NOTES ON POLYNOMIAL REPRESENTATIONS OF GENERAL LINEAR GROUPS

MARK WILDON

Contents

1. Definition of polynomial representations 1
2. Weight spaces 3
3. Definition of the Schur functor 7
4. Appendix: some remarks on algebraic groups and comodules 8

References 10

Acknowlegement. I am very grateful to Darij Grinberg for several corrections to errors in these notes and helpful suggestions for clarifying remarks. Of course I have full responsibility for any remaining errors.
Notation: A composition of an non-negative integer n is a tuple of nonnegative integers whose sum is n.

1. Definition of polynomial Representations

Let F be an infinite field. For each pair (i, j) with $1 \leq i, j \leq n$, let $X_{i j}: \mathrm{GL}_{n}(F) \rightarrow F$ be the coordinate function sending a matrix x to its entry $x_{i j}$. Let $F\left[X_{i j}\right]$ denote the algebra generated by these functions. As this notation suggests, we identify $F\left[X_{i j}\right]$ with the polynomial ring in n^{2} indeterminants; this is admissible because the field F is infinite.

Let V be a finite-dimensional F-representation of $\mathrm{GL}_{n}(F)$. We say that V is a polynomial representation if there is a basis v_{1}, \ldots, v_{d} of V such that the functions $f_{a b}: \mathrm{GL}_{n}(F) \rightarrow F$ for $1 \leq a, b \leq d$ defined by

$$
\begin{equation*}
g v_{b}=\sum_{a} f_{a b}(g) v_{a} \quad \text { for } g \in \mathrm{GL}_{n}(F) \tag{1}
\end{equation*}
$$

lie in the polynomial algebra $F\left[X_{i j}\right]$. Thus a representation of $\mathrm{GL}_{n}(F)$ is polynomial if and only if the action of each $g \in \mathrm{GL}_{n}(F)$ on V is given by a fixed family of polynomials in the entries of g.
1.1. Example. Let $n=2$ and let E be a 2-dimensional F-vector space with basis e_{1}, e_{2}. The symmetric square $\operatorname{Sym}^{2} E$ is then a representation of $\mathrm{GL}_{2}(F)$. With respect to the basis $e_{1}^{2}, e_{1} e_{2}, e_{2}^{2}$ of $\operatorname{Sym}^{2} E$, the matrix

$$
\left(\begin{array}{ll}
\alpha & \gamma \\
\beta & \delta
\end{array}\right) \in \mathrm{GL}_{2}(F)
$$

acts on $\operatorname{Sym}^{2} E$ as

$$
\left(\begin{array}{ccc}
\alpha^{2} & \alpha \gamma & \gamma^{2} \\
2 \alpha \beta & \alpha \delta+\beta \gamma & 2 \gamma \delta \\
\beta^{2} & \beta \delta & \delta^{2}
\end{array}\right)
$$

The representation $\operatorname{Sym}^{2} E$ is therefore polynomial, with $f_{11}=X_{11}^{2}, f_{12}=$ $X_{11} X_{12}, f_{13}=X_{12}^{2}$, and so on.
1.2. Non-example. Let $n=2$ and let $\rho: \mathrm{GL}_{2}(F) \rightarrow \mathrm{GL}_{1}(F)=F^{\times}$be the representation defined by $\rho(g)=(\operatorname{det} g)^{-1}$. If ρ is a polynomial representation, then the function $\mathrm{GL}_{2}(F) \rightarrow F$ defined by

$$
g \mapsto(\operatorname{det} g)^{-1}=\left(X_{11}(g) X_{22}(g)-X_{12}(g) X_{21}(g)\right)^{-1}
$$

would be a polynomial in the $X_{i j}$. We leave it to the reader to check that this is impossible.

For a more exciting non-example, keep $n=2$ and suppose that $F=\mathbf{R}$. Define $\rho: \mathrm{GL}_{2}(\mathbf{R}) \rightarrow \mathrm{GL}_{2}(\mathbf{R})$ by

$$
\rho\left(\begin{array}{ll}
\alpha & \gamma \\
\beta & \delta
\end{array}\right)=\left(\begin{array}{cc}
1 & \log |\alpha \delta-\beta \gamma| \\
0 & 1
\end{array}\right) .
$$

It is routine to check that ρ is a representation of $\mathrm{GL}_{2}(\mathbf{R})$. The function $f_{12}: \mathrm{GL}_{2}(\mathbf{R}) \rightarrow \mathbf{R}$ giving the entry in position $(1,2)$ of a representing matrix is

$$
g \mapsto \log \left|X_{11}(g) X_{22}(g)-X_{12}(g) X_{21}(g)\right|,
$$

which is clearly some way from being a polynomial in the $X_{i j}$. By Remark (i) below, ρ is not a polynomial representation.

1.3. Remarks.

(i) If the functions $f_{a b}$ defined by equation (1) are polynomials in the $X_{i j}$ for one choice of basis of V, then they are polynomials for all choices of basis.
(ii) Suppose that $\rho: \mathrm{GL}_{n}(F) \rightarrow \mathrm{GL}_{d}(F)$ and $\sigma: \mathrm{GL}_{d}(F) \rightarrow \mathrm{GL}_{e}(F)$ are polynomial representations. Then the composition $\sigma \circ \rho: \mathrm{GL}_{n}(F) \rightarrow$ $\mathrm{GL}_{e}(F)$ is also polynomial. Such compositions are known as plethysms.
(iii) In order to give some idea why we assume F to be infinite, it is useful to examine a result for which this assumption is essential.

Proposition 1. Let E be an n-dimensional vector space and let $r \neq s$. The polynomial representations $E^{\otimes r}$ and $E^{\otimes s}$ of $\mathrm{GL}(E)$ have no common composition factors.

Proof. Given a polynomial representation V of $\mathrm{GL}(E)$, let cf $V \subseteq$ $F\left[X_{i j}\right]$ be the linear span of the coefficient functions $f_{a b}$ defined by (1). We note that if U is a subquotient of V then $\operatorname{cf} U \subseteq \operatorname{cf} V$. Hence, if $E^{\otimes r}$ and $E^{\otimes s}$ have a common composition factor, $\operatorname{cf}\left(E^{\otimes r}\right) \cap$ $\operatorname{cf}\left(E^{\otimes s}\right) \neq 0$. But

$$
\operatorname{cf}\left(E^{\otimes r}\right)=\left\{f \in F\left[X_{i j}\right]: \operatorname{deg} f=r\right\} .
$$

so this is impossible.

The proof of the proposition clearly used our identification of $F\left[X_{i j}\right]$ with a polynomial ring; this fails when F is a finite field. Over \mathbf{F}_{q} for instance, we have

$$
X_{i j}^{q}=X_{i j} \quad \text { for all } i \text { and } j
$$

And indeed when F is finite, the proposition is usually false. For example, if $V=\mathbf{F}_{p}$ is the natural representation of $\mathbf{F}_{p}^{\times}=\operatorname{GL}\left(\mathbf{F}_{p}\right)$, then $V^{\otimes p}$ is in fact isomorphic to V. Similarly, if $V=\mathbf{F}_{3}^{2}$ then one has

$$
\phi_{V}^{3}=\phi_{V}+3 \bar{\phi}_{V}
$$

where ϕ_{V} denotes the Brauer character of V, so $V^{\otimes 3}$ and V have a common composition factor, namely V itself. (Note that in either case V is certainly polynomial. In fact, when F is finite every representation of $\mathrm{GL}_{n}(F)$ is polynomial, for the mundane reason that every function $F \rightarrow F$ is a polynomial.)
(iv) A more general context for polynomial representations is given by algebraic groups. Some remarks on this rather tricky subject are made in the Appendix. Green's lecture notes [2] provide a good introduction.

2. Weight spaces

Let T_{n} be the subgroup of $\mathrm{GL}_{n}(F)$ consisting of all its diagonal matrices. We shall write t_{1}, \ldots, t_{n} for the entries on the diagonal of $t \in T_{n}$. Let V be a polynomial representation of $\mathrm{GL}_{n}(F)$. Given α a composition of r with at most n parts, let V_{α} be the subspace of V defined by

$$
V_{\alpha}=\left\{v \in V: t v=t_{1}^{\alpha_{1}} \ldots t_{n}^{\alpha_{n}} v \text { for all } t \in T_{n}\right\} .
$$

We say that V_{α} is the α-weight space of V. Note that if we define polynomial representations of T_{n} by the obvious analogue of equation (1), then V_{α} is a polynomial representation of T_{n}.

It is an important fact that any polynomial representation of $\mathrm{GL}_{n}(F)$ decomposes as a direct sum of its weight spaces. This follows from the next theorem.

Theorem 2. If V is a polynomial representation of T_{n} then V decomposes as a direct sum of weight spaces. That is,

$$
V=\bigoplus_{\alpha} V_{\alpha}
$$

where the sum is over all compositions α with at most n parts.
An equivalent formulation is that (a) every simple polynomial representation of T_{n} is of the form $t \mapsto t_{1}^{\alpha_{1}} \ldots t_{n}^{\alpha_{n}}$ for some powers α_{i}, and (b) every representation of T_{n} is semisimple.

We first show that it suffices to prove the theorem in the case where $n=1$. This gives the base case for an inductive argument. Suppose that the theorem is known for representations of T_{n-1}. Since T_{n} is abelian, each
weight space for T_{n-1} is invariant under the action of the matrices

$$
t(\alpha)=\left(\begin{array}{llll}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & \alpha
\end{array}\right)
$$

By the $n=1$ case, we may decompose each T_{n-1}-weight space into common eigenspaces for the matrices $t(\alpha)$, such that in each eigenspace, $t(\alpha)$ acts as α^{r} for some $r \in \mathbf{N}_{\mathbf{0}}$. This gives the inductive step.

There does not appear any really easy proof of the base case that works for a general infinite field F. (Although part (a) of the equivalent formulation given above follows quite easily from Schur's Lemma, part (b) seems harder.) We outline three possible approaches.
2.1. Proof by Lie theory when $F=\mathbf{R}$. Consider the function $s: \mathbf{R} \rightarrow$ $\mathrm{GL}(V)$ defined by $s(x)=\rho\left(\mathrm{e}^{x}\right)$. Since

$$
s(x+t)=\rho\left(\mathrm{e}^{x+t}\right)=\rho\left(\mathrm{e}^{x}\right) \rho\left(\mathrm{e}^{t}\right)=s(x) \rho\left(\mathrm{e}^{t}\right),
$$

the derivative of s is given by

$$
s^{\prime}(x)=\rho^{\prime}(1) s(x) .
$$

Let $T=\rho^{\prime}(1) \in \operatorname{End}(V)$. The unique solution to the differential equation $s^{\prime}(x)=T s(x)$ is $s(x)=\exp (T x)$. Hence

$$
\rho\left(\mathrm{e}^{x}\right)=\exp (T x) .
$$

Suppose that $\lambda \in \mathbf{C}$ is an eigenvalue of T. By passing to $V \otimes_{\mathbf{R}} \mathbf{C}$, and taking a suitable basis of the complexified space, we see that there is a coordinate function f of the form

$$
f\left(\mathrm{e}^{x}\right)=\mathrm{e}^{\lambda x} .
$$

By our assumption that ρ is polynomial, $\lambda \in \mathbf{N}_{0}$. Hence all the eigenvalues of T are real, and there is a basis of V in which ρ is a direct sum of representations of the form

$$
\rho_{\alpha}(y)=\left(\begin{array}{ccccc}
y^{\alpha} & \star & \star & \ldots & \star \\
& y^{\alpha} & \star & \ldots & \star \\
& & \ddots & \vdots & \vdots \\
& & & y^{\alpha} & \star \\
& & & & y^{\alpha}
\end{array}\right)
$$

for some $\alpha \in \mathbf{N}_{0}$.
It only remains to show that the above diagonal entries must vanish for all y. This may be deduced from the functional equation $\rho_{\alpha}\left(y^{2}\right)=\rho_{\alpha}(y)^{2}$. For example, if $f(y)$ is the coordinate function for position $(1,2)$ we get

$$
y^{2 \alpha} f\left(y^{2}\right)=2 y^{\alpha} f(y) \quad \text { for all } y \in \mathbf{R},
$$

from which it follows by comparing degrees that $f=0$. (But note that if $\alpha=0$ and f is not assumed to be polynomial, then $\log |x|$ is a possibility.)
2.2. Ad-hoc argument. We first assume that F is algebraically closed. It follows that this assumption F that has infinitely many elements of finite order: in fact provided the field characteristic does not divide m, the polynomial $X^{m}-1$ has $\phi(m)$ roots in F of order m.

Let $x \in F^{\times}$have finite order m. The minimal polynomial of $\rho(x) \in \operatorname{GL}(V)$ must divide $X^{m}-1$ since

$$
\rho(x)^{m}=\rho\left(x^{m}\right)=\rho(1)=1
$$

Hence $X^{m}-1$ splits as a product of linear factors in F. It follows that $\rho(x)$ acts diagonalisably on V.

An infinite family of commuting diagonalisable matrices acting on a finitedimensional vector space may be simultaneously diagonalised. (This can be proved in much the same way as in the finite case by induction on the dimension of the space.) There is therefore a basis for V and polynomial functions $f_{i}: F^{\times} \rightarrow F$ such that

$$
\rho(x)=\left(\begin{array}{lll}
f_{1}(x) & & \\
& \ddots & \\
& & f_{d}(x)
\end{array}\right)
$$

for all x of finite order. It now follows easily that the f_{i} are of the form $f_{i}(x)=x^{\alpha_{i}}$ for some $\alpha_{i} \in \mathbf{N}_{0}$. The off-diagonal coordinate functions vanish on the infinite subset of F consisting of elements of finite order, so are identically zero.

We now prove the result when F is not necessarily algebraically closed. Let $F^{\text {alg }}$ denote the algebraic closure of F. Any polynomial representation $\rho: \mathrm{GL}_{n}(F) \rightarrow \mathrm{GL}(V)$ can be extended to a map $\tilde{\rho}: \mathrm{GL}_{n}\left(F^{\text {alg }}\right) \rightarrow$ $\mathrm{GL}\left(V \otimes_{F} F^{\text {alg }}\right)$ since the matrix coefficients are given by polynomials. We have $\tilde{\rho}(g h)=\tilde{\rho}(g) \tilde{\rho}(h)$ for all $g, h \in \mathrm{GL}_{n}(F)$; since $\mathrm{GL}_{n}(F)$ is a Zariski dense subset of $\mathrm{GL}_{n}\left(F^{\text {alg }}\right)$, it follows that $\tilde{\rho}$ is a polynomial representation of $\mathrm{GL}_{n}(F)$. I am grateful to Darij Grinberg for suggesting this argument.
2.3. Proof by comodules. Using the language of comodules it is possible to give a remarkably quick proof of Theorem 2. What follows is based on Green's paper [1]. (See the appendix for undefined terms.)
Proposition 3. Let R be a coalgebra which has a coalgebra decomposition

$$
R=\bigoplus_{n \in \mathbf{Z}} R_{n}
$$

If V is a comodule for R then there is a vector space decomposition

$$
V=\bigoplus_{n \in \mathbf{Z}} V_{n}
$$

such that the coefficient space of V_{n} is contained in R_{n}.
Before proving the proposition, we use it to prove Theorem 2. Let V be a polynomial representation of F^{\times}. Fix a basis v_{1}, \ldots, v_{d} of v, and let $f_{a b}: F^{\times} \rightarrow F$ be the coordinate functions defined by equation (1). If $T: F^{\times} \rightarrow F$ denotes the identity function then the coordinate functions $f_{a b}$ lie in $F[T]$. Now $F[T]$ is a coalgebra, with the coproduct Δ defined by

$$
(\Delta f)(x, y)=f(x y)
$$

Hence $\Delta T=T \otimes T$. Since the coproduct Δ commutes with the ordinary algebra product on $F[T]$, this determines Δ on all elements of $F[T]$. In particular, we have

$$
\Delta T^{r}=T^{r} \otimes T^{r} \quad \text { for all } r \in \mathbf{N}_{0}
$$

It follows that there is a coalgebra decomposition

$$
F[T]=\bigoplus_{r \in \mathbf{N}_{0}}\left\langle T^{r}\right\rangle_{F}
$$

We may make V into a comodule for $F[T]$ via the map $\tau: V \rightarrow F[T] \otimes V$ defined by

$$
\tau\left(v_{b}\right)=\sum_{a} f_{a b} \otimes v_{a} .
$$

It therefore follows from the proposition that there is a comodule decomposition

$$
V=\bigoplus_{r \in \mathbf{N}_{0}} V_{r}
$$

such that the coefficient space of V_{r} is contained in $\left\langle T^{r}\right\rangle_{F}$. In other words, if $v \in V_{r}$ then $\rho(x) v=x^{r} v$ for all $x \in F^{\times}$. We have therefore succeeded in decomposing V into weight spaces.

Remark 1. It is an interesting exercise to repeat this argument but working with T_{n} rather than $T_{1}=F^{\times}$. The coalgebra corresponding to T_{n} is an n-variable polynomial ring: the subspace of polynomials of a fixed degree is a subcoalgebra. Dualising the subcoalgebra consisting of polynomials of degree r gives a 'toroidal-Schur algebra'; this turns out to be semisimple and commutative with one primitive central idempotent for each possible weight space of degree r. Applying these idempotents to a polynomial representation decomposes it into weight spaces.

We may identify this algebra with the subalgebra of the usual Schur algebra $S(n, r)$ spanned by the idempotent elements ξ_{α} where α is a composition of r into at most n parts.

Remark 2. It follows from Proposition 3 that any polynomial representation of $\mathrm{GL}_{n}(F)$ decomposes as a direct sum of homogeneous representations, i.e. representations whose coordinate functions are polynomials of a fixed degree.

Proof of Proposition 3. Let

$$
V_{n}=\left\{v \in V: \tau(v) \subseteq R_{n} \otimes V .\right\}
$$

We first show that V_{n} is a subcomodule of V. The coaction τ respects the comultiplication Δ, so we have

$$
\left(1_{R} \otimes \tau\right) \tau v=\left(\Delta \otimes 1_{V}\right) \tau v \quad \text { for all } v \in V
$$

Suppose that for a given $v \in V$ we have $\tau v=\sum_{i} f_{i} \otimes w_{i}$. Then it follows from the last equation that

$$
\sum_{i} f_{i} \otimes \tau w_{i}=\sum_{i} \Delta f_{i} \otimes w_{i} .
$$

Since $f_{i} \in R_{n}$, we have $\Delta f_{i} \in R_{n}$. Hence the right-hand side of the above belongs to $R_{n} \otimes R_{n} \otimes V$. Hence $\tau w_{i} \in R_{n} \otimes V$ for each i, and so $\tau v \in R_{n} \otimes V$, as required.

We now claim that $V=\oplus_{n} V_{n}$. Let $v \in V$. Since $R=\oplus_{n} R_{n}$, we may write τv as a sum of elements of $R_{n} \otimes V$, say

$$
\tau v=\sum_{n} \sum_{i} f_{i}^{n} \otimes w_{i}^{n} \quad \text { where } f_{i}^{n} \in R_{n} \text { and } w_{i}^{n} \in V \text { for each } i
$$

Hence

$$
\sum_{n} \sum_{i} \Delta f_{i}^{n} \otimes w_{i}^{n}=\sum_{n} \sum_{i} f_{i}^{n} \otimes \tau w_{i}^{n}
$$

It follows that $\tau w_{i}^{n} \in R_{n} \otimes V$ for each n and i, and so $w_{i}^{n} \in V_{n}$. Now, the comodule equivalent of the identify element in an algebra acting as the identity transformation is

$$
(\epsilon \otimes \tau) v=v \quad \text { for all } v \in V
$$

Hence

$$
v=\sum_{n} \sum_{i} \epsilon\left(f_{i}^{n}\right) w_{i}^{n} \in \sum_{n} V_{n}
$$

It only remains to show that the sum is direct. Let $v_{i} \in V_{n}$ and suppose that $\sum_{i} \lambda_{i} v_{i}=0$. Applying τ we find that $\sum_{i} \lambda \tau v_{i}=0$. But the τv_{i} are linearly independent (since $\tau v_{i} \in R_{i} \otimes V$), hence $\lambda_{i}=0$ for all i.

3. Definition of the Schur functor

Fix $r \in \mathbf{N}$ and $n \in \mathbf{N}$ with $n \geq r$. Let V be a polynomial representation of $\mathrm{GL}_{n}(F)$, homogeneous of degree r. By Theorem $2, V$ decomposes as a direct sum of its weight spaces V_{α} where α is a composition of r with at most n parts. Let $\gamma=(1,1, \ldots, 1,0, \ldots, 0) \models r$ and let $\mathcal{F} V$ be the weight space V_{γ}. Thus

$$
\mathcal{F} V=\left\{v \in V: t v=t_{1} \ldots t_{r} v \quad \text { for all } t \in T_{n} .\right\}
$$

Let e_{1}, \ldots, e_{n} be the canonical basis of F^{n}. Let S_{r} denote the copy of the symmetric group of degree r consisting of those permutation matrices in $\mathrm{GL}_{n}(F)$ which permute e_{1}, \ldots, e_{r} and fix the remaining basis elements.
Lemma 4. If V be a polynomial representation of $\mathrm{GL}_{n}(F)$. then $\mathcal{F} V$ is invariant under the action of S_{r}.
Proof. Let $v \in \mathcal{F} V$ and let $g \in S_{r} \subset \mathrm{GL}_{n}(F)$. Let $t \in T_{n}$. We have

$$
t(g v)=g\left(g^{-1} t g\right) v=g t^{\prime} v
$$

where $t_{i}^{\prime}=t_{i g^{-1}}$. Hence t^{\prime} has the same set of entries as t in its first r diagonal positions, and $t^{\prime} v=t_{1} \ldots t_{r} v$. Therefore $g v \in \mathcal{F} V$, as required.

Suppose that V and W are polynomial representations of $\mathrm{GL}_{n}(F)$ and that $\theta: V \rightarrow W$ is a homomorphism. Let $v \in \mathcal{F} V$. We have

$$
t \theta(v)=\theta(t v)=\theta\left(t_{1} \ldots t_{r} v\right)=t_{1} \ldots t_{r} \theta(v)
$$

Hence θ restricts to a homomorphism $\mathcal{F} \theta: \mathcal{F} V \rightarrow \mathcal{F} W$. We have therefore shown that \mathcal{F} is a functor from the category of homogeneous polynomial representations of $\mathrm{GL}_{n}(F)$ of degree r to the category of F-representations of S_{r}. This functor is known as the Schur functor.

Lemma 5. The functor \mathcal{F} is exact.
Proof. Let

$$
0 \rightarrow U \stackrel{\theta}{\hookrightarrow} V \stackrel{\phi}{\rightarrow} W \rightarrow 0
$$

be a short exact sequence of polynomial representations of $\mathrm{GL}_{n}(F)$. Restriction is obviously exact, so the sequence

$$
0 \rightarrow U \downarrow_{T_{n}} \stackrel{\theta}{\hookrightarrow} V \downarrow_{T_{n}} \stackrel{\phi}{\rightarrow} W \downarrow_{T_{n}} \rightarrow 0
$$

is also exact. By Theorem 2, every polynomial representation of T_{n} is semisimple. Let $C \subseteq V$ be a T_{n}-complement to $\operatorname{im} \theta$. We may write the sequence

$$
0 \rightarrow \mathcal{F} U \rightarrow \mathcal{F} V \rightarrow \mathcal{F} W \rightarrow 0
$$

as

$$
0 \rightarrow \mathcal{F} U \rightarrow \mathcal{F} U \oplus C \xrightarrow{\mathcal{F} \phi} \mathcal{F} W \rightarrow 0
$$

where $\mathcal{F} \phi: C \rightarrow \mathcal{F} W$ is an isomorphism of vector spaces. Thus \mathcal{F} is exact.

Remark. It seems impossible to prove that \mathcal{F} is right exact without knowing some version of Theorem 2.

Remark. The term 'Schur functor' is also used in another sense for a family of functors generalizing the symmetric and exterior powers of a vector space.

4. Appendix: some remarks on algebraic groups and comodules

4.1. Coordinate rings. Recall that the coordinate ring of $\mathrm{GL}_{n}(F)$ is

$$
\mathcal{O}_{\mathrm{GL}_{n}(F)}=F\left[\operatorname{det}(X)^{-1}, X_{i j}: 1 \leq i, j \leq n\right]
$$

where $\operatorname{det}(X)$ denotes the expected polynomial in the $X_{i j}$. A representation $\rho: \mathrm{GL}_{n}(F) \rightarrow \mathrm{GL}_{d}(F)$ is said to be rational if and only if the pullback map

$$
\rho^{\star}: \mathcal{O}_{\mathrm{GL}_{d}(F)} \rightarrow \operatorname{Map}\left(\mathrm{GL}_{n}(F), F\right)
$$

defined by

$$
\rho^{\star}(h) g=h(\rho(g)) \quad \text { for } h \in \mathcal{O}_{\mathrm{GL}_{d}(F)}, g \in \mathrm{GL}_{n}(F)
$$

has image contained in $\mathcal{O}_{\mathrm{GL}_{n}(F)}$. (Or equivalently, if and only if ρ is a morphism of algebraic groups.)

Let $Y_{a b}$ be the coordinate functions on $\mathrm{GL}_{d}(F)$. We claim that a representation $\rho: \mathrm{GL}_{n}(F) \rightarrow \mathrm{GL}_{d}(F)$ is rational if and only if

$$
\rho^{\star}\left(Y_{a b}\right) \in \mathcal{O}_{\mathrm{GL}_{n}(F)} \quad \text { for } 1 \leq a, b \leq d
$$

This condition is obviously necessary. Conversely, if it holds then, since ρ^{\star} is a map of algebras, $\rho^{\star}(\operatorname{det} Y)$ lies in $\mathcal{O}_{\mathrm{GL}_{n}(F)}$. Now, $\rho^{\star}(\operatorname{det} Y)$ has inverse $\rho^{\star}(\operatorname{det} Y)^{-1}$, and it follows from the two lemmas below that the only invertible elements in $\mathcal{O}_{\mathrm{GL}_{n}(F)}$ are of the form $\lambda(\operatorname{det} X)^{r}$ for some $\lambda \in F$ and $r \in \mathbf{Z}$. Hence $\rho^{\star}(\operatorname{det} Y) \in \mathcal{O}_{\mathrm{GL}_{n}(F)}$. It follows that $\rho^{\star} \mathcal{O}_{\mathrm{GL}_{d}(F)} \subseteq \mathcal{O}_{\mathrm{GL}_{n}(F)}$.

Lemma 6. The polynomial $\operatorname{det} X \in F\left[X_{i j}\right]$ is irreducible.
Proof. Suppose that $\operatorname{det} X=f g$ where $f, g \in F\left[X_{i j}\right]$. For a fixed pair (i, j), we see that $\operatorname{det} X$ has degree 1 as a polynomial in $X_{i j}$. Hence each $X_{i j}$ appears in at most one of f and g. Let A be the set of pairs (i, j) such that $X_{i j}$ appears in f, and let B be the corresponding set for g. If (k, k) appears in A and (k, l) appears in B then $X_{k k} X_{k l}$ will appear in a monomial in $f g$, a contradiction. It follows that one of A and B is empty, and so either f or g is a unit.

Lemma 7. Let $A=F\left[Z_{1}, \ldots, Z_{k}\right]$ be a polynomial ring of degree k and let $f \in A$ be irreducible. If $g \in A\left[f^{-1}\right]=F\left[Z_{1}, \ldots, Z_{k}, f^{-1}\right]$ is invertible then $g=\lambda f^{r}$ for some $\lambda \in F$ and $r \in \mathbf{Z}$.

Proof. We may write

$$
g^{-1}=\sum_{\alpha=0}^{M} f^{-\alpha} h_{\alpha}
$$

for some polynomials $h_{\alpha} \in F\left[Z_{1}, \ldots, Z_{k}\right]$. Choose s sufficiently large that $g f^{s} \in F\left[Z_{1}, \ldots, Z_{k}\right]$. Multiplying through by $g f^{M+s}$ we find that

$$
f^{M+s}=g f^{s} \sum_{\alpha=0}^{m} f^{M-\alpha} h_{\alpha} .
$$

This equation expresses an equality in the unique factorisation domain $F\left[Z_{1}, \ldots, Z_{k}\right]$, in which the only units are the elements of F^{\times}. By assumption f is irreducible. Hence we must have $g f^{s}=\lambda f^{t}$ for some $t \in \mathbf{N}$ and $\lambda \in F$, and so $g=\lambda f^{t-s}$.

We note that $\rho^{\star}\left(Y_{a b}\right)$ is the function $f_{a b}$ defined by (1). We can therefore characterise polynomial representations as those rational representations ρ such that $\rho^{\star}\left(F\left[X_{a b}\right]\right) \subseteq F\left[X_{i j}\right]$.

As an example of how coordinate rings can be used to prove results about representations, consider the following result.
Proposition 8. Let $\rho: \mathrm{GL}_{n}(F) \rightarrow \mathrm{GL}_{d}(F)$ be a rational representation. Then there exists $r \in \mathbf{Z}$ such that $\operatorname{det} \rho(g)=(\operatorname{det} g)^{r}$ for all $g \in \mathrm{GL}_{n}(F)$.

Proof. The pullback $\rho^{\star}(\operatorname{det} Y)$ is an invertible element of $\mathcal{O}_{\mathrm{GL}_{d}(F)}$. Hence, we may apply Lemma 6 and Lemma 7 to deduce that

$$
\rho^{\star}(\operatorname{det} Y)=\lambda(\operatorname{det} X)^{r}
$$

for some $r \in \mathbf{Z}$ and $\lambda \in F^{\times}$. Applying both sides to $g \in \mathrm{GL}_{n}(F)$ we get that $\operatorname{det} \rho(g)=\lambda(\operatorname{det} g)^{r}$ for all $g \in G$. Put $g=1$ to get that $\lambda=1$.

The r in the proposition can be determined by taking degrees. For example, applying the proposition to the example of $S^{2}{ }^{2} E$ in $\S 1.1$ we get

$$
\operatorname{det}\left(\begin{array}{ccc}
\alpha^{2} & \alpha \gamma & \gamma^{2} \\
2 \alpha \beta & \alpha \delta+\beta \gamma & 2 \gamma \delta \\
\beta^{2} & \beta \delta & \delta^{2}
\end{array}\right)=(\alpha \delta-\beta \gamma)^{3} .
$$

This identity would be somewhat painful to prove by explicit calculation.

It is interesting to note that an analogous result holds for finite general linear groups. (But I cannot find a proof that will give both results at the same time.)
4.2. Coalgebras and comodules. Let G be an algebraic group. Let μ : $G \times G$ be the multiplication map. Let $\Delta=\mu^{\star}$ be the pullback of μ, defined by

$$
(\Delta f)(x, y)=f(x y) \quad \text { for } f \in \mathcal{O}_{G}, x, y \in G
$$

By definition, the image of Δ inside $\operatorname{Map}(G \times G, F)$ is contained in $\mathcal{O}_{G} \otimes \mathcal{O}_{\mathcal{G}}$. In fact \mathcal{O}_{G} becomes a coalgebra with coproduct Δ and counit $\epsilon: \mathcal{O}_{G} \rightarrow F$ defined by

$$
\epsilon(f)=f\left(1_{G}\right) \quad \text { for } f \in \mathcal{O}_{G} .
$$

It is useful to observe that the coproduct Δ commutes with the ordinary product on \mathcal{O}_{G}. That is,

$$
(\Delta f)(\Delta h)=\Delta(f h) \quad \text { for all } f, h \in \mathcal{O}_{G} .
$$

Thus \mathcal{O}_{G} is in fact a bialgebra. The formal definition of a coalgebra is not terribly enlightening, but can easily be worked out by dualising the usual definition of an algebra.

References

[1] Green, J. A. Locally finite representations. J. Algebra 41, 1 (1976), 137-171.
[2] Green, J. A. Polynomial representations of GL_{n}, vol. 830 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1980.

