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As motivation I began my talk with the observation that the vector spaces
Sym2 Cd−1 and

∧2 Cd both have the same dimension, namely
(
d
2

)
. An appealing

explanation is that if E is the natural 2-dimensional representation of SL2(C) then

Sym2 Symd−1E ∼=
∧2

SymdE as representations of SL2(C). This is generalized by
the Wronskian isomorphism

Symr Sym`E ∼=
r∧

Syml+r−1E,

categorifying the counting identity that the number of r-multisubsets of {1, . . . , `+
1} is the number of r-subsets of {1, . . . , `+r}. It is natural to ask if the Wronskian
isomorphism holds over fields other than C. The answer is ‘yes’, provided that a
suitable duality is introduced, replacing a Symr with its dual functor Symr; this
corresponds to taking invariants rather than coinvariants in a tensor power.

Theorem (McDowell–W, Theorem 1.4 in [4]). Let F be a field and let E be the
natural representation of SL2(F ). For r, ` ∈ N there is an isomorphism of SL2(F )-
representations

Symr Sym`E ∼=
r∧

Symr+`−1E.

Isomorphisms of SL2(C)-modules such as
∧r

Symr+`−1E were studied system-
atically in my joint paper [5] with Rowena Paget. An essential result was the
following equivalent characterisations:

(i) ∇λ Sym`E ∼=SL2(C) ∇µ SymmE;

(ii) (sλ ◦ s(`))(q, q−1) = (sµ ◦ s(m))(q, q
−1);

(iii) sλ(q`, q`−2, . . . , q−`) = sµ(qm, qm−2, . . . , q−m);
(iv) sλ(1, q, . . . , q`) = sµ(1, q, . . . , qm) up to a power of q

Here ∇λ is the Schur functor for the partition λ and sλ ◦s` is the plethysm product
of the two Schur functions, defined by substituting the monomials in s` for the
variables in sλ. In this case, the chosen variables are q and q−1, and since s`(x, y) =
x`+x`−1y+· · ·+y`, the monomials are q`, q`−2, . . . , q−`. Because of this connection
with symmetric functions, we refer to isomorphisms, such as those in the theorem
stated above, as modular plethysms. For further background and some motivation
for why composition of Schur functors corresponds to the plethysm product on
Schur functions, see [3].

Example. Hermite reciprocity is the isomorphism

Symr Sym`E ∼= Sym` Symr E.

By the equivalence of (i) and (iv), taking λ = (r) and m = r, it is equivalent
to prove that s(r)(1, q, . . . , q

`) = s(`)(1, q, . . . , q
r). Remembering that s(n) is the

complete symmetric function, this follows by interpreting the left-hand side as the
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generating function enumerating partitions whose Young diagram is contained in
a box with r rows and ` columns, and the right-hand side similarly, using the box
with ` rows and r columns.

In this example we saw a combinatorial proof of an algebraic isomorphism. To
continue in this theme, a very useful result is Stanley’s Hook Content Formula [6,
Theorem 7.21.2], which states that there is a power qb(λ) such that

sλ(1, q, . . . , qm) = qb(λ)
∏

(i,j)∈[λ][j − i+m+ 1]q∏
(i,j)∈[λ][h(i,j)]q

where [r]q is the quantum integer (qr − 1)/(q − 1) and h(i,j) is the hook length
of the box (i, j) of the Young diagram [λ]. Note that j − i is the content of the
box (i, j) ∈ [λ], so the quantum integers in the numerator are the contents of [λ],
shifted by `+ 1. Using this result Paget and I proved the following simultaneous
generalization of Hermite reciprocity and the Wronksian isomorphism.

Theorem (Paget–W, Theorem 1.6 in [5]). Let λ be a partition with at most `

parts. There is an isomorphism ∇λ Sym`E ∼= Syma SymbE of representations
of SL2(C) if and only if λ is obtained by adding columns of length ` + 1 to one
of the partitions (a), (1a), (b), (1b), (ab), (ba), and ` is respectively b, a + b − 1, a,
a+ b− 1, b, a.

A related result is the converse of a theorem of King. For a fixed s, let λ•d

denote the complement of the partition λ having largest part at most s in a d× s
box. For example if s = 5 then (4, 3, 3, 1)•4 = (4, 2, 2, 1).

Theorem (King 1985 [if], Paget–W 2019 [only if]). Let λ have at most d parts.
Then

∇λ Sym`E ∼= ∇λ
•d

Sym`E

if and only if λ = λ•d or ` = d− 1.

Using Stanley’s Hook Content Formula one can obtain an attractive combi-
natorial interpretation of this theorem. To illustrate it by example, again take

s = 5 and λ = (4, 3, 3, 1). By the theorem, ∇λ Sym3E ∼= ∇λ
•4

Sym3E. The two
tableaux below show the hook lengths of [λ] and [λ•4] in ordinary type numbers,
and the shifted contents in bold. Please ignore the subscripts for the moment.
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Thus the left-hand tableau has the quantum integers appearing in∏
(i,j)∈[λ]

[i− j + 4]q
∏

(i,j)∈[λ•4]

[h(i,j)(λ)]q
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and the right-hand tableaux has the quantum integers appearing in the analogous
product swapping λ and λ•4. By Stanley’s formula, the two products are equal.
Hence, by a unique factorization result for quantum integers, proved as Lemma 3.2
in [5], the multisets of entries in the two tableaux are equal. I gave a combinatorial
proof of this fact in [7]. After seeing this paper, Prof. Christine Bessenrodt [2]
observed that by [1] a stronger combinatorial result holds, in which the hooks and
shifted contents are paired with their corresponding arm lengths, as shown in the
tableaux above as subscripts.

Problem. Give an algebraic proof of Bessenrodt’s observation using Jack sym-
metric functions.

Returning to the original algebraic theorem, it is natural to ask when its iso-
morphism holds over other fields. The following result gives, we believe, the more
precise possible answer.

Theorem (McDowell–W, Theorem 1.2 in [4]). Let G be a group. Let V be a d-
dimensional representation of G over an arbitrary field. Let s ∈ N, and let λ be a
partition with `(λ) ≤ d and first part at most s. There is an explicit isomorphism

∇λV ∼= ∇λ
•d
V ? ⊗ (detV )⊗s.

In the final part of my talk I emphasised that the existence of such modular
plethysms is far from obvious, and there are many cases where an isomorphism
known to hold for SL2(C) does not generalize to arbitrary fields.

Theorem (McDowell–W 2020, Theorem 1.6 in [4]). Let F be an infinite field
of prime characteristic p. There exist infinitely many pairs (a, b) such that, pro-
vided e is sufficiently large, the eight representations of SL2(F ) obtained from

∇(a+1,1b) Sympe+bE by

• Replacing ∇ with ∆ (duality)
• Replacing (a + 1, 1b) with (b + 1, 1a) and pe + b with pe + a (King conju-

gation);

• Replacing Sym`E with Sym`E (another duality);

are all non-isomorphic.

Even establishing the non-existence of an isomorphism is not easy, because the
existence of an isomorphism over SL2(C) means that many of the standard tech-
niques, for example, considering the image of representations in the Grothendieck
ring, are inapplicable. I recommend the further study of these modular plethysms.
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