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1. Introduction

This is more a survey paper of my recent work than the summary that

was asked for, but I hope it will still be of interest to some readers. If you

skim the unnumbered theorems in §2 and §3 and Theorem 3.3 you’ll get a

flavour of my recent work.

1.1. Outline. §2 presents joint work on SL2(C)-plethysms with Paget [15]

and with McDowell [13], replacing C with an arbitrary field. In §3 we

present a theory on the maximal and minimal constituents of a general

plethysm sν ◦ sµ proved using highest-weight vectors in joint work with

deBoeck and Paget [4], and give some related stability results. In §4 reports

on recent joint work with Paget with a more combinatorial flavour. In §5

makes a connection with a recent paper of Law [9]. Finally §6 has some open

problems. The appendix is a record, of most interest only to the author,

of work in progress with Paget, which we hope to continue at the MFO

meeting.

Date: September 20, 2022.



1.2. Plethysms and modules. Let E be the natural representation of

GLd(C) and let Par(n) be the set of partitions of n. For λ ∈ Par(n), the

Schur function sλ, evaluated at d variables, is the formal character of the

polynomial representation ∇λ(E) of GLd(C). Equivalently, sλ(γ1, . . . , γd)

is the trace of the diagonal matrix diag(γ1, . . . , γd) acting on ∇λ(E). For

instance, ∇(n)(E) = SymnE and correspondingly

s(n)(x1, . . . , xd) =
∑

1≤i1≤...≤in≤d
xi1 . . . xid

is the complete symmetric function of degree n in d variables. To give an-

other example, if d = 3 then ∇(2,1)(E) restricts to the 8-dimensional adjoint

representation of SL3(C), famous from the eight-fold way. Its character

s(2,1)(x1, x2, x3) = x21x2 + x21x3 + x1x
2
2 + 2x1x2x3 + x1x

2
3 + x22x3 + x2x

2
3 enu-

merates the set SSYT≤3(2, 1) of the 8 semistandard tableaux of shape (2, 1)

with entries from {1, 2, 3}. These tableaux are shown in Figure 1 labelling

weight vectors on the sl3(C)-root lattice

α

β

1 1
3

2 2
3

1 1
2

2 3
3

1 2
2

1 3
3

1 2
3

1 3
2

Figure 1. The eight-fold way representation of either SL3(C) or sl3(C) with

weight spaces labelled by semistandard tableaux in SSYT≤3(2, 1): in the standard

notation α = ε1 − ε2, β = ε2 − ε3. Taking these as basic positive roots, the

unique highest weight vector (up to scalars) spans the weight space for α+ β; in

the construction used in [4], it is e21 ⊗ e2 − e1e2 ⊗ e1 ∈ Sym2E ⊗E, where E has

basis e1, e2, e3. See §3 for an indication of the general definition of ∇λ(E)

The plethysm product sν ◦sµ may be defined as the formal character of the

composite representation∇ν
(
∇µ(E)

)
. Decomposing sν◦sµ as a sum of Schur

functions, or equivalently, decomposing the representation ∇ν
(
∇µ(E)

)
into

a direct sum of irreducible representations, is one of the main open problems

in algebraic combinatorics.

Example 1.1. Let d = 2 and let E have basis e1, e2. There is a GL2(C)-

equivariant map Sym2
(
Sym2E

)
→ Sym4E defined by (uv)(xy) 7→ uvxy.
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The kernel of ‘multiply-out’ is spanned by e21e
2
2−(e1e2)

2. This vector affords

the one-dimensional determinant representation of GL(E), isomorphic to

∇(2,2)(E). Therefore, by complete reducibility,

(?) Sym2
(
Sym2E

) ∼= Sym4E ⊕∇(2,2)(E).

The proof reveals explicit highest weight vectors (e21)
2 and e21e

2
2 − (e1e2)

2

generating the two summands (see §3 for why this is significant). The de-

composition (?) can of course also be obtained working only with symmet-

ric functions. By definition s(2)(x1, x2) = x21 + x1x2 + x22, s(2)(y1, y2, y3) =

y21 + y1y2 + y22 + y1y3 + y2y3 + y23. Hence, by the definition of plethysm as

‘substitute monomials for variables’, we have

(s(2) ◦ s(2))(x1, x2, x3) = s(2)(x
2
1, x1x2, x

2
2)

= (x21)
2 + (x21)(x1x2) + (x1x2)(x1x2) + (x21)(x

2
2) + (x1x2)x

2
2 + (x22)

2

= x41 + x31x2 + 2x21x
2
2 + x1x

3
2 + x42

= s(4)(x1, x2) + s(2,2)(x1, x2).

The six summands above correspond to the canonical basis (e21)
2, (e21)(e1e2),

(e1e2)
2, (e21)(e

2
2), (e1e2)(e

2
2), (e22)

2 of Sym2 Sym2E and to the 6 tableaux

below, in which each outer tableaux has two entries from SSYT≤2(2).

1 1 1 1 , 1 1 1 2 , 1 1 2 2 , 1 2 1 2 , 1 2 2 2 , 2 2 2 2 .

We return to these ‘plethystic semistandard tableaux’ in §3 and §4 below.

We refer the reader to [4, Examples 1.7 ,1.10] for a geometric interpretation

of this example and a generalization that gives explicit decompositions by

highest weight vectors of Sym2 SymnE and Symn Sym2E for all n and d.

As this example suggests, the decomposition problem can profitably by

attacked by both algebraic and combinatorial methods.

For background on polynomial representations of GLd(C) see [7]. The

modules ∇λ(E) are constructed in [4] and also in [7, Ch. 4]. For the general

definition of plethysm and further background I recommend [10].

2. Plethysms for special linear groups

2.1. SL2(C) plethysms and Stanley’s Hook Content Formula. Classi-

cal Hermite reciprocity states that Symn SymmE ∼= Symm SymnE, where E

is the natural representation of SL2(C). In the setting of plethysms this is

equivalent to

(sn ◦ sm)(q, q−1) = (sm ◦ sn)(q, q−1)

and so to

sn(1, q, . . . , qm) = sm(1, q, . . . , qn)
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(The two variables x1 and x2 become q and q−1 to account for the determi-

nant condition on SL2(C).) The left-hand side above is the generating func-

tion for partitions contained in the m× n box and similarly the right-hand

side is the generating function for partitions in the n ×m box. Therefore

the two sides are equal. An attractive feature of this proof is that it shows

the connections between three areas of mathematics:

representations

of SL2(C)
−→ plethysms of sym-

metric functions
−→ combinatorial

enumeration
.

More generally, sλ(1, q, . . . , qm) is the generating function enumerating by

weight (i.e. the sum of all the entries) the set of semistandard Young tableau

of shape λ with entries from 0, 1, . . . ,m. It has a beautiful closed form given

by Stanley’s Hook Content Formula:

sλ(1, q, . . . , qm) = qb(λ)
∏

(i,j)∈[λ][j − i+m+ 1]q∏
(i,j)∈[λ][h(i,j)]q

where h(i,j) is the hook length for the box (i, j) in the Young diagram of λ,

[c]q = 1 + q + · · ·+ qc−1 is the usual quantum integer and b(λ) is a suitably

defined power. For instance, to prove Hermite reciprocity using Stanley’s

Hook Content Formula, we write

sn(1, q, . . . , qm) =
[m+ 1]q . . . [m+ n]q

[1]q . . . [m]q
=

(
m+ n

m

)
q

=

(
m+ n

n

)
q

=
[n+ 1]q . . . [m+ n]q

[1]q . . . [n]q
= sm(1, q, . . . , qn).

It is a simple exercise to give a similar proof of the Wronksian isomorphism∧` Sym`+m−1E ∼= Sym` SymmE. In joint work with Paget [15] we used the

three step machine above and Stanley’s Hook Content Formula to give many

more necessary and sufficient conditions for isomorphisms of representations

of SL2(C). The following simultaneous generalization of Hermite reciprocity

and the Wronksian isomorphism is a typical example.

Theorem (Theorem 1.6 in [15]). Let λ be a partition with at most ` parts.

There is an isomorphism ∇λ Sym`E ∼= Syma SymbE of representations of

SL2(C) if and only if λ is obtained by adding columns of length `+ 1 to one

of the partitions (a), (1a), (b), (1b), (ab), (ba), and ` is respectively b, a+b−1,

a, a+ b− 1, b, a.

2.2. Modular plethysms. Replacing C with a field of prime characteristic

reveals some further interesting features. To give some flavour of this, take

the setting of Example 1.1 and consider the left action of GL2(C), first on

Sym2E defined as usual as a quotient of E⊗E, and then on Sym2E defined
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as a subspace of E ⊗ E.

(
α β

γ δ

)
Sym2

7−→


e21 e22 e1e2

α2 β2 αβ

γ2 δ2 γδ

2αγ 2βδ αδ − βγ

 (
α β

γ δ

)
Sym27−→


e1⊗e1 e2⊗e2 e1⊗e2+e2⊗e1

α2 β2 2αβ

γ2 δ2 2γδ

αγ βδ αδ − βγ


These matrices show that, in characteristic 2, Sym2E has a two-dimensional

simple submodule with quotient the determinant representation, whereas

Sym2E has the determinant in its socle, with the two-dimensional composi-

tion factor at its top. In fact Sym2E is isomorphic to the contravariant dual

of Sym2E, in the sense of [7, §2.7], and also, one can show, to
∧2 Sym2E.

(As partial motivation for this, recall for a k-dimensional representation V of

a finite group G we have
∧k−1 V ∼= V ?.) This suggests the correct modular

generalization of the Wronskian isomorphism.

Theorem (Theorem 1.4 in [13]). Let F be a field and let E be the natural

representation of SL2(F ). For m, n ∈ N there is an isomorphism of SL2(F )-

representations

Symm SymnE ∼=
m∧

Symm+n−1E.

I like to think of this as a categorification the binomial identity
((
n+1
m

))
=(

m+n
m

)
, where

((
a
b

))
is the number of b-multisubsets of a set of size a.

As a corollary we obtain a modular version of Hermite reciprocity, namely

Symm SymnE ∼= Symn SymmE, holding over any field. Our proof gives

an explicit isomorphism. See [1, Remark 3.2] for a different proof of this

result. In [13] we also give an infinite family of examples of plethysms in

which an isomorphism holds working over C, but not over a field of given

prime characteristic p, even after considering all possible dualities. This

demonstrates that the existence of such ‘modular plethystic isomorphisms’

is far from obvious.

3. Highest weight vectors and plethysms

In my joint paper [4] with de Boeck and Paget we used highest weight

vectors to prove some new results on plethysms. We also generalized and

gave unified proofs for several older results. An important preliminary is to

define a canonical module isomorphic to ∇ν
(
∇µ(E)

)
with a basis indexed

by the plethystic semistandard tableaux seen in Example 1.1.

3.1. Plethystic semistandard tableaux. Throughout let d ∈ N and let

ν and µ be partitions.

Definition 3.1. A plethystic semistandard tableau of shape µν is a semis-

tandard ν-tableau whose entries are semistandard µ-tableaux. We denote by



6 MARK WILDON

PSSYT≤d(ν, µ) the set of plethystic semistandard tableaux of outer shape ν

whose µ-tableaux have entries from {1, . . . , d}.

Example 1.1 shows the six elements of PSSYT
(
(2), (2)

)
. Note that to

interpret ‘semistandard’ at the level of the outer ν-tableau one needs a total

order on the set of semistandard µ-tableaux. For s, t ∈ SSYT≤d(µ), we set

t < u if and only if the greatest entry appearing in a different column of t

to u appears further to the right in u. (It might be absent from t.) The

precise choice of order is irrelevant, for the same reason that one can pick

any order on {1, . . . , d} to define ‘semistandard’ in the usual integer case.

We refer the reader to [4, §2] for the general construction of ∇ν
(
∇µ(E)

)
using plethystic semistandard tableaux. Here we shall consider the impor-

tant special case when ν = (1n). In this case ∇(1n)
(
∇µ(E)

)
may be iden-

tified with
∧n∇µ(E). Let F (t) ∈ ∇µ(E) be the basis vector defined in [4,

§2] canonically labelled by t ∈ SSYT≤d(µ). For example, when µ = (2, 2)

we have

F
(
a c
b d

)
= eaec ⊗ ebed − ebec ⊗ eaed − eaed ⊗ ebec + ebed ⊗ eaec.

A basis for
∧n∇µ(E) is all F (t1)∧· · ·∧F (tn) where t1, . . . , tn ∈ SSYT≤d(µ)

and t1 < t2 < . . . < tn. Since an element of PSSYT
(
(1n), µ

)
is uniquely

determined by the set of entries in the single column of the outer tableau,

we see that this basis is in bijection with the set PSSYT((1n), µ
)
.

3.2. Maximal tableau families. A first step towards understanding an

arbitrary plethysm sν ◦ sµ is to understand its maximal and minimal con-

stituents in the dominance order.

Example 3.2. When µ = (m) we may identify ∇(m)(E) with SymmE. We

shall use this to show that s(14) ◦ s(3) has maximal constituents s(9,1,1,1),

s(8,3,1) and s(6,6). To show these appear as summands, it is equivalent to

show that if dimE = 4 then
∧4 Sym3E contains the irreducible representa-

tions ∇(9,1,1,1)(E),∇(8,3,1)(E) and ∇(6,6)(E). The following are eigenvectors

for the subgroup of 4 × 4 diagonal matrices having the weights (9, 1, 1, 1),

(8, 3, 1, 0) and (6, 6, 0, 0):

e31 ∧ e21e2 ∧ e21e3 ∧ e21e4,

e31 ∧ e21e2 ∧ e1e22 ∧ e21e3,

e31 ∧ e21e2 ∧ e1e22 ∧ e32.

Note that the first is

F
(

1 1 1
)
∧ F

(
1 1 2

)
∧ F

(
1 1 3

)
∧ F

(
114
)

which (after identifying ∇(13) with
∧3) is the basic vector of ∇(13)

(
∇(3)(E)

)
labelled by the plethystic semistandard tableaux shown in the margin. Sim-

1 1 1

1 1 2

1 1 3

1 1 4

ilarly the other two weight vectors are elements of the canonical basis of
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∇(13)
(
∇(3)(E)

)
labelled by elements of PSSYT≤4

(
(14), (2, 2)

)
. A convenient

way to see that these weight vectors are indeed highest weight uses the Lie

algebra action of sld(C on
∧4 Sym3E. For i ∈ {2, 3, 4} define X(i) ∈ sl4(C)

by X(i)ei = ei−1 and X(i)ej = 0 if j 6= i. A weight vector is highest weight

if and only if it is killed by each of the X(i). For instance,

X(2) · e31 ∧ e21e2 ∧ e1e22 ∧ e32 = e31 ∧ e31 ∧ e1e22 ∧ e32
+ e31 ∧ e21e2 ∧ 2e21e2 ∧ e32 + e31 ∧ e21e2 ∧ e1e22 ∧ 3e1e

2
2 = 0.

We leave it to the reader to continue by similar methods to see that no more

dominant partition can be the weight of a weight vector, and that no other

maximal constituents appear.

To generalize from this example, we say that a set of n distinct µ-tableaux

is a tableau family of shape µn. We define its weight wt(T ) to be the sum of

the weights of its µ-tableau elements and its type type(T ) to be the conjugate

of its weight, assuming that this is a partition. A µ-tableau family is maximal

if its weight is maximal in the dominance order, over all µ-tableau families

of its shape. The following is a special case of [4, Theorem 1.5].

Theorem 3.3. Let m, n ∈ N and let µ ∈ Par(m).

(i) The maximal partitions labelling constituents of s(1n) ◦ sµ are the

weights of the maximal tableau families of shape µn.

(ii) If m is even then the minimal partitions labelling constituents of s(1n)◦
sµ are the types of the maximal ableau families of shape µ′n.

This theorem can be proved using highest weight vectors by generalizing

the method seen in the example above. One difficulty, which in [4] we

work around using the analogue of Garnir relations for ∇µ(E), is that the

summands of X(i)·F (t) are not in general labelled by semistandard tableaux.

For example,

X(4) · F
(

1 2
4 4

)
= F

(
1 2
3 4

)
+ F

(
1 2
4 3

)
.

The difficulty is compounded when we replace
∧n with a general Schur

functor ∇ν , as in the full version of Theorem 1.5. We indicate a simpler

combinatorial proof of Theorem 1.5 in §4. See also §7 for some work in

progress which strengthens Theorem 3.3, and Theorem 4.1 for another ap-

plication of tableau families.

3.3. Stability results. Two further theorems from [4] concern stability

properties of plethysm coefficients. Again they are proved using highest

weight vectors. Let (k)tλ denote the partition obtained from λ by inserting

a new part of size k.
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Theorem (Theorem 1.1 from [4]). Let ν ∈ Par(n), let µ ∈ Par(m) and let

λ ∈ Par(mn). If r is at least the greatest part of µ then〈
sν ◦ s(r)tµ, s(nr)tλ

〉
=
〈
sν ◦ sµ, sλ

〉
.

This theorem was proved in the special case µ = (1m) in [3]. The main

step in our proof constructs an explicit bijection between the highest weight

vectors in ∇ν
(
∇µ(E)

)
of highest weight λ and the highest weight vectors in

∇ν
(
∇(r)tµ(E)

)
of highest weight (nr) t λ.

Theorem (Theorem 1.2 from [4]). Let ν ∈ Par(n), let µ ∈ Par(m) and let

λ ∈ Par(mn). If r ∈ N then〈
sν ◦ sµ+(1r), sλ+(nr)

〉
≥
〈
sν ◦ sµ, sλ

〉
and moreover

〈
sν ◦ sµ+N(1r), sλ+N(nr)

〉
is constant for

N ≥ n(µ1 + · · ·+ µr−1) + (n− 1)(µr + µr+1 − (λ1 + · · ·+ λr).

This theorem was first proved by Brion in [2] using geometric methods.

Our proof uses highest weight vectors to show that the condition N is tight

in infinitely many cases, and gives an explicit upper bound for the stable

multiplicity.

4. Some new results

This section outlines ongoing work with Paget in which we prove new

stability results, and generalize some of the theorems mentioned in §3 to

Schur functions labelled by skew partitions. Our methods are now entirely

combinatorial, using that if ν/ν? and µ/µ? are skew partitions then

(sν/ν? ◦ sµ/µ?)(x1, . . . , xd)

enumerates by weight the set PSSYT≤d
(
ν/ν?, µ/µ?

)
of plethystic semistan-

dard tableaux of shape ν/ν? having entries from SSYT≤d(µ/µ
?). The basic

observation used in this section is that, by the duality

〈hλ,monµ〉 =

{
1 if λ = µ

0 otherwise

between the complete homogeneous symmetric functions hλ and the mono-

mial symmetric functions monµ, we have

(†) 〈sν/ν? ◦ sµ/µ? , hλ〉 = |PSSYT≤d
(
ν/ν?, µ/µ?

)
λ
|,

where the subscript λ indicates the subset of plethystic semistandard tableaux

of weight λ. The special case that (s(2) ◦ s(2))(x1, x2) is the generating func-

tion enumerating PSSYT≤2
(
(2), (2)

)
was seen in Example 1.1: the reader is

invited to use h(2,2) = s(4) + s(3,1) + s(2,2) to confirm that 〈s(2) ◦ s(2), h(2,2)〉
is the coefficient of the monomial x21x

2
2.
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4.1. Revisiting stability results. To start, we outline how to prove the

second theorem in §3.3 in this setting. Since hλ = sλ + g where g is a sum

of symmetric functions labelled by partitions µ with µ� λ, the multiplicity〈
sν ◦ sµ+N(1r), sλ+N(nr)

〉
is constant for N ≥M provided, for each partition γ ∈ Par(mn) with γ�λ,

the multiplicity
〈
sν ◦sµ+N(1r), hγ+N(nr)

〉
is constant (that is, dependent only

on γ) for N ≥M . Therefore it suffices to show that, for each γ ∈ Par(mn)

with γ � λ, the size ∣∣PSSYT
(
ν, µ+N(1r)

)
γ+N(nr)

∣∣
is an increasing function of N , constant for N at least the given bound.

In turn (and being somewhat rough) this holds because when N is very

large, almost every µ-tableaux entry of a plethystic semistandard tableaux

T ∈ PSSYT
(
ν, µ+N(1r)

)
of weight γ+N(nr) must have, in its top-right, N

columns each beginning 1, 2, . . . , r. An analogous result, with a more tech-

nical lower bound on N , holds replacing µ with an arbitrary skew partition

and leads to a generalization of the theorem.

4.2. New stability results. The maximal tableaux families from §3.2 reap-

pear in the following new result.

Theorem 4.1. Let ν ∈ Par(m) and let µ/µ? be a skew partition of m. Let κ

be the weight of a maximal µ/µ?-tableaux family of size r. The multiplicity〈
sν+N(1r) ◦ sµ/µ? , sλ+Nκ

〉
is constant for N sufficiently large.

Two special cases of Theorem 4.1, both with µ? = ∅, have already ap-

peared in the literature.

(i) There is a unique maximal µ-tableaux family of size 1, whose single

element is the unique µ-tableaux of weight µ. In this case Theo-

rem 4.1 states that
〈
sν+N ◦ sµ, sλ+Nµ

〉
is constant for N sufficiently

large. This result was first proved by Brion in [2, Theorem 3.1].

(ii) For each d ∈ N, there is a maximal µ-tableaux family consisting

of every semistandard Young tableaux of shape µ with entries from

{1, . . . , d}. Suppose there are r such tableaux. Since these tableaux

are enumerated by the symmetric function sµ(x1, . . . , xd), each ele-

ment of {1, . . . , d} appears overall the same number rm/d times as an

entry in these r tableaux. The weight of the family is therefore (qd),

where q = rm/d. Theorem 4.1 states that
〈
sν+N(1r) ◦ sµ, sλ+N(qd)〉

)
is constant for N sufficiently large. In fact, by [5, (9)], the multiplic-

ity is constant for all N . It remains to be seen if a more careful proof

of Theorem 4.1 will give an explicit bound on when the multiplicity

becomes constant strong enough to imply the result in [5].
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The following example shows a case more typical of the full generality of

Theorem 4.1.

Example 4.2. Applied with the maximal (2)-tableaux family{
1 1 , 1 2 , . . . , 1 n

}
of weight (n + 1, 1n−1), a special case of Theorem 4.1 implies that, for any

ε ∈ Zr, the multiplicity〈
sN(1r) ◦ s(2), sε+N(n+1,1n−1)

〉
is constant for N sufficient large.

4.3. Maximal and minimal constituents. The following theorem gen-

eralizes Theorem 3.3 above and Theorem 1.5 in [4].

Theorem 4.3 (Maximals for skew partitions). Let µ/µ? ∈ SPar(m) and

let ν/ν? ∈ SPar(n). The maximal partitions λ in the dominance order such

that sλ is a constituent of sν ◦ sµ are precisely the maximal weights of the

plethystic semistandard tableaux of shape (µ/µ?)ν/ν
?
.

Note that when µ? = ∅ and ν/ν? = (1n) the relevant plethystic semistan-

dard tableaux are uniquely determined by the µ-tableau family of entries in

their single column, and this theorem reduces to Theorem 3.3(i). The main

idea needed in the proof was seen earlier in §4.1.

5. The Law–Okitani Theorem

Let κt (1j) denote the partition obtained from κ by inserting j new parts

of size 1. In [9], Law and Okitani prove the following result.

Proposition (Proposition 5.3 of [9]). The sequence of multiplicities

〈sνt(1r) ◦ s(2), sλ+(r)t(1r)〉

is constant for r sufficiently large.

At the July meeting in Hannover in memory of Prof. Christine Bessenrodt,

Law announced a generalization of this proposition in which (2) is replaced

with a general (m) and λ + (r) t (1r) with λ + (r(m − 1)) t (1r). I find it

striking that the partition (r, 1r) is the weight of the maximal (12)-tableaux

family of size r {
1
2
, 1

3
, . . . , 1

r+

}
where r+ denotes r+1. Also, generalizing Example 4.2,

(
r(m−1)+1, 1r−1

)
is the weight of the following maximal (m)-tableaux family of size r{

1 1 1. . . 1 1 2. . . . . . 1 1 r. . .
}

The following question therefore seems worth pursuing.
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Question 5.1. Is there a further generalization of Proposition 5.3 of [9] in

which the hypotheses include an arbitrary maximal tableaux family, and λ

grows in a way defined by the weight of this family?

It appears not to be possible to prove Proposition 5.3 in [9] using only

the combinatorial methods of §4.1. It may however be possible to give an

alternative proof using highest weight vectors as in §3 and the methods

from [4]. Such a proof might suggest how to answer Question 5.1 in the

affirmative.

6. Problems on modular plethysms

We end with three questions concerning categorifications of certain sym-

metric function identities.

6.1. Newell’s theorem. To motivate our first question we recall a theorem

of Newell (used several times in [9]) that if λ ∈ Par(mn) then

〈s(n) ◦ s(m+1), s(1n)+λ〉 = 〈s(1n) ◦ sm, sλ〉.

This is stated as Theorem 4.4 in [9] and proved using deflations (in the sense

of [6]). Another reference is [16]. The proof below uses the permutation

module H(ab) of Sab acting on set partitions of {1, . . . , ab} into b sets each

of size a.

Proof of Newell’s Theorem. Observe that, by Pieri’s rule, sλs(1n) = sλ+(1n)+

g where g is a sum of Schur functions labelled by partitions with strictly

more than n parts. Since no such Schur functions appear in s(n) ◦ s(m+1),

for example because this plethysm is contained in (s(m+1))
n, we have

(‡) 〈s(n) ◦ s(m+1), s(1n)+λ〉 = 〈s(n) ◦ s(m+1), sλs(1n)〉.

We now interpret the right-hand side in the symmetric group and apply

Frobenius reciprocity to get〈
s(n) ◦ s(m+1), sλs(1n)

〉
= dim HomFSn(m+1)

(
H(m+1)n , Sλ ⊗ sgnSn

xS(m+1)n

Smn×Sn

)
= dim HomFSnm×Sn

(
H(m+1)n

y
Smn×Sn , S

λ ⊗ sgnSn
)

where Sλ is the Specht module labelled by λ. The maximal submodule M of

H(m+1)n ↓Smn×Sn on which S{mn+1,...,mn+n} acts as the sign representation

is spanned by the anti-symmetrized set partitions

{A1, . . . , An}
∑

σ∈S{mn+1,...,mn+n}

σ sgn(σ).

Note that this quantity is non-zero if and only if {mn+ 1, . . . ,mn+ n} is a

transversal set of representatives for A1, . . . , An. We may therefore assume

that Ai contains mn + i. Observing that if τ ∈ Smn swaps two of the sets

Ai\{mn + i} then it acts with a sign on the antisymmetrised sum, we see

that M ∼=
(
InfSmoSnSn

sgnSn
)xSmoSn . This is the symmetric group module
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corresponding to the plethysm s(1n) ◦ sm, and so it follows that the right

hand side of (‡) is 〈s(1n) ◦ sm, sλ〉, as required. �

In the proof we implicitly constructed an adjoint functor to the functor

U 7→ (U ⊗ sgnSn) ↑Sr+nSr×Sn from mod−Sr to mod−Sr+n. Since we used that

M is the maximal direct summand on which sgnSn acts isotypically, it is

defined only in characteristic zero. More generally, one can define such an

adjoint for any partition κ, using the deflation/restriction functors in [6].

Question 6.1. Let F be a field of prime characteristic. When is there a

left- or right- adjoint to the functor Lκ : mod-FSn → mod-FSn+r defined by

Lκ(V ) = (V ⊗ Sκ)
xSn+r
Sn×Sr?

6.2. Modular adjoints to multiplication by a Schur function. We

now give the general linear group version of the previous problem. Fix an

infinite field F and let mod−GLd(F )s denote the category of polynomial

representations of GLd(F ) of polynomial degree s. For any partitions ν ∈
Par(n), κ ∈ Par(r) and λ ∈ Par(n+ r) we have

〈sλsκ, sν〉 = 〈sλ, sν/κ〉.

Working over C, the special case for partitions with at most d parts is

equivalent to

dim HomGLd(C)

(
∇λE ⊗∇κE,∇νE

)
= dim HomGLd(C)

(
∇λE,∇ν/κE

)
.

Thus the functor −⊗∇κ(E) : mod−GLd(F )n → mod−GLd(C)s+n is adjoint

to the functor mod−GLd(C)s+n → mod−GLd(C)s defined by ∇ν(E) 7→
∇ν/κ(E). (It is routine to generalise the construction in §2 of [4] of ∇λ(E)

to skew partitions.)

Question 6.2. Let F be an infinite field of prime characteristic. When does

the functor −⊗∇κ(E) : mod−GLd(F )n → mod−GLd(F )s+n have a left- or

right-adjoint?

In §6.1 we saw the special case when κ is (1n) of the analogous result for

the symmetric group.

It may seem natural to try to apply the tensor-hom adjunction, but since

∇κ(E) only has the structure of a representation of GLd(C), rather than a

bimodule structure, the functor HomGLd(F )(∇κ,−) maps into vector spaces

rather than the required mod−GLd(C)n. Questions 6.1 and 6.2 are clearly

related, but given the subtle nature of the inverse Schur functor (see [7, §6.2]

and [12]) it is not obvious that they will have the same answer.

6.3. A modular ω involution. The ω involution is defined on symmetric

functions by sλ 7→ sλ′ . Working with representations over C it lifts to the

endofunctor of mod−GLd(C) defined by ∇λ(E) 7→ ∇λ′(E).
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Question 6.3. Let F be an infinite field of prime characteristic. When is

there a modular lift of the ω involution to an endofunctor on mod−GLd(C)?

The analogous question for the symmetric group has a positive answer:

the functor Ω : mod−Sn → mod−Sn defined by Ω(V ) = V ⊗ sgn satisfies

Ω(Sλ) = (Sλ
′
)? by [8, Theorem 8.15]. The unexpected duality arises because

in prime characteristic we have Sλ ⊗ sgn ∼= (Sλ
′
)?. This makes me think

that the answer to Question 6.3 may be negative in general.

7. Appendix: Comparing maximal and minimal constituents

This section is on work in progress with Paget.

7.1. Motivation. The motivating example for the conjecture in this section

is the plethysm s(1n) ◦ s(2): we repeat some of the proof of Corollary 8.6 in

[14] below. There are many other routes to this result: see for instance [11,

20, I.8, Exercise 6(d)] or [17, Lemma 7].

Example 7.1. We shall prove that

s(15) ◦ s(2) = s(6,1,1,1,1) + s(5,3,1,1) + s(4,4,2).

The marginal plethystic semistandard tableaux corresponds to the multiset

family
{
{1, 1}, {1, 2}, {1, 3}

}
∪
{
{2, 2}, {2, 3}

}
of weight (4, 1, 1) + (0, 3, 1) =

(4, 4, 2). The tableau below indicates the contribution from (0, 3, 1) to the

1 1

1 2

1 3

2 2

2 3

weight (4, 4, 2) in bold:

1 1 1 1
2 2 2 2
3 3

.

Note that the shape of the hook uniquely determines the entries in the two

multisets {2, 2} and {2, 3}. Using Theorem 3.3(i), it follows that s(4,4,2) is

a maximal constituent of s(15) ◦ s(2). Similarly, using Theorem 3.3(ii), the

minimal constituents of s(1n) ◦ s(2) are labelled by the types of the maximal

families of n distinct 2-sets. The maximal set family
{
{1, 2}, {1, 3}, {1, 4}

}
∪{

{2, 3}, {2, 4}
}

has type (4, 1, 1) + (0, 3, 1) = (4, 4, 2). The tableau below

indicates the contribution from (0, 3, 1) to the type (4, 4, 2) in bold:

1 2 3 4
1 2 3 4
1 2

Therefore s(4,4,2) is both a maximal and a minimal constituent of s(15) ◦ s(2).
We leave it to the reader to verify by similar arguments that s(6,1,1,1,1) and

s5,3,1,1) are also simultaneous maximal and minimal constituents. Since any

constituent is dominates by a maximal and dominates a minimal, there are

no further summands in s(15) ◦ s(2).
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To generalize from this example, given a partition (α1, . . . , αs) with dis-

tinct parts, let 2[α] denote the partition whose first s parts are α1 + 1, α2 +

2, . . . , αs + s and whose main diagonal hook lengths are 2α1, 2α2, . . . , 2αs.

Thus 2[(3, 2)] = (4, 4, 2).

Proposition 7.2. For n ∈ N we have

s(1n) ◦ s(2) =
∑
α

s2[α]

where the sum is over all partitions α of n with distinct parts.

Proof. By Theorem 3.3(i), the maximal constituents of s(1n)◦s(2) are labelled

by the maximal weights of families of n distinct 2-multisets. A maximal

multiset family T of shape (2)n can be decomposed uniquely as T1∪ . . .∪Tr
where each Ti has the form

{
{i, i}, . . . , {i, i + bi}

}
. The multisets in Ti

contribute the 2(bi + 1) boxes

(??) (i, i), (i, i+ 1), . . . (i, i+ bi), (i+ 1, i), (i+ bi − 1, i)

to the Young diagram of the partition wt(T ). Therefore the maximal weights

of the families of n distinct 2-multisets are precisely the partitions of the

form 2[α] for α a partition of n with distinct parts. Similarly a maximal

multiset families of shape (12)n can be decomposed uniquely as T ′1 ∪ . . .∪T ′r
where each T ′i has the form {i, i + 1}, . . . , {i, i + 1 + bi}. The sets in T ′i
contribute exactly the same boxes as in (??) to the Young diagram of the

partition type(T ). Therefore, by Theorem 3.3(ii), the maximal constituents

of s(1n) ◦ s(2) are precisely the minimal constituents, every constituent is

both maximal and minimal, and the decomposition is as claimed. �

7.2. Conjugate tableau families. In the course of the proof of Proposi-

tion 7.2 we constructed a bijection between the maximal tableaux families of

shape (2)n and the maximal tableaux families of shape (12)n. We generalize

this bijection as follows.

Definition 7.3. Let µ ∈ Par(m). Given a µ-tableau t, we define the conju-

gate tableaux t′ by (i, j)t′ = (j, i)t − j + i. Given a µ-tableau family T the

conjugate tableau family T ′ is defined by conjugating each µ-tableau element

of T .

It is easily seen that the map t 7→ t′ defines a self-inverse bijection

SSYT≤t+`(µ)(µ) → SSYT≤t+`(µ′) µ
′. The map T 7→ T ′ does not in general

preserve maximality. It does however preserve the weaker closed property

from [4], stated below in Definition 7.8, and this suffices for our application.

Example 7.4. The closed families of shape (3, 1)3 and of shape (2, 1, 1)3

are shown in the table below.
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Closed family Weight Closed conjugate family Type

{
1 1 1
2

, 1 1 1
3

, 1 1 1
4

}
(9, 1, 1, 1)

{ 1 1
2
3

,
1 2
2
3

,
1 3
2
3

}
(3, 3, 3, 3)

{
1 1 1
2

, 1 1 1
3

, 1 1 2
2

}
(8, 3, 1)

{ 1 1
2
3

,
1 2
2
3

,
1 1
2
4

}
(4, 3, 2, 2, 1)

{
1 1 1
2

, 1 1 2
2

, 1 1 3
2

}
(7, 4, 1)

{ 1 1
2
3

,
1 1
2
4

,
1 1
2
5

}
(5, 2, 2, 13)

{
1 1 1
2

, 1 1 2
2

, 1 2 2
2

}
(6, 6)

{ 1 1
2
3

,
1 1
2
4

,
1 1
3
4

}
(4, 4, 14)

The family of shape (3, 1)4 and weight (7, 4, 1) is closed but not maximal.

But all four closed families of shape (2, 1, 1)4 have maximal weight, and

minimal type. Observe that in each row, the weight of the family T strictly

dominates the weight of the conjugate family T ′.

Conjecture 7.5. Let µ ∈ Par(m) with m ≥ 2. Let T be a closed tableau

family of shape µn. Then wt(T ) strictly dominates type(T ′) with equality

in and only if m = 2.

We outline a plan to prove this conjecture below. While examples may

suggest the result holds, with room to spare, some care is certainly needed.

For instance, the conjecture does not hold when m = 1, since then the

unique closed tableau family is
{

1 , 2 , n
}

of weight (1n) and type

(n). Since this tableau family is its own conjugate, in this case, the type

dominates the weight.

Corollary 7.6 (Conditional on Conjecture 7.5). Let m ∈ N be even and

let n ∈ N. Let µ ∈ Par(m) and let ν ∈ Par(n). Suppose that λ labels a

maximal constituent of s(1n) ◦ sµ. Let T be the corresponding closed tableau

family of shape µn. Let λ? be the type of the closed tableau family T ′. Then

〈s(1n) ◦ sµ, s?λ〉 ≥ 1 and λ� λ? with equality if and only if m = 2.

Proof. This follows from Conjecture 7.5 and Theorem 3.3. �

We remark that Corollary 7.6 can be generalized to an arbitrary parti-

tion ν, still with m even, by consider the tableau families corresponding to

each column in a plethystic semistandard tableau of shape µν . We believe

that there are no new cases where equality holds.

Problem 7.7. Is there a way to compare maximal and minimal constituents

of s(1n) ◦ sµ, or more generally, sν ◦ sµ, when the size of the partition µ is

odd?
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7.3. Plan to prove Conjecture 7.5.

Preliminaries. Given a finite multisubset S of N with entries in {1, . . . , d},
define v(S) ∈ Nd so that v(S)i is the multiplicity of i in S. For example,

v
(
{3, 4, 4, 6}

)
= (0, 0, 1, 2, 0, 1, 0, . . .). We define the dominance order on

finite multisubsets of N by setting S � T if and only if v(S) � v(T ). Thus

{3, 4, 4, 6}�{3, 4, 5, 6} but {3, 4, 4, 6} 6�{3, 5, 5, 5}. Given µ-tableaux t and u,

we set t � u if u can be obtained from t by successively decrementing entries

of t.

Definition 7.8. A tableau family is closed if it is a downset for �.

We remark that closed tableau families have weights of partition shape

and so have well-defined types.

Reduction to downsets problem. Let T be a closed tableau family of shape µn.

Order its elements t(1), . . . , t(n) so that each initial segment

T <` =
{
t(1), . . . , t

(`)}
is closed. Let ω

(`)
= wt(T <`). Observe that each T ′<` is closed. Let

τ
(`)

= type(T ′≤`). It suffices to prove that ω(`)� τ (`) for each `. This is true

when ` = 1 since t(1) is the unique least µ-tableau, having µi entries of i in

its row i, and this tableau is its own conjugate. For the inductive step, we

may suppose that

• the Young diagram [ω(`)] is obtained from the Young diagram [ω(`−
1)] by adding boxes in rows x1 ≤ . . . ≤ xm, corresponding to entries

in t
(`)

of x1, . . . , xm;

• xα is in box (aα, bα) of t
(`)

.

Then the tableau t′(`) has an entry yα = xα − aα + bα in its box (bα, aα)

for each α. Moreover [τ (`)] is obtained from [τ (`−1)] by adding boxes in

columns y1, . . . , ym. Order the xα so that x1 ≤ . . . ≤ xm and break ties

where xγ = xδ so that y1 ≤ . . . ≤ ym. Let zα be the row of the box added

to [τ (`−1)] for yα. Since y1 ≤ . . . ≤ ym, we have z1 ≥ . . . ≥ zm.

Suppose that y appears exactly once in t′(`). Then y appears exactly once

in the multiset {y1, . . . , ym}, as yγ say, and, by the definition of type, we

have zγ = wt
(
T <`

)
y

+ 1. In general, y appears as yγ , . . . , yδ where γ ≤ δ.

(Thus yγ−1 6= y = yγ = . . . = yδ 6= yδ+1.) We now have zγ > . . . > zδ where

zγ = wt
(
T <`

)
y

+ wt(t)y and zδ = wt
(
T <`

)
y

+ 1.

Therefore, by the characterisation of the dominance order in terms of

single box shifts, it suffices to prove that

(††) {x1, . . . , xm} �
⋃
y

{
wt
(
T <`

)
y

+ 1, . . . ,wt
(
T <`

)
y

+ wt(t)y
}

where the union is over the distinct elements y of t′. Note that the left-hand

side is the multiset of entries of t.
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Example 7.9. Take the maximal tableau family of shape (3, 1)3 and weight

(8, 3, 1) seen in Example 7.4. The chain ω(1), ω(2), ω(3) and the chain τ (1), τ (2),

τ (3) are shown below with the added boxes in each stage marked by •:

• • •
• ,

• • •

•
,

• •
• •

• • •
• , • •

• •
,

•

• •
•

For instance in the final step we add boxes in columns 1, 1, 2, 4 of [τ (2)],

corresponding to the entries in the marginal (2, 1, 1)-tableau t′ . The corre-

1 1
2
4sponding rows are 5, 4, 4, 1, respectively, obtained from the multiplicities of

1, 2 and 4 read from

wt

 1 1
2
3

,
1 2
2
3

 = (5, 3, 2, 0)

by adding the multiplicities in t′.

Special case. Observe that 1 ∈ {zm, . . . , z1} if and only if zm = 1, and so if

and only if t′
(`)

has an entry not seen in any previous t′(j) for j < `. Since

T <` is closed, and m ≥ 2, there is at least one entry of 1 in t
(`)

. Hence

x1 = 1 and the first case we need of the dominance condition in (††) holds.

Reduction. Our required condition (††) follows from the lemma below taking

T = T (`)
.

Lemma 7.10. Let µ ∈ Par(m) with m ≥ 2. Let T be a closed tableau family

of shape µ` and let t be a maximal element of T , so T \{t} is again closed.

Then

{x : x ∈ t}�
{

wt(T ′)y + 1, . . . ,wt(T ′)y + wt(t)y : y ∈ t′
}

with equality if and only if m = 2.

It is not too hard to prove the lemma when µ has either just one row (and

so T is a multiset family) or just one column (and so T is a set family). These

are in some sense the ‘tightest’ cases, but it will need some care to extend

the arguments to the general case.
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