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Abstract. This paper proves a combinatorial rule expressing the prod-

uct sτ (sλ/µ ◦ pr) of a Schur function and the plethysm of a skew Schur

function with a power sum symmetric function as an integral linear

combination of Schur functions. This generalizes the SXP rule for the

plethysm sλ ◦ pr. Each step in the proof uses either an explicit bijection

or a sign-reversing involution. The proof is inspired by an earlier proof

of the SXP rule due to Remmel and Shimozono, A simple proof of the

Littlewood–Richardson rule and applications, Discrete Mathematics 193

(1998) 257–266. The connections with two later combinatorial rules for

special cases of this plethysm are discussed. Two open problems are

raised. The paper is intended to be readable by non-experts.

1. Introduction

Let f ◦ g denote the plethysm of the symmetric functions f and g. While

it remains a hard problem to express an arbitrary plethysm as an integral

linear combination of Schur functions, many results are known in special

cases. In particular, the SXP rule, first proved in [9, page 351] and later,

in a different way, in [2, pages 135–140], gives a surprisingly simple formula

for the plethysm sλ ◦ pr where sλ is the Schur function for the partition λ of

n ∈ N and pr is the power sum symmetric function for r ∈ N. It states that

sλ ◦ pr =
∑
ννν

sgnr(ννν
?)cλννν sννν? (1)

where the sum is over all r-multipartitions ννν =
(
ν(0), . . . , ν(r − 1)

)
of n, ννν?

is the partition with empty r-core and r-quotient ννν, sgnr(ννν
?) ∈ {+1,−1} is

as defined in §2 below, and cλννν = cλ(ν(0),...,ν(r−1)) is a generalized Littlewood–

Richardson coefficient, as defined at the end of §3 below.

In this note we prove a generalization of the SXP rule. The following

definition is required: say that the pair of r-multipartitions (ννν,τττ), denoted

ννν/τττ , is a skew r-multipartition of n if ν(i)/τ(i) is a skew partition for each

i ∈ {0, . . . , r − 1}, and n =
∑r−1

i=0

(
|ν(i)| − |τ(i)|

)
.
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Theorem 1.1. Let r ∈ N, let τ be a partition with r-quotient τττ , and let λ/µ

be a skew partition of n. Then

sτ (sλ/µ ◦ pr) =
∑
ννν

sgnr
(
(ννν/τττ , τ)?

)
cλννν/τττ :µs(ννν/τττ,τ)?

where the sum is over all r-multipartitions ννν such that ννν/τττ is a skew r-

multipartition of n, (ννν/τττ , τ)? is the partition, defined formally in Defini-

tion 2.1, obtained from τ by adding r-hooks in the way specified by ννν/τττ , and

ννν/τττ : µ is the skew (r+ 1)-multipartition obtained from ννν/τττ by appending µ.

Each step in the proof uses either an explicit bijection or a sign-reversing

involution on suitable sets of tableaux. The critical second step uses a special

case of a rule for multiplying a Schur function by the plethysm hα ◦ pr,
where hα is the complete symmetric function for the composition α. This

rule was first proved in [3, page 29] and is stated here as Proposition 2.3. A

reader familiar with the basic results on symmetric functions and willing to

assume this rule should find the proof largely self-contained. In particular,

we do not assume the Littlewood–Richardson rule. We show in §6.1 that

two versions of the Littlewood–Richardson rule follow from Theorem 1.1

by setting r = 1 and taking either τ or µ to be the empty partition. The

penultimate step in our proof is (12), which restates Theorem 1.1 in a form

free from explicit Littlewood–Richardson coefficients. In §6.2 we discuss

the connections with other combinatorial rules for plethysms of the type in

Theorem 1.1, including the domino tableaux rule for sτ (sλ◦p2) proved in [1].

An earlier proof of both the Littlewood–Richardson rule and the SXP

rule, as stated in (1), was given by Remmel and Shimozono in [17], us-

ing a involution on semistandard skew tableaux defined by Lascoux and

Schützenberger in [8]. The proof given here uses the generalization of this

involution to tuples of semistandard tableaux of skew shape. We include

full details to make the paper self-contained, while admitting that this gen-

eralization is implicit in [8] and [17], since, as illustrated after Example 3.3,

a tuple of skew tableaux may be identified (in a slightly artificial way) with

a single skew tableau. The significant departure from the proof in [17] is

that we replace monomial symmetric functions with complete symmetric

functions. This dualization requires different ideas. It appears to offer some

simplifications, as well as leading to a more general result.

The plethysm operation ◦ is defined in [12, §2.3], or, with minor changes

in notation, in [14, I.8], [18, A2.6]. For plethysms of the form f ◦ pr the

definition can be given in a simple way: write f as a formal infinite sum of

monomials in the variables x1, x2, . . . and substitute xri for each xi to obtain

f ◦pr. For example, s(2) ◦p2 = x41 +x42 +x43 + · · ·+x21x
2
2 +x21x

2
3 +x22x

2
3 + · · · =

s(4) − s(3,1) + s(2,2). By [12, page 167, P1], f ◦ pr = pr ◦ f ; several of the

formulae we use are stated in the literature in this equivalent form.
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Outline. The necessary background results on quotients of skew partitions

and ribbon tableaux are given in §2 below, where we also recall the plethystic

Murnaghan–Nakayama rule and the Jacobi–Trudi formula. In §3 we give

a generalization of the Lascoux–Schützenberger involution and define the

generalized Littlewood–Richardson coefficients appearing in Theorem 1.1.

The proof of Theorem 1.1 is then given in §4. An example is given in §5.

Further examples and connections with other combinatorial rules are given

in §6. In particular we deduce the Littlewood–Richardson rule as stated in

[6, Definition 16.1] and, originally, in [10, Theorem III]. In the appendix we

prove a ‘shape-content’ involution that implies the version of the Littlewood–

Richardson rule proved in [19]. We also prove a technical result motivating

Conjecture 6.7.

2. Prerequisites on r-quotients, ribbons and tableaux

We assume the reader is familiar with partitions, skew partitions and

border strips, as defined in [18, Chapter 7]. Fix r ∈ N throughout this

section. We represent partitions using an r-runner abacus, as defined in

[5, page 78], on which the number of beads is always a multiple of r; the

r-quotient of a partition is then unambiguously defined by [5, 2.7.29]. (See

§6.2 for a remark on this convention.) The further unnumbered definitions

below are taken from [3, page 28], [4, §3] and [17, §3], and are included to

make this note self-contained.

Signs and quotients of skew partitions. Let n ∈ N0 and let ν/τ be a skew

partition of rn. We say that ν/τ is r-decomposable if there exist partitions

τ = σ(0) ⊂ σ(1) ⊂ . . . ⊂ σ(n) = ν

such that σ(j)/σ(j−1) is a border strip of size r (also called an r-border strip)

for each j ∈ {1, . . . , n}. In this case we define the r-sign of ν/τ by

sgnr(ν/τ) =
n∏
j=1

(−1)ht(σ
(j)/σ(j−1)).

(Here ht(σ(j)/σ(j−1)) is the height of the border strip σ(j)/σ(j−1), defined to

be one less than the number of rows of σ(j) that it meets.) By [5, 2.7.26] or

[20, Proposition 3], this definition is independent of the choice of the σ(j).

If ν/τ is not r-decomposable, we set sgnr(ν/τ) = 0.

If ν/τ is r-decomposable then it is possible to obtain an abacus for ν

by starting with an abacus for τ and making n single-step downward bead

moves, that is, moves of a bead in a position β to position β + r. It follows

that if
(
ν(0), . . . , ν(r − 1)

)
is the r-quotient of ν and

(
τ(0), . . . , τ(r − 1)

)
is the r-quotient of τ then ν(i)/τ(i) is a skew partition for each i. We

define the r-quotient of ν/τ , denoted ννν/τττ , to be the skew r-multipartition(
ν(0)/τ(0), . . . , ν(r−1)/τ(r−1)

)
. Conversely, the pair (ννν/τττ , τ) determines ν.
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Figure 1. The skew partition (6, 5, 2, 1)/(3, 2) is a horizontal 3-ribbon

strip of size 9, with σ(1) = (3, 2, 2, 1) and σ(2) = (4, 4, 2, 1). The bor-

der strip σ(i)/σ(i−1) is marked i; the row-numbers are 3, 1 and 1,

in increasing order of i. The corresponding bead moves on an aba-

cus representing (3, 2) are shown; note these satisfy the condition in

Lemma 2.2(ii). The 3-quotient of (6, 5, 2, 1)/(3, 2) is
(
(1),∅, (2, 1)/(1)

)
,

and so
((

(1),∅, (2, 1)/(1)
)
, (3, 2)

)?
= (6, 5, 2, 1).

Definition 2.1. Let τ be a partition with r-quotient τττ =
(
τ(0), . . . , τ(r −

1)
)
. Let ννν/τττ be a skew r-multipartition of n. We define (ννν/τττ , τ)? to be

the unique partition ν such that ν/τ is a skew partition of rn with r-

quotient ννν/τττ .

Working with abaci with 6 beads, we have
((

(1),∅, (2, 1)/(1)
)
, (3, 2)

)?
=

(6, 5, 2, 1) as shown in Figure 1 above,
((

(1),∅, (2, 1)/(1)
)
, (3)

)?
= (6, 2, 2, 2)

and
((

(1), (2), (1)/(1)
)
, (3, 2)

)?
= (4, 4, 4, 1, 1). Here we use the convention

that a skew partition ν/∅ is written simply as ν.

Ribbons. Let ν/σ be a border strip in the partition ν. If row a is the least

numbered row of ν meeting ν/σ then we say that ν/σ has row number a

and write R(ν/σ) = a. Let r ∈ N and q ∈ N0. A skew partition ν/τ of rq is

a horizontal r-ribbon strip if there exist partitions

τ = σ(0) ⊂ σ(1) ⊂ . . . ⊂ σ(q) = ν (2)

such that σ(j)/σ(j−1) is an r-border strip for each j ∈ {1, . . . , q} and

R(σ(1)/σ(0)) ≥ . . . ≥ R(σ(q)/σ(q−1)). (3)

For examples see Figure 1 above and Figure 3 in §5.

The following lemma, which is used implicitly in [3], is needed in the

proof of Theorem 1.1. Informally, (iii) says that the border strips forming

a horizontal r-ribbon strip are uniquely determined by its shape. Note

also that (iv) explains the sense in which horizontal r-ribbon strips are

‘horizontal’.

Lemma 2.2. Let q ∈ N0 and let ν/τ be a skew partition of rq. The following

are equivalent:

(i) ν/τ is a horizontal r-ribbon strip;

(ii) if A is an abacus representing τ then, for each i ∈ {0, 1, . . . , r − 1},
there exists c ∈ N0 and unique positions β1, . . . , βc and γ1, . . . , γc on runner i
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of A with

β1 < γ1 < . . . < βc < γc

such that moving the bead in position βj down to the space in position γj, for

each j ∈ {1, . . . , c} and i ∈ {0, 1, . . . , r− 1}, gives an abacus representing ν;

(iii) there exist unique partitions σ(0), . . . , σ(q) satisfying (2) and (3);

(iv) each skew partition ν(i)/τ(i) in the r-quotient of ν/τ has at most one

box in each column of its Young diagram.

Proof. Let A be an abacus representing τ . If β is a position in A containing

a bead then the row-number of the r-border strip corresponding to a single-

step downward move of this bead is one more than the number of beads

in the positions {β + r + j : j ∈ N} of A. Thus a sequence of single-step

downward bead moves, moving beads in positions β1, . . . , βc in that order,

adds r-border strips in decreasing order of their row number, as required

by (3), if and only if β1 ≤ . . . ≤ βc. It follows that (i) and (ii) are equivalent.

It is easily seen that (ii) is equivalent to (iii) and (iv). �

Ribbon tableaux. Let n ∈ N0. Let ν/τ be a skew partition of rn and let α be

a composition of n with exactly ` parts. An r-ribbon tableau of shape ν/τ

and weight α is a sequence of partitions

τ = ρ(0) ⊂ ρ(1) ⊂ . . . ⊂ ρ(`) = ν (4)

such that ρ(j)/ρ(j−1) is a horizontal r-ribbon strip of size rαj for each j ∈
{1, . . . , `}. We say that ρ(j)/ρ(j−1) has label j. We denote the set of all r-

ribbon tableaux of shape ν/τ and weight α by r-RT(ν/τ, α). For an example

see §5 below.

A plethystic Murnaghan–Nakayama rule. In the second step of the

proof of Theorem 1.1 we need the following combinatorial rule. Recall

that hα denotes the complete symmetric function for the composition α.

Proposition 2.3. Let n ∈ N0. If α is a composition of n and τ is a partition

then

sτ (hα ◦ pr) =
∑
ν

∣∣r-RT(ν/τ, α)
∣∣ sgnr(ν/τ)sν

where the sum is over all partitions ν such that ν/τ is a skew partition of rn.

This rule was first proved in [3, page 29], using Muir’s rule [15]. For

an involutive proof of Muir’s rule see [11, Theorem 6.1]. The special case

when τ = ∅ and α has a single part is proved in [14, I.8.7]. In this case

the result also follows from Chen’s algorithm, as presented in [2, page 130].

The special case when α has a single part was proved by the author in [20]

using a sign-reversing involution. The general case then follows easily by

induction, using that h(α1,...,α`) ◦ pr = (hα1 ◦ pr) . . . (hα` ◦ pr).
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The Jacobi–Trudi formula. Let ` ∈ N. The symmetric group Sym`

acts on Z` by place permutation. Given α ∈ Z` and g ∈ Sym`, we define

g ·α = g(α+ ρ)− ρ where ρ = (`− 1, . . . , 1, 0). For later use we note that if

k ∈ {1, . . . , `− 1} then

(k, k + 1) · α = (α1, . . . , αk+1 − 1, αk + 1, . . . , α`) (5)

where the entries in the middle are in positions k and k + 1.

The Jacobi–Trudi formula states that if λ is a partition with exactly `

parts and λ/µ is a skew partition then

sλ/µ =
∑

g∈Sym`

sgn(g)hg·λ−µ,

where if α has a strictly negative entry then we set hα = 0. A proof of the

formula is given in [18, page 342] by a beautiful involution on certain tuples

of paths in Z2.

3. A generalized Lascoux–Schützenberger involution

We begin by presenting the coplactic maps in [13, §5.5]. For further back-

ground see [8]. Let w be a word with entries in N and let k ∈ N. Following

the exposition in [17], we replace each k in w with a right-parenthesis ‘)’

and each k + 1 with a left-parenthesis ‘(’. An entry k or k + 1 is k-paired

if its parenthesis has a pair, according to the usual rules of bracketing, and

otherwise k-unpaired. Equivalently, reading w from left to right, an entry k

is k-unpaired if and only if it sets a new record for the excess of ks over

(k + 1)s; dually, reading from right to left, an entry k + 1 is k-unpaired if

and only if it sets a new record for the excess of (k + 1)s over ks. We may

omit the ‘k-’ if it will be clear from the context.

For example, if w = 3422243312311 then the 2-unpaired entries are shown

in bold and the corresponding parenthesised word is (4)))4((1)(11

Lemma 3.1. Let w be a word with entries in N. Let k ∈ N. The subword

of w formed from its k-unpaired entries is kc(k + 1)d for some c, d ∈ N0.

Changing this subword to kc
′
(k+ 1)d

′
, where c′, d′ ∈ N0 and c′+ d′ = c+ d,

while keeping all other positions the same, gives a new word which has k-

unpaired entries in exactly the same positions as w. �

Proof. It is clear that any k to the right of the rightmost unpaired k + 1 in

w is paired. Dually, any k + 1 to the left of the leftmost unpaired k in w

is paired. Hence the subword of w formed from its unpaired entries has the

claimed form. When d ≥ 1, changing the unpaired subword from kc(k+ 1)d

to kc+1(k + 1)d−1 replaces the first unpaired k + 1, in position i say, with a

k; since every k+ 1 to the left of position i is paired, the new k is unpaired.

The dual result holds when c ≥ 1; together these imply the lemma. �
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Definition 3.2. Let w be a word with entries from N. Suppose that the

k-unpaired subword of w is kc(k + 1)d. If d > 0, let Ek(w) be defined by

changing the subword to kc+1(k+1)d−1, and if c > 0, let Fk(w) be defined by

changing the subword to kc−1(k + 1)d+1. Let Sk(w) be defined by changing

the subword to kd(k + 1)c.

We now extend these maps to tuples of skew tableaux. Let cont(t) denote

the content of a skew tableau t, and let w(t) denote its word, obtained by

reading the rows of t from left to right, starting at the highest numbered

row. Let m ∈ N and let σσσ/τττ =
(
σ(1)/τ(1), . . . , σ(m)/τ(m)

)
be a skew

m-multipartition of n ∈ N. Let ` ∈ N and let α ∈ Z`. Let SSYT(σσσ/τττ , α)

denote the set of all m-tuples
(
t(1), . . . , t(m)

)
of semistandard skew tableaux

such that t(i) has shape σ(i)/τ(i) for each i ∈ {1, . . . ,m} and

cont
(
t(1)

)
+ · · ·+ cont

(
t(m)

)
= α. (6)

Thus if α fails to be a composition because it has a negative entry then

SSYT(σσσ/τττ , α) = ∅. We call the elements of SSYT(σσσ/τττ , α) semistandard

skew m-multitableaux of shape σσσ/τττ , or m-multitableaux for short. The word

of an m-multitableau
(
t(1), . . . , t(m)

)
∈ SSYT(σσσ/τττ , α) is the concatenation

w
(
t(1)

)
. . .w

(
t(m)

)
. For k ∈ N we say that an entry of an m-multitableau t

is k-paired if the corresponding entry of w(t) is k-paired. Note that, for

fixed σσσ/τττ , a word w of length n and content α uniquely determines an

m-multitableau (not necessarily semistandard) of shape σσσ/τττ satisfying (6);

we denote this multitableau by T(w). (The skew m-multipartition σσσ/τττ

will always be clear from the context.) Abusing notation slightly, we set

Ek(t) = T
(
Ek(w(t))

)
, Fk(t) = T

(
Fk(w(t))

)
(in each case, when either is

defined) and Sk(t) = T
(
Sk(w(t))

)
.

Example 3.3. Consider the semistandard skew 3-multitableau

t =

 2 2 2
3 4

,
2 3

3 3
4

, 1 1

 .

The shape of t is
(
(3, 2), (3, 2, 1)/(1), (2)

)
and the 2-unpaired entries are

shown in bold. By Definition 3.2, E2(t) is obtained from t by changing the

leftmost unpaired 3 to a 2, and F2(t) is obtained from t by changing the

rightmost unpaired 2 to a 3. It follows that

S2E2(t) =

 2 2 3
3 4

,
2 3

3 3
4

, 1 1

 .

As mentioned in the introduction, one may identify a skewm-multitableau

with a single skew tableau of larger shape. For example, the semistandard
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skew 3-multitableau t above corresponds to

1 1
2 3

3 3
4

2 2 2
3 4

.

This identification may be used to reduce the next two results to Proposi-

tion 4 and the argument in §3 of [17]. We avoid it in this paper, since it

has an artificial flavour, and loses combinatorial data: for instance, the skew

tableau above may also be identified with two different semistandard skew

2-multitableaux.

Lemma 3.4. Let m ∈ N, let σσσ/τττ be a skew m-multipartition of n ∈ N0

and let α be a composition with exactly ` parts. Fix k ∈ {1, . . . , `− 1}. Let

SSYTk(σσσ/τττ , α) and SSYTk+1(σσσ/τττ , α) be the sets of m-multitableaux in

SSYT(σσσ/τττ , α) that have a k-unpaired k or a k-unpaired k+ 1, respectively.

Let

ε(k) = (0, . . . , 1,−1, . . . , 0) ∈ Z`,
where the two non-zero entries are in positions k and k + 1. The maps

Ek : SSYTk+1(σσσ/τττ , α)→ SSYTk

(
σσσ/τττ , α+ ε(k)

)
Fk : SSYTk(σσσ/τττ , α)→ SSYTk+1

(
σσσ/τττ , α− ε(k)

)
Sk : SSYTk(σσσ/τττ , α)→ SSYTk+1

(
σσσ/τττ , (k, k + 1)α

)
are bijections and SkEk : SSYTk+1(σσσ/τττ , α)→ SSYTk+1(σσσ/τττ , (k, k+1) ·α)

is an involution.

Proof. Let t =
(
t(1), . . . , t(m)

)
∈ SSYT(σσσ/τττ , α). The main work comes

in showing that Ek(t), Fk(t) are semistandard (when defined). Suppose

that Ek(t) =
(
t′(1), . . . , t′(m)

)
and that the first unpaired k + 1 in w(t)

corresponds to the entry in row a and column b of tableau t(j). Thus t′(j) is

obtained from t(j) by changing this entry to an unpaired k and t′(i) = t(i)

if i 6= j.

Let t = t(j), let t′ = t′(j) and write u(a,b) for the entry of a tableau u in

row a and column b. If t′ fails to be semistandard then a > 1, (a − 1, b) is

a box in t, and t′(a−1,b) = k. Hence t(a−1,b) = k. This k is to the right of

the unpaired k + 1 in w(t), so by Lemma 3.1 it is paired, necessarily with a

k + 1 in row a and some column b′ > b of t. Since

k = t(a−1,b) ≤ t(a−1,b′) < t(a,b′) = k + 1

we have t(a−1,b′) = k. Thus t(a,e) = k + 1 and t(a−1,e) = k for every e ∈
{b, . . . , b′}. Since t(a−1,b) is paired with t(a,b′) under the k-pairing, we see that

t(a−1,b+j) is paired with t(a,b′−j) for each j ∈ {0, . . . , b′ − b}. In particular,

the k + 1 in position (a, b) of t is paired, a contradiction. Hence Ek(t)
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is semistandard. The proof is similar for Fk in the case when t has an

unpaired k.

It is now routine to check that EkFk and FkEk are the identity maps on

their respective domains, so Ek and Fk are bijective. If the unpaired subword

of w(t) is kc(k + 1)d then Sk(t) = Ed−ck (t) if d ≥ c and Sk(t) = F c−dk (t) if

c ≥ d. Hence Sk is an involution. A similar argument shows that SkEk is

an involution. By (5) at the end of §2, the image of SkEk is as claimed. �

We are ready to define our key involution. Say that a semistandard skew

multitableau t is latticed if w(t) has no k-unpaired (k + 1)s, for any k.

Let λ be a partition of n ∈ N0 with exactly ` parts, let σσσ/τττ be a skew

m-multipartition of n and let

T =
⋃

g∈Sym`

SSYT(σσσ/τττ , g · λ). (7)

Observe that if g 6= idSym` then g ·λ is not a partition, and so no element of

SSYT(σσσ/τττ , g · λ) is latticed. Therefore the set

SSYTL(σσσ/τττ , λ) =
{
t ∈ SSYT(σσσ/τττ , λ) : t is latticed

}
is precisely the latticed elements of T . Let t ∈ T . If t is latticed then define

G(t) = t. Otherwise consider the k-unpaired (k+1)s in w(t) for each k ∈ N.

If the rightmost such entry is a k-unpaired k+1 then define G(t) = SkEk(t).

For instance, in Example 3.3 we have k = 2 and G(t) = S2E2(t).

Proposition 3.5. Let m ∈ N, let σσσ/τττ be a skew m-multipartition of n ∈ N0,

and let λ be a partition of n. Let T be as defined in (7). The map

G : T → T is an involution fixing precisely the skew m-multitableaux in

SSYTL(σσσ/τττ , λ). If t ∈ SSYT(σσσ/τττ , g · λ) and G(t) 6= t then G(t) ∈
SSYT(σσσ/τττ , (k, k + 1)g · λ) for some k ∈ {1, . . . , `− 1}.

Proof. This follows immediately from Lemma 3.4. �

This is a convenient place to define our generalized Littlewood–Richardson

coefficients. In §6.1 we show these specialize to the original definition.

Definition 3.6. The Littlewood–Richardson coefficient corresponding to a

partition λ of n and a skew m-multipartition σσσ/τττ of n is

cλσσσ/τττ = |SSYTL(σσσ/τττ , λ)|.
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4. Proof of Theorem 1.1

Suppose that λ has exactly ` parts. The outline of the proof is as follows:

sτ (sλ/µ ◦ pr) (8)

=
∑

g∈Sym`

sgn(g)sτ (hg·λ−µ ◦ pr) (9)

=
∑

g∈Sym`

sgn(g)
∑
ν

∣∣r-RT(ν/τ, g · λ− µ)
∣∣ sgnr(ν/τ)sν (10)

=
∑

g∈Sym`

sgn(g)
∑
ννν

∣∣SSYT(ννν/τττ , g · λ− µ)
∣∣ sgnr

(
(ννν/τττ , τ)?

)
s(ννν/τττ,τ)? (11)

=
∑
ννν

∣∣SSYTL
(
ννν/τττ : µ, λ

)∣∣ sgnr
(
(ννν/τττ , τ)?

)
s(ννν/τττ,τ)? (12)

=
∑
ννν

cλννν/τττ :µ sgnr
(
(ννν/τττ , τ)?

)
s(ννν/τττ,τ)? , (13)

where the sum in (10) is over all partitions ν such that ν/τ is a skew partition

of rn, the sums in (11) and (12) are over all r-multipartitions ννν such that

ννν/τττ is a skew r-multipartition of n, and in (12) and (13), ννν/τττ : µ is the

skew (r + 1)-multipartition
(
ν(0)/τ(0), . . . , ν(r − 1)/τ(r − 1), µ

)
obtained

from ννν/τττ by appending µ.

We now give an explicit bijection or involution establishing each step. For

an illustrative example see §5 below.

Proof of (9). Apply the Jacobi–Trudi formula for skew Schur functions, as

stated in §2. �

Proof of (10). Apply Proposition 2.3 to each sτ (hg·λ−µ ◦ pr). �

Proof of (11). Let T be a r-ribbon tableau of shape ν/τ and weight α as

in (4), so T corresponds to the sequence of partitions

τ = ρ(0) ⊂ ρ(1) ⊂ . . . ⊂ ρ(`) = ν

where ρ(j)/ρ(j−1) is a horizontal r-ribbon strip of size rαj for each j ∈
{1, . . . , `}. Let ν/τ have r-quotient ννν/τττ =

(
ν(0)/τ(0), . . . , ν(r−1)/τ(r−1)

)
,

so (ννν/τττ , τ)? = ν. Take an abacus A representing τ with a multiple of r beads.

The sequence above defines a sequence of single-step downward bead moves

leading from A to an abacus B representing ν. For each bead moved on

runner i put the label of the corresponding horizontal r-ribbon strip in the

corresponding box of the Young diagram of ν(i)/τ(i). By Lemma 2.2(iv),

this defines a semistandard skew tableau t(i) of shape ν(i)/τ(i) for each i ∈
{0, . . . , r − 1}. Conversely, given

(
t(0), . . . , t(r − 1)

)
∈ SSYT(ννν/τττ , α), one

obtains a sequence of single-step downward bead moves satisfying the con-

dition in Lemma 2.2(ii), and hence an r-ribbon tableau of shape ν/τ and

content α. Thus the map sending T to
(
t(0), . . . , t(r−1)

)
is a bijection from

r-RT(ν/τ, g · λ− µ) to SSYT(ννν/τττ , g · λ− µ), as required. �
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Proof of (12). Fix a skew r-multipartition ννν/τττ of n. Let

T =
⋃

g∈Sym`

SSYT(ννν/τττ : µ, g · λ).

Let G be the involution on T defined in §3. Let u(µ) be the semistandard

µ-tableau having all its entries in its j-th row equal to j for each relevant j.

Note that u(µ) is the unique latticed semistandard µ-tableau. Thus if

Tµ =
{(
t(0), . . . , t(r − 1), v

)
∈ T : v = u(µ)

}
(14)

then SSYTL(ννν/τττ : µ, λ) ⊆ Tµ. Let t ∈ Tµ. The final |µ| positions of w(t)

correspond to the entries of u(µ). Every entry k + 1 in these positions is

k-paired. If an entry k in one of these positions is k-unpaired then there is

no k-unpaired k + 1 to its left, so every k + 1 in w(t) is k-paired. It follows

that the final semistandard tableau in G(t) is u(µ) and so G restricts to an

involution on Tµ. By Proposition 3.5, the fixed-point set of G, acting on

either T or Tµ, is SSYTL(ννν/τττ : µ, λ).

The part of the sum in (11) corresponding to the skew r-multipartition

ννν/τττ is ∑
g∈Sym`

∑
t∈SSYT(ννν/τττ,g·λ−µ)

sgn(g) sgnr
(
(ννν/τττ , τ)?

)
s(ννν/τττ,τ)? .

The set of r-multitableaux t in this sum is S =
⋃
g∈Sym` SSYT(ννν/τττ , g·λ−µ).

There is an obvious bijection A : S → Tµ given by appending u(µ) to a

skew r-multitableau in S. By the remarks above, A−1GA is an involution

on S. Since sgn(g) = − sgn
(
(k, k + 1)g

)
, it follows from Proposition 3.5

that the contributions to (11) from r-multitableaux t ∈ S such that A(t) 6∈
SSYTL(ννν/τττ : µ, λ) cancel in pairs, leaving exactly the r-multitableaux t

such that A(t) ∈ SSYTL(ννν/τττ : µ, λ). This proves (12). �

Proof of (13). This is true by our definition of the Littlewood–Richardson

coefficient cλννν/τττ :µ. �

5. Example

We illustrate (11) and (12) in the proof of Theorem 1.1. Let r = 3, let

λ = (3, 3), µ = ∅ and τ = (3, 2). Take ν = (6, 5, 5, 5, 2). From the abaci

shown in Figure 2 below, we see that ννν/τττ =
(
(1), (2), (2, 2)/(1)

)
. We have

Figure 2. Abaci for (3, 2) and (6, 5, 5, 5, 2).
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Figure 3. The four 3-ribbon tableau tableaux in 3-

RT
(
(6, 5, 5, 5, 2)/(3, 2), (3, 3)

)
and the corresponding 3-ribbon

tableaux in 3-RT
(
(6, 5, 5, 5, 2)/(3, 2), (2, 4)

)
under the G involution.

The first tableaux in the top line is latticed, and so is fixed by G. In

each case the ribbon with label i is marked i, and its unique partition

into 3-border strips, as in (2), is shown by heavy lines.

(1, 2) ·λ = (2, 4). The horizontal 3-ribbon tableaux of shape (6, 5, 5, 5, 2) and

weights (3, 3) and (2, 4) are shown in Figure 3 above. Applying the bijection

3-RT
(
(6, 5, 5, 5, 2)/(3, 2), (3, 3)

)
→ SSYT

((
(1), (2), (2, 2)/(1)

)
, (3, 3)

)
in the proof of (11) we obtain the 3-multitableaux

t1 =
(

2 , 1 2 , 1
1 2

)
, t2 =

(
1 , 2 2 , 1

1 2

)
,

t3 =
(

2 , 1 1 , 1
2 2

)
, t4 =

(
1 , 1 2 , 1

2 2

)
(15)

in the order corresponding to the top line in Figure 3. Here t1 is latticed

and t2, t3, t4 are not. Applying the involution G in §3 to t2, t3, t4, as in

the proof of (12), we obtain the 3-multitableaux(
2 , 2 2 , 1

1 2

)
,
(

2 , 1 2 , 1
2 2

)
,
(

1 , 2 2 , 1
2 2

)
in the order corresponding to the bottom line in Figure 3. As expected, these

are the images of the three horizontal 3-ribbon tableaux of shape (6, 5, 5, 5, 2)

and weight (2, 4) under the bijection

3-RT
(
(6, 5, 5, 5, 2)/(3, 2), (2, 4)

)
→ SSYT

((
(1), (2), (2, 1)/(1)

)
, (2, 4)

)
.

Therefore all but one of the seven summands in (11) is cancelled by G. Since

sgn3

(
(6, 5, 5, 5, 2)/(3, 2)

)
= 1, we have 〈s(3,2)(s(3,3) ◦ p3), s(6,5,5,5,2)〉 = 1.

We now find 〈s(3,2)(s(4,3)/(1) ◦ p3), s(6,5,5,5,2)〉 using the full generality of

Theorem 1.1. Following the proof of (12), we append 1 to each of
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the four 3-multitableaux in SSYT
((

(1), (2), (2, 1)/(1)
)
, (3, 3)

)
before apply-

ing G. This gives three latticed 4-multitableaux,(
2 , 1 2 , 1

1 2
, 1

)
,
(

1 , 2 2 , 1
1 2

, 1
)
,
(

2 , 1 1 , 1
2 2

, 1
)
,

all fixed by G, and one unlatticed 4-multitableau, obtained by appending 1
to t4; its image under G is given by(

1 , 1 2 , 1
2 2

, 1
)

G←→
(

2 , 2 2 , 1
2 2

, 1
)
.

There are now five summands in (11), of which two are cancelled byG, and so

〈s(3,2)(s(4,3)/(1)◦p3), s(6,5,5,5,2)〉 = 3. Alternatively, we can get the same result

by using (a very special case of) the Littlewood–Richardson rule to write

s(4,3)/(1) = s(4,2)+s(3,3). From above we have 〈s(3,2)(s(3,3)◦p3), s(6,5,5,5,2)〉 = 1

and since h(2,4) = h(4,2), we have

〈s(3,2)(h(4,2) ◦ p3), s(6,5,5,5,2)〉 =
∣∣3-RT

(
(6, 5, 5, 5, 2), (2, 4)

)∣∣ = 3.

Since
∣∣3-RT

(
(6, 5, 5, 5, 2), (1, 5)

)∣∣ = 1, we get 〈s(3,2)(s(4,3)/(1)◦p3), s(6,5,5,5,2)〉 =

(4 − 3) + (3 − 1) = 3, as before. This extra cancellation suggests that the

general form of the SXP rule in Theorem 1.1 may have some computational

advantages.

6. Connections with other combinatorial rules

6.1. Non-plethystic rules. Let SSYT(ν/τ, λ) be the set of semistandard

skew tableaux of shape ν/τ and content λ. We say that a skew tableau t

is latticed if the corresponding skew 1-multitableau (t) is latticed. Let

SSYTL(ν/τ, λ) be the set of latticed semistandard tableaux of shape ν/τ

and content λ.

Let λ/µ be a skew partition of n ∈ N0. Setting r = 1 in Theorem 1.1 we

obtain

sτsλ/µ =
∑
ν

cλ(ν/τ , µ)sν (16)

where the sum is over all partitions ν such that ν/τ is a skew partition of n.

(For the remainder of this subsection we usually rely on the context to make

such summations clear.) Specialising (16) further by setting µ = ∅ we get

sτsλ =
∑
ν

cλ(ν/τ)sν . (17)

By definition cλ(ν/τ) = |SSYTL(ν/τ, λ)|. Thus (17) is the original Littlewood–

Richardson rule, as proved in [10, Theorem III].

Specialising (16) in a different way by setting τ = ∅, and then changing

notation for consistency with (17), we get

sν/τ =
∑
λ

cν(λ,τ)sλ. (18)
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By (17) and (18), we have

〈sτsλ, sν〉 = cλ(ν/τ) = |SSYTL(ν/τ, λ)|

= |SSYTL
(
(λ, τ), ν

)
| = cν(λ,τ) = 〈sλ, sν/τ 〉

(19)

where the middle equality follows from Proposition 7.1 in the appendix.

This gives a combinatorial proof of the fundamental adjointness relation for

Schur functions. By (16) and this relation we have 〈sλ/µ, sν/τ 〉 = cλ(ν/τ,µ).

If t is a latticed skew 2-multitableau of shape (ν/τ, µ) then, as seen in (14),

t = (t, u(µ)) for some ν/τ -tableau t. Thus

〈sν/τ , sλ/µ〉 = cλ(ν/τ,µ) =
∣∣{t ∈ SSYT(ν/τ, λ− µ) :

(
t, u(µ)

)
is latticed

}∣∣.
(20)

This is equivalent to the skew-skew Littlewood–Richardson rule proved in

[17, §4]. The non-obvious equalities |SSYTL(ν/τ, λ)| = |SSYTL(ν/λ, τ)|
and

∣∣SSYTL
(
(λ, τ), ν

)∣∣ =
∣∣SSYTL

(
(τ, λ), ν

)∣∣ are also corollaries of (19).

As a final exercise, we show that our definition of generalized Littlewood–

Richardson coefficients is consistent with the algebraic generalisation of (16)

to arbitrary products of Schur functions.

Lemma 6.1. Let m ∈ N. If ννν/τττ is a skew m-multipartition of n ∈ N0 and λ

is a partition of n then

sν(1)/τ(1) . . . sν(m)/τ(m) =
∑
λ

cλννν/τττsλ

where the sum is over all partitions λ of n.

Proof. By induction, the fundamental adjointness relation and (20) we have

〈sν(1)/τ(1)sν(2)/τ(2) . . . sν(m)/τ(m), sλ〉

= 〈
∑
γ

sν(1)/τ(1)c
γ
((ν(2)/τ(2),...,ν(m)/τ(m))sγ , sλ〉

=
∑
γ

〈sν(1)/τ(1), sλ/γ〉c
γ
((ν(2)/τ(2),...,ν(m)/τ(m))

=
∑
γ

cλ(ν(1)/τ(1),γ) c
γ
((ν(2)/τ(2),...,ν(m)/τ(m))

where the sums are over all partitions γ of n− (|ν(1)| − |τ(1)|). The right-

hand side counts the number of pairs of semistandard skew multitableaux((
t, u(γ)

)
, t
)

such that t ∈ SSYTL(ν(1)/τ(1), λ− γ) and

t ∈ SSYTL
((
ν(2)/τ(2), . . . , ν(m)/τ(m)

)
, γ
)
.

Such pairs are in bijection with SSYTL
((
ν(1)/τ(1), . . . , ν(m)/τ(m)

)
, λ
)

by

the map sending
((
t, u(γ)

)
, t
)

to the concatenation (t : t). The lemma

follows. �
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6.2. Plethystic rules. By Theorem 1.1 and the fundamental adjointness

relation, we have 〈sλ ◦ pr, sν/τ 〉 = sgnr(ννν/τττ)cλννν/τττ . Hence, by Lemma 6.1,

〈sλ◦pr, sν/τ 〉 =

{
〈sλ, sν(0)/τ(0) . . . sν(r−1)/τ(r−1)〉 if ν/τ is r-decomposable,

0 otherwise.

(21)

This adjointness relation was first proved in [7]: for a more recent proof see

[3, after (39)]. It is perhaps a little surprising that (21) implies that the

absolute value of the coefficient of s(ννν/τττ,τ)? in sτ (sλ ◦ pr), namely cλννν/τττ =

|SSYTL(ννν/τττ , λ)|, is the same for all r! permutations of the r-quotient ννν/τττ .

Note that we obtain only a numerical equality: even cyclic permutations

of skew r-multitableaux, do not, in general preserve the lattice property.

For example, changing the abaci in Figure 2 in §5 so that 7 beads are used

to represent (3, 2) and (6, 5, 5, 5, 2) induces a rightward cyclic shift of the

skew tableaux forming the skew 3-multitableaux t1, t2, t3, t4. After one or

two such shifts, the unique latticed skew 3-multitableaux are the shifts of t3
and t2, respectively; t4 remains unlatticed after any number of shifts. The

identification of t1 as the unique skew 3-multitableau contributing to the

coefficient of s(6,5,5,5,2) in s(3,2)(s(3,3) ◦ p3) is therefore canonical, but not

entirely natural.

The author is aware of two combinatorial rules in the literature for special

cases of the product sτ (sλ ◦ pr) that avoid this undesirable feature of the

SXP rule. To state the first, which is due to Carré and Leclerc, we need a

definition from [1]. Let T be an r-ribbon tableau of shape ν/τ and weight λ.

Represent T , as in Figure 3, by a tableau of shape ν/τ in which the boxes of

the λj disjoint r-border strips forming the horizontal r-ribbon in T labelled j

all contain j. The column word of T is the word of length n obtained by

reading the columns of this tableau from bottom to top, starting at the the

leftmost (lowest numbered) column, and recording the label of each r-border

strip when it is first seen, in its leftmost column.

Theorem 6.2 ([1, Corollary 4.3]). Let r ∈ N and let n ∈ N0. Let ν/τ be a

skew partition of rn and let λ be a partition of n. Up to the sign sgn2(ν/τ),

the multiplicity 〈sτ (sλ ◦p2), sν〉 is equal to the number of 2-ribbon tableaux T

of shape ν/τ and weight λ whose column word is latticed.

For example, there are two 2-ribbon tableaux of shape (5, 5, 2, 2)/(3, 1)

and content (3, 1, 1) having a latticed column word (see Figure 4 overleaf),

and so 〈s(3,1)(s(3,1,1) ◦ p2), s(5,5,2,2)〉 = 2. These correspond to the skew 2-

multitableaux of shape
(
(3, 1)/(2), (2, 1)

)
(

1
1

, 1 2
3

)
,
(

1
3

, 1 1
2

)
,

respectively. Only the second is latticed in the multitableau sense.
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Figure 4. The two 2-ribbon tableaux of shape (5, 5, 2, 2)/(3, 1) and

content (3, 1, 1) whose column words, namely 13121 and 32111, are

latticed.

In Theorem 6.3 of [4], Evseev, Paget and the author applied character

theoretic arguments to the case λ = (a, 1b), considering arbitrary r ∈ N. To

state this result in our setting, we introduce the following definition.

Definition 6.3. The row-number tableau of an r-ribbon tableau T is the

row-standard tableau RNT(T ) defined by putting an entry i in its row a for

each r-border strip of row number a in the r-ribbon strip of T labelled i.

If T has weight λ then the content of RNT(T ) is λ. The shape of RNT(T )

is in general a composition, possibly with some zero parts. The row-number

tableaux of the four 3-ribbon tableaux in 3-RT
(
(6, 5, 5, 5, 2)/(3, 2), (3, 3)

)
,

shown in the top line of Figure 3 in §5, are

1
2 2 2
1 1

,

1 1

1 2 2
2

,

1
1 2 2
1
2

,

1 1

1 2 2 2
.

The definition of latticed extends to row-number tableaux in the obvious

way. The second row-number tableau above, with word 212211, is the only

one that is latticed.

Corollary 6.4 (see [4, Theorem 6.3]). Let r ∈ N, let a ∈ N and let b ∈ N0.

Let ν/τ be a skew partition of r(a + b). Then 〈sτ (s(a,1b) ◦ pr), sν〉 is equal,

up to the sign sgnr(ν/τ), to the number of r-ribbon tableaux of shape ν/τ

and weight (a, 1b) whose row-number tableau is latticed. The column word of

such an r-ribbon tableau is (b+ 1)b . . . 21 . . . 1, where the number of 1s is a.

Proof. By Theorem 6.3 in [4], up to the sign sgnr(ν/τ), the multiplicity

〈sτ (s(a,1b) ◦ pr), sν〉 is the number of (a, 1b)-like border-strip r-diagrams of

shape ν/τ , as defined in [4, Definition 6.2]. (The required translation from

character theory to symmetric functions is outlined in [4, §7].) To relate

these objects to r-ribbon tableaux, we define a skew partition ρ/τ to be a

vertical r-ribbon strip if ρ′/τ ′ is a horizontal r-ribbon strip.

Let T be an r-ribbon tableau of shape ν/τ and weight (a, 1b). There is a

unique partition ρ such that ρ/τ is the horizontal a-ribbon strip in T and

ν/ρ is a vertical b-ribbon strip, formed from the border strips labelled 2,
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. . . , b + 1. Suppose RNT(T ) is latticed. Then the row numbers of these

border strips are increasing. Moreover, the rightmost border strip in either

of the ribbons ρ/τ and ν/ρ lies in the Young diagram of ρ/τ , and the skew

partition formed from this border strip and ν/ρ is a vertical (b+ 1)-ribbon

strip. Therefore T corresponds to an (a, 1b)-like border-strip r-diagram of

shape ν/τ , and the column word of T is as claimed. Conversely, each such

r-ribbon tableau arises in this way. �

The second claim in Corollary 6.4 implies that if T is an r-ribbon tableau

of weight (a, 1b) whose row-number tableau RNT(T ) is latticed, then the

word of RNT(T ) agrees with the column word of T . Hence the combinatorial

rules for 〈sτ (s(a,1b) ◦ p2), sν〉 obtained by taking λ = (a, 1b) in Corollary 4.3

of [1] or r = 2 in Corollary 6.4 count the same sets of r-ribbon tableaux. For

example, in Figure 4 we have a = 3 and b = 2; the first 2-ribbon tableau has

a horizontal 2-ribbon strip of shape (5, 3, 1, 1)/(3, 1), a vertical 2-ribbon strip

of shape (5, 5, 2, 2)/(5, 3, 1, 1), and the augmented vertical 2-ribbon strip has

shape (5, 5, 2, 2)/(3, 3, 1, 1).

For general weights we have the following result.

Proposition 6.5. Let r ∈ N. Let T be an r-ribbon tableau. If the column

word of T is latticed then the row-number tableau of T is latticed.

The proof is given in the appendix. The converse of Proposition 6.5 is

false. For example 〈s(2,2) ◦ p3, s(3,3,3,3)〉 = 1. The two 3-ribbon tableaux in

r-RT
(
(3, 3, 3, 3), (2, 2)

)
are shown below. Both have a latticed row-number

tableau, with word 2211. The column words are 2112 and 2121 respectively;

only the second is latticed.

1

1

1

1 1

1

2

22

2

2

2

1

1

1 1

11

2

2

2 2

22

In both Theorem 6.2 and Corollary 6.4 there is a lattice condition that

refers directly to certain sets of r-ribbon tableaux, without making use of

r-quotients. In the following problem, which the author believes is open

under its intended interpretation (except when r = 2 or λ = (a, 1b) for some

a ∈ N and b ∈ N0) we say that such conditions are global.

Problem 6.6. Find a combinatorial rule, simultaneously generalizing The-

orem 6.2 and Corollary 6.4, that expresses 〈sτ (sλ ◦ pr), sν〉 as the product of

sgnr(ν/τ) and the size of a set of r-ribbon tableaux of shape ν/τ satisfying

a global lattice condition.

The obvious generalizations of Theorem 6.2 and Corollary 6.4 fail even

to give correct upper and lower bounds on the multiplicity in Problem 6.6.

Counterexamples are shown in the table below. The second column gives the
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number of r-ribbon tableaux of the relevant shape and weight and the final

two columns count those r-ribbon tableaux whose column word is latticed

(CWL), and whose row-number tableau is latticed (RNTL), respectively.

plethysm 〈sτ (sλ ◦ pr), sν〉 |r-RT(ν/τ, λ)| CWL RNTL

〈s(3,3) ◦ p3, s(6,6,6)〉 = 1 6 0 2

〈s(2,2,2) ◦ p4, s(7,4,4,4,4,1)〉 = −1 9 0 0

〈s(1)(s(3,3) ◦ p3), s(6,6,6,1)〉 = 1 6 0 0

〈s(1)(s(2,2) ◦ p4), s(5,4,4,4)〉 = 1 2 2 2

Despite this, there are some signs that row-number tableaux are a useful

object in more general settings than Corollary 6.4. In particular, the fol-

lowing conjecture holds when r ≤ 4 and n ≤ 10 and when r ≤ 6 and n ≤ 6.

(Haskell [16] source code to verify this claim is available from the author.)

When r = 2 it holds by Theorem 6.2 and Proposition 6.5, replacing (a, b)

with a general partition λ; by row 2 of the table above, this more general

conjecture is false when r = 4. By Corollary 6.4, the conjecture holds, with

equality, when b = 1.

Conjecture 6.7. Let r ∈ N, let n ∈ N0, let ν be a partition of rn and let

(a, b) be a partition of n. The number of r-ribbon tableaux T of shape ν

and weight (a, b) such that the row-number tableau RNT(T ) is latticed is an

upper bound for the absolute value of 〈s(a,b) ◦ pr, sν〉.

Appendix: the shape-content involution and proof of

Proposition 6.5

In the proof of (19) we used the following proposition.

Proposition 7.1. If λ, µ and ν are partitions then∣∣{t ∈ SSYT(ν, λ− µ) :
(
t, u(µ)

)
is latticed

}∣∣ =
∣∣SSYTL(λ/µ, ν)

∣∣.
This proposition follows immediately from Lemma 7.2(iii) below, by set-

ting α = ν and β = ∅. The ‘shape-content involution’ given in this lemma

is surely well known to experts, but the author has not found it in the liter-

ature in this generality. The lemma may also be used to show that the final

corollary in Stembridge’s involutive proof of the Littlewood–Richardson rule

[19] is equivalent to (17); this is left as a ‘not-too-difficult exercise’ in [19].

Let λ/µ and α/β be skew partitions of the same size. Let RSYT(λ/µ, α/β)

be the set of all row-standard λ/µ tableaux t such that β+ cont(t) = α. Let

RSYTL(λ/µ, α/β) =
{
t ∈ RSYT(λ/µ, α/β) :

(
t, u(β)

)
is latticed

}
,

SSYTL(λ/µ, α/β) = RSYTL(λ/µ, α/β) ∩ SSYT(λ/µ, α/β).

Given t ∈ RSYT(λ/µ, α/β), let SC(t) be the row-standard tableau of shape

α/β defined by putting a k in row a of SC(t) for every a in row k of t.
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Lemma 7.2 (Shape/content involution).

(i) SC : RSYT(λ/µ, α/β)→ RSYT(α/β, λ/µ) is an involution.

(ii) SC restricts to a involution SSYT(λ/µ, α/β)→ RSYTL(α/β, λ/µ).

(iii) SC restricts to a involution SSYTL(λ/µ, α/β)→ SSYTL(α/β, λ/µ).

Proof. (i) is obvious. For (ii) observe that if t ∈ RSYTL(λ/µ, α/β) then(
t, u(β)

)
is not latticed if and only if there exists k ∈ N and an entry k + 1

in row a of t and position i of w(t) such that∣∣{j : w(t)j = k + 1, j ≥ i}
∣∣+ βk+1 =

∣∣{j : w(t)j = k : j > i}
∣∣+ βk + 1.

Let b be the common value. The first b−1−βk entries in row k of SC(t) are

at most a−1, and the next entry is the number of a row a′ with a′ ≥ a. The

entry below is the (b− βk+1)-th entry in row k + 1 of SC(t+ 1), namely a.

Therefore SC(t) is not semistandard. The converse may be proved by

reversing this argument. It follows from (ii) that SC restricts to invo-

lutions SSYT(λ/µ, α/β) → RSYTL(α/β, λ/µ) and RSYTL(λ/µ, α/β) →
SSYT(α/β, λ/µ); taking the common domain and codomain of these invo-

lutions we get (iii). �

We end with the proof of Proposition 6.5. One final definition will be

useful. Let D be a subset of the boxes of a Young diagram of a partition ν.

If column b is the least numbered column of ν meeting D, then we say that

D has column number b, and write C(D) = b. (Thus if D is a border strip

in ν then D has column number b if and only if the conjugate border strip

D′ in ν ′ has row number b.) For an example see Figure 5 overleaf.

Proof of Proposition 6.5. Suppose that the labels of the r-ribbons in T are

{1, . . . , `}. Fix k < `. Let D1, . . . , Dq be the subsets of the Young diagram of

ν/τ that form the r-border strips lying in the r-ribbon strips of T labelled k

and k+1, written in the order corresponding to the column word of T . Thus

C(D1) ≤ . . . ≤ C(Dq)

and if C(Dj) = C(Dj+1) then R(Dj) > R(Dj+1). Let N(Dj) ∈ {k, k + 1}
be the label of Dj . Let

w = N(D1)N(D2) . . . N(Dq)

be the subword of the column word of T formed from the entries k and k+1.

By hypothesis, w has no k-unpaired k + 1.

Let v be the subword of the word of the row-number tableau RNT(T )

formed from the entries k and k + 1. We may obtain v by reading the rows

of T from left to right, starting at the highest numbered row, and writing

down the label N(Dj) of Dj on the final occasion when we see a box of Dj .

By (3), if N(Dj) = N(Dj+1) then R(Dj) ≥ R(Dj+1). Moreover, if N(Dj) =

k+1 and N(Dj+1) = k then R(Dj) > R(Dj+1). Therefore N(Dj) is written

after N(Dj+1) when writing v if and only if N(Dj) = k, N(Dj+1) = k + 1
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Figure 5. Border strips D1, . . . , D12 labelled k (grey) or k+1 (white)

forming the 3-ribbons in a 3-ribbon tableau T are shown. Numbers

are as in the proof of Proposition 6.5. For example, R(D9) = 4 and

C(D9) = 9. The subword of the column word with entries k and k+1 is

k+kk+kk+k+k+kk+kkk, where k+ denotes k+1. The inversions are 2,

4 and 8. The subword of the row word of the row-number tableau of T

with entries k and k+ is obtained by sorting the entries in positions

2, 3, 4, 5 and 8, 9 into decreasing order, giving k+k+k+kkk+k+k+kkkk.

and R(Dj) < R(Dj+1). We say that such j are inversions. If there are no

inversions, then v and w are equal. Otherwise, let j be minimal such that j

is an inversion, and let s be maximal such that R(Dj) < R(Dj+s); note that

N(Dj+s) = k+ 1, by (3). The word v is obtained from w sorting its entries

in positions j, j + 1, . . . , j + s into decreasing order, and then continuing

inductively with the later positions. It is clear that this procedure does not

create a new k-unpaired k + 1. Hence v has no k-unpaired k + 1. �
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