+ i sinφ)

−2 + i =
√

5
(
cos(φ+ π/2) + i sin(φ+ π/2)

)
−1− 2i =

√
5
(
cos(φ+ π) + i sin(φ+ π)

)
2− i =

√
5
(
cos(φ+ 3π/2) + i sin(φ+ 3π/2)

)
.

Again you could give different (but equivalent) answers by taking a
different choice for the argument. For example,

2− i =
√

5
(
cos(φ− π/2) + i sin(φ− π/2)

)
.
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(c) |z| = (1
2
)2 + (−

√
3

2
)2 = 1

4
+ 3

4
= 1. From the diagram below we see

that z has argument −θ (negative since below the real axis) where

tan θ =

√
3
2
1
2

=
√

3.

Hence θ = π/3 and

z = cos(π/3)− i sin(π/3) = e−iπ/3.

Note that the principal argument of z is Arg(z) = 2π − π/3 = 5π/3,
according to the definition given in lectures.

θ

1/2

√
3/2

z = 1/2− i
√
3/2

(d) Arg(i) = π/2, Arg(−i) = 3π/2, and i = eiπ/2, −i = e3iπ/2. You
could also write −i = e−iπ/2, but note that according to the definition
given in lectures, the principal argument of −i is 3π/2.

(e) e−πi/6 = cosπ/6− i sin π/6 =
√
3
2
− i

2
.

5. Draw the sets {z ∈ C : |z| = 2} and {w ∈ C : |w − 2| = 2} on the
same Argand diagram.

We have |z| = 2 if and only if z is distance 2 from 0. So the first
set is the circle of radius 2 about 0. The condition |w − 2| = 2 means
that w is distance 2 from 2 on the Argand diagram. So the second set
is a circle of radius 2 about 2.

−2 −1 1 2 3 4

−2i

−i

i

2i

|z| = 2
|z − 2| = 2
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6. Let T be the set of z ∈ C such that |z| = 1 and 0 ≤ Arg z ≤ π/2.
Draw T on an Argand diagram.

The condition |z| = 1 means that z is on the unit circle; the condition
0 ≤ Arg z ≤ π/2 means that the marked angle θ is between 0 and π/2.
Therefore we get the arc shown below.

1

−i
z

Arg z

7. Solve the following equations, giving the solutions in Cartesian form.
Be sure to give all solutions.

(a) (1 + i)z − (3 + i) = 6,

(b) (z + 3)3 = −2,

(c) exp z = 10 + 10i,

(d) z + z̄ = 3

(a) Since

(1+i)z−(3+i) = 6 ⇐⇒ (1+i)z = 6+(3+i) ⇐⇒ (1+i)z = 9+i ⇐⇒ z =
9 + i

1 + i

the unique solution is

z =
9 + i

1 + i
=

(9 + i)(1− i)
(1 + i)(1− i) =

9 + i− 9i+ 1

2
=

10− 8i

2
= 5− 4i.

(b) Let w = z + 3. If w = reiθ then w3 = r3e3iθ. So

w3 = −2 ⇐⇒ r3e3iθ = 2eiπ

⇐⇒ r3 = 2 and 3θ = π + 2nπ for some n ∈ Z

⇐⇒ r =
3
√

2 and θ = π/3 + 2nπ/3 for some n ∈ Z.

Taking θ = π/3, π, 5π/3 gives the three solutions

3
√

2(cosπ/3 + i sin π/3) =
3
√

2
1 + i

√
3

2
3
√

2(cosπ + i sin π) = − 3
√

2

3
√

2(cos 5π/3 + i sin 5π/3) =
3
√

2
1− i

√
3

2
.
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Taking further values for θ just repeats these solutions so there are
no more. (For instance 5π/3 + 2π/3 = 7π/3 = 2π + π/3, so taking
θ = 7π/3 just gives the first solution again.) Hence the solutions for z
are

3
√

2

2
− 3 + i

3
√

2
√

3

2
, − 3

√
2− 3,

3
√

2

2
− 3− i

3
√

2
√

3

2

in Cartesian form.

(c) Let z = a + bi. Since 10 + 10i = 10
√

2(1 + i) = 10
√

2eiπ/4 we
have

exp z = 10 + 10i ⇐⇒ eaebi = 10
√

2eiπ/4

⇐⇒ ea = 10
√

2 and b = iπ/4 + 2nπ for some n ∈ Z.

Therefore the solutions are

z = ln 10 + 1
2

ln 2 + i(
π

4
+ 2nπ)

for n ∈ Z.

(d) Let z = a+ bi. Then

z + z̄ = 3 ⇐⇒ (a+ bi) + (a− bi) = 3 ⇐⇒ 2a = 3

so the solutions are z = 3/2 + bi where b can be any real number.

Induction and natural numbers.

8. (a) Prove by induction that
n∑
k=1

k2 =
1

3
n(n+ 1

2
)(n+ 1)

for all n ∈ N.

(b) Prove by induction (or using congruences if you prefer) that 7n−1
is divisible by 6 for all n ∈ N.

(c) Prove by induction that 1 + 1/2 + · · · + 1/2n = 2 − 1/2n for all
n ∈ N0.

(a) Base case: putting n = 1 we need
∑1

k=1 k
2 = 1

3
1(1 + 1

2
)(1 + 1).

This is true since 1 = 1
3
× 3

2
×2. Inductive step: assume that

∑n
k=1 k

2 =
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1
3
n(n+ 1

2
)(n+ 1). Then

n+1∑
k=1

k2 =
( n∑
k=1

k2
)

+ (n+ 1)2

=
1

3
n(n+ 1

2
)(n+ 1) + (n+ 1)2

=
n+ 1

3

(
n(n+ 1

2
) + 3(n+ 1)

)
=
n+ 1

3
(n2 +

7n

2
+ 3)

=
n+ 1

3
(n+ 3

2
)(n+ 2)

=
(n+ 1)(n+ 1 + 1

2
)(n+ 1 + 1)

3

as required.

(b) Base case: 71 − 1 = 6 is clearly divisible by 6. Inductive step:
suppose that 7n − 1 is divisible by 6. So 7n − 1 = 6q for some q ∈ Z.
Hence

7n+1 − 1 = 7× 7n − 1 = 7× (7n − 1) + 6 = 7× 6q + 6 = 6(7q + 1)

and so 7n+1 − 1 is a multiple of 6.

Alternative: using congruences, we can simply argue that 7 ≡ 1 mod
6 so 7n − 1 ≡ 1n − 1 ≡ 0 mod 6.

(c) Base case: Here the base case is when n = 0, since we are asked
to prove the statement for all n ∈ N0. We need 1 = 2−1/20 and clearly
this is true. Inductive step: assume that 1+1/2+· · ·+1/2n = 2−1/2n.
Then

1 + 1/2 + · · ·+ 1/2n + 1/2n+1 = 2− 1/2n + 1/2n+1 = 2− 1/2n+1

as required.

9. Work through Euclid’s proof that there are infinitely many primes.
Then, a day later, try to write out your own version of the proof, or
explain it to a friend.

Probably a useful exercise, but of no value unless you do it yourself.
You could also listen to Dr Vicky Neale explain the proof http://www.
bbc.co.uk/podcasts/series/historyofideas#playepisode8.
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10. (a) Express 79 in base 2.

(b) Let 0 ≤ a, b, c ≤ 9. Show that the base 10 number abccba is
divisible by 11.

(c) Let 0 ≤ ak ≤ 9 for each k ∈ {0, 1, . . . , d− 1}. Prove that

d−1∑
k=0

ak10k is divisible by 9 ⇐⇒
d−1∑
k=0

ak is divisible by 9.

[Hint: this may be easiest to do using congruences moduo 9.]

(d) Is 123456789987654321 a multiple of 9?

(a) Since 79 = 64 + 8 + 4 + 2 + 1, in binary we have 79 = 10011112.
Or you could use the repeated division algorithm:

79 = 2× 38 + 1

38 = 2× 19 + 1

19 = 2× 9 + 1

9 = 2× 4 + 1

4 = 2× 2 + 0

2 = 2× 1 + 0

1 = 0× 2 + 1,

reading the sequence of remainders from bottom to top to get 1001111.

(b) By definition abccba = 100000a+10000b+1000c+100c+10b+a =
100001a+10010b+1100c. Now 100001 = 11×9091 and 10010 = 11×910
and 1100 = 11× 100, so

abccba = 11×9091a+11×910b+11×100c = 11×(9091a+910b+100c).

Hence abccba is divisible by 11.

(c) Since 10k − 1 = 9 . . . 9 = 9 × 1 . . . 1 (with k nines and k ones),
10k − 1 is divisible by 9. So

d−1∑
k=0

ak10k =
d−1∑
k=0

ak(10k − 1) +
d−1∑
k=0

ak

where every summand in the first sum is divisible by 9. So

d−1∑
k=0

ak10k = 9q +
d−1∑
k=0

ak

for some q ∈ Z and
∑d−1

k=0 ak10k is divisible by 9 if and only if
∑d−1

k=0 ak
is divisible by 9.

Alternative: since 10 ≡ 1 mod 9 we have
d−1∑
k=0

ak10k ≡
d−1∑
k=0

ak1
k ≡

d−1∑
k=0

ak mod 9.
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Now use that n is divisible by 9 if and only if n ≡ 0 mod 9.

(d) Yes, 123456789987654321 is a multiple of 9 since its sum of digits
is 2× 9× 10/2 = 90 and 90 = 9× 10.

Propositions.

11. Show that the following propositions formed from propositions P , Q
and R are logically equivalent:

(a) (P =⇒ Q) and (¬Q =⇒ ¬P ),

(b) ¬(P ∨Q ∨R) and ¬P ∧ ¬Q ∧ ¬R,

(c) P =⇒ (Q ∨R) and ¬P ∨Q ∨R.

(a) Suppose P =⇒ Q is true. If ¬Q is true then P cannot be true
(since from P =⇒ Q we get that Q is true). Hence ¬P is true. So
(P =⇒ Q) =⇒ (¬Q =⇒ ¬P ). Now set P = ¬Q′ and Q = ¬P ′ to get

(¬Q′ =⇒ ¬P ′) =⇒ (¬¬P ′ =⇒ ¬¬Q′).
Since P ′ is logically equivalent to ¬¬P ′, this implies

(¬Q′ =⇒ ¬P ′) =⇒ (P ′ =⇒ Q′).

Now erase the primes to get the result.

Alternatives: a direct proof that (¬Q =⇒ ¬P ) =⇒ (P =⇒ Q), along
the lines of the proof that (P =⇒ Q) =⇒ (¬Q =⇒ ¬P ) above, was
given in lectures. Or you can just use truth tables.

(b) ¬(P ∨ Q ∨ R) is true ⇐⇒ P ∨ Q ∨ R is false ⇐⇒ P , Q and
R are all false. Similarly ¬P ∧ ¬Q¬R is true ⇐⇒ ¬P , ¬Q, ¬R are
all true ⇐⇒ P , Q and R are all false. Hence the propositions are
logically equivalent.

(c) P =⇒ A is logically equivalent to ¬P ∨ A. Hence

P =⇒ (Q ∨R) ⇐⇒ ¬P ∨ (Q ∨R) ⇐⇒ ¬P ∨Q ∨R.
Or you could observe that the columns for P =⇒ (Q∨R) and ¬P∨Q∨R
in the truth table below are the same.

P Q R Q ∨R P =⇒ (Q ∨R) ¬P ∨Q ∨R
T T T T T T

T T F T T T

T F T T T T

T F F F F F

F T T T T T

F T F T T T

F F T T T T

F F F F T T
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12. Negate each of the following propositions. Decide which are true and
which are false. Justify your answers.

(a) (∀x ∈ R)(∃y ∈ R)(y2 = x)

(b) (∀x ≥ 0)(∃y ∈ R)(y2 = x)

(c) (∀x ∈ R)(∃n ∈ N)(n ≥ x)

(d) (∃n ∈ N)(∀x ∈ R)(n ≥ x)

Following the rules for negation on page 45 of the printed lecture
notes gives the following negations.

(a) (∃x ∈ R)(∀y ∈ R)(y2 6= x)

(b) (∃x ≥ 0)(∀y ∈ R)(y2 6= x)

(c) (∃x ∈ R)(∃n ∈ N)(n < x)

(d) (∀n ∈ N)(∃x ∈ R)(n < x)

Now

(a) is false (and its negation is true) since −1 ∈ R and for all y ∈ R,
we have y2 6= −1.

(b) is true, since given x ≥ 0 we can take y =
√
x and y2 = x.

(c) is true: given x ∈ R take n = bxc+ 1.

(d) The negation of (d) is true, since given n ∈ N, we can take
x = n+ 1 and then n < x. Hence (d) is false.

13. Which of the following are tautologies? Justify your answers. (If you
use truth tables, make it clear which feature of the truth table you
use.)

(a) (P ⇐⇒ Q) ⇐⇒
(
(P ∧Q) ∨ (¬P ∧ ¬Q)

)
,

(b) (P =⇒ Q) =⇒ (Q =⇒ P ),

(c)
(
P =⇒ (Q =⇒ R)

)
=⇒

(
Q =⇒ (P =⇒ R)

)
.

(a) is a tautology since P ⇐⇒ Q is true if and only if P and Q are
either both true or both false, so if and only if either P ∧Q or ¬P ∧¬Q
is true. Or you could use the truth table below, where A stands for(
(P ∧Q)∨ (¬P ∧¬Q)

)
, observing that the columns for P ⇐⇒ Q and

A are the same.

P Q P ⇐⇒ Q P ∧Q ¬P ∧ ¬Q A

T T T T F T

T F F F F F

F T F F F F

F F T F T T
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(b) is not a tautology, since if P is false and Q is true then P =⇒ Q
is true, and Q =⇒ P is false, and so (P =⇒ Q) =⇒ (Q =⇒ P ) is false.

Remark. People who think that P =⇒ Q implies Q =⇒ P are com-
miting the logical fallacy of thinking a statement implies its converse.
Here, once again, is the lottery example:

‘If a person has won the lottery (P) then he or she is rich (Q).’

This does not imply

‘If a person is rich (Q) then he or she has won the lottery (P).’

(c) Since A =⇒ B is false if and only if A is true and B is false,
the proposition is false if and only if Q =⇒ (P =⇒ R) is false and
P =⇒ (Q =⇒ R) is true. So we need Q to be true and P =⇒ R to be
false, so P and Q are true and R is false. But then (Q =⇒ R) is false,
so P =⇒ (Q =⇒ R) is false.

Alternative. Let C be the proposition in (c). The final column of the
truth table below shows that C is always true.

P Q R Q =⇒ R P =⇒ (Q =⇒ R) P =⇒ R Q =⇒ (P =⇒ R) C

T T T T T T T T

T T F F F F F T

T F T T T T T T

T F F T T F T T

F T T T T T T T

F T F F T T T T

F F T T T T T T

F F F T T T T T

Sets.

14. Let X be the set
{

1, π, {42,
√

2}, {{1, 3}}
}

. Decide which of the fol-
lowing statements are true and which are false.

(i) π ∈ X;
(ii) {π} 6∈ X;
(iii) {42,

√
2} ∈ X;

(iv) {1} ⊆ X;
(v) {1,

√
2} ⊆ X;

(vi) {1, π} ⊆ X;
(vii) (∃A ∈ X)(1 ∈ A);
(viii) {1, 3} ⊆ X;
(ix) {1, 3} ∈ X
(x) (∃A ∈ X)({1, 3} ∈ A);

(i) True, (ii) True, (iii) True, (iv) True, (v) False:
√

2 6∈ X, (vi) True,
(vii) False: no element of X has 1 as an element, (viii) False: 3 6∈ X,
(ix) False, (x) True: take A = {{1, 3}} ∈ X.
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15. Define subsets X, Y and Z of the natural numbers as follows:

X = {n ∈ N : 6 divides n− 1}
Y = {n ∈ N : 3 divides n− 1}
Z = {n ∈ N : 3 divides n2 − 1.}

(a) Let n ∈ N. Show that n ∈ X =⇒ n ∈ Y .

(b) Is X ⊆ Y true? Is Y ⊆ X true?

(c) Let n ∈ N. Show that n ∈ Y =⇒ n ∈ Z.

(d) Is X ⊆ Z true?

(a) We use a chain of implications:

n ∈ X =⇒ 6 divides n− 1

=⇒ (∃q ∈ Z)(n− 1 = 6q)

=⇒ (∃s ∈ Z)(n− 1 = 3s) ; take s = 2q

=⇒ 3 divides n− 1

=⇒ n ∈ Y.
(b) Since n ∈ X =⇒ n ∈ Y we have X ⊆ Y . Since 4 ∈ Y but 4 6∈ X,

Y 6⊆ X.

(c) We have

n ∈ Y =⇒ 3 divides n− 1

=⇒ (∃q ∈ Z)(n− 1 = 3q)

=⇒ (∃s ∈ Z)
(
(n− 1)(n+ 1) = 3s) ; take s = (n+ 1)q

=⇒ (∃s ∈ Z)(n2 − 1 = 3s)

=⇒ 3 divides n2 − 1

=⇒ n ∈ Z.
(d) Since X ⊆ Y and Y ⊆ Z, we have X ⊆ Z.

Remark. The answer to (d) uses the transitivity of the ⊆ rela-
tion. There is a corresponding transitivity of implication: (P =⇒
Q) ∧ (Q =⇒ R) implies P =⇒ R.


