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Notation: A composition of an non-negative integer n is a tuple of non-
negative integers whose sum is n.

1. Definition of polynomial representations

Let F be an infinite field. For each pair (i, j) with 1 ≤ i, j ≤ n, let
Xij : GLn(F ) → F be the coordinate function sending a matrix x to its
entry xij . Let F [Xij ] denote the algebra generated by these functions. As
this notation suggests, we identify F [Xij ] with the polynomial ring in n2

indeterminants; this is admissible because the field F is infinite.
Let V be a finite-dimensional F -representation of GLn(F ). We say that

V is a polynomial representation if there is a basis v1, . . . , vd of V such that
the functions fab : GLn(F )→ F for 1 ≤ a, b ≤ d defined by

gvb =
∑
a

fab(g)va for g ∈ GLn(F ) (1)

lie in the polynomial algebra F [Xij ]. Thus a representation of GLn(F ) is
polynomial if and only if the action of each g ∈ GLn(F ) on V is given by a
fixed family of polynomials in the entries of g.

1.1. Example. Let n = 2 and let E be a 2-dimensional F -vector space
with basis e1, e2. The symmetric square Sym2E is then a representation of
GL2(F ). With respect to the basis e21, e1e2, e

2
2 of Sym2E, the matrix(

α γ
β δ

)
∈ GL2(F )
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acts on Sym2E as  α2 αγ γ2

2αβ αδ + βγ 2γδ
β2 βδ δ2

 .

The representation Sym2E is therefore polynomial, with f11 = X2
11, f12 =

X11X12, f13 = X2
12, and so on.

1.2. Non-example. Let n = 2 and let ρ : GL2(F )→ GL1(F ) = F× be the
representation defined by ρ(g) = (det g)−1. If ρ is a polynomial representa-
tion, then the function GL2(F )→ F defined by

g 7→ (det g)−1 = (X11(g)X22(g)−X12(g)X21(g))−1

would be a polynomial in the Xij . We leave it to the reader to check that
this is impossible.

For a more exciting non-example, keep n = 2 and suppose that F = R.
Define ρ : GL2(R)→ GL2(R) by

ρ

(
α γ
β δ

)
=

(
1 log |αδ − βγ|
0 1

)
.

It is routine to check that ρ is a representation of GL2(R). The function
f12 : GL2(R)→ R giving the entry in position (1, 2) of a representing matrix
is

g 7→ log |X11(g)X22(g)−X12(g)X21(g)| ,
which is clearly some way from being a polynomial in the Xij . By Remark (i)
below, ρ is not a polynomial representation.

1.3. Remarks.

(i) If the functions fab defined by equation (1) are polynomials in the
Xij for one choice of basis of V , then they are polynomials for all
choices of basis.

(ii) Suppose that ρ : GLn(F )→ GLd(F ) and σ : GLd(F )→ GLe(F ) are
polynomial representations. Then the composition σ◦ρ : GLn(F )→
GLe(F ) is also polynomial. Such compositions are known as plethysms.

(iii) In order to give some idea why we assume F to be infinite, it is useful
to examine a result for which this assumption is essential.

Proposition 1. Let E be an n-dimensional vector space and let
r 6= s. The polynomial representations E⊗r and E⊗s of GL(E) have
no common composition factors.

Proof. Given a polynomial representation V of GL(E), let cf V ⊆
F [Xij ] be the linear span of the coefficient functions fab defined
by (1). We note that if U is a subquotient of V then cf U ⊆ cf V .
Hence, if E⊗r and E⊗s have a common composition factor, cf(E⊗r)∩
cf(E⊗s) 6= 0. But

cf(E⊗r) = {f ∈ F [Xij ] : deg f = r}.

so this is impossible. �
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The proof of the proposition clearly used our identification of
F [Xij ] with a polynomial ring; this fails when F is a finite field.
Over Fq for instance, we have

Xq
ij = Xij for all i and j.

And indeed when F is finite, the proposition is usually false. For
example, if V = Fp is the natural representation of F×p = GL(Fp),

then V ⊗p is in fact isomorphic to V . Similarly, if V = F2
3 then one

has

φ3V = φV + 3φ̄V

where φV denotes the Brauer character of V , so V ⊗3 and V have a
common composition factor, namely V itself. (Note that in either
case V is certainly polynomial. In fact, when F is finite every rep-
resentation of GLn(F ) is polynomial, for the mundane reason that
every function F → F is a polynomial.)

(iv) A more general context for polynomial representations is given by
algebraic groups. Some remarks on this rather tricky subject are
made in the Appendix. Green’s lecture notes [2] provide a good
introduction.

2. Weight spaces

Let Tn be the subgroup of GLn(F ) consisting of all its diagonal matrices.
We shall write t1, . . . , tn for the entries on the diagonal of t ∈ Tn. Let V be
a polynomial representation of GLn(F ). Given α a composition of r with at
most n parts, let Vα be the subspace of V defined by

Vα = {v ∈ V : tv = tα1
1 . . . tαn

n v for all t ∈ Tn}.

We say that Vα is the α-weight space of V . Note that if we define polynomial
representations of Tn by the obvious analogue of equation (1), then Vα is a
polynomial representation of Tn.

It is an important fact that any polynomial representation of GLn(F )
decomposes as a direct sum of its weight spaces. This follows from the next
theorem.

Theorem 2. If V is a polynomial representation of Tn then V decomposes
as a direct sum of weight spaces. That is,

V =
⊕
α

Vα

where the sum is over all compositions α with at most n parts.

An equivalent formulation is that (a) every simple polynomial represen-
tation of Tn is of the form t 7→ tα1

1 . . . tαn
n for some powers αi, and (b) every

representation of Tn is semisimple.
We first show that it suffices to prove the theorem in the case where

n = 1. This gives the base case for an inductive argument. Suppose that
the theorem is known for representations of Tn−1. Since Tn is abelian, each
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weight space for Tn−1 is invariant under the action of the matrices

t(α) =


1

. . .

1
α

 .

By the n = 1 case, we may decompose each Tn−1-weight space into common
eigenspaces for the matrices t(α), such that in each eigenspace, t(α) acts as
αr for some r ∈ N0. This gives the inductive step.

There does not appear any really easy proof of the base case that works for
a general infinite field F . (Although part (a) of the equivalent formulation
given above follows quite easily from Schur’s Lemma, part (b) seems harder.)
We outline three possible approaches.

2.1. Proof by Lie theory when F = R. Consider the function s : R →
GL(V ) defined by s(x) = ρ(ex). Since

s(x+ t) = ρ(ex+t) = ρ(ex)ρ(et) = s(x)ρ(et),

the derivative of s is given by

s′(x) = ρ′(1)s(x).

Let T = ρ′(1) ∈ End(V ). The unique solution to the differential equation
s′(x) = Ts(x) is s(x) = exp(Tx). Hence

ρ(ex) = exp(Tx).

Suppose that λ ∈ C is an eigenvalue of T . By passing to V ⊗RC, and taking
a suitable basis of the complexified space, we see that there is a coordinate
function f of the form

f(ex) = eλx.

By our assumption that ρ is polynomial, λ ∈ N0. Hence all the eigenval-
ues of T are real, and there is a basis of V in which ρ is a direct sum of
representations of the form

ρα(y) =


yα ? ? . . . ?

yα ? . . . ?
. . .

...
...

yα ?
yα


for some α ∈ N0.

It only remains to show that the above diagonal entries must vanish for
all y. This may be deduced from the functional equation ρα(y2) = ρα(y)2.
For example, if f(y) is the coordinate function for position (1, 2) we get

y2αf(y2) = 2yαf(y) for all y ∈ R,

from which it follows by comparing degrees that f = 0. (But note that if
α = 0 and f is not assumed to be polynomial, then log |x| is a possibility.)
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2.2. Ad-hoc argument. We first assume that F is algebraically closed.
It follows that this assumption F that has infinitely many elements of fi-
nite order: in fact provided the field characteristic does not divide m, the
polynomial Xm − 1 has φ(m) roots in F of order m.

Let x ∈ F× have finite orderm. The minimal polynomial of ρ(x) ∈ GL(V )
must divide Xm − 1 since

ρ(x)m = ρ(xm) = ρ(1) = 1.

Hence Xm− 1 splits as a product of linear factors in F . It follows that ρ(x)
acts diagonalisably on V .

An infinite family of commuting diagonalisable matrices acting on a finite-
dimensional vector space may be simultaneously diagonalised. (This can be
proved in much the same way as in the finite case by induction on the
dimension of the space.) There is therefore a basis for V and polynomial
functions fi : F× → F such that

ρ(x) =

f1(x)
. . .

fd(x)


for all x of finite order. It now follows easily that the fi are of the form
fi(x) = xαi for some αi ∈ N0. The off-diagonal coordinate functions vanish
on the infinite subset of F consisting of elements of finite order, so are
identically zero.

We now prove the result when F is not necessarily algebraically closed.
Let F alg denote the algebraic closure of F . Any polynomial representa-
tion ρ : GLn(F ) → GL(V ) can be extended to a map ρ̃ : GLn(F alg) →
GL(V ⊗F F alg) since the matrix coefficients are given by polynomials. We
have ρ̃(gh) = ρ̃(g)ρ̃(h) for all g, h ∈ GLn(F ); since GLn(F ) is a Zariski
dense subset of GLn(F alg), it follows that ρ̃ is a polynomial representation
of GLn(F ). I am grateful to Darij Grinberg for suggesting this argument.

2.3. Proof by comodules. Using the language of comodules it is possible
to give a remarkably quick proof of Theorem 2. What follows is based on
Green’s paper [1]. (See the appendix for undefined terms.)

Proposition 3. Let R be a coalgebra which has a coalgebra decomposition

R =
⊕
n∈Z

Rn.

If V is a comodule for R then there is a vector space decomposition

V =
⊕
n∈Z

Vn

such that the coefficient space of Vn is contained in Rn.

Before proving the proposition, we use it to prove Theorem 2. Let V
be a polynomial representation of F×. Fix a basis v1, . . . , vd of v, and let
fab : F× → F be the coordinate functions defined by equation (1). If
T : F× → F denotes the identity function then the coordinate functions fab
lie in F [T ]. Now F [T ] is a coalgebra, with the coproduct ∆ defined by

(∆f)(x, y) = f(xy).



6 MARK WILDON

Hence ∆T = T ⊗ T . Since the coproduct ∆ commutes with the ordinary
algebra product on F [T ], this determines ∆ on all elements of F [T ]. In
particular, we have

∆T r = T r ⊗ T r for all r ∈ N0

It follows that there is a coalgebra decomposition

F [T ] =
⊕
r∈N0

〈T r〉F .

We may make V into a comodule for F [T ] via the map τ : V → F [T ]⊗V
defined by

τ(vb) =
∑
a

fab ⊗ va.

It therefore follows from the proposition that there is a comodule decompo-
sition

V =
⊕
r∈N0

Vr

such that the coefficient space of Vr is contained in 〈T r〉F . In other words,
if v ∈ Vr then ρ(x)v = xrv for all x ∈ F×. We have therefore succeeded in
decomposing V into weight spaces.

Remark 1. It is an interesting exercise to repeat this argument but working
with Tn rather than T1 = F×. The coalgebra corresponding to Tn is an
n-variable polynomial ring: the subspace of polynomials of a fixed degree
is a subcoalgebra. Dualising the subcoalgebra consisting of polynomials of
degree r gives a ‘toroidal-Schur algebra’; this turns out to be semisimple and
commutative with one primitive central idempotent for each possible weight
space of degree r. Applying these idempotents to a polynomial representa-
tion decomposes it into weight spaces.

We may identify this algebra with the subalgebra of the usual Schur alge-
bra S(n, r) spanned by the idempotent elements ξα where α is a composition
of r into at most n parts.

Remark 2. It follows from Proposition 3 that any polynomial representation
of GLn(F ) decomposes as a direct sum of homogeneous representations,
i.e. representations whose coordinate functions are polynomials of a fixed
degree.

Proof of Proposition 3. Let

Vn = {v ∈ V : τ(v) ⊆ Rn ⊗ V.}

We first show that Vn is a subcomodule of V . The coaction τ respects the
comultiplication ∆, so we have

(1R ⊗ τ)τv = (∆⊗ 1V )τv for all v ∈ V .

Suppose that for a given v ∈ V we have τv =
∑

i fi ⊗ wi. Then it follows
from the last equation that∑

i

fi ⊗ τwi =
∑
i

∆fi ⊗ wi.
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Since fi ∈ Rn, we have ∆fi ∈ Rn. Hence the right-hand side of the above
belongs to Rn⊗Rn⊗V . Hence τwi ∈ Rn⊗V for each i, and so τv ∈ Rn⊗V ,
as required.

We now claim that V = ⊕nVn. Let v ∈ V . Since R = ⊕nRn, we may
write τv as a sum of elements of Rn ⊗ V , say

τv =
∑
n

∑
i

fni ⊗ wni where fni ∈ Rn and wni ∈ V for each i.

Hence ∑
n

∑
i

∆fni ⊗ wni =
∑
n

∑
i

fni ⊗ τwni .

It follows that τwni ∈ Rn ⊗ V for each n and i, and so wni ∈ Vn. Now,
the comodule equivalent of the identify element in an algebra acting as the
identity transformation is

(ε⊗ τ)v = v for all v ∈ V .
Hence

v =
∑
n

∑
i

ε(fni )wni ∈
∑
n

Vn.

It only remains to show that the sum is direct. Let vi ∈ Vn and suppose
that

∑
i λivi = 0. Applying τ we find that

∑
i λτvi = 0. But the τvi are

linearly independent (since τvi ∈ Ri ⊗ V ), hence λi = 0 for all i. �

3. Definition of the Schur functor

Fix r ∈ N and n ∈ N with n ≥ r. Let V be a polynomial representation
of GLn(F ), homogeneous of degree r. By Theorem 2, V decomposes as a
direct sum of its weight spaces Vα where α is a composition of r with at
most n parts. Let γ = (1, 1, . . . , 1, 0, . . . , 0) |= r and let FV be the weight
space Vγ . Thus

FV = {v ∈ V : tv = t1 . . . trv for all t ∈ Tn.}
Let e1, . . . , en be the canonical basis of Fn. Let Sr denote the copy of

the symmetric group of degree r consisting of those permutation matrices
in GLn(F ) which permute e1, . . . , er and fix the remaining basis elements.

Lemma 4. If V be a polynomial representation of GLn(F ). then FV is
invariant under the action of Sr.

Proof. Let v ∈ FV and let g ∈ Sr ⊂ GLn(F ). Let t ∈ Tn. We have

t(gv) = g(g−1tg)v = gt′v

where t′i = tig−1 . Hence t′ has the same set of entries as t in its first r
diagonal positions, and t′v = t1 . . . trv. Therefore gv ∈ FV , as required. �

Suppose that V and W are polynomial representations of GLn(F ) and
that θ : V →W is a homomorphism. Let v ∈ FV . We have

tθ(v) = θ(tv) = θ(t1 . . . trv) = t1 . . . trθ(v).

Hence θ restricts to a homomorphism Fθ : FV → FW . We have therefore
shown that F is a functor from the category of homogeneous polynomial
representations of GLn(F ) of degree r to the category of F -representations
of Sr. This functor is known as the Schur functor.
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Lemma 5. The functor F is exact.

Proof. Let

0→ U
θ
↪→ V

φ
�W → 0

be a short exact sequence of polynomial representations of GLn(F ). Re-
striction is obviously exact, so the sequence

0→ U
y
Tn

θ
↪→ V

y
Tn

φ
�W

y
Tn
→ 0

is also exact. By Theorem 2, every polynomial representation of Tn is
semisimple. Let C ⊆ V be a Tn-complement to im θ. We may write the
sequence

0→ FU → FV → FW → 0

as

0→ FU → FU ⊕ C Fφ−→ FW → 0

where Fφ : C → FW is an isomorphism of vector spaces. Thus F is
exact. �

Remark. It seems impossible to prove that F is right exact without knowing
some version of Theorem 2.

Remark. The term ’Schur functor’ is also used in another sense for a family
of functors generalizing the symmetric and exterior powers of a vector space.

4. Appendix: some remarks on algebraic groups and comodules

4.1. Coordinate rings. Recall that the coordinate ring of GLn(F ) is

OGLn(F ) = F [det(X)−1, Xij : 1 ≤ i, j ≤ n]

where det(X) denotes the expected polynomial in the Xij . A representation
ρ : GLn(F )→ GLd(F ) is said to be rational if and only if the pullback map

ρ? : OGLd(F ) → Map(GLn(F ), F )

defined by

ρ?(h)g = h(ρ(g)) for h ∈ OGLd(F ), g ∈ GLn(F )

has image contained in OGLn(F ). (Or equivalently, if and only if ρ is a
morphism of algebraic groups.)

Let Yab be the coordinate functions on GLd(F ). We claim that a repre-
sentation ρ : GLn(F )→ GLd(F ) is rational if and only if

ρ?(Yab) ∈ OGLn(F ) for 1 ≤ a, b ≤ d.

This condition is obviously necessary. Conversely, if it holds then, since
ρ? is a map of algebras, ρ?(detY ) lies in OGLn(F ). Now, ρ?(detY ) has

inverse ρ?(detY )−1, and it follows from the two lemmas below that the only
invertible elements in OGLn(F ) are of the form λ(detX)r for some λ ∈ F and
r ∈ Z. Hence ρ?(detY ) ∈ OGLn(F ). It follows that ρ?OGLd(F ) ⊆ OGLn(F ).
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Lemma 6. The polynomial detX ∈ F [Xij ] is irreducible.

Proof. Suppose that detX = fg where f, g ∈ F [Xij ]. For a fixed pair (i, j),
we see that detX has degree 1 as a polynomial in Xij . Hence each Xij

appears in at most one of f and g. Let A be the set of pairs (i, j) such that
Xij appears in f , and let B be the corresponding set for g. If (k, k) appears
in A and (k, l) appears in B then XkkXkl will appear in a monomial in fg,
a contradiction. It follows that one of A and B is empty, and so either f or
g is a unit. �

Lemma 7. Let A = F [Z1, . . . , Zk] be a polynomial ring of degree k and let
f ∈ A be irreducible. If g ∈ A[f−1] = F [Z1, . . . , Zk, f

−1] is invertible then
g = λf r for some λ ∈ F and r ∈ Z.

Proof. We may write

g−1 =
M∑
α=0

f−αhα

for some polynomials hα ∈ F [Z1, . . . , Zk]. Choose s sufficiently large that
gfs ∈ F [Z1, . . . , Zk]. Multiplying through by gfM+s we find that

fM+s = gfs
m∑
α=0

fM−αhα.

This equation expresses an equality in the unique factorisation domain
F [Z1, . . . , Zk], in which the only units are the elements of F×. By assump-
tion f is irreducible. Hence we must have gfs = λf t for some t ∈ N and
λ ∈ F , and so g = λf t−s. �

We note that ρ?(Yab) is the function fab defined by (1). We can therefore
characterise polynomial representations as those rational representations ρ
such that ρ?(F [Xab]) ⊆ F [Xij ].

As an example of how coordinate rings can be used to prove results about
representations, consider the following result.

Proposition 8. Let ρ : GLn(F ) → GLd(F ) be a rational representation.
Then there exists r ∈ Z such that det ρ(g) = (det g)r for all g ∈ GLn(F ).

Proof. The pullback ρ?(detY ) is an invertible element of OGLd(F ). Hence,
we may apply Lemma 6 and Lemma 7 to deduce that

ρ?(detY ) = λ(detX)r

for some r ∈ Z and λ ∈ F×. Applying both sides to g ∈ GLn(F ) we get
that det ρ(g) = λ(det g)r for all g ∈ G. Put g = 1 to get that λ = 1. �

The r in the proposition can be determined by taking degrees. For exam-
ple, applying the proposition to the example of Sym2E in §1.1 we get

det

 α2 αγ γ2

2αβ αδ + βγ 2γδ
β2 βδ δ2

 = (αδ − βγ)3.

This identity would be somewhat painful to prove by explicit calculation.
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It is interesting to note that an analogous result holds for finite general
linear groups. (But I cannot find a proof that will give both results at the
same time.)

4.2. Coalgebras and comodules. Let G be an algebraic group. Let µ :
G×G be the multiplication map. Let ∆ = µ? be the pullback of µ, defined
by

(∆f)(x, y) = f(xy) for f ∈ OG, x, y ∈ G
By definition, the image of ∆ inside Map(G×G,F ) is contained in OG⊗OG .
In fact OG becomes a coalgebra with coproduct ∆ and counit ε : OG → F
defined by

ε(f) = f(1G) for f ∈ OG.
It is useful to observe that the coproduct ∆ commutes with the ordinary
product on OG. That is,

(∆f)(∆h) = ∆(fh) for all f, h ∈ OG.
Thus OG is in fact a bialgebra. The formal definition of a coalgebra is not
terribly enlightening, but can easily be worked out by dualising the usual
definition of an algebra.
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