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Abstract. The plethysm product of Schur functors corresponds to

composition of polynomial representations of symmetric groups. Finding

the plethysm coefficients 〈sν ◦sµ, sλ〉 that express an arbitrary plethysm

sν ◦ sµ as a sum
∑
λ〈sν ◦ sµ, sλ〉sλ of Schur functions is a fundamental

open problem in algebraic combinatorics. We prove two stability the-

orems for plethysm coefficients under the operations of adding and/or

joining an arbitrary partition to either µ or ν. In both theorems µ

may be replaced with an arbitrary skew partition. As special cases we

obtain all stability results on plethysms of Schur functions known in

the literature. The proofs are entirely combinatorial using plethystic

semistandard tableaux with positive and negative entries.
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1. Introduction

1.1. Background. Determining the decomposition of an arbitrary plethysm

product sν ◦sµ into Schur functions was identified by Richard Stanley in [21]

as a central open problem in algebraic combinatorics. It is equivalent to de-

composing a polynomial representation of GLn(C) defined by a composition

of Schur functors into a direct sum of Schur functors, and to decomposing a

representation of a symmetric group induced from an arbitrary irreducible

representation of a wreath product subgroup into a direct sum of irreducible

representations. The plethysm coefficients are the multiplicities in these de-

compositions.

1.2. Stability. In this paper we prove two theorems showing that certain

sequences of plethysm coefficients are ultimately constant, with explicit

bounds for when stability occurs and a useful sufficient condition for the

stable value to be zero. These theorems include as special cases all stabil-

ity results in the current literature, sometimes with new bounds when none

were proved originally. For instance a special case of Theorem 1.1, first

proved in [5, p354], is that 〈sν ◦ sµ+Mκ, sλ+|ν|Mκ〉 is ultimately constant for

large M , while a special case of Theorem 1.2 is a key motivating result,

recently proved in [12] without an explicit bound, that if d is even then〈
sν+(M) ◦ s(m), sλ+M(m−d)t (dM )

〉
is ultimately constant for large M . Our

proofs are entirely combinatorial, using the plethystic semistandard signed

tableaux defined in Definition 3.10 below.

1.3. Main results. In both our main theorems ν is a partition, µ/µ? is a

skew partition and λ is a partition of |ν||µ/µ?|. We define µ/µ? ⊕ (γ, δ) =(
(µ + δ) t γ′

)
/µ? and µ/µ? ⊕ M(γ, δ) = µ/µ? ⊕ (Mγ,Mδ), where t is

the join of partitions, defined formally before (3.1). The order � on pairs of

partitions is defined in Definition 4.1 by reading the pair as a composition

and then applying the dominance order. Example 11.10 in §2 motivates the

conjugation seen in our first main theorem when |κ−| is odd.

Theorem 1.1 (Signed inner stability). Let κ− and κ+ be partitions. If |κ−|
is even then set ν(M) = ν for all M , if |κ−| is odd then set ν(M) = ν if M

is even and ν(M) = ν ′ if M is odd. Then〈
sν(M) ◦ sµ/µ?⊕M(κ−,κ+), sλ⊕nM(κ−,κ+)

〉
is constant for M at least the explicit bound in Theorem 11.15. Moreover if

η− and η+ are partitions with `(η−) ≤ `(κ−) and (η−, η+) 6� (κ−, κ+) then〈
sν(M) ◦ sµ/µ?⊕M(κ−,κ+), sλ⊕nM(η−,η+)

〉
is zero for M greater than the explicit bound in Proposition 11.2.

Our second main theorem requires the strongly maximal signed weights

defined in Definition 4.10 and first exemplified in Example 4.12. To orient

the reader, we remark that, by Lemma 4.17, (∅, µ) and (µ′,∅) are strongly

maximal signed weights of shape µ and size 1; their signs are 1 and (−1)|µ|,

respectively. The strongly maximal signed weight relevant to the stability of
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sν+(M) ◦ s(m), sλ+M(m−d)t (dM )

〉
for even d is

(
(1d), (m − d)

)
. This signed

weight has shape (m), size 1 and sign +1: see Example 4.18(i).

Theorem 1.2 (Signed outer stability). Let R ∈ N. Let (κ−, κ+) be a strongly

maximal signed weight of shape µ/µ? and size R. Set ν(M) = ν + (MR) if

(κ−, κ+) has sign +1 and ν(M) = ν t (RM ) if (κ−, κ+) has sign −1. Then〈
sν(M) ◦ sµ/µ? , sλ⊕M(κ−,κ+)

〉
is constant for M at least the explicit bound in Theorem 14.7. Moreover if

η− and η+ are partitions with `(η−) ≤ `(κ−) and (κ−, κ+) � (η−, η+) then〈
sν(M) ◦ sµ/µ? , sλ⊕M(η−,η+)

〉
is zero for M greater than the explicit bound in Proposition 14.1.

The full versions of both theorems give practical sufficient conditions for

the constant multiplicity to be zero. For instance, as we explain after Ex-

ample 11.16, the final part of Theorem 11.15 implies that 〈sν ◦sµ⊕M(κ−,κ+),

sλ⊕nM(κ−,κ+)〉 is zero for M sufficiently large, unless (λ−, λ+) � n(µ−, µ+).

Here (λ−, λ+) and (µ−, µ+) are the `(κ−)-decompositions of λ and µ, as de-

fined in Definition 6.1, and � is the signed dominance order in Definition 4.1.

In Corollaries 12.1, 12.2 and 15.9, we give the corollaries of our two main

theorems for the special cases where κ− = ∅ and µ? = ∅, showing how

the explicit bounds and conditions in Theorems 11.15 and 14.7 simplify.

Corollary 15.1 is the case R = 1 of Theorem 1.2 and also of significant

interest in its own right.

1.4. Strongly maximal signed weights. An important motivation for

strongly maximal signed weights is that if µ/µ? is a skew partition and κ is

the lexicographically maximal partition labelling a Schur function summand

of s(1R) ◦ sµ/µ? then (∅, κ) is a strongly maximal signed weight of a µ/µ?-

tableau family of size R. We plan to prove this result in a separate paper

on signed maximal constituents of plethysms. Many further examples of

strongly maximal signed weights, with full proofs, are given in §4.4. In

particular we mention Lemma 4.20 which was motivated by (9) in [4] by

Briand, Orellana and Rosas, as we discuss in §1.7.

1.5. Skew partitions. It is worth noting that the results on plethysms

sν ◦ sµ/µ? where µ/µ? is a skew partition with µ? 6= ∅ are entirely novel

to this paper: it is a feature of our method using signed tableaux that

this extension from partitions to skew partitions is mostly routine. See

Examples 4.21 and 15.2 for examples exploiting this generality; both are

good illustrations of the power of Theorem 1.2. Remark 5.1 explains why

the further extension replacing ν with a skew partition is a straightforward

corollary of our main theorems.

1.6. A stronger conjecture. Theorem 1.2 was motivated by Proposi-

tion 5.3 in [13] which in turn was motivated by a conjecture of Bessen-

rodt, Bowman and Paget [1, Conjecture 1.2] that the plethysm coefficients



4 ROWENA PAGET AND MARK WILDON

〈sνt(1M ) ◦s(2), sλ⊕M((1),(1))〉 are non-decreasing with M . A proof of this con-

jecture appears to require fundamentally different methods to those used

in this paper: we believe it is true and that a proof will be of wide inter-

est. More generally, we make the following conjecture, which includes the

BPP-conjecture as a special case.

Conjecture 1.3. The sequences of plethysm coefficients in Theorems 1.1

and 1.2 are non-decreasing with respect to M .

1.7. Earlier work. We believe the two main theorems in this paper imply

all the stability results on Schur functions published in the literature. These

include the stable version of Foulkes Conjecture. Here we survey [3] by

Bowman and Paget, [4] by Briand, Orellana and Rosas, [5] by Brion, [6] by

Carré and Thibon, [7] by Colmenarejo, [8] by deBoeck, Paget and Wildon,

[13, 12] by Law and Okitani, [16] by Manivel and [22] by Weintraub. (Except

in the case of one result from [6], we silently change the notation used by

these authors to be consistent, as far as possible, with this paper.)

Bowman–Paget. Theorem A of [3]. This states that the plethysm coeffi-

cients 〈s(n+N) ◦ s(m+M), sλ+(mN+nM+MN)〉 are ultimately constant. For M

varying this is the special case of Theorem 1.1 for ν = (n + N), µ = (m)

taking (κ−, κ+) =
(
∅, (1)

)
. The bound from Corollary 12.2, applied replac-

ing λ with λ+ (mN), is M ≥ (n+N − 1)m− (λ1 +mN) = (n− 1)m− λ1

which improves on M ≥ |λ| = mn in [3]. For N varying this is the spe-

cial case of Theorem 1.2 for ν = (n), µ = (m + M), again with the same

choice of (κ−, κ+); by Lemma 4.17,
(
∅, (1)

)
is a strongly 1-maximal signed

weight. The bound from Corollary 15.9 is in general worse than N ≥ |λ|
in [3]. A corollary (see [3, Corollary 9.4]) is that the ‘stable’ version of

Foulkes’ Conjecture [9] holds with equality. We emphasise that the main

contribution of [3] is to prove the result using Schur–Weyl duality with the

partition algebra, thereby giving an explicit and clearly positive formula for

the multiplicities. This goes significantly beyond the results obtainable by

the general methods in this paper.

Briand–Orellana–Rosas. Result (7) in [4]. This states that 〈sν ◦ sµ, sλ〉 =

〈sν ◦ sµ+(M`), sλ+n(M`)〉 provided that `(ν) ≤ `. This is a weaker version of

Theorem 1.1 in [8] by de Boeck, Paget and Wildon, discussed below.

Result (9) in [4]. This states that

〈sν+M(1R) ◦ sµ, sλ+M(q`)〉 (1.1)

is constant, where R is the number of semistandard tableaux of shape µ with

entries from {1, . . . , `} and q = R|µ|/`. By Theorem 1.2 applied with the

strongly `-maximal signed weight
(
∅, (q`)

)
(see Lemma 4.20) the plethysm

coefficient is ultimately constant. In fact this theorem implies the more

general result where µ is replaced with an arbitrary skew partition. The rel-

evant strongly maximal semistandard signed tableau family is, as one would

expect from the statement of (9), all semistandard tableaux of shape µ with

entries from {1, . . . , `}. While the ‘signed’ generality is irrelevant here, this
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was an important motivating example for strongly maximal signed weights.

Corollary 15.9 can be used to give explicit stability bounds for (1.1); Propo-

sition 15.11 shows that in many cases of interest, stability is immediate.

Brion. Theorem [5, §2.1]. This states that 〈sν ◦ sµ+Mκ, sλ+nMκ〉 is ulti-

mately constant. There is a bound implicitly defined using the root system

of type A. This is the special case of Theorem 1.1 taking (κ−, κ+) = (∅, κ).

The bound from Theorem 11.15 is the same.

Theorem [5, §3.1]. This states that 〈sν+(n) ◦ sµ, sλ+nµ〉 is ultimately con-

stant with an explicit bound. This is the special case of Theorem 1.2 taking

(κ−, κ+) = (∅, µ); by Lemma 4.17 this is a strongly `(µ)-maximal signed

weight. Brion’s bound improves on the bound from Theorem 14.7 or Corol-

lary 15.9 by using orthogonality in the type A root system.

Carré–Thibon.. We first note that Jp in [6] is, in our notation (p)tJ , where J

is a partition. If J has first part a and p ≥ a then (p)tJ = (J ta)+(p−a),

and so, by taking p sufficiently large, we can interpret Jp as an addition to

the first part of J .

Theorem 4.1 in [6]. The special case (see the remark after the proof in [6])

relevant to plethysm coefficients is equivalent, by the previous notational

remark, to the theorem in §2.1 of Brion [5], discussed above.

Theorem 4.2 in [6]. It follows very similarly that the special case relevant to

plethysm coefficients is that 〈sν+(M) ◦ sµ, sλ+(M |µ|)〉 is ultimately constant.

When µ = (m) this is a special case of the theorem in §3.1 of Brion [5] dis-

cussed above. When µ 6= (m) we have µ� (m) and so the stable multiplicity

is zero by the ‘moreover’ part of Theorem 1.2 applied with the strongly max-

imal signed weight (∅, µ). (By Lemma 4.17 this is a strongly `(µ)-maximal

signed weight.)

We remark that [6] precedes [5] and the method of vertex operators used in

[6] is completely different to Brion’s geometric arguments.

Colmenarejo. Theorem 1.1 in [7]. This states four stability results. The

first is the special case of the second taking, in the notation of [7], π = (1).

The remaining three are:

• 〈sν ◦ sµ+Mκ, sλ+nMκ〉 is ultimately constant. As just seen, this is the

special case of Theorem 1.1 taking (κ−, κ+) =
(
∅, κ

)
.

• 〈sν+(M) ◦ sµ, sν+Mµ〉 is ultimately constant. This is the special case of

Theorem 1.2 taking (κ−, κ+) = (∅, µ); by Lemma 4.17 this is a strongly

`(µ)-maximal signed weight.

• 〈sν+(M) ◦ sµ, sν+M |µ|〉 is ultimately constant. This is the same as The-

orem 4.2 in Carré and Thibon [6] already discussed.

deBoeck–Paget–Wildon. Theorem 1.1 in [8]. This states the equality

〈sν ◦ s(r)tµ, s(nr)tλ〉 = 〈sν ◦ sµ, sλ〉 provided r is at least the greatest part

of µ. Applying the ω-involution (see [15, page 21] or [20, §7.6]) this becomes

〈sν† ◦ sµ′+(1r), sλ′+(1nr)〉 = 〈sν ◦ sµ, sλ〉,
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provided M ≥ `(µ), where ν† = ν if r is even and ν† = ν ′ if r is odd. Observe

that when M ≥ `(µ′) we have µ′ + (1M+1) =
(
µ′ + (1M )

)
t (1) and when

nM ≥ `(λ′) we have λ′ + (1n(M+1)) =
(
λ′ + (1nM )

)
t (1M ). The plethysm

coefficient above is therefore

〈sν† ◦ sµ′+(1`(µ
′))t (1M ), sλ′+(1n`(µ

′))t (1nM )〉. (1.2)

That it is ultimately constant now follows from Theorem 1.1, taking κ− =

(1), and κ+ = ∅ and replacing µ with µ′+(1`(µ
′)) and λ with λ′+(1n`(µ

′)). As

we show in Example 11.16, the explicit bounds in Theorem 11.15 show that

in fact the plethysm coefficient (as stated in the second displayed equation)

is immediately constant provided `(λ′) ≤ n`(µ′).

Theorem 1.2 in [8]. This states that 〈sν ◦ sµ+M(1r), sλ+M(nr)〉 is constant

for M greater than an explicit bound. By Theorem 1.1, applied with κ− = ∅
and κ+ = (1r), the plethysm coefficient is ultimately constant. The bound

from Theorem 11.15 is the same, as we show at the end of §11.

Law–Okitani. Proposition 5.3 in [13]. This states that 〈sνt (1M ) ◦ s(2),

sλ⊕M((1),(1))〉 is ultimately constant. This is the special case of Theorem 1.2

taking µ = (2) and (κ−, κ+) =
(
(1), (1)

)
; by Lemma 4.17

(
(1), (1)

)
is a

strongly 1-maximal signed weight.

Theorem 1 in [12]. An equivalent statement of this theorem is that when d

is even

〈sν+(M) ◦ s(m), sλ⊕M((1d),(m−d))〉 (1.3)

is ultimately constant and when d is odd

〈sν t (1M ) ◦ s(m), sλ⊕M((1d),(m−d))〉 (1.4)

is ultimately constant. This result was briefly known between March 2022

and September 2022 as Wildon’s Conjecture: it was an important motivation

for Theorem 1.2, and is exemplified in §8.2. No bounds on M were proved

in [12]. These results are unified as the special case of Theorem 1.2 taking

µ = (m) and (κ−, κ+) =
(
(1d), (m−d)

)
; by Example 4.18(i) this is a strongly

1-maximal signed weight.

Manivel. Main result and Theorem 4.3.1 in [16]. This is the same result as

Theorem A in [3] by Bowman and Paget, already discussed. We emphasise

that the proof in [16] is by novel geometric methods.

Weintraub. Theorem 0.1 in [22]. This states that 〈sν+(M) ◦ sµ, sλ+M |µ|〉
is ultimately constant. It is the same as the final result of Colmenarejo

discussed above; we mention that Weintraub’s proof precedes Colmenarejo’s

and the methods used are different.

1.8. Outline. This paper is split into the five parts indicated in the table of

contents. Each section is written to be read independently as far as possible.
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Introduction and overview (§1–2). The introductory material ends in §2 with

an overview of the proof and some small examples: we hope this will per-

suade the reader that while the proof is lengthy, because of many minor

technical difficulties, the overall concept of finding stable bijections between

certain semistandard signed tableaux and between certain plethystic semis-

tandard signed tableaux is quite simple.

Preliminaries (§3–6). In §3 we give basic definitions. In particular we de-

fine plethystic semistandard signed tableaux in Definition 3.10. The reader

should be able to skip this section and then use it as a reference. In §4

we define the signed weights needed to prove Theorem 1.1 and the strongly

maximal signed weights in Theorem 1.2. In §5 we give background results

on plethysms of symmetric functions. Finally in §6 we define the `−-twisted

dominance order in Definition 6.6 and generalize classical results on Kostka

numbers to the twisted case. This is a key definition novel to this paper.

Signed Weight Lemma and stable partition systems (§7–§9). In §7 we prove

the critical Signed Weight Lemma (Lemma 7.3): this lemma specifies the

overall strategy of the proof of the main theorems and is motivated by §2.

To apply the lemma we require the idea of a stable partition system, as

defined in §7.1. We give two motivating examples of stable partition systems

in §8, and then in §9 we construct the stable partition systems used to prove

Theorems 1.1 and 1.2. Also in §8 we show some of the main ideas in the

proofs of Theorems 1.1 and Theorem 1.2 by examples using the three key

results proved by the end of §9, namely

• Proposition 5.6 on plethystic signed Kostka numbers, stating that

〈sν ◦ sµ/µ? , eα−hα+〉 = |PSSYT(ν, µ/µ?)(α−,α+)|;
• Lemma 7.3, the Signed Weight Lemma;

• Corollary 9.20, that intervals for the `−-twisted dominance order

define stable partition systems.

Proof of Theorem 1.1 (§10–§12). In §10 we prove Proposition 10.7 giving an

upper bound in the `−-twisted dominance order on the constituents of an

arbitrary plethysm sν ◦ sµ/µ? . This is the final technical preliminary needed

to apply Corollary 9.20, and hence the Signed Weight Lemma (Lemma 7.3),

to prove Theorem 1.1 in §11. We give the important special case of this

theorem when all tableaux have only positive entries in §12.

Proof of Theorem 1.2 (§13–§15). In §13 we prove the analogous upper bound

in Corollary 13.22 on the constituents in the plethysms in Theorem 1.2,

and in §14 we prove Theorem 1.2. In §15 we give many applications of

this theorem, including its important special case when all tableaux have

partition shape and only positive entries.

1.9. Computer software. Magma [2] code that can be used to verify all

of our examples and compute with the `−-twisted dominance order in Defi-

nition 6.6 may be downloaded as part of the arXiv submission of this paper.
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Example 4.25 is most easily checked using the second author’s Haskell [19]

code [23]. Computer algebra is not essential to any of our proofs or examples.

2. Overview of proof

The original Law–Okitani stability result [13, Proposition 5.3], later gen-

eralized in the main theorem of [12], is that the sequence of plethysm coef-

ficients

〈sνt (1M ) ◦ s(2), sλ+(M)t (1M )〉 (2.1)

is ultimately constant. This is the special case of Theorem 1.2 for the

strongly maximal signed weight
(
(1), (1)

)
of shape (2), size 1 and sign −1.

(This weight is strongly maximal by Example 4.18(i); see §4.6 for motivation

for strongly maximal weights.) Here we use the special case ν = (3, 1) and

λ = (6, 2) of (2.1) that

〈s(3,1,1M ) ◦ s(2), s(6+M,2,1M )〉

is ultimately constant to sketch the overall strategy of the proofs of the

two main results in this paper, indicating why certain steps cannot, we be-

lieve, be simplified. In particular, in §2.7 we give the bijection on plethystic

semistandard tableaux used to prove this stability result; it is generalized

in Theorem 14.7. We warn the reader to refer ahead as required to §3, in

particular, to Definition 3.10 of plethystic semistandard signed tableaux.

2.1. Elementary-homogeneous products. The first key idea is to ap-

proximate Schur functions as products of elementary and homogeneous sym-

metric functions. For (2.1), we set α = λ− (1`(λ)) and decompose the parti-

tion λ+(M)t (1M ) as (1`(λ)+M )+
(
α + (M)

)
. It then follows from Young’s

rule that sλ+(M)t (1M ) is a summand of e(`(λ)+M)hα+(M). In our specific

example, λ = (6, 2), α = (5, 1), and so, when M = 0, the product is

e(2)h(5,1) = s(6,2) + s(7,1) + 2s(6,1,1) + s(5,2,1) + s(5,1,1,1). (2.2)

As expected, this has s(6,2) as a summand, but also, of course, some Schur

functions labelled by extra partitions. For general M ∈ N, (2.2) becomes

e(2+M)h(5+M,1) = s(6+M,2,1M ) + s(7+M,1,1M ) + 2s(6+M,1,1,1M )

+ s(5+M,2,1,1M ) + s(5+M,1,1,1,1M ).
(2.3)

Note that the summands in (2.3) are in bijection with the summands in (2.2)

and the coefficients are independent of M . This points to a potential in-

ductive proof, provided all the partitions in (2.2) are ‘smaller’ than (6, 2) in

some sense. However, we must consider not just the partitions appear-

ing in (2.2), but the new partitions that arise when we apply this ‘ap-

proximation’ strategy to them. For instance, s(5,1,1,1) appears in (2.2) and

(5, 1, 1, 1) = (1, 1, 1, 1) + (4), so we must also consider the product

e(4)h(4) = s(5,1,1,1) + s(4,1,1,1,1), (2.4)
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in where we see s(4,1,1,1,1) for the first time. This motivates the twisted

dominance order in Definition 6.6 below. For this example, we need the 1-

twisted dominance order on the up-set of (6, 2) (as defined in §6.5), namely

(6, 2)�· ={(6, 2), (5, 2, 1), (4, 2, 1, 1), (3, 2, 13), (2, 2, 14)}

∪ {(7, 1), (6, 1, 1), (5, 1, 1, 1), (4, 14), (3, 15), (2, 16), (18)}.
(2.5)

Note that (5, 1, 1, 1) and (4, 1, 1, 1, 1) are in this up-set. See Figure 6.2 for the

Hasse diagram of the order. Here we mention that each of the two subsets

in the decomposition above is a chain, increasing when read left to right. By

Lemma 6.12, for every σ ∈ (6, 2)�· , the summands of e(`(σ))hσ−(1`(σ)) are in

σ�· and so in (6, 2)�· ; for example, this is clear for e(2)h(5,1) and e(4)h(4) from

the products (2.2) and (2.4) given above. We now suppose inductively —

but see §2.4 below for a difficulty here — that 〈s(3,1,1M ) ◦ s(2), sσ+(M)t (1M )〉
is ultimately constant for each of the partitions σ ∈ (6, 2)�· except, perhaps,

for (6, 2). (Thus ‘smaller’ means ‘bigger in the twisted dominance order’.)

Since stability is known inductively for each summand of e(2+M)h(5+M,1),

except for s(6+M,2,1M ), to deduce that the plethysm coefficients 〈s(3,1,1M ) ◦
s(2), s(6+M,2,1M )〉 are ultimately constant, it suffices to show that 〈s(3,1,1M ) ◦
s(2), e(2+M)h(5+M,1)〉 is ultimately constant.

Remark 2.1. Many other strategies for ‘approximating’ s(6+M,2,1M ) by a

product of more tractable symmetric functions, for example any strategy us-

ing homogeneous symmetric functions alone, would fail at the point of (2.3)

by giving an expansion with a growing number of Schur functions, or with

non-constant coefficients.

2.2. Plethystic semistandard signed tableaux. To show that 〈s(3,1,1M )◦
s(2), e(2+M)h(5+M,1)〉 is ultimately constant we need the second key idea:

there is an appealing combinatorial interpretation of sν ◦ sµ/µ? as the gener-

ating function enumerating the plethystic semistandard signed tableaux de-

fined in Definition 3.10. Moreover, by Proposition 5.6, the inner product

of sν ◦ sµ/µ? with eπ−hπ+ is the number of plethystic semistandard signed

tableaux of signed weight (π−, π+), in the sense of Definition 3.11. For in-

stance,

〈s(3,1) ◦ s(2), e(2)h(5,1)〉 =
∣∣PSSYT

(
(3, 1), (2)

)
((2),(5,1))

∣∣ (2.6)

is the number of plethystic semistandard signed tableaux of shape
(
(3, 1), (2)

)
and signed weight

(
(2), (5, 1)

)
. The three such plethystic semistandard

signed tableaux are:

1 1 1 2 1 1

1 1
,

1 1 1 1 1 1

1 2
,

1 1 1 1 1 2

1 1
,

where 1 stands for the negative entry −1. More generally,

〈s(3,1,1M ) ◦ s(2), e(2+M)h(5+M,1)〉 =
∣∣PSSYT

(
3, 1, 1M ), (2)

)
((2+M),(5+M,1)

∣∣.
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Thus 〈s(3,1,1M ) ◦ s(2), e(2+M)h(5+M,1)〉 is ultimately constant if and only if∣∣PSSYT
(
(3, 1, 1M ), (2)

)
((2+M),(5+M,1))

∣∣
is ultimately constant. Hence proving the stability of the plethysm coeffi-

cient 〈s(3,1,1M ) ◦ s(2), s(6+M,2,1M )〉 reduces to the combinatorial problem of

enumerating certain plethystic semistandard signed tableaux. We solve this

problem in §2.7 below by exhibiting explicit bijections between the sets

PSSYT
(
(3, 1, 1M ), (2)

)
((2+M),(5+M))

for M sufficiently large. In our specific

example, M = 0 is already sufficiently large and the constant multiplicity

is 3.

2.3. Why the inductive step as described fails in general. This is an

honest sketch of the proof, except for one problem. We saw in §2.1 that we

have to consider all the partitions in the up-set (6 + M, 2, 1M )�· , not just

those in the support of e(2+M)h(5+M,1). If all these partitions were of the

form σ + (M) t (1M ) for σ ∈ (6, 2)�· , then nothing new would be needed,

and the inductive step would go through. The difficulty is that this is not

the case: for instance

(7, 2, 1)�· = {σ + (1) t (1) : σ ∈ (6, 2)�· } ∪ {(2, 2, 16), (110)}

where the union is disjoint, and there is no way to deduce from the inductive

assumptions for partitions in (6, 2)�· that 〈s(3,1,1K+1) ◦ s(2), s(2+K,2,16,1K)〉 is

ultimately constant, as required in the inductive step.

2.4. Cut up-sets. We get around this obstacle to the inductive strategy

by the third key idea: we do not need to consider every partition appear-

ing in the up-set (6 + M, 2, 1M )�· , only those that appear in the plethysm

s(3,1,1M ) ◦ s(2). It follows from the Littlewood–Richardson rule that only

partitions with at most 4 +M parts appear in this plethysm, so rather than

work with (6 +M, 2, 1M )�· , we can instead take the ‘cut’ up-set

P(M) =
{
σ ∈ Par(8 + 2M) : σ�· (6 +M, 2, 1M ), `(σ) ≤ 4 +M

}
.

Thus P(0) = {(6, 2), (5, 2, 1), (4, 2, 1, 1), (7, 1), (6, 1, 1), (5, 1, 1, 1)} and in gen-

eral we have

P(M) =
{

(6 +M, 2, 1M ), (5 +M, 2, 1, 1M ), (4 +M, 2, 1, 1, 1M ),

(7 +M, 1, 1M ), (6 +M, 1, 1, 1M ), (5 +M, 1, 1, 1, 1M )
}

for each M ∈ N0. When M = 1 the ‘cut’ removes the two partitions (2, 2, 16)

and (110) blocking the inductive argument, and in general, every partition

in P(M) is of the form σ+ (M)t (1M ) for σ ∈ P(0). Note however that P(0)

is not contained in the support of e(2)h(5,1). Thus we must still consider

more partitions than are immediately required by (2.2).
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2.5. Signed Weight Lemma. As we show by proving the Signed Weight

(Lemma 7.3), after this refinement, the inductive step goes through. Because

of our use of this critical lemma, our proofs are not explicitly inductive. In-

stead, each proof specifies the relevant way to apply the Signed Weight

Lemma, and verifies its hypotheses: the most technical part of the argu-

ment is captured in the notion of a stable partition system, as defined in

Definition 7.1.

2.6. Twisted dominance order. The definition of a stable partition sys-

tem is deliberately quite general. This generality is needed for other applica-

tions of the Signed Weight Lemma (Lemma 7.3) beyond the scope of this pa-

per, and, in any case, seems to us to be the clearest way to present the proof.

In practice, the stable partition systems we use are certain families of inter-

vals for the twisted dominance order on partitions (see Definition 6.6). For

instance P(M) above is the interval [(6, 2)⊕ (M,M), (5, 1, 1, 1)⊕ (M,M)]�·
for the 1-twisted dominance order. Definition 6.6 is a key definition in this

paper; more broadly, the attractive interplay between the `-decompoition

〈π−, π+〉 defined in Definition 6.1, the partition π, and the symmetric func-

tion eπ−hπ+ is seen in many results and proofs below, notably Lemma 6.12

and Proposition 10.7.

2.7. Bijections between plethystic tableaux. In §2.2 we claimed that∣∣PSSYT
(
(3, 1, 1M ), (2)

)
((2+M),(5+M,1))

∣∣ = 3 for all M ∈ N0. To illustrate

that this stability result is non-obvious, we back up one step, and note that∣∣PSSYT
(
(3, 1K), (2)

)
((1+K),(4+K,1))

∣∣ = 2 when K = 0: the relevant plethys-

tic semistandard signed tableaux are

1 1 1 1 1 2 , 1 2 1 1 1 1

(To show the tight connection between symmetric functions and plethystic

semistandard signed tableaux, we note this may also be proved algebraically

by using Young’s rule to write e1h(4,1) = s(6) + 2s(5,1) + s(4,2) + s(4,1,1) and

the known decomposition s3 ◦ s2 = s(6) + s(4,2) + s(2,2,2).) Observe that

two of the plethystic semistandard tableaux for K = 1 are obtained by

inserting 1 1 as a new entry in position (1, 1), moving the existing entry

down to row 2. But the plethystic semistandard signed tableaux shown in

the margin is not obtained in this way, because by the row semistandard

condition, 1 1 cannot appear left of 1 2 . Generally this insertion map

defines an injection between the sets for K and K + 1 and, by the part of

the proof of Theorem 14.7 dealing with condition (ii) in the Signed Weight

Lemma (Lemma 7.3), it is surjective for K ≥ 1, proving the claimed stability

1 1 1 2 1 1

1 1

result. For a larger example see Example 13.24.

3. Partitions, tableaux and plethystic tableaux

In this section we give numbered definitions for the key terms novel to this

paper. Other than these, we believe our notation is standard; we hope that
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the reader will be able to skim this section and then treat it as a reference.

For essential preliminaries on symmetric functions see instead the start of §5.

Partitions. A weight is a sequence of non-negative integers with finite sum.

The length of a weight α, denoted `(α), is the maximum ` such that α` 6= 0.

(We set `(∅) = 0.) Dually, we may write a(α) for α1. A weight is a partition

if it is non-increasing. The terms in a weight or partition are called parts. We

write weights and partitions omitting the infinite tail of zero parts. Let W
be the set of weights, let Par be the set of partitions, and let Par(n) be the

set of partitions of n.

Young diagrams and skew partitions. We write [λ] for the Young diagram

of a partition λ, defined by

[λ] =
{

(i, j) : 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi
}
.

The elements of [λ] are called boxes. A skew partition is a pair of partitions,

denoted λ/λ?, such that [λ?] ⊆ [λ]. The size of a skew partition λ/λ?,

denoted |λ/λ?|, is |λ| − |λ?|. We extend the definition of Young diagrams to

skew partitions in the obvious way, by setting [λ/λ?] = [λ]\[λ?]. We draw

Young diagrams in the ‘English’ convention with box (1, 1) in the top-left

of the page. For instance,

, , ,

are the Young diagrams of (3, 2), (3, 2) + (2, 2), (3, 2) + (2, 2) t (3, 1) and

(6, 4, 3, 1)\(4, 3, 1), respectively. The conjugate partition to λ, denoted λ′, is

the unique partition with Young diagram
{

(j, i) : (i, j) ∈ [λ]
}

. For example

(3, 2)′ = (2, 2, 1). The conjugate of a skew partition µ/µ? is µ′/µ′?.

Operations on partitions. The sum and difference of partitions is defined

componentwise by (α + β)i = αi + βi, and (α − β)i = αi − βi when β is

a subpartition of α. Let α t β be the partition whose multiset of non-zero

parts is the disjoint union of the multisets of non-zero parts of α and β;

equivalently (α t β)′ = α′ + β′. We say that α t β is the join of α and β.

As already seen in the statements of the two main theorems, we define

µ/µ? ⊕ (γ, δ) =
(
(µ+ δ) t γ′

)
/µ? (3.1)

with the special case that for partitions that λ ⊕ (γ, δ) = (λ + δ) t γ′. (In

examples we typically omit the parentheses.) Note the conjugation of γ.

We suggest ‘⊕’ be read as ‘adjoin’. For example, (3, 2)⊕
(
(2, 1, 1), (2, 2)

)
=

(5, 4, 3, 1), was seen above and, thanks to the conjugation of (2, 1, 1), we

have (3, 2) ⊕ 2
(
(2, 1, 1), (2, 2)

)
= (7, 6, 3, 3, 1, 1). Note this agrees with

(3, 2) ⊕
(
(2, 1, 1), (2, 2)

)
⊕
(
(2, 1, 1), (2, 2)

)
; for instance, in either case we

insert two new parts of size 3. There is one annoyingly technical point, seen

by comparing ∅⊕
(
(1), (2)

)
= ∅+(2)t (1) = (2, 1) with ∅t (1)+(2) = (3),

which we address in the following definition.
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Definition 3.1. Let µ/µ? be a skew partition. Given `− and `+ ∈ N0, we

say that µ/µ? is (`−, `+)-large if either `− = 0 or `+ = 0 or µ`+ ≥ `−.

Equivalently, µ/µ? is (`−, `+)-large if (`+, `−) either has a zero coordinate

or is a box of [µ]: see Figure 3.1 for an example. It is deliberate that µ?
does not enter in the body of this definition.

`+=3

`−=4

Figure 3.1. The skew partition (6, 5, 5, 2)/(3, 1) shown below is (4, 3)-

large in the sense of Definition 3.1 because (3, 4) ∈ [(6, 5, 5, 2))]. It is

(5, 3)-large, but not (5, 4)-large.

Remark 3.2. Fix partitions κ− and κ+ and let `− = `(κ−), `+ = `(κ+).

For any partition µ, the adjoining map µ 7! µ ⊕ (κ−, κ+) increases µ`− by

at least κ+

`− and µ′`+ by at least κ−
`+

. (The example ∅ ⊕
(
(1), (2)

)
= (2, 1)

above shows that ‘at least’ cannot be replaced with ‘exactly’.) If κ− = ∅
then µ is already (`−, `+)-large; otherwise µ becomes (`−, `+)-large after at

most d`+/κ−
`−e adjoinings. The dual result holds for κ+, now with d`−/κ+

`+
e

adjoinings. Thus there exists K such that µ/µ?⊕K(κ−, κ+) is (`−, `+)-large.

For later use, for instance in the context of Lemma 9.9, we remark that one

further application of the adjoining map gives an (`−+1, `+)-large partition.

By Lemma 9.6, when λ is (`−, `+)-large, adding κ+ and joining κ−′ to λ are

commuting operations. Hence setting σ/σ? = µ/µ? ⊕K(κ−, κ+), we have

µ/µ? ⊕M(κ−, κ+) = σ/σ? ⊕ (M −K)(κ−, κ+)

= σ/σ? ⊕ (κ−, κ+)⊕ M−K· · · ⊕(κ−, κ+)

for all M ≥ K.

By this remark, there is no loss of generality in assuming in our main

theorems that all the partitions involved are large, and so, in practice, there

is no need to worry about whether to add κ+ or join κ−′ first in λ 7!
λ⊕ (κ−, κ+). (Adding first is our definition.) In the important special case

where κ− = ∅, this technicality does not arise.

Dominance order. We partially order partitions of the same size by the

dominance order, defined as usual by κ � λ if and only if κ1 + · · · + κi ≤
λ1+· · ·+λi for all i. We use the obvious extension of the dominance order to

compositions and to partitions of different size: in the latter case, to indicate

that the partitions may have different sizes, we write �� rather than �.



14 ROWENA PAGET AND MARK WILDON

Signed tableaux and signed weights. We work throughout with tableaux hav-

ing entries from Z\{0}.

Definition 3.3 (Signed tableau). Let µ/µ? be a skew partition. A signed

tableau of shape µ/µ? is a function t : [µ/µ?] ! Z\{0}. If t(i, j) = x then

we say that t has entry x in box (i, j).

We write YT(µ/µ?) for the set of signed tableaux of shape µ/µ?.

Definition 3.4 (Signed weight). A signed weight is an element of W ×W.

Definition 3.5 (Signed weight of a signed tableau). The signed weight of a

signed tableau t is the pair (α−, α+) ∈ W ×W where, for each i ∈ N, α−i is

the number of entries of t equal to −i, and α+

i is the number of entries of t

equal to i.

If a tableau t has only positive entries then its signed weight is (∅, α) for

some weight α, and in this case we say, as usual, that α is the weight of t

and write α = wt(t).

Definition 3.6 (Sign of a signed tableau). The sign of a signed tableau t,

denoted sgn(t), is −1 if t has an odd number of negative entries and +1 if t

has an even number of negative entries.

Equivalently, the sign of a signed tableau of weight (α−, α+) is (−1)|α
−|.

Semistandard signed tableaux. Recall that a horizontal strip is a skew par-

tition whose Young diagram has at most one box in each column and a

vertical strip is a skew partition whose Young diagram has at most one box

in each row. For instance the skew partition (6, 4, 3, 1)/(4, 3, 1) seen earlier

in this section is a horizontal strip but not a vertical strip, and its conjugate

(4, 3, 3, 2, 1, 1)/(3, 2, 2, 1) is a vertical strip but not a horizontal strip. (The

diagrams are shown in the margin.)

Definition 3.7 (Semistandard signed tableau). Let t be a signed tableau.

We say t is semistandard if equal positive entries of t lie in horizontal strips,

equal negative entries of t lie in vertical strips, and all entries are weakly

increasing when rows are read left-to-right and columns are read top-to-

bottom with respect to the total order on Z\{0} defined by

−1 < −2 < . . . < 1 < 2 . . . .

Let SSYT±(µ/µ?) denote the set of all semistandard signed µ/µ?-tableaux

and let SSYT(µ/µ?)(α−,α+) denote the subset of those signed µ/µ?-tableaux

of signed weight (α−, α+). We omit ± in the second case since it is clear

that signed tableaux are required. As already seen, we adopt the convention

that negative entries are shown in tableaux by bold numbers. For example,

SSYT
(
(5, 4, 3, 1)

)
((2,2),(5,3,1)) has the two semistandard signed tableaux

1 2 1 1 1
1 2 2 2
1 1 3
2

,

1 2 1 1 1
1 1 2 2
2 2 3
1
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and SSYT
(
(5, 4, 3, 1)

)
((3,1),(5,3,1)) contains a unique semistandard signed tableau,

obtained from the second semistandard signed tableau above by changing

the entry of −2 in box (3, 1) to −1.

Definition 3.8 (Signed colexicographic order). Let s and t be distinct semi-

standard signed tableau of the same shape. We set s < t if and only if either

(i) sgn(s) = −1 and sgn(t) = 1 or

(ii) sgn(s) = sgn(t) and considering the largest entry, m say, that appears

in a different position in s and t, in the rightmost column in which

the multiplicity of m differs between s and t, the multiplicity is less

in s than in t.

The sign-reversed colexicographic order is defined identically except that if

sgn(s) = −1 and sgn(t) = 1 then now s > t.

We emphasise that here ‘largest entry’ is with respect to the order in

Definition 3.7 in which −1 < −2 < . . . < 1 < 2 < . . .. For example, the

signed colexicographic order restricted to semistandard signed tableaux of

shape (2, 1) having entries from {1, 2, 3} is

1 1
2

< 1 2
2

< 1 1
3

< 1 2
3

< 2 2
3

< 1 3
2

< 1 3
3

< 2 3
3

and the total order on SSYT±
(
(12)

)
is

1
1
< 2

1
< 3

1
< 4

1
< . . . < 1

2
< 2

2
< 3

2
< 4

2
< . . .

. . . < 1
1
< 1

2
< 2

2
< 1

3
< 2

3
< 3

3
< 1

4
< . . . < 1

2
< 1

3
< 2

3
< 1

4
< . . . .

Changing the order to the sign-reversed colexicographic order, the positive

tableaux seen in the bottom row instead come first, and the order within

each line is unchanged. In either order we have 1
1
< 1

2
; the greatest entry

that has different multiplicity is −2 and it appears only in the tableau that

is larger. More generally, the signed colexicographic order on (1m)-tableaux

with only positive entries agrees with the colexicographic order on m-subsets

of N, whence its name. It is notable that the signed colexicographic order

could be replaced with any other total order on semistandard tableaux in

which negative tableaux precede positive tableaux without changing any of

our results: we explain this in Remark 5.7 below and use this freedom in

the proof of Theorem 1.2 (see Definition 13.2).

Plethystic semistandard signed tableaux. We can now define our key combi-

natorial objects.

Definition 3.9 (Plethystic signed tableau). A plethystic signed tableau T

of outer shape ν and inner shape µ/µ? is a function T : [ν]! YT(µ/µ?). If

T (i, j) = t then we say that T has entry t in box (i, j). We call the entries

of T inner tableaux.

Let PYT(ν, µ/µ?) denote the set of plethystic signed tableaux of outer

shape ν and inner shape µ/µ?. For example three elements of PYT
(
(3, 2), (2)

)
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are shown below

1 1 1 2 2 2

1 2 1 3
,

1 1 2 2 1 2

1 2 1 3
,

1 1 2 2 2 2

1 2 1 3
.

Note that each inner µ/µ?-tableau in a plethystic signed tableau has a sign

defined by Definition 3.6. Moreover, if these inner µ/µ?-tableaux are semi-

standard in the sense of Definition 3.7, as in the second and third examples

above, then they are totally ordered by the signed and sign-reversed colexi-

cographic orders in Definition 3.8. We use this to lift Definition 3.7 verbatim

to the plethystic setting.

Definition 3.10 (Plethystic semistandard signed tableau). Let T be a

plethystic signed tableau with semistandard inner tableau entries. We say

that T is semistandard if

(a) equal positive entries of T lie in horizontal strips

(b) equal negative entries of T lie in vertical strips,

(c) all entries are weakly increasing when rows are read left-to-right and

columns are read top-to-bottom with respect to the signed colexico-

graphic order.

We say that T is sign-reversed semistandard if the same holds with respect

to the sign-reversed colexicographic order.

Let PSSYT±(ν, µ/µ?) and PSSYT∓(ν, µ/µ?) denote the sets of all plethys-

tic semistandard signed tableaux and sign-reversed plethystic semistandard

signed tableaux of outer shape ν and inner shape µ/µ?. Thus the first two

1 1 1 2 2 2

1 2 1 3

1 1 2 2 1 2

1 2 1 3

1 1 2 2 2 2

1 2 1 3

examples above are in PYT
(
(2, 2), (2)

)
but not in either of these subsets, be-

cause in the first 1 1 is not semistandard and in the second 2 2 > 1 2
violates condition (c) above. The third example is in PSSYT±

(
(2, 2), (2)

)
but not in PSSYT∓

(
(2, 2), (2)

)
. (The plethystic signed tableaux are re-

peated in the margin for ease of reference.)

Definition 3.11 (Signed weight of a plethystic signed tableau). The signed

weight of a plethystic signed tableau T is the sum of the signed weights of

its inner tableaux.

We denote by PSSYT(ν, µ/µ?)(α−,α+) and PSSYT∓(ν, µ/µ?)(α−,α+) the

subsets of those plethystic semistandard signed tableaux of signed weight

(α−, α+). For instance the signed weights of the elements of PYT
(
(3, 2), (2)

)
shown above are

(
(3, 1), (2, 3, 1)

)
,
(
(2, 1), (3, 3, 1)

)
and

(
(2, 1), (2, 4, 1)

)
.

The definition of the signed colexicographic order (Definition 3.8) applies

to both these subsets, since the inner µ/µ?-tableau entries are totally or-

dered. For example, the three elements of PSSYT
(
(2, 2), (3)

)
((3),(7,2)) are,

ordered by the signed colexicographic order,

1 1 1 1 1 2

1 1 2 1 1 1
,

1 1 1 1 2 2

1 1 1 1 1 1
,

1 1 1 1 1 2

1 1 1 1 1 2
.
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For instance, the third plethystic semistandard signed tableau is greater

than the second because the greatest (3)-tableau entry of the third, namely

1 1 2 , is not in the second. To explain one feature that may at first seem

surprising, note that since 1 1 1 has negative sign, it may appear multiple

times in the same column of a plethystic semistandard tableau, but it cannot

be repeated within the same row. See before Remark 5.7 for the analogous

example using sign-reversed plethystic semistandard signed tableaux and

also Example 11.10 for another example showing repeated inner tableaux.

4. Maximal and strongly maximal signed weights

The results and definitions in §4.1 are needed throughout; the remainder

of this section has the definitions needed in Theorem 1.2 and in §4.4 and §4.6

motivating examples: these final two subsections are not logically essential.

4.1. Greatest signed weights. We begin with a partial order on signed

weights. Let W`− be the set of weights of length at most `− ∈ N0.

Definition 4.1 (`−-Signed dominance order). Let `− ∈ N0. The `−-signed

dominance order is the partial order on W`−× W defined by (α−, α+) �
(β−, β+) if

(α−1 , . . . , α
−
`− , α

+

1 , α
+

2 , . . .) � (β−1 , . . . , β
−
`− , β

+

1 , β
+

2 , . . .).

For example we have
(
(1, 1, 1), (2, 1)

)
�
(
(2, 1), (3)

)
in the 3-signed dom-

inance order because (1, 1, 1, 2, 1) � (2, 1, 0, 3, 0), whereas
(
(3), (2, 1)

)
and(

(2, 1), (3)
)

are incomparable in the 2-signed dominance order since (3, 0, 2, 1)

and (2, 1, 3, 0) are incomparable in the dominance order. This example

should make it clear that no ambiguity arises from using the same sym-

bol � for both the dominance and `−-signed dominance order. The value

of `− will always be clear from context.

Definition 4.2. Let `− ∈ N0. Given a skew partition τ/τ?, let t− be the

semistandard signed tableau with only negative entries defined by putting

max(`−, τi − τ?i) entries from −1, . . . ,−`− into row i of [τ/τ?]. Supposing

that t− has shape σ/τ?, let t`−(τ/τ?) be the semistandard signed tableau of

shape τ/τ? obtained from t− by putting τ ′j − σ′j entries from 1, 2, . . . into

column j.

Definition 4.3 (Greatest signed weight). Let `− ∈ N0. Given a skew par-

tition τ/τ? we define the `−-greatest signed weight of shape τ/τ?, denoted

ω`−(τ/τ?), to be the signed weight of t`−(τ/τ?).

We immediately justify calling ω`−(τ/τ?) ‘greatest’. An example is given

following this lemma.

Lemma 4.4. Let τ/τ? be a skew partition and let `− ∈ N0. The tableau

t`−(τ/τ?) is the greatest signed tableau of shape τ/τ? when signed weights

are ordered by the `−-signed dominance order. Moreover, given any τ/τ?-

tableau t with negative entries from {−1, . . . ,−`−} we have, writing swt(t)
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for the signed weight of t,

(swt(t)−, swt(t)+) �
(
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
)

where both ω`−(τ/τ?)
− and ω`−(τ/τ?)

+ are partitions.

Proof. It is clear from the construction of t`−(τ/τ?) that, amongst all semis-

tandard signed τ/τ?-tableaux, t`−(τ/τ?) greedily maximizes first the number

of −1s, then the number of −2s, and so on, until all the negative entries in

{−1, . . . ,−`−} are placed, and then the number of 1s, then the number of

2s, and so on, until all positive entries are placed. The displayed inequality

is therefore obvious from the definition of the `−-signed dominance order in

Definition 4.1. By the construction of t`−(τ/τ?), each entry −k for k ≥ 2

has an entry −(k − 1) to its left, and each entry k for k ≥ 2 has an entry

k − 1 above it. Therefore ω`−(τ/τ?)
− and ω`−(τ/τ?)

+ are partitions. �

See Lemma 6.4 for a strengthening of the final part of this lemma.

Example 4.5. The 2-greatest tableaux t2
(
(6, 4, 4, 1)/τ?

)
for four choices

of τ? are shown below

1 2 1 1 1 1
1 2 2 2
1 2 3 3
1

,

1 2 1 1 1
1 2 2

1 2 1 3
1

,

1 2 1 1
1 2 1

1 2 1 2
1

,

1 2 1
1

1 2 1 1
1

.

Their greatest signed weights ω2

(
(6, 4, 4, 1)/τ?

)
are

(
(4, 3), (4, 2, 2)

)
,
(
(4, 3),

(4, 1, 1)
)
,
(
(4, 3), (4, 1)

)
and

(
(4, 2), (3)

)
. We continue this example in Ex-

ample 10.2.

In general it is quite fiddly to specify ω`−(τ/τ?) except by the algorithmic

construction above. In the partition case however there is an simple formula,

which the reader will easily guess from the previous example. We postpone

it to (6.1) since it is an example of the `−-decomposition of partitions defined

in §6. The final remark below is not logically essential, but will help orient

the reader, while addressing one potential confusion.

Remark 4.6. Let `− ∈ N0 and let τ/τ? be a skew partition. Recall from

Definition 3.8 that negative tableaux precede positive tableaux in the signed

colexicographic order and vice versa in the sign-reversed colexicographic

order. It follows, by a similar argument to Lemma 4.4, that t`−(τ/τ?) is

the least tableau in the signed colexicographic order if |ω`−(τ/τ?)
−| is odd,

and in the sign-reversed colexicographic order if |ω`−(τ/τ?)
−| is even. More

generally signed tableaux of large signed weight (in the `−-signed dominance

order) are small in the sign and sign-reversed colexicographic orders.

4.2. Semistandard signed tableau families. For Theorem 1.2 we must

extend these ideas to families of semistandard signed tableaux.

Definition 4.7 (Semistandard signed tableau families). Let τ/τ? be a skew

partition and let R ∈ N.
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(a) A row-type semistandard signed tableau family of shape τ/τ? and size R

is the multiset of entries in a plethystic semistandard signed tableau of

outer shape (R) and inner shape τ/τ?.

(b) A column-type semistandard signed tableau family of shape τ/τ? and

size R is the multiset of entries in a plethystic semistandard signed

tableau of outer shape (1R) and inner shape τ/τ?.

The signed weight of a semistandard signed tableau family is the sum of the

signed weights of its τ/τ?-tableau elements.

Definition 4.8 (Maximal signed weights). A semistandard signed tableau

family of signed weight (κ−, κ+) is maximal if its signed weight is maximal in

the `(κ−)-signed dominance order amongst all semistandard signed tableau

families of its type, shape and size, considering only those families whose

negative entries come from {−1, . . . ,−`(κ−)}. A maximal signed weight

is the signed weight of a maximal semistandard signed tableau family. A

tableau family is singleton if it has a single element.

For example, the maximal singleton semistandard signed tableau families

of shape (2, 2) have as their unique elements the tableaux t`−
(
(2, 2)

)
for

`− = 2, 1 and 0, shown below:

1 2
1 2

, 1 1
1 2

, 1 1
2 2

. (4.1)

Their maximal signed weights are
(
(2, 2),∅

)
,
(
(2), (1, 1)

)
and

(
∅, (2, 2)

)
,

respectively. This shows that ‘maximal’ must be interpreted using the ap-

propriate value of `−: for instance, while
(
(2), (1, 1)

)
�
(
∅, (2, 2)

)
in the

1-signed dominance order, the signed weight
(
∅, (2, 2)

)
is still maximal ac-

cording to Definition 4.8, because it is compared only with other signed

weights of the form
(
∅, τ+) using the 0-signed dominance order. Note also

that the tableau shown in the margin of signed weight
(
(1), (2, 1)

)
is not

maximal, because
(
(1), (2, 1)

)
�
(
(2), (1, 1)

)
in the 1-signed dominance or- 1 1

1 2
der; this illustrates that Definition 4.8 requires a comparison with tableaux

of both possible signs.

More generally Lemma 4.17 classifies all singleton maximal semistandard

signed tableau families. In these singleton examples, the row/column-type

is irrelevant. We now give an example showing all features of Definition 4.8.

Example 4.9. The five maximal row-type semistandard signed tableau fam-

ilies of shape (2) and size 3 are{
1 2 , 1 2 , 1 2

}
,
{

1 1 , 1 2 , 1 3
}
,
{

1 1 , 1 2 , 1 1
}
,{

1 1 , 1 1 , 1 1
}
,
{

1 1 , 1 1 , 1 1
}

of signed weight
(
(3, 3),∅

)
,
(
(3), (1, 1, 1)

)
,
(
(2), (3, 1)

)
,
(
(1), (5)

)
and

(
∅, (6)

)
,

respectively. Note that two of the families have tableaux of both signs and

three have a repeated positive tableau. The seven maximal column-type

semistandard signed tableau families of shape (2) and size 3 are{
1 2 , 1 3 , 1 4

}
,
{

1 2 , 1 3 , 2 3
}
,
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1 1 , 1 2 , 1 3

}
,
{

1 1 , 1 1 , 1 2
}
,
{

1 1 , 1 1 , 1 1
}
,{

1 1 , 1 2 , 2 2
}
,
{

1 1 , 1 2 , 1 3
}

of signed weight
(
(3, 1, 1, 1),∅

)
,
(
(2, 2, 2),∅

)
,
(
(3, 1, 1), (1)

)
,
(
(3, 1), (2)

)
,(

(3), (3)
)
,
(
∅, (3, 3)

)
and

(
∅, (4, 1, 1)

)
, respectively. Again note that two

families have a repeated negative tableau. We continue this example in

Example 4.12.

We use Definition 4.8 at a critical point in the proof of Lemma 13.12; it

is also needed in Definition 4.10 shortly below.

4.3. Strongly maximal signed weights. We define the maximal semis-

tandard signed tableau families in the statement of Theorem 1.2 as follows.

Say that a τ/τ?-tableau is `−-negative greatest if it agrees with t`−(τ/τ?) in

its negative entries. Let maxM denote the maximum integer entry of all

the tableaux in a semistandard signed tableau family M.

Definition 4.10 (Strongly maximal). Let τ/τ? be a non-empty skew parti-

tion and let R ∈ N. Let c+ ∈ N0. Let ε ∈ {−1,+1} be the sign of t`−(τ/τ?).

A semistandard signed tableau family M of shape τ/τ? and signed weight

(κ−, κ+) is strongly c+-maximal if

(a) each t ∈M is `(κ−)-negative greatest;

(b) if ε = +1 then M has column-type; if ε = −1 then M has row-type;

(c) if (φ−, φ+) is the signed weight of a maximal semistandard signed

tableau family T of the same shape, size and type as M, such that

each member of T is `(κ−)-negative greatest and max T ≤ maxM,

then
∑c+

i=1 φ
+

i ≤
∑c+

i=1 κ
+

i with equality if and only if T =M.

The sign of M is ε. A signed weight is strongly c+-maximal if it is the

signed weight of a strongly c+-maximal semistandard signed tableau family;

its shape and sign is the common shape and sign of the tableaux in the

family and its size is the size of the family.

See §4.6 for motivation for this definition. See also Remark 13.5 for

how the tableau family is ultimately used to define a bijection on plethys-

tic semistandard tableaux. Note that §13 has a running example using

the strongly 1-maximal signed weight (∅, (4, 1, 1)) of the tableau family{
1 1 , 1 2 , 1 3

}
found in Example 4.12(0) using Example 4.9; this

running example illustrates the significance of condition (c).

As an immediate example of Definition 4.10, it is routine to check that

the three singleton tableau families of shape (2, 2) in (4.1) are strongly 0-,

2- and 1-maximal respectively. The relevant values of `(κ−), specifying the

least negative entry, are 2, 1 and 0 respectively. The final tableau family is

also strongly 2-maximal.

Lemma 4.11. If (κ−, κ+) is a strongly maximal signed weight of shape µ/µ?
then there is a unique semistandard signed tableau family M of shape µ/µ?
and the same size and type as (κ−, κ+). The µ/µ?-tableau entries of M are

distinct and agree in their negative entries.
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Proof. By (a) in Definition 4.10, the tableaux in M are equal in their neg-

ative entries. If the sign is +1 then by (b), M has column-type, and since

the inner tableaux of sign +1 in a plethystic semistandard tableau of shape

(1R) are distinct, the tableaux inM are distinct. The proof is similar if the

sign is −1. The uniqueness of M is obvious from (c). �

Example 4.12. Using Lemma 4.11 we find all strongly maximal signed

tableau families and signed weights of shape (2) and size 3, considering each

possibility for −`−, the length of the negative part of the signed weight, in

turn.

(0) Take `− = 0. Then all integer entries are positive and, by (b) the

family has column-type. The two relevant maximal signed weights

of shape (2), size 3 and seen in Example 4.9 are
(
∅, (3, 3)

)
and(

∅, (4, 1, 1)
)
. Now

(
∅, (4, 1, 1)

)
is strongly 1-maximal by comparison

with
(
∅, (3, 3)

)
and

(
∅, (3, 3)

)
is strongly 1- and strongly 2-maximal

verifying (c). Note that
(
∅, (3, 3)

)
is not compared to

(
∅, (4, 1, 1)

)
because (4, 1, 1) has strictly greater length, corresponding to a larger

maximum integer entry.

(1) Take `− = 1. By Lemma 4.11, a strongly maximal semistandard

signed tableau family of shape (2) and size 3 has the form{
1 x , 1 y , 1 z

}
where, since by (b) the family has row-type, x < y < z. Taking

x = 1, y = 2 and z = 3 we obtain
{

1 1 , 1 2 , 1 3
}

. None

of the four other maximal row-type weights (φ−, φ+) of shape (2)

and size 3 seen in Example 4.9 are of a family all of whose mem-

bers are 1-greatest. Therefore (c) holds and so the tableau fam-

ily above is strongly 3-maximal, of strongly maximal signed weight(
(3), (1, 1, 1)

)
. Comparing with this signed weight shows that this

choice of x, y and z defines the unique strongly 3-maximal signed

weight of shape (2) and size 3.

(2) There is no strongly maximal semistandard signed tableau family

with `− = 2 because by (a) each (2)-tableau element is 1 2 ,

but, as observed above, by (b) the three (2)-tableaux in the fam-

ily are distinct. In particular, while we saw in Example 4.9 that{
1 2 , 1 3 , 2 3

}
is a maximal semistandard signed tableau

family of shape (2) and size 3 in the 3-signed dominance order, it is

not strongly maximal. (If instead R = 1 then
{

1 2
}

is strongly

0-maximal.)

Note we do not assume in Definition 4.10 that M is maximal; instead,

as we now show, this follows from the three hypotheses, as the reader may

have guessed from the previous example.

Lemma 4.13. LetM be a strongly c+-maximal semistandard signed tableau

family of signed weight (κ−, κ+). Let (ψ−, ψ+) be the signed weight of a

maximal semistandard signed tableau family S of the same shape, size and
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type as M with negative entries from
{
−1, . . . ,−`(κ−)

}
such that S 6=M.

Then

|ψ−| ≤ |κ−| (4.2)

with equality if and only if either maxS > maxM or

|ψ−|+
∑c+

i=1 ψ
+

i < |κ−|+
∑c+

i=1 κ
+

i . (4.3)

Moreover (κ−, κ+) is a maximal signed weight in the sense of Definition 4.8.

Proof. Let τ/τ? be the shape of S and M. Suppose there exists t ∈ S such

that t is not `−-negative greatest. Then, by Lemma 4.4, if t has signed

weight (α−, α+) then |α−| < |ω`−(τ/τ?)
−| and, by summing over all t ∈ S,

we see that (4.2) holds. Moreover ψ− � κ− and so (κ−, κ+) 6� (ψ−, ψ+), as

required in the final claim.

In the remaining case every element of S is `−-negative greatest. Hence

ψ− = κ−. If maxS > maxM then we need only verify the final claim. Since

maxS = `(ψ+) and maxM = `(κ+), we have

|ψ−|+
`(κ+)∑
i=1

ψ+

i < |ψ
−|+ |ψ+| = |κ−|+ |κ+| = |κ−|+

`(κ+)∑
i=1

κ+

i .

Hence, by definition of the `−-signed dominance order in Definition 4.1,

we have (κ−, κ+) 6� (ψ−, ψ+), as required. We have now reduced further to

the case where maxS ≤ maxM. By (c) in Definition 4.10, noting that

|ψ−| = |κ−|, we now have (4.3). It now follows from the definition of the

`−-signed dominance order in Definition 4.1, as in the previous paragraph,

that (κ−, κ+) 6� (ψ−, ψ+). This completes the proof. �

Remark 4.14. We remark that the converse to this lemma also holds:

ifM is a maximal semistandard signed tableau family such that either (4.2)

or (4.3) holds when M is compared with a maximal semistandard signed

tableau family S then all tableaux in M have the same sign and are `−-

negative greatest; given this, provided M has the type specified by (b), we

have (b) and (4.3) implies that (c) holds. This gives an equivalent definition

of ‘strongly maximal’; in this paper we prefer Definition 4.10 since, while

it has a technical flavour, examples can easily be given straight from the

definition, rather than via the argument of Lemma 4.13.

If (κ−, κ+) is a strongly maximal signed weight then κ− and κ+ are par-

titions. This fact is implicitly assumed in the statement of Theorem 1.2

because we have only defined ⊕ adjoining for partitions. To prove it we use

the Bender–Knuth involution on semistandard tableaux, of general skew

shape, but having only positive entries: for a textbook presentation see the

proof of Theorem 7.10.2 in [20]. We remark that the proof of the following

lemma generalizes (but with much more work) to show that any maximal

signed weight is a pair of partitions.

Lemma 4.15. If (κ−, κ+) is a strongly maximal signed weight then κ−

and κ+ are partitions.
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Proof. Suppose that (κ−, κ+) has shape µ/µ? and size R. Let M be the

unique strongly maximal semistandard signed tableau family of signed weight

(κ−, κ+). By Lemma 4.4, ω`−(µ/µ?)
− is a partition. By (a) in Definition 4.10

we have κ− = Rω`−(µ/µ?)
−, and so κ− is a partition.

Fix i < `(κ+). Let t+(1) . . . , t
+

(R) be the subtableaux of skew shape defined

by taking the positive entries of each tableau in M. By (a) and (b) in

Definition 4.10, t+(1), . . . , t
+

(R) are distinct semistandard tableaux of the same

shape. Applying the Bender–Knuth involution swapping i and i + 1 to

each t+(k) gives distinct semistandard tableaux u+

(1), . . . , u
+

(R). Let U be the

semistandard signed tableau family obtained by replacing the subtableau t+(i)
with u+

(i) in each inner tableau in M. Observe that U has signed weight

(κ−, λ+) where

λ+

k =


κ+

i+1 if k = i

κ+

i if k = i+ 1

κ+

k if k 6= i, i+ 1.

By the ‘moreover’ part of Lemma 4.13, (κ−, κ+) is a maximal signed weight

in the `−-signed dominance order. Comparing it with (κ−, λ+), we see that

either κ+

i = κ+

i+1 and so κ+

i = λ+

i = κ+

i+1, or κ+ 6� λ+ and so κ+

i > κ+

i+1.

This completes the proof. �

We use this lemma later to prove Proposition 6.5 and then in the proof

of Corollary 13.22 and in Lemma 14.2.

Remark 4.16. Definition 4.10 is deliberately asymmetric with respect to

positive and negative entries. The effect of this is seen most obviously in

Example 4.12(2) and in Definition 6.6 below. This asymmetry ultimately

reflects our decision in Definition 4.1 to order the negative part of signed

weights first. For this reason, while applying the ω-involution to Theorem 1.1

gives no new results, as we show in Example 8.3, this is not the case for

Theorem 1.2.

4.4. Further examples of strongly maximal signed weights. This sec-

tion is not logically essential: it is included to show that Definition 4.10 is

not overly restrictive, and so there is a rich supply of strongly maximal

signed weights to which Theorem 1.2 may be applied. (Many illustrative

examples are shown in the tables in §4.5.) We begin with singleton semis-

tandard signed tableau families, generalizing the small example immediately

after Definition 4.8.

Lemma 4.17. Let τ/τ? be a skew partition. The maximal singleton semi-

standard signed tableau families are precisely {t`−(τ/τ?)} for 0 ≤ `− ≤
max{τi− τ?i : 1 ≤ i ≤ `(τ)}. If c+ is the greatest positive entry of t`−(τ/τ?)

then {t`−(τ/τ?)} is strongly c+-maximal.

Proof. It is obvious that (a) holds in Definition 4.10 and we stipulate that

the singleton family has row-type or column-type according to the sign of

t`−(τ/τ?) so that (b) holds. Finally, by Lemma 4.4, if t is a τ/τ?-tableau of
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signed weight swt(t) with negative entries from {−1, . . . ,−`−} then

∣∣swt(t)−
∣∣+

c+∑
i=1

swt(t)+i ≤
∣∣ω`−(τ/τ?)

∣∣+
c+∑
i=1

ω`−(τ/τ?)i

so we have (c). �

In particular, when τ? = ∅, by taking `− = 0 we find that (∅, τ) is

strongly `(τ)-maximal and by taking `− = a(τ) that (τ ′,∅) is strongly 0-

maximal. This gives the strongly maximal signed weights mentioned in the

introduction.

Example 4.18. Let m ∈ N and let 0 ≤ d ≤ m. The greatest tableau

td
(
(m)

)
is

1 2 . . . d 1 . . . 1 .

It has signed weight ωd
(
(m)

)
=
(
(1d), (m− d)

)
.

(i) By Lemma 4.17,
{
td
(
(m)

)}
is a strongly 1-maximal semistandard signed

tableau family. (To satisfy (b) in Definition 4.10 we stipulate that

it has row-type if d is odd and column-type if d is even.) This can

also be seen directly from Definition 4.10: since td
(
(m)

)
has left-

most d boxes 1 2 . . . d it is d-negative greatest, and clearly it

has the greatest possible number of 1s of all such tableaux. There-

fore
(
(1d), (m − d)

)
is a strongly 1-maximal signed weight. Note this

holds even when d = 0. By Theorem 1.2, if ν and λ are any parti-

tion, then 〈sν(M) ◦ s(m), sλ+M(m−d)t (dM )〉 is ultimately constant where

ν(M) = ν + (M) if d is even and ν(M) = ν t (1M ) if d is odd, prov-

ing (1.3) and (1.4) in §1.7; as discussed earlier, these results were first

proved in [12]. See Proposition 15.6 for explicit bounds deduced from

our Theorem 14.7, together with a sufficient condition for the constant

value of the plethysm coefficient to be zero.

(ii) Suppose that d < m. For h ∈ N, let u(h) be the (m)-tableau obtained

from td
(
(m)

)
by changing the rightmost 1 to h. Thus t = u(1). Fix

R ∈ N. We claim that the tableau family

{u(1), . . . , u(R)}

of shape (m) and size R is strongly 1-maximal, of row-type if d is

odd and column-type if d is even. Clearly it satisfies conditions (a)

and (b) in Definition 4.10. For (c), we observe that the family has

the maximum possible number of entries of 1 of all families of size R

formed from d-negative greatest tableaux. The corresponding strongly

1-maximal signed weight of shape (d) and size R is(
(Rd), ((m− d)R− (R− 1), 1R−1)

)
.

By Theorem 1.2, if ν and λ are any partitions then

〈sν(M) ◦ s(m), sλ⊕M((Rd),((m−d)h−(R−1),1R−1))〉
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is ultimately constant, where ν(M) = ν+ (MR) if d is even and ν(M) =

ν t (RM ) if d is odd.

After Corollary 14.9 we give some notable special cases of (i) and (ii)

above in which the plethysm coefficient is constant for all M ≥ 0. See

also Example 15.7 for some explicit stability bounds obtained using Propo-

sition 15.6.

Example 4.19. The plethystic semistandard signed tableau

1 1
1 2

1 1
1 3

1 1
1 4

.

of shape
(
(3), (2, 2)

)
has entries from the semistandard signed (2, 2)-tableau

family

M =

{
1 1
1 2

, 1 1
1 3

, 1 1
1 4

}
of size 3, sign +1 and signed weight

(
(6), (3, 1, 1, 1)

)
. Suppose that T is a

row-type semistandard signed tableau family of size 3, shape (2, 2) in which

each member of T is 1-negative greatest. Then each (2, 2)-tableau in T has

two entries of −1 in its first column and since box (2, 2) cannot contain either

−1 or 1, the inequality τ+

1 ≤ κ
+

1 = 3 required by Definition 4.10(c) when `− =

c+ = 1 holds. Moreover, we have equality if and only if every (2, 2)-tableau

has the form shown in the margin, and in this case it is easy to see that T
is the family M. Therefore M is strongly 1-maximal and

(
(6), (3, 1, 1, 1)

) 1 1
1 ?

is a strongly maximal signed weight of shape (2, 2), size 3 and sign +1. By

Theorem 1.2, 〈sν+(M,M,M) ◦ s(2,2), sλ⊕M((6),(3,1,1,1))〉 is ultimately constant

for any partitions ν and λ.

The special case µ? = ∅ of the following lemma was used in §1.7 to show

that (1.1), taken from [4, (9)], is a special case of Theorem 1.2.

Lemma 4.20. Let µ/µ? be a skew partition. Fix ` ∈ N and letM be the set

of all semistandard µ/µ?-tableaux having entries from {1, . . . , `}. The signed

weight ofM is
(
∅, (q`)

)
where q = |M|/`|µ/µ?|; it is a strongly c+-maximal

signed weight of sign +1 for all c+ ∈ {1, . . . , `}.

Proof. Clearly each t ∈ M is 0-negative greatest and M has column-type

since its entries are distinct. Hence (a) and (b) in Definition 4.10 hold. Let

R = |M|. If T is another tableau family of shape µ/µ? and size R then T
contains a µ/µ?-tableau with maximum entry strictly greater than `. Hence

maxM < max T , and condition (c) holds vacuously for any permitted c.

Since the skew Schur function sµ/µ? is symmetric, each element of {1, . . . , `}
appears equally often as an entry in a tableau t ∈ M, and so the signed

weight of T is
(
∅, (q`)

)
for some q ∈ N. Since each tableau has |µ/µ?|

entries, the common multiplicity q is |M|/`|µ/µ?|, as claimed. �

The following example shows the usefulness of skew partitions in Theo-

rem 1.2.
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Example 4.21. Take µ/µ? = (2, 1)/(1). By Definition 4.10, or alternatively

by Lemma 4.17, the signed weight
(
∅, (2)

)
of the tableau shown in the

margin is strongly 1-maximal. Since it is defined by a single semistandard

signed tableau of sign +1, the size is 1 and the sign is +1. It therefore follows1
1

from Theorem 1.2 that 〈sν+(M) ◦ s(2,1)/(1), sλ+(2M)〉 is ultimately constant,

for all partitions ν and λ such that 2|ν| = |λ|; using s(2,1)/(1) = s(2) +s(1,1) =

s2
(1) an equivalent formulation is that 〈sν+(M) ◦ s2

(1), sλ+(2M)〉 is ultimately

constant. Since the plethysm product is not distributive over addition in

its second component, this result is already non-trivial to prove by other

methods.

The final example in this subsection is included to give an idea of the rich

behaviour of maximal signed weights of large size. It is is instructive but

not logically essential, and so we omit far more details than usual.

Example 4.22. As seen earlier in Example 4.9, the column-type semistan-

dard signed tableau families of shape (2) and size 3, namely{
1 1 , 1 2 , 1 3

}
,
{

1 1 , 1 2 , 2 2
}
,

are maximal, of signed weights
(
∅, (4, 1, 1)

)
and

(
∅, (3, 3)

)
respectively. Cor-

respondingly s(13) ◦ s(2) has maximal constituents s(4,1,1) and s(3,3), and in

fact s(13) ◦ s(2) = s(4,1,1) + s(3,3). More generally, one can show (see for

instance [15, page 138, Example 6] or [17, §8.5]) that s(1n) ◦ s2 =
∑

λ s2[λ]

where the sum is over all partitions of n having distinct parts and 2[λ] is

the partition whose main diagonal hook lengths are 2λ1, . . . , 2λ`(λ) such that

2[λ]i = λi + i for 1 ≤ i ≤ `(λ). For each such partition 2[λ] there is a unique

maximal column-type semistandard tableau family of shape (2) and size R

and signed weight (∅, 2[λ]). In particular, any two partitions 2[λ] are either

equal or incomparable in the dominance order, and so every constituent of

the plethysm s(1n) ◦ s(2) is both maximal and minimal. Two examples have

already been given and the tableau in the margin indicates how{
1 1 , 1 2 , 1 3

}
∪
{

2 2 , 2 3
}

is constructed from 2[(3, 2)] (shown below in the margin) by forming the

three (2)-tableaux in the first set of total signed weight
(
∅, (4, 1, 1)

)
from the

entries {1, 1, 1, 1, 2, 3} in the hook on the box (1, 1) and two tableaux in the

second set of total signed weight
(
∅, (0, 3, 1)

)
from the entries {2, 2, 2, 3} in

the hook on the box (2, 2) on the main diagonal boxes. Summing (4, 1, 1) and

(0, 3, 1) we obtain a maximal semistandard tableau family of shape (2) and

size 5 and signed weight
(
∅, (4, 4, 2)

)
, corresponding to the partition 2[(3, 2)].

We invite the reader to check that if α is a partition of n the maximal

1 1 1 1
2 2 2 2
3 3

6
4

signed weight (∅, 2[α]) of shape (2), size n and column-type is strongly 1-

maximal if and only if α ∈ {(n), (n− 1, 1), (n− 2, 2), (3, 2, 1)} and strongly

2-maximal if and only if α = (k+1, k−1) or α = (k+1, k) where k = bn/2c,
according to the parity of n. If α is the least distinct parts partition in the

lexicographic order on partitions of n then α = (`, `− 1, . . . , b + 2, b, . . . , 1)

for some b and one can show that the corresponding maximal semistandard

tableau family has strongly (` − 1)-maximal signed weight (∅, 2[α]). (It
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may also be strongly c+-maximal for other c+: for instance if b = ` so

that α is (`, ` − 1, . . . , 1) then 2[α] = (` + 1, `. . ., ` + 1) and the maximal

semistandard tableau family is the initial segment of the colexicographic

order ending at ` ` and Lemma 4.20 applies.) These remarks imply that

if n ≤ 7 then all maximal signed weights of shape (2), size n and sign +1

are strongly maximal. When n = 8, we have 2[5, 2, 1] = (6, 4, 4, 1, 1) and(
∅, (6, 4, 4, 1, 1)

)
is maximal, but comparison with the signed weights from

2[5, 3] = (6, 5, 2, 2, 1) and 2[4, 3, 1] = (5, 5, 4, 2) show that it is not strongly

c+-maximal for any value of c+.

4.5. Tables of strongly maximal signed weights. The tables below

shows column-type strongly maximal signed weights of shape µ/µ? of size

3 and 4 and size R with 2 ≤ R ≤ 5. (Singleton strongly maximal signed

weights of size 1 are classified in Lemma 4.17.) The entries in the col-

umn c+ show all the values for which the weight is strongly c+-maximal.

The ‘unsigned’ weights with `− = 0 may be used in Corollary 15.9 as well

as Theorem 1.2, or its sharp version Theorem 14.7.

µ/µ? `− R (κ−, κ+) c+

(3) 0 2
(
∅, (5, 1)

)
1

3
(
∅, (6, 3)

)
1, 2(

∅, (7, 1, 1)
)

1

4
(
∅, (6, 6)

)
1, 2(

∅, (8, 3, 1)
)

1(
∅, (9, 1, 1, 1)

)
1

5
(
∅, (8, 6, 1)

)
2(

∅, (9, 4, 2)
)

1(
∅, (10, 3, 1, 1)

)
1(

∅, (11, 1, 1, 1, 1)
)

1

2 R
(
(2R), (1R)

)
1, . . . , R

(2,1) 0 2
(
∅, (3, 3)

)
1, 2(

∅, (4, 1, 1)
)

1

3
(
∅, (5, 3, 1)

)
1(

∅, (6, 1, 1, 1)
)

1

4
(
∅, (7, 3, 1, 1)

)
1(

∅, (8, 1, 1, 1, 1)
)

1

5
(
∅, (7, 5, 3)

)
1(

∅, (9, 3, 1, 1, 1)
)

1

1 R
(
(2R), (1R)

)
1, . . . , R

µ/µ? `− R (κ−, κ+) c+

(4) 0 2
(
∅, (7, 1)

)
1, 2

3
(
∅, (9, 3)

)
1, 2(

∅, (10, 1, 1)
)

1

4
(
∅, (10, 6)

)
1, 2(

∅, (12, 3, 1)
)

1(
∅, (13, 1, 1, 1)

)
1

5
(
∅, (10, 10)

)
1, 2(

∅, (14, 4, 2)
)

1(
∅, (15, 3, 1, 1)

)
1(

∅, (16, 1, 1, 1, 1)
)

1

2 2
(
(2, 2), (3, 1)

)
1, 2

3
(
(3, 3), (3, 3)

)
1, 2(

(3, 3), (4, 1, 1)
)

1

4
(
(4, 4), (4, 3, 1)

)
1, 2, 3(

(4, 4), (5, 1, 1, 1)
)

1

5
(
(5, 5), (4, 4, 2)

)
1, 2, 3(

(5, 5), (5, 3, 1, 1)
)

1(
(5, 5), (6, 1, 1, 1, 1)

)
1
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µ/µ? `− R (κ−, κ+) c+

(3,1) 0 2
(
∅, (5, 3)

)
1, 2(

∅, (6, 1, 1)
)

1, 2

3
(
∅, (8, 3, 1)

)
1(

∅, (9, 1, 1, 1)
)

1

4
(
∅, (11, 3, 1, 1)

)
1, 2(

∅, (12, 1, 1, 1, 1)
)

1, 2, 3

5
(
∅, (12, 5, 3)

)
1(

∅, (14, 3, 1, 1, 1)
)

1

1 2
(
(4), (3, 1)

)
1, 2

3
(
(6), (3, 3)

)
1, 2, 3(

(6), (4, 1, 1)
)

1

4
(
(8), (4, 3, 1)

)
1, 2, 3(

(8), (5, 1, 1, 1)
)

1

5
(
(10), (4, 4, 2)

)
1, 2, 3, 4(

(10), (5, 3, 1, 1)
)

1(
(10), (6, 1, 1, 1, 1)

)
1

(2,2) 0 2
(
∅, (4, 3, 1)

)
1, 2, 3

3
(
∅, (6, 3, 3)

)
1(

∅, (5, 5, 2)
)

1

4
(
∅, (7, 5, 4)

)
1, 2(

∅, (8, 4, 3, 1)
)

1(
∅, (7, 6, 2, 1)

)
2(

∅, (7, 5, 3)
)

3

µ/µ? `− R (κ−, κ+) c+

(2,2) 0 5
(
∅, (8, 6, 6)

)
1, 2, 3(

∅, (10, 4, 4, 2)
)

1(
∅, (8, 8, 2, 2)

)
2

(2,2) 1 2
(
(4), (2, 1, 1)

)
1, 2, 3

3
(
(6), (2, 2, 2)

)
1, 2, 3(

(6), (3, 1, 1, 1)
)

1

4
(
(8), (3, 2, 2, 1)

)
1, 2, 3, 4(

(8), (4, 1, 1, 1, 1)
)

1

5
(
(10), (3, 3, 2, 2)

)
1, 2, 3, 4(

(10), (4, 2, 2, 1, 1)
)

1

(3,2)/(1) 0 2
(
∅, (6, 1, 1)

)
1

3
(
∅, (7, 5)

)
1, 2(

∅, (9, 1, 1, 1)
)

1

4
(
∅, (8, 8)

)
1, 2(

∅, (12, 1, 1, 1, 1)
)

1

5 none

1 2 none

3
(
(6), (4, 2)

)
1, 2

4
(
(8), (4, 4)

)
1, 2

5
(
(10), (6, 2, 2)

)
1

Many further strongly maximal signed weights, including those of row-

type can be found using the Haskell software [23] mentioned in the intro-

duction: see the module MaximalTableauFamily.hs for instructions.

4.6. Why maximal weights are not sufficient. In this subsection we

show that, while Theorem 1.2 certainly requires maximal signed weights,

this is not a sufficient hypothesis for this theorem, and so some stronger

notion, such as the strongly maximal signed weights in Definition 4.10 is

required. Again this section is not logically necessary, but we believe it is

important to explain what we cannot hope to prove.

Example 4.23. Taking µ/µ? = (2, 1)/(1) as in Example 4.21, suppose

instead we take the non-maximal signed weight
(
(1), (1)

)
, dominated in the

1-signed dominance order (see Definition 4.1) by
(
(2),∅

)
, and, to give the

simplest possible example, ν = (1) and λ = (2). Since this signed weight has

sign −1 and (2)⊕(N−1)
(
(1), (1)

)
=
(
(2)+(N−1)

)
t(1N−1) = (N+1, 1N−1),

the prediction of Theorem 1.2 — wrongly applied with a weight that is not

even maximal — is that 〈s(1N )◦s(2,1)/(1), s(N+1,1N−1)〉 is ultimately constant.

To see this is false, let t+−, t−+ and t++ be the three semistandard signed

tableaux of shape (2, 1)/(1) shown below

1
1

, 1
1

, 1
1

.
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(Again 1 stands for −1.) For each N ∈ N0 and L ∈ {0, . . . , N − 1} there

is a unique plethystic semistandard signed tableau of outer shape (1N )

and inner shape (2, 1)/(1) which has L inner tableaux t+−, N − 1 − L

inner tableaux t−+ and a final inner tableau t++. (Note that only in-

ner tableaux of negative sign are repeated.) These are all the plethystic

semistandard signed tableaux of signed weight
(
(N + 1), (N − 1)

)
and so∣∣PSSYT

(
(1N ), (2, 1)/(1)

)
(N+1),(N−1)

∣∣ = N . By Proposition 5.6 (Plethystic

Signed Kostka Numbers) it follows that

〈s(1N ) ◦ s(2,1)/(1), e(N−1)h(N+1)〉 = N.

Thus condition (ii) in the the Signed Weight Lemma (Lemma 7.3) does not

hold when the lemma is applied (as is usual in this paper) with the twisted

symmetric functions defined in Definition 6.11; this is the first point where

the proof can be seen to fail. Moreover, by a very similar enumeration of

plethystic tableaux one can show that 〈s(1N ) ◦ s(2,1)/(1), e(N+d)h(N−d〉 = 0

for each d > 1 and N ≥ d; it now follows from the identity

s(N+1,1N−1) = e(N−1)h(N+1) − e(N−2)h(N+2) + · · ·+ (−1)N−1h(2N)

that 〈s(1N ) ◦ s(2,1)/(1), s(N+1,1N−1)〉 = N for all N ∈ N0, showing that in fact

the plethysm coefficient is not stable.

The non-uniqueness seen in Example 4.23 is completely typical of the

non-maximal case, and always leads to a similar obstruction to our proof

strategy; indeed in most such cases, there is no stability result to be proved.

But as the following example shows, mere maximality is not enough.

Example 4.24. The two tableau families of shape (2, 1), size 4 and signed

weight
(
∅, (6, 4, 2)

)
are

S =

{
1 1
2

, 1 1
3

, 1 2
2

, 1 2
3

}
T =

{
1 1
2

, 1 1
3

, 1 2
2

, 1 3
2

}
.

Each of S and T is the set of entries of a unique plethystic semistan-

dard signed tableau of outer shape (14) and inner shape (2, 1), and so∣∣PSSYT
(
(14), (2, 1)

)
(∅,(6,4,2))

∣∣ = 2. Moreover, there is no tableau family of

shape (2, 1) and size 4 with signed weight strictly dominating
(
∅, (6, 4, 2)

)
.

(Note that such a family has only positive entries.) But, by the uniqueness

part of Lemma 4.11, the signed weight
(
∅, (6, 4, 2)

)
is not strongly maximal.

Theorem 1.2 is therefore inapplicable. If, ignoring that one of the hypotheses

fails to hold, we nonetheless take ν = ∅, µ = (2, 1) and λ = ∅, we wrongly

conclude that 〈s(M,M,M,M) ◦ s(2,1), s(6M,4M,2M)〉 is ultimately constant.

To see this is false, first note, analogously to Example 4.23, that given

0 ≤ L ≤ M , there is a unique plethystic semistandard tableau TL of shape

(M,M,M,M) whose first L columns have entries S and whose final M −L
columns have entries T ; the families occur in this order because, as seen
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after Definition 3.8, we have

1 2
3

< 1 3
2

in the signed colexicographic order. The maximal tableau families of shape

(2, 1), size 4 and sign +1 have weights, in the usual sense for unsigned

tableaux, as defined after Definition 3.4, (8, 1, 1, 1, 1), (7, 3, 1, 1) and (6, 4, 2).

Since (6, 4, 2) has the least number of parts, it need not be compared with

(8, 1, 1, 1, 1) or (7, 3, 1, 1) in Definition 4.10(c), and so the only reason why(
∅, (6, 4, 2)

)
fails to be a strongly maximal signed weight is that S and T

have the same weight. Since the signed weight
(
∅, (6, 4, 2)

)
is maximal, any

tableau family of shape (2, 1), size 4, sign +1 and entries from {1, 2, 3} has

weight dominated by
(
∅, (6, 4, 2)

)
. Hence

PSSYT
(
(14), (2, 1)

)
(6M,4M,2M)

= {TL : 0 ≤ L ≤M} (4.4)

and PSSYT
(
(14), (2, 1)

)
π

= ∅ if π � (6M, 4M, 2M). By the basic result

on Kostka numbers mentioned before Lemma 5.3 we have s(6M,4M,2M) =

h(6M,4M,2M) + f where f is a linear combination of complete homogeneous

symmetric functions hπ with π � (6M, 4M, 2M). Hence

〈s(M,M,M,M)◦s(2,1), s(6M,4M,2M)〉 = 〈s(M,M,M,M) ◦ s(2,1), h(6M,4M,2M)〉
=
∣∣PSSYT

(
(M,M,M,M), (2, 1)

)
(∅,(6M,4M,2M))

∣∣ = M + 1.

(Alternatively this is a corollary of the Signed Weight Lemma (Lemma 7.3),

applied with the singleton sets P(M) =
{

(6M, 4M, 2M)
}

.) In particular,

the multiplicity is unbounded.

The previous paragraph also indicates where the proof of Theorem 1.2

breaks down. Applying Definition 13.8 with respect to the signed weight(
∅, (6, 4, 2)

)
— which according to this definition is illegitimate as the signed

weight is not strongly maximal — each non-exceptional column of a plethys-

tic semistandard tableau T ∈ PSSYT
(
(M,M,M,M), (2, 1)

)
may be either

S or T . Thus there is no canonical tableau family that can be inserted as

the entries in a new column of height 4 to define a bijection between the sets

of plethystic semistandard signed tableaux for M and M + 1 and the key

result Lemma 13.12(i) fails in the attempt to adapt the proof of Theorem 1.2

in §14.5.

We remark that an alternative way to see that the conclusion of The-

orem 1.2 is false in the previous example uses the highest-weight vector

methods in [8]. Let ∇γ denote the Schur functor for the partition γ, let E

be a 3-dimensional vector space, let TL be as defined in the previous ex-

ample, and let F (TL) be as defined in Definition 2.3 of [8]. Generalizing

Example 7.5 in [8], for each L, the vector

F (TL) ∈ ∇(M,M,M,M)
(
∇(2,1)(E)

)
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is highest weight of weight (6M, 4M, 2M). The vectors F (TL) for 0 ≤ L ≤
M are linearly independent because the multisets of semistandard (2, 1)-

tableau entries of each TL are distinct. It again follows that 〈s(M,M,M,M) ◦
s(2,1), s(6M,4M,2M)〉 ≥M + 1 for each M ∈ N0.

Example 4.25. In the previous example the problem was that there were

two semistandard signed tableau families of the same maximal weight. The

other potential problem solved by Definition 4.10 is seen only in relatively

large examples, such as the following. Take µ = (3). There are three

maximal semistandard signed tableau families of shape (3) and size 17 having

only positive entries, each obtained from

1 1 1 , 1 1 2 , 1 2 2 , 2 2 2 , 1 1 3 , 1 2 3 , 2 2 3 , 1 3 3 , 2 3 3

by taking the union with the eight tableaux shown in the table below.

Signed weight Extend by(
∅, (17, 16, 11, 4, 3)

) 3 3 3 , 1 1 4 , 1 2 4 , 2 2 4 ,

1 3 4 , 1 1 5 , 1 2 5 , 2 2 5(
∅, (18, 15, 10, 5, 3)

) 1 1 4 , 1 2 4 , 2 2 4 , 1 3 4 ,

2 3 4 , 1 1 5 , 1 2 5 , 1 3 5(
∅, (19, 14, 9, 6, 3)

) 1 1 4 , 1 2 4 , 2 2 4 , 1 3 4 ,

1 4 4 , 1 1 5 , 1 2 5 , 1 3 5

That these families are maximal can be checked by hand, or more quickly, us-

ing the Haskell software [23] mentioned in the introduction using display $

maximalTableauFamilies ColType Closed 17 (ssyts 5 [3]). Let T , U

and V be the plethystic semistandard signed tableaux of outer shape (117)

and inner shape 3 having as their entries the three families above. From the

table above which lists the (3)-tableau entries in the signed colexicographic

order from Definition 3.8, one can see that any plethystic tableau of the

form

T · · · T U · · · U V · · · V (4.5)

is semistandard. Observe that

2(18, 15, 10, 5, 3) = (19, 14, 9, 6, 3) + (17, 16, 11, 4, 3).

Thus two of the 2N columns U U of length 17 in a plethystic semistan-

dard signed tableau of outer shape (2N, 17. . ., 2N) and inner shape (3) may

be replaced with two columns T V without changing the weight. (The

columns must then be reordered as in (4.5) to respect the semistandard

condition). Hence are at least 2N plethystic semistandard signed tableaux

of outer shape whose signed weight is 2(18N, 15N, 10N, 5N, 3N). Similar

arguments to the previous Example 4.24 now show the plethysm coefficients

〈s(M17) ◦s(3), s(18M,15M,10M,5M,3M)〉 for even M do not stabilise, even though

the relevant signed weight is maximal.

We remark that each tableau family in the previous example is a downset

for the majorization partial order � defined by comparing tableaux entry



32 ROWENA PAGET AND MARK WILDON

by entry; this is a necessary, but not in general sufficient, condition for

maximality. For instance the family of weight (17, 16, 11, 4, 3) is 2 2 5
� ∪

1 3 4
� ∪ 3 3 3

� with three incomparable maximals in the dominance

order. This leads to an efficient algorithm implemented in [23] for finding

maximal, and so strongly maximal, tableau families.

5. Symmetric functions and plethystic semistandard signed

tableaux

5.1. Basic results. We refer the reader to Stanley’s textbook [20, Ch. 7]

for an introduction to the Hopf algebra Λ of symmetric functions and to [14]

for a careful development of plethysm and the formalism of plethystic substi-

tutions. The elementary and homogeneous symmetric functions eπ and hπ
are defined for arbitrary weights π ∈ W, while the Schur functions sλ are

labelled by partitions as usual. The minimum we need for our purposes is:

• Young’s rule (horizontal strip addition) and Pieri’s rule (vertical strip

addition) as stated in (7.65) and after Example 7.15.8 in [20];

• the coproduct ∆ on Λ satisfies ∆sλ/λ? =
∑

τ sτ/λ? ⊗ sλ/τ and is com-

patible with the inner product (see the proof of Lemma 5.3);

• the formal definition of substitution by an alphabet with mixed signs,

namely

f [−x1,−x2, . . . , y1, y2, . . .] =
∑
i

f−i [−x1,−x2, . . .]f
+

i [y1, y2, . . .] (5.1)

where ∆f =
∑

i f
−
i ⊗f

+

i (this follows from the equation for sλ/ν [A−B]

on page 177 of [14], using the result on the coproduct just mentioned,

and that the Schur functions sλ are a basis for Λ);

• the negation rule

sλ[−x1,−x2, . . .] = (−1)|λ|sλ′ [x1, x2, . . .] (5.2)

which is a special case of [14, Theorem 6],

and finally the rule for a general plethystic substitution into a Schur function

given in [14, Theorem 10]. We shall not state this rule here, since it is lengthy

and we only need it once, in the proof of Lemma 5.5; the reader may then

either refer to [14], or take it on trust that it has the effect we claim.

Remark 5.1. Let ν/ν? be a skew partition. By the adjointness relation in

Corollary 7.15.4 of [20] we have sν/ν? =
∑

σ〈sν , sν?sσ〉sσ where the sum is

over all partitions σ of |ν/ν?|. Since the plethysm product is linear in its

first component, i.e. (f + g) ◦ h = f ◦ h+ g ◦ h for all f, g, h ∈ Λ, it follows

that for any skew partition µ/µ?,

sν/ν? ◦ sµ/µ? =
∑
σ

〈sν , sν?sσ〉sσ ◦ sµ/µ?

with the same condition on the sum. This reduces an arbitrary plethysm

of skew Schur functions to the case dealt with in this paper. On the other

hand, since the plethysm product is not linear in its second component (this

is already clear from the negation rule) there is no further reduction to

plethysm products where both factors are Schur functions.
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The following definition is standard.

Definition 5.2. Given a symmetric function f expressed in the Schur basis

as
∑

λ cλsλ we define the support of f by supp(f) = {λ ∈ Par : cλ 6= 0}.

For example by (2.2), we have supp(e(2)h(5,1)) =
{

(6, 2), (7, 1), (6, 1, 1),

(5, 2, 1), (5, 1, 1, 1)
}

.

5.2. Enumerating semistandard signed tableaux. Our first result is

the twisted generalization of the basic result, see for instance [20, (7.30),

(7.36)] that 〈sβ/β? , hλ〉 is the number of semistandard tableaux of shape

β/β? and weight λ. When β? = ∅, this quantity may also be familiar as the

Kostka number Kβλ. In our signed weight notation it is | SSYT(β/β?)(∅,λ)|.
(Semistandard signed Young tableaux are defined in Definition 3.7 and their

signed weights in Definition 3.5.)

Lemma 5.3 (Twisted Kostka numbers for skew shapes). Let β/β? be a skew

partition and let (γ−, γ+) be a signed weight of size |β/β?|. Then

〈sβ/β? , eγ−hγ+〉 = |SSYT(β/β?)(γ−,γ+)|.

In particular β ∈ supp(eγ−hγ+) if and only if SSYT(β)(γ−,γ+) is non-empty.

Proof. The inner product on Λ ⊗ Λ is defined in the natural way by linear

extension of 〈f ⊗ f ′, g ⊗ g′〉 = 〈f, g〉〈f ′ ⊗ g′〉. By the identity 〈f, gh〉Λ =

〈∆f, g ⊗ h〉Λ⊗Λ we have

〈sβ/β? , eγ−hγ+〉Λ = 〈∆sβ/β? , eγ−⊗hγ+〉Λ⊗Λ =
∑
τ

〈sτ/β?⊗sβ/τ , eγ−⊗hγ+〉Λ⊗Λ

where the sum is over all partitions τ of |β?| + |γ−|. The right-hand side

is
∑

τ 〈sτ/β? , eγ−〉Λ〈sβ/τ , hγ+〉Λ. By the remark before the proof, the sec-

ond factor is |SSYT(β/τ)(∅,γ+)|. Applying the omega-involution (see [20,

Theorem 7.14.5]) to the first factor gives

〈sτ/β? , eγ−〉 = 〈sτ ′/β′? , hγ−〉.

The right-hand side is the number of semistandard tableaux of shape τ ′/β′?
with positive entries of weight γ−, and so equal to |SSYT(τ/β?)(γ−,∅)| by

the obvious bijection conjugating tableaux and switching signs of the integer

entries. Since negative entries always precede positive entries in the order

in Definition 3.7, the pairs of tableaux enumerated by the two factors are

in bijection with SSYT(β/β?)(γ−,γ+). The final claim is now immediately

obvious on taking β? = ∅. �

Lemma 5.4. Let f be a symmetric function and let (α−, α+) be a signed

weight of size deg f where α−, α+ are partitions. Then 〈f, eα−hα+〉 is the

coefficient of (−x)α
−
yα

+
in f [−x1,−x2, . . . , y1, y2, . . .].

Proof. Let ∆(f) =
∑

i f
−
i ⊗ f+

i . Since f is a symmetric function, so are

each f−i and f+

i . By [20, (7.30)], the complete homogeneous and monomial

symmetric functions are dual bases of Λ. Hence the coefficient of yα
+

in

f+

i [y1, y2, . . .] is 〈f+

i , hα+〉. Similarly, now also using the negation rule (5.2),
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the coefficient of (−x)α
−

in f−i [−x1,−x2, . . .] is 〈f−i , eα−〉. The lemma now

follows by applying (5.1). �

5.3. Enumerating plethystic semistandard signed tableaux. We can

now extend Lemma 5.3 (Twisted Kostka Numbers) to plethystic signed

tableaux.

Lemma 5.5. Let ν be a partition and let µ/µ? be a skew partition. Then

(sν ◦ sµ/µ?)[−x1,−x2, . . . , y1, y2, . . .]

=
∑

(α−,α+)

|PSSYT(ν, µ/µ?)(α−,α+)| (−x)α
−
yα

+

where the sum is over all signed weights (α−, α+) of size |ν||µ/µ?|. Moreover,∣∣PSSYT
(
ν, µ/µ?

)
(α−,α+)

∣∣ =
∣∣PSSYT∓

(
ν, µ/µ?

)
(α−,α+)

∣∣.
Proof. By Lemma 5.3 (Twisted Kostka Numbers) and Lemma 5.4 we have

sµ/µ? [−x1,−x2, . . . , y1, y2, . . .] =
∑

(α−,α+)

|SSYT(µ/µ?)(α−,α+)| (−x)α
−
yα

+

where the sum is over all signed weights (α−, α+) of size |µ/µ?|. Therefore

(sν ◦ sµ/µ?)[−x1,−x2, . . . , y1, y2, . . .] = sν [A] where the plethystic alpha-

bet A is all semistandard tableaux of shape µ/µ? having entries from Z\{0}
ordered by the signed colexicographic order in Definition 3.8. Note this al-

phabet has formal symbols (i.e. tableaux) of both positive and negative sign

and that the sign of a semistandard signed µ/µ?-tableau of weight (α−, α+)

from the displayed equation above, namely (−1)|α
−|, agrees with the sign

defined by Definition 3.6. Moreover, negative tableaux are less than positive

tableaux. Therefore, by the definition of general plethystic substitution [14,

Theorem 8], taking D to be the negative tableaux in A and E to be the

positive tableaux in A, Sν [A] is the generating function enumerating, by

their signed weight, the ν-tableau T having entries from A, such that for

some subpartition β of ν,

(i) the negative entries in T form a subtableau of shape β and are strictly

increasing along rows and weakly increasing down columns;

(ii) the positive entries in T form a subtableau of skew shape ν/β and are

weakly increasing along rows and strictly increasing down columns.

Since (i) implies that all negative entries of T are in boxes above or left of

the positive entries of T , it follows that T is a plethystic semistandard signed

tableau of outer shape ν and inner shape µ/µ?, as defined in Definition 3.10.

Moreover, since the weight of a plethystic tableau is, by Definition 3.11, the

sum of the weights of its µ/µ?-tableau entries, the sign attached to each

plethystic tableau in PSSYT(ν, µ/µ?)(α−,α+) is (−1)|α
−|. This completes the

proof of the displayed equation in the statement of the lemma. For the sec-

ond claim, observe that we could instead order A by the sign-reversed colex-

icographic order, and take D to be the positive tableaux in A and E to be

the negative tableaux in A. We then obtain the displayed equation, modified

by replacing
∣∣PSSYT

(
ν, µ/µ?

)
(α−,α+)

∣∣ with
∣∣PSSYT∓

(
ν, µ/µ?

)
(α−,α+)

∣∣. �
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Proposition 5.6 (Plethystic Signed Kostka Numbers). Let ν be a partition

and let µ/µ? be a skew partition. Let (α−, α+) be a signed weight of size

|ν||µ/µ?|.

〈sν ◦ sµ/µ? , eα−hα+〉 = |PSSYT(ν, µ/µ?)(α−,α+)|.

Proof. This is immediate from Lemma 5.5 and Lemma 5.4. �

The special case ν = (1) of the proposition just proved recovers Lemma 5.3.

Note also that, by the final part of Lemma 5.5, Proposition 5.6 implies that

〈sν◦sµ/µ? , eα−hα+〉=
∣∣PSSYT∓

(
ν, µ/µ?

)
(α−,α+)

∣∣. For example, the three el-

ements of PSSYT
(
(2, 2), (3)

)
((3),(7,2)) were seen after Definition 3.10; these

may be compared with the three elements of PSSYT∓
(
(2, 2), (3)

)
((3),(7,2))

shown below in the sign-reversed colexicographic order

1 1 2 1 1 1

1 1 1 1 1 2
,

1 1 1 1 1 2

1 1 1 1 1 2
,

1 1 1 1 1 1

1 1 1 1 2 2
.

Remark 5.7. The only property of the signed colexicographic order we used

in the proof of Lemma 5.5 was that negative tableaux are always less than

positive tableaux. We are therefore free to use any other order � that has

this property, obtaining plethytic semistandard signed tableaux defined as in

Definition 3.10, but whose inner tableaux are instead semistandard with re-

spect to �. An analogous remark holds for the sign-reversed colexicographic

order. We use this freedom in the proof of Theorem 1.2.

We end this section with an immediate application.

5.4. A generalized Cayley–Sylvester formula. By Proposition 5.6, us-

ing that s(k−`,`) = h(k−`,`) − h(k−`+1,`−1), for any ` with 1 ≤ ` ≤ k/2, we

have

〈sν ◦ sµ/µ? , s(mn−`,`)〉
= |PSSYT(ν, µ/µ?)(∅,(mn−`,`))| − |PSSYT(ν, µ/µ?)(∅,(mn−`+1,`−1))|

(5.3)

for 1 ≤ ` ≤ mn/2. Special cases of (5.3) have appeared throughout the lit-

erature on plethysms, especially in the context of representations of SL2(C).

The most important case occurs when ν = (n) and µ = (m). Observe that

an element of of PSSYT
(
(n), (m)

)
(∅,(mn−`,`)) is determined by the number

of 2s in each of its n (m)-tableau entries. The corresponding non-negative

sequence of length n may be interpreted as a partition of ` having at most n

parts, each part having size at most m. For example when n = 4 and m = 4,

1 1 1 1 1 1 2 2 1 1 2 2 1 2 2 2  ! (3, 2, 2).

This bijection shows that 〈s(n) ◦ s(m), s(mn−`,`)〉 is the number of partitions

of ` contained in an m × n-box minus the number of partitions of `− 1

contained in an m×n box. This is one form of the Cayley–Sylvester identity.

The bijective proof just given is similar to that in [11], where it is derived
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using symmetric group methods. For many further applications of (5.3),

and related results such as Stanley’s Hook Content Formula, see [18].

6. Twisted dominance order and twisted symmetric functions

In this section we define the `−-twisted dominance order and twisted

symmetric functions. Twisted symmetric functions interpolate between the

homogeneous and elementary symmetric functions, in an analogous way

(see Remark 6.8) to to the way twisted dominance orders interpolate be-

tween the dominance order and its opposite order. This is made precise by

Lemma 6.12.

6.1. `−-decomposition. The following definition and notation is shown di-

agramatically in Figure 6.1.

Definition 6.1. Fix `− ∈ N0. Given a partition σ, we set σ− = (σ′1, . . . , σ
′
`−)

and σ+ = σ − σ−′. We say that the ordered pair
〈
σ−, σ+

〉
is the `−-

decomposition of σ and write σ↔
〈
σ−, σ+

〉
.

σ−′

σ+
. . .

...

`−

Figure 6.1. The partitions in the `−-decomposition
〈
σ−, σ+

〉
of σ ∈ Par.

Note that σ− has at most `− parts and that σ−
`− ≥ `(σ+), so σ is(

`(σ−), `(σ+)
)
-large in the sense of Definition 3.1.

The relevant `− will always be clear from context. The `−-decomposition

of a partition may be used as a signed weight (see Definition 3.4), but since

this is not always the case, we use angled brackets to make a visual distinc-

tion. For example, the 0-, 1-, 2-, 3- and 4-decompositions of (4, 3, 3, 2, 1)

are
〈
∅, (4, 3, 3, 2, 1)

〉
,
〈
(5), (3, 2, 2, 1)

〉
,
〈
(5, 4), (2, 1, 1)

〉
,
〈
(5, 4, 3), (1)

〉
and〈

(5, 4, 3, 1),∅
〉
; the 2-decomposition is shown in the margin.

Remark 6.2. Not all ordered pairs of partitions are `−-decompositions: in

fact
〈
α−, α+

〉
is an `−-decomposition if and only if `(α−) ≤ `− and α−

`− ≥
`(α+). Note also that if this condition holds then the partition α such that

α↔
〈
α−, α+

〉
is
(
`(α−) + 1, `(α+)

)
-large in the sense of Definition 3.1, and

hence, as is sometimes all we need,
(
`(α−), `(α+)

)
-large.
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Example 6.3. Let µ be a partition. By Definition 4.2, row i of t`−(µ)

has the first µi entries from the infinite sequence −1, . . . ,−`−, i, i, . . .. The

greatest semistandard signed tableau t`−(µ) has signed weight(
ω`−(µ)−, ω`−(µ)+

)
= (µ−, µ+). (6.1)

In particular, if `− = 0 then we have ω`−(µ) = µ; this is the well-known fact

that the greatest weight of a semistandard µ-tableau is µ.

Note that in the previous remark,
〈
µ−, µ+

〉
is the `−-decomposition of the

partition µ. More generally, we have the following lemma which is critical

in §10; its generalization Proposition 6.5 is important in §13.

Lemma 6.4. Let τ/τ? be a skew partition. Then the signed weight(
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
)

is the `−-decomposition of a partition.

Proof. The greatest semistandard signed tableau t`−(τ/τ?) of signed weight(
ω`−(τ/τ?), ω`+(τ/τ?)

)
is defined in Definition 4.2. Let d be the length of

the partition ω`−(τ/τ?)
+. If d = 0 then the result is immediate, so we may

suppose that d ∈ N. Thus d is the greatest positive entry of t`−(τ/τ?).

Choose the leftmost box of t`−(τ/τ?) containing d, in position (i, j) say. By

the construction of t`−(τ/τ?) in Definition 4.2, t`−(τ/τ?) has entries 1, . . . , d

in positions (i − d + 1, j), . . . , (i, j). In particular, each such row has a

positive entry. By the construction of t`−(τ/τ?) in which negative entries

from −1, . . . , `− are placed before positive entries, each of the rows i− d +

1, . . . , i of t`−(τ/τ?) begins, after skipping any boxes not considered in [τ ]

because they are in [τ?], with 1 2 . . . `̀̀−−− . Hence ω`−(τ/τ?)
−
`− , which

counts the number of entries of −`− in t(τ/τ?), is at least d. Equivalently,

ω`−(τ/τ?)
− ≥ `

(
ω`−(τ/τ?)

+
)
. The lemma follows. �

We have already seen in Lemma 4.15 that if (κ−, κ+) is a strongly maxi-

mal signed weight then κ− and κ+ are partitions. We now build on this to

show that one potentially nasty technicality does not arise: in fact
〈
κ−, κ+

〉
is an `(κ−)-decomposition. This result generalizes Lemma 6.4 since, by

Lemma 4.17,
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

is the strongly maximal signed weight

of the singleton strongly maximal tableau family {t`−(µ/µ?)}. We use this

result in the proof of Lemma 13.21, part of the proof of Theorem 1.2.

Proposition 6.5. Let (κ−, κ+) be a strongly maximal signed weight. Then〈
κ−, κ+

〉
is a well-defined `(κ−)-decomposition of an

(
`(κ−) + 1, `(κ+)

)
-large

partition.

Proof. Set `− = `(κ−); thus (κ−, κ+) is a strongly c+-maximal signed weight

for some c+. (The value of c+ will not be relevant in this proof.) If `− = 0

then κ− = ∅ and the result holds trivially. Similarly if there are no positive

entries then κ+ = ∅ and the result is obvious. Therefore we may assume

that κ+ 6= ∅. As already noted, by Lemma 4.15, κ− and κ+ are partitions.

Let µ/µ? be the shape and let R be the size of (κ−, κ+). By (a) in

Definition 4.10 we have κ− = Rω`−(µ/µ?)
−. Let d = `

(
ω`−(µ/µ?)

+
)

and let
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e = `(κ+); note that d is the greatest positive entry in t`−(µ/µ?) and e is

the greatest positive entry in the unique tableau family of shape µ/µ?, size

R and signed weight (κ−, κ+). Denote this tableau family T .

By maximality (Lemma 4.13), t`−(µ/µ?) is an element of T . Again by

maximality, there is a tableau in T containing d+1 obtained by incrementing

the entry in a single box of t`−(µ/µ?). Repeating this argument, we see that

there exist distinct tableaux t(d), t(d+1), . . . , t(e) ∈ T such that, for each

k ∈ {d+ 1, . . . , e}, the tableau t(k) has k as an entry. (For instance this can

be seen in Example 4.18(ii), by considering the entries in the box (1,m).)

Therefore R ≥ e − d + 1. By Lemma 6.4, every tableau in T agrees with

t`−(µ/µ?) in its negative entries. Hence the number of entries of tableaux

in T equal to `− is Rω`−(µ/µ?)`− . Using this for the first equality below,

and recalling that by definition d = `
(
ω`−(µ/µ?)

+
)
, we obtain

κ−
`− =Rω`−(µ/µ?)`− ≥R`(ω`−(µ/µ?)

+) =Rd ≥ d+(R−1) ≥ d+(e−d) = e.

Hence κ−
`− ≥ `(κ+) and by Remark 6.2,

〈
κ−, κ+

〉
is a well-defined `(κ−)-

decomposition of an
(
`(κ−) + 1, `(κ+)

)
-large partition. �

6.2. The `−-twisted dominance order. The sets used in applications

of the critical Signed Weight Lemma (see Lemma 7.3 below) are subsets of

intervals for a partial order on partitions defined using the `−-decomposition

in Definition 6.1 and the signed dominance order in Definition 4.1.

Definition 6.6 (`−-twisted dominance order). Fix `− ∈ N0. The `−-twisted

dominance order is the partial order defined on partitions of the same size

by π�· σ if and only if
〈
π−, π+

〉
�
〈
σ−, σ+

〉
, where � is the signed dominance

order on the set W`− ×W.

An example is given following Remark 6.8 below. In practice we shall

often use the following lemma to work with the `−-twisted dominance order.

Recall that �� denotes the dominance order on partitions of arbitrary size.

Lemma 6.7 (Characterization of the `−-dominance order). Let π and σ be

partitions of the same size. We have π�· σ in the `−-signed dominance order

if and only if both

(a) π−�� σ− and

(b) |π+| ≥ |σ+| and π+ � σ+ + (|π+| − |σ+|).

Proof. From the equation

`−∑
i=1

σ−i −
`−∑
i=1

π−i = |σ−| − |π−| = (|σ| − |σ+|)− (|π| − |π+|) = |π+| − |σ+|

we have
∑`−

i=1 π
−
i +

∑k
i=1 π

+

i ≤
∑`−

i=1 σ
−
i +

∑k
i=1 σ

+

i if and only if
∑k

i=1 π
+

i ≤
(|π+| − |σ+|) +

∑k
i=1 σ

+

i . The lemma now follows from the definition of the

dominance order and the `−-twisted dominance order. �

Remark 6.8. It is obvious from Definition 6.6 that the 0-twisted domi-

nance order is the ordinary dominance order. If `− ≥ p then the `−-twisted
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dominance order on partitions of size p is the reverse of the usual dominance

order. Whenever `− ≥ 1, the greatest partition in the `−-signed dominance

order is (1p).

Example 6.9. In the 1-twisted dominance order on partitions of 8, the neg-

ative component σ− of each partition σ has exactly one part. Let σ− = (b)

where 1 ≤ b ≤ 8. By Lemma 6.7, σ�· (6, 2) if and only if (b) �� (2) and

σ+ + (6 − |σ+|) � (5, 1). If b ≤ 6 then σ+ ∈ {(8 − b), (7 − b, 1)}; if b = 7

then σ+ = (1) and if b = 8 then σ+ = ∅. The up-set of (6, 2) is therefore as

claimed in (2.5) in the overview in §2. It is shown in the Hasse diagram in

Figure 6.2. See §8.2 for a continuation to the ‘cut’ up-set used in §2.4.

(6,2)
〈(2),(5,1)〉

(5,2,1)
〈(3),(4,1)〉 (7,1)

〈(2),(6)〉

(4,2,1,1)
〈(4),(3,1)〉 (6,1,1)

〈(3),(5)〉

(3,2,1,1,1)
〈(5),(2,1)〉 (5,1,1,1)

〈(4),(4)〉

(2,2,1,1,1,1)
〈(6),(1,1)〉 (4,1,1,1,1)

〈(5),(3)〉

(3,1,1,1,1,1)
〈(6),(2)〉

(2,1,1,1,1,1,1)
〈(7),(1)〉

(1,1,1,1,1,1,1,1)
〈(8),∅〉



(1
8
)

(2
,1

6
)

(3
,1

5
)

(2
,2
,1

4
)

(4
,1

4
)

(3
,2
,1
,1
,1

)

(5
,1
,1
,1

)

(4
,2
,1
,1

)

(6
,1
,1

)

(5
,2
,1

)

(7
,1

)

(6
,2

)

〈(8),∅〉 1 · · · · · · · · · · ·
〈(7),(1)〉 1 1 · · · · · · · · · ·
〈(6),(2)〉 0 1 1 · · · · · · · · ·
〈(6),(1,1)〉 1 2 1 1 · · · · · · · ·
〈(5),(3)〉 0 0 1 0 1 · · · · · · ·
〈(5),(2,1)〉 0 1 2 1 1 1 · · · · · ·
〈(4),(4)〉 0 0 0 0 1 0 1 · · · · ·
〈(4),(3,1)〉 0 0 1 2 0 1 1 1 · · · ·
〈(3),(5)〉 0 0 0 0 0 0 1 0 1 · · ·
〈(3),(4,1)〉 0 0 0 0 1 0 2 1 1 1 · ·
〈(2),(6)〉 0 0 0 0 0 0 0 0 1 0 1 ·
〈(2),(5,1)〉 0 0 0 0 0 0 1 0 2 1 1 1



Figure 6.2. Hasse diagram of the up-set (6, 2)�· in the 1-twisted domi-

nance order on Par(8), as seen in (2.5) in the overview of the proof in §2.

By Remark 6.8, this up-set is also the interval [(6, 2), (18)]�· . The total

order ≤· refining �· is indicated by vertical height. The matrix with en-

tries SSYT(σ)(π−,π+) for π, σ ∈ (6, 2)�· relevant to condition (b) in the

definition of a stable partition system (Definition 7.1) is shown to the right,

with row and column labels ordered by the total order in Definition 6.14.

It is lower unitriangular by Lemma 6.12. We use · to show a zero implied

by this lemma.

For a further example of the twisted dominance order see Example 6.13.

In practice, we find the following informal interpretation, using the standing

notation shown in Figure 6.1 is helpful: the partitions larger than π in the `−-

signed dominance order are exactly those obtained from π by a combination

of box moves that are either: down and left within π−, up and right within π+,
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or from π+ to π−. The final possibility is responsible for the equalization of

parts in condition (b) in Lemma 6.7.

In particular we have the analogue of the well-known property of the

normal dominance order that α� β implies `(α) ≥ `(β).

Lemma 6.10. Let α and β be partitions. If α�· β in the `−-twisted domi-

nance order then `(α+) ≥ `(β+).

Proof. By Lemma 6.7(b) we have α+ � β+ + (|α+| − |β+|). Hence by the

property of the dominance order just mentioned, `(α+) ≥ `(β+). �

6.3. Twisted symmetric functions and twisted Kostka numbers.

Definition 6.11 (`−-twisted symmetric function). Fix `− ∈ N0. We define

the `−-twisted symmetric function gπ for a partition π by gπ = eπ−hπ+ .

For example if `− = 0 then gπ = hπ+ and if `− ≥ a(π) then gπ = eπ− ,

or equivalently, gπ = eπ′ . Thus as claimed at the start of this section, the

`−-twisted symmetric functions interpolate between the homogeneous and

elementary symmetric functions.

The following lemma is vital when verifying condition (i) in the Signed

Weight Lemma (Lemma 7.3). Example 6.13 following illustrates the iterative

part of the proof. We require Young’s rule and Pieri’s rule: see references

in §5.1. The support of a symmetric function is defined in Definition 5.2.

Lemma 6.12 (Twisted Kostka matrix). Let π ∈ Par(n) have `−-decomposi-

tion
〈
π−, π+

〉
where `(π−) = `−. If σ ∈ supp(eπ−hπ+) then σ�· π. Moreover

we have 〈eπ−hπ+ , sπ〉 = 1.

Proof. We describe the summands of eπ−hπ+ combinatorially. By Pieri’s

rule, if sβ ∈ supp(eπ−) then β � π−′ , or equivalently, β′ � π−. Since β′ has

at most `− parts, we have β− = β′ and hence β− � π−. Set k = `(π+). The

product sβhπ+ may be computed by repeated applications of Young’s rule:

starting with γ(0) = β, let sγ(i+1) be a chosen Schur function summand of

sγ(i)hπ+
i

for each i such that 0 ≤ i < k. To find the possible γ(i+ 1), we fix

b−i and b+i ∈ N0 with b−i + b+i = π+

i , then

• add a horizontal strip of length b−i to [γ(i)−′ ] to obtain [γ(i+ 1)−′ ];

• add a horizontal strip of length b+i to [γ(i)]\[γ(i+ 1)−′ ].

Let σ = γ(k) be the Schur function obtained after iteratively applying this

procedure to all parts of π+. Since β− � π−, and subsequent steps add boxes

to each [γ(i)−′ ], we have σ−�� π− and condition (a) in Lemma 6.7 holds.

The horizontal additions to each successive [γ(i)−′ ] in this sequence used

in total |π+| − |σ+| boxes. Moreover, the b+i boxes added to [γ(i)]\[γ(i)−′ ]

at each step i lie in rows 1 up to i of [γ(i)]\[γ(i)−′ ]. It follows that σ+

satisfies σ+ +(|π+|−|σ+|)�π+. This gives (b) in Lemma 6.7. Hence, by this

lemma, σ�· π. Finally, if σ = π then β = π− and γ(i) = (π+

1 , . . . , π
+

i ) for

each i. Since the sequence γ(0), . . . , γ(k) is uniquely determined, we have

〈eπ−hπ+ , sπ〉 = 1, as required. �
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Example 6.13. Take `− = 2 and let π = (4, 4, 4) with 2-decomposition

〈π−, π+〉 =
〈
(3, 3), (2, 2, 2)

〉
.

The Schur function summands of eπ− are all sβ such that β�(3, 3)′. For this

example we take β = (2, 2, 1, 1). The partition π+ specifies three Young’s

rule additions of two boxes . The sequence of partitions γ(0), γ(1),

γ(2), γ(3) in the proof is, for one particular choice of Young’s rule additions,

(2, 2, 1, 1), (4, 2, 1, 1), (4, 3, 2, 1), (5, 3, 3, 1). The final partition σ = γ(3) has

2-decomposition
〈
(4, 3), (3, 1, 1)

〉
.

7−!

1 1

7−!

1 1

2

2
7−!

1 1 3

2

2 3

At step 2 we added one box to [γ(1)−
′
] and one box to [γ(1)+], taking

b−2 = b+2 = 1; in the other two steps b−1 = b−3 = 0. As expected, conditions (a)

and (b) in Lemma 6.7 hold, with (3, 3)�� (4, 3) and (2, 2, 2) � (3, 1, 1) + (1).

Moreover, 〈
(4, 3), (3, 1, 1)

〉
↔(5, 3, 3, 1)�· π↔

〈
(3, 3), (2, 2, 2)

〉
as expected from the conclusion of Lemma 6.12. If instead we had chosen

β = (16) then a possible sequence ending with σ = (4, 3, 2, 1, 1, 1) is

7−!

1 1

7−!

1 1 2

2
7−!

1 1 2

2 3

3

in which b−1 = b−2 = b−3 = 3 and correspondingly |π+| − |σ+| = 3. Again

conditions (a) and (b) in Lemma 6.7 hold, now with (3, 3)�� (6, 3) and

(2, 2, 2) � (2, 1) + (3) and again the conclusion of Lemma 6.12 holds since〈
(6, 3), (2, 1)

〉
↔(4, 3, 2, 1, 1, 1)�· π.

Figure 6.2 has an example of the matrix 〈eπ−hπ+ , sσ〉 in Lemma 6.12. It is

an instructive exercise to show that the many zeros in this matrix correspond

to pairs of partitions incomparable in the 1-twisted dominance order. For

a further example of the conclusion of Lemma 6.12, calculation shows that,

restricted to partitions of length at most 3, e(3,3)h(3,3) and e(3,3)h(4,1,1) have

supports

{(5, 5, 2), (6, 4, 2), (7, 3, 2), (8, 2, 2)},
{(6, 3, 3), (6, 4, 2), (7, 3, 2), (8, 2, 2)}

respectively, corresponding to the part of the up-sets seen in Figure 8.1 lying

above (5, 5, 2) and (6, 3, 3), respectively.
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6.4. Twisted total order. While not logically essential, it is useful to have

a total order that makes the twisted Kostka matrix seen in Figure 6.2 lower-

triangular. These matrices are used in (b) in the critical Signed Weight

Lemma (Lemma 7.3).

Definition 6.14. Fix `− ∈ N0. We define the `−-signed total order by π≤·σ
if and only if (π−, π+) ≤ (σ−, σ+) where ≤ is the lexicographic order on

compositions.

Equivalently, π≤·σ if and only if π− < σ− or π− = σ− and π+ ≤ σ+,

where < and ≤ are the lexicographic order on partitions (now possibly of

different sizes). It is easily seen that ≤· is a total order refining the `−-twisted

dominance order. For example, in the 2-signed total order we have〈
(3, 3), (3, 2, 1)

〉
<·
〈
(3, 3), (3, 3)

〉
<·
〈
(3, 3), (4, 1, 1)

〉
<·
〈
(3, 3), (4, 2)

〉
corresponding to (5, 4, 3)<· (5, 5, 2)<· (6, 3, 3)<· (6, 4, 2). (See Figure 8.1 for

the Hasse diagrams.) Moreover
〈
(3, 3), (4, 2)

〉
<·
〈
(4, 2), π+

〉
<·
〈
(4, 3), σ+

〉
for

any partitions π+ of 6 and σ+ of 5.

6.5. Up-sets and twisted intervals. For a fixed `− ∈ N0, and partitions

γ, δ of the same size we define the twisted interval [γ, δ]�· by

[γ, δ]�· = {σ ∈ Par(p) : γ�· σ�· δ}.

where �· is the `−-twisted dominance order. We define the up-set of a

partition λ of size p by

λ�· = {σ ∈ Par(p) : σ�· λ}.

Equivalently, by Remark 6.8, λ�· = [λ, (p)]� when `− = 0 and λ�· =

[λ, (1p)]�· when `− ≥ 1.

Example 6.15 (Length bound recast as an interval). In the overview in §2

we used (without giving full details) the stable partition system (P(M))M∈N0

defined using the 1-twisted dominance order by

P(M) =
{
σ ∈ Par(8 + 2M) : σ�· (6 +M, 2, 1M ), `(σ) ≤ 4 +M

}
.

Let σ ∈ Par(8 + 2M). Observe that

`(σ) ≤ 4 +M ⇐⇒ σ−�� (4 +M) ⇐⇒ σ�· (5 +M, 13+M ),

where the final implication holds since (5 +M, 13+M )↔
〈
(4 +M), (4 +M)

〉
is the greatest partition in the 1-twisted dominance order with negative part

(4 +M). Therefore an equivalent definition of P(M) is

P(M) = [(6 +M, 2, 1M ), (5 +M, 13+M )]�·

= [(6, 2)⊕M
(
(1), (1)

)
, (5, 1, 1, 1)⊕M

(
(1), (1)

)
]�·

where �· is the 1-twisted dominance order, as claimed in §2.5.

It is a special feature of the 1-twisted dominance order that the only

restriction imposed by the comparison on negative parts is a bound on the

length of the partition. See §8.1 for an extended example more typical of

the general case.
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7. Signed Weight Lemma

In this section we prove the critical Signed Weight Lemma (Lemma 7.3)

and give the related results and definitions needed to apply it to prove our

main theorems.

7.1. Stable partition systems. We isolate the two more technical hy-

potheses of the Signed Weight Lemma in the following definition.

Definition 7.1. A partition system is a sequence (P(M))M∈N0 of sets of

partitions such that all partitions in each P(M) have the same size, together

with a function F : Par! Par such that F (P(M)) ⊆ P(M+1) for all M ∈ N0.

For each π ∈ Par, let gπ be a symmetric function of degree |π|. We say the

partition system is stable with respect to the family gπ if

(a) F : P(M) ! P(M+1) is a bijection for all M sufficiently large;

(b) ifM is sufficiently large then 〈gπ, sσ〉=〈gF (π), sF (σ)〉 for all π, σ ∈ P(M),

and moreover, the matrix K(M) with rows and columns labelled by

P(M) and entries K(M)πσ = 〈gπ, sσ〉 is invertible.

If (a) and (b) hold for M ≥ L then we say the system is stable for M ≥ L.

Given k ∈ N, the k-subsystem of (P(M))M∈N0 is (P(kM))M∈N0 with function

F k, i.e. the k-fold composition of F .

Note in particular that the conditions imply that the matrix K(M) is

constant for M sufficiently large. It is routine to check that a k-subsystem

of a stable partition system for the family gπ is a stable partition system,

again for the family gπ. For an extended example of a stable partition

system, see §8. The general results we need on stable partition systems are

in §9.

Example 7.2. Let gπ = hπ for all π ∈ Par and let F : Par ! Par be

defined by F (σ) = σ + (1). Then, given any partition λ, we claim that the

sets
{
σ ∈ Par(|λ| + M) : σ � λ + (M)

}
form a stable partition system.

First note that provided M is sufficiently large, every partition µ such that

µ � λ + (M + 1) satisfies µ1 > µ2 and so is in the image of the map f .

(Explicitly, it suffices to take M ≥ |λ| − 2a(λ); this is the bound L from

Corollary 9.20; we explain why it applies after this example.) Hence (a)

holds. By a special case of Lemma 5.3 (Twisted Kostka Numbers), the

matrix K(M) in condition (b) is the matrix of Kostka numbers:

K(M)πσ = 〈sσ, hπ〉 = | SSYT(σ)π|

for σ, π ∈ P(M), and provided M is sufficiently large, we have Kπ+(1)σ+(1) =

Kπσ since the relevant semistandard tableaux have the form shown below

with 1s in the shaded region, and so are in bijection by removing the hatched

box and shifted the boxes right of it one position left. Hence (b) holds.
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1 1 1· · · > 1

> 1

The argument for (b) is seen in more generality and detail in the extended

example in §8.3 and the proof of Proposition 9.19, which shows that for (b)

the same bound L ≥ |λ| − 2a(λ) as (a) suffices.

We leave it as an instructive exercise to use the Signed Weight Lemma

with the stable partition system in Example 7.2 to prove the stability of the

plethysm coefficients 〈s(n+M) ◦ s(m), sλ+mM 〉 and 〈s(n) ◦ s(m+M), sλ+nM 〉 in

Foulkes’ Conjecture. Of course this also follows from our main theorems;

in the context of their proofs, one should think of
{
σ ∈ Par(mn + M) :

σ � λ + (M)
}

as the interval [λ + (M), (|λ| + M)]� for the 0-dominance

order. With this interpretation the stability of the partition system follows

from Corollary 9.20 applied with κ+ = (M), κ− = ∅ and ω = (|λ|), giving

the bound M ≥ L
(
[λ, (|λ|)], (1)

)
= |λ| − 2a(λ). (This is the first bound in

the corollary; the remaining three impose no restriction, as is generally the

case when `(κ−) = 0. Alternatively since the interval is ‘unsigned’ one can

use Proposition 9.3.) See §8.4 for a related example where we reinterpret a

stable partition system as a sequence of intervals.

7.2. Signed weight lemma. The following key lemma specifies the overall

strategy of the proofs of Theorem 1.1 and 1.2.

Lemma 7.3 (Signed Weight Lemma). Fix `− ∈ N. Set gπ = eπ−hπ+ for

each π ∈ Par. Let ν(M) be a sequence of partitions and let µ/µ?
(M) be a

sequence of skew partitions, each indexed by M ∈ N0. Let P(M) be a stable

partition system for M ≥ L with respect to the symmetric functions gπ and

the function F : Par ! Par, such that the common size of all partitions in

P(M) is |ν(M)||µ/µ?(M)|. Suppose that

(i) if M is sufficiently large and π ∈ P(M) then

supp(gπ) ∩ supp(sν(M) ◦ sµ/µ?(M)) ⊆ P(M),

(ii) if M is sufficiently large then, for all π ∈ P(M),∣∣PSSYT
(
ν(M), µ/µ?

(M)
)
(π−,π+)

∣∣= ∣∣PSSYT
(
ν(M+1), µ/µ?

(M+1)
)
(F (π)−,F (π)+)

∣∣.
Then, provided M ≥ L and M meets the bounds required by (i) and (ii),

〈sν(M) ◦ sµ/µ?(M) , sσ〉 = 〈sν(M+1) ◦ sµ/µ?(M+1) , sF (σ)〉

for all σ ∈ P(M).

We hope to convince the reader, both by the proofs of our main theorems,

and the extended example in §8 below, that Lemma 7.3 is both powerful and

practical, and not as technical as it appears at first sight. In particular we

note that by Lemma 6.12, if σ ∈ supp(eπ−hπ+) then σ�· π in the `−-twisted

dominance order, and so condition (i) can be tested in practice.
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Proof of Lemma 7.3. To simplify notation we set p(M) = sν(M) ◦ sµ/µ?(M) for

M ∈ N0. Let M ≥ L be given and let π ∈ P(M). Recall the matrix K(M)

from Definition 7.1(b). By hypothesis (i), we have

gπ =
∑

τ∈P(M)

K(M)πτsτ +Gπ

where the symmetric function Gπ satisfies 〈p(M), Gπ〉 = 0. By Defini-

tion 7.1(b) K(M) is invertible, hence for σ ∈ P(M) we have∑
π∈P(M)

K(M)−1
σπgπ = sσ +

∑
π∈P(M)

K(M)−1
σπGπ.

Substituting gπ = eπ−hπ+ we obtain sσ =
∑

π∈P(M) K(M)−1
σπ eπ−hπ+ + Eσ

where, since Eσ is a linear combination of the Gπ, we have 〈p(M), Eσ〉 = 0.

By this equation for sσ and Proposition 5.6 we get

〈p(M), sσ〉 =
∑

π∈P(M)

K(M)−1
σπ

∣∣PSSYT
(
ν(M), µ/µ?

(M)
)
(π−,π+)

∣∣. (7.1)

The same argument applies with M replaced with M + 1 and σ ∈ P(M)

replaced with F (σ) ∈ P(M+1). Hence we also have

〈p(M ′), sF (σ)〉 =
∑

ρ∈P(M′)

K(M ′)−1
F (σ)ρ

∣∣PSSYT
(
ν(M ′), µ/µ?

(M ′)
)
(ρ−,ρ+)

∣∣. (7.2)

(Here we reduce clutter by writing M ′ for M + 1.) By Definition 7.1(a),

the set P(M) labelling the rows and columns of K(M) and the set P(M ′)

labelling the rows and columns of K(M ′) are in bijection by F . Therefore

we may take (7.2) and replace each ρ with F (π) and the sum over ρ ∈
P(M ′) with a sum over π ∈ P(M). By Definition 7.1(b) we have K(M)σπ =

K(M ′)F (σ)F (π), and so K(M)−1
σπ = K(M ′)−1

F (σ)F (π) for all π, σ ∈ P(M). This

matches up the first factors after the sums in the right-hand sides of (7.1)

and (7.2), and hypothesis (ii) immediately implies the second factors are

equal. Therefore the right-hand sides agree. Comparing the left-hand sides

gives the Signed Weight Lemma. �

8. Extended example of the Signed Weight Lemma

This section is not logically essential. Instead it is intended to illuminate

stable partition systems defined in Definition 7.1 and the `−-twisted domi-

nance order defined in Definition 6.6, and to show the strategy in the proofs

of our two main theorems using the Signed Weight Lemma (Lemma 7.3).

8.1. A stable partition system defined by a length bound. We con-

tinue in the setting of Example 6.13, so `− = 2. Our aim in this subsection

is to show that the partition system

P(M) =
{
σ ∈ Par(12 + 4M) : σ�· (4 + 2M, 4, 4, 2M ), `(σ) ≤ 3 +M

}
(8.1)

is stable with respect to the map F : Par! Par defined by

λ
F
7−! λ⊕

(
(12), (2)

)
= λ+ (2) t (2).
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We remark that, using the idea seen in Example 6.15, there is an alternative

definition of the sets P(M) as intervals for the 2-twisted dominance order. We

explain this in §8.4 at the end of this section, and hence deduce the stability

of the partition system from the relevant general result, Corollary 9.20.

Stability is not immediate. Indeed, from the Hasse diagrams in Figure 8.1

we see that F is not bijective when M = 0: for example, the partition

(6, 6, 2, 2) is clearly not in its image. Suppose that N ≥ 2 and take σ ∈
Par(12 + 4N). By hypothesis

σ�· (4 + 2N, 4, 4, 2N )↔
〈
(3 +N, 3 +N), (2 + 2N, 2, 2)

〉
.

Since σ−�� (3+N, 3+N) and, by definition of P(M), we have `(σ) ≤ 3+N ,

we have `(σ) = 3 + N . By definition of the 2-twisted dominance order, we

have σ− = (3 + N, 3 + N) and hence σ+ � (2 + 2N, 2, 2). Since N ≥ 2, it

follows that σ+

1 − σ
+

2 ≥ 2. Therefore every partition in P(N) is of the form

λ⊕
(
(12), (2)

)
and so F is bijective for M ≥ 1. This verifies condition (i) in

the definition of a stable partition system (Definition 7.1).

Continuing we now check condition (b) in the definition of a stable par-

tition system (Definition 7.1). We have gπ = eπ−hπ+ , where π− and π+ are

defined using the `−-decomposition with `− = 2. The key result we need is

Lemma 5.3 (Twisted Kostka Numbers). By this lemma, for π, σ ∈ Par, we

have 〈gπ, sσ〉 = | SSYT(σ)(π−,π+)|. Since K(M)πσ = 〈gπ, sσ〉 by definition,

the matrix K(M) is invertible for all M by Lemma 6.12, and it only remains

to show, if M ≥ 1, then there is a bijection

SSYT(σ)(π−,π+) ! SSYT
(
F (σ)

)
(F (π)−,F (π)+)

for each pair σ, π ∈ P(M).

Example 8.1. To give some idea why there is a natural bijection we take

M = 1 and π = (6, 4, 4, 2), σ = (7, 5, 2, 2). Figure 8.2 shows the two elements

of each of SSYT
(
(7, 5, 2, 2)

)
((4,4),(4,2,2))

and SSYT
(
(9, 5, 2, 2, 2)

)
((5,5),(6,2,2))

.

Observe that, when M = 2, the two tableaux of shape (9, 5, 2, 2, 2) each

has a removable 1 2 in positions (3, 1) and (3, 2) and two adjacent boxes

1 1 in positions (1, 6) and (1, 7) in its top row. Removing these boxes

and shifting the remaining boxes in the first column strictly below row 3

up by one row and the remaining boxes in the top row strictly right of

column 5 left by two columns pairs up the sets of tableaux. (We admit here

it would be more natural here to define the bijection by removing 1 2
from the positions (3 + M, 1) and (3 + M, 2); we choose the complicated

specification to agree with the proof of Proposition 9.19 (Tableau Stability)

using Lemma 9.16(ii).) Note also that the two tableaux for M = 1 have

1 3 and 1 2 in boxes (1, 6) and (1, 7), so removing the four boxes from

the positions (3, 1), (3, 2), (1, 6), (1, 7) hatched in Figure 8.2 gives tableaux of

signed weight
(
(3, 3), (3, 2, 1)

)
and

(
(3, 3), (3, 1, 2)

)
, not

(
(3, 3), (2, 2, 2)

)
as

required. Correspondingly, the unique element of SSYT
(
5, 5, 2)

)
((3,3),(2,2,2))

is as shown in the margin, so there is no possibility of a bijection between

P(0) and P(1).

1 2 1 1 2
1 2 2 3 3
1 2
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(8,2,2)
〈(3,3),(6)〉

(7,3,2)
〈(3,3),(5,1)〉

(6,4,2)
〈(3,3),(4,2)〉

(5,5,2)
〈(3,3),(3,3)〉

(6,3,3)
〈(3,3),(4,1,1)〉

(5,4,3)
〈(3,3),(3,2,1)〉

(4,4,4)
〈(3,3),(2,2,2)〉

(10,2,2,2)
〈(4,4),(8)〉

(9,3,2,2)
〈(4,4),(7,1)〉

(8,4,2,2)
〈(4,4),(6,2)〉

(6,6,2,2)
〈(4,4),(4,4)〉

(7,5,2,2)
〈(4,4),(5,3)〉

(8,3,3,2)
〈(4,4),(6,1,1)〉

(7,4,3,2)
〈(4,4),(5,2,1)〉

(6,5,3,2)
〈(4,4),(4,3,1)〉

(6,4,4,2)
〈(4,4),(4,2,2)〉

(8+2M,2,2,2M )
〈(M ′,M ′),(6+2M)〉∅

(7+2M,3,2,2M )
〈(M ′,M ′),(5+2M,1)〉

(6+2M,4,2,2M )
〈(M ′,M ′),(4+2M,2)〉

(4+2M,6,2,2M )
〈(M ′,M ′),(2+2M,4)〉

(5+2M,5,2,2M )
〈(M ′,M ′),(3+2M,3)〉

(6+2M,3,3,2M )
〈(M ′,M ′),(4+2M,1,1)〉

(5+2M,4,3,2M )
〈(M ′,M ′),(3+2M,2,1)〉

(4+2M,5,3,2M )
〈(M ′,M ′),(2+2M,3,1)〉

(4+2M,4,4,2M )
〈(M ′,M ′),(2+2M,2,2)〉

Figure 8.1. Hasse diagrams of up-sets in the 2-twisted dominance order.

The total order ≤· refining �· defined in Definition 6.14 is indicated by

vertical height. On the left is the up-set of (4, 4, 4) ↔
〈
(3, 3), (2, 2, 2)

〉
restricted to partitions of length at most 3. (This is part of the up-set

relevant to Example 6.13 and the following remark.) This poset maps

under λ 7! λ ⊕
(
(1, 1), (2)

)
into the up-set of (6, 4, 4, 2)↔

〈
(4, 4), (4, 2, 2)

〉
restricted to partitions of length at most 4, shown in the middle; the two

partitions not in the image of the map are highlighted. In turn, for each

M ≥ 1, the middle poset is in bijection, by iterating this map, with the up-

set of (4, 4, 4)⊕M
(
(12), (2)) = (4 + 2M, 4, 4, 2M )↔

〈
(3 +M, 3 +M), (2 +

2M, 2, 2)
〉

restricted to partitions of length at most M , as shown on the

right. (To save space we write M ′ for M + 3.)

More generally, fix N ≥ 2, let σ, π ∈ P(N) and let t ∈ SSYT(σ)(π−,π+).

We know that σ− = π− = (3 +N, 3 +N). Hence t has 3 +N entries of −1

and 3 + N entries of −2 which, since negative entries cannot be repeated

in a row, must form the first two columns of t. Therefore position (1, 2) t

contains 2. Moreover, by Definition 7.1(a), σ satisfies σ1−σ2 ≥ 1 and since

π− = (4 + 2N, 4, 4, 2N )−, it is immediate from Definition 6.6 that

π+ � (4 + 2N, 4, 4, 2N )+ = (2 + 2N, 2, 2).

and so π+

1 ≥ 2 + 2N . Therefore t has at least 2 + 2N entries of 1, necessarily

in its first row, and we see that boxes (1, 6) and (1, 7) of t both contain 1.

Removing this 1 1 and deleting 1 2 from positions (3, 1) and (3, 2) and

then shifting boxes left or up (as seen when N = 2) defines a bijection

SSYT(σ)(π−,π+) ! SSYT(f−1(σ))(f−1(π)−,f−1(π)+).
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1 2 1 1 1 1 3

1 2 2 2 3

1 2

1 2

1 2 1 1 1 1 2

1 2 2 3 3

1 2

1 2

1 2 1 1 1 1 1 1 3

1 2 2 2 3

1 2

1 2

1 2

1 2 1 1 1 1 1 1 2

1 2 2 3 3

1 2

1 2

1 2

Figure 8.2. The two semistandard signed tableaux in the sets

SSYT
(
(7, 5, 2, 2)

)
((4,4),(4,2,2))

and SSYT
(
(9, 5, 2, 2, 2)

)
((5,5),(6,2,2))

. The

hatched boxes are inserted by the F insertion map.
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〈(4,4),(8)〉 1 · · · · · · · ·
〈(4,4),(7,1)〉 1 1 · · · · · · ·
〈(4,4),(6,2)〉 1 1 1 · · · · · ·
〈(4,4),(6,1,1)〉 1 2 1 1 · · · · ·
〈(4,4),(5,3)〉 1 1 1 0 1 · · · ·
〈(4,4),(5,2,1)〉 1 2 2 1 1 1 · · ·
〈(4,4),(4,4)〉 1 1 1 0 1 0 1 · ·
〈(4,4),(4,3,1)〉 1 2 2 1 2 1 1 1 ·
〈(4,4),(4,2,2)〉 1 2 3 1 2 2 1 1 1


Figure 8.3. The stable transition matrix K(1) in Example 8.2 with en-

tries K(1)πσ = |SSYT(σ)(π−,π+)|. Columns are labelled by the parti-

tion σ, rows by the 2-decomposition of π. We use · to denote a zero

entry implied by Lemma 6.12. The entry highlighted in bold counting

SSYT
(
(7, 5, 2, 2)

)
((4,4),(4,2,2))

is used in Example 8.1.

Example 8.2. The stable transition matrix K(1) is shown in Figure 8.3

below. It was computed using the Magma code available as part of the

arXiv submission of this paper by SignedUpsetMatrixCut(2,1,[6,4,4,2]

: SG := [10,2,2,2]);. The entry relevant to Example 8.1 is highlighted

in bold in the bottom row. The rows (recording the signed weight defining

the relevant product eα−hα+) and columns (recording the relevant Schur

function, or shape of the semistandard signed tableau) are ordered by the

total order ≤· refining �· defined using the `-decomposition in Definition 6.1.

As remarked at the end of §6.3 it is instructive to check that the entries of 0

correspond to pairs of partitions incomparable in the 2-twisted dominance

order.
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8.2. Cut up-sets and the plethysm 〈s(3)+(M) ◦ s(4), s(4,4,4)⊕M((12),(2)〉.
The special case of Theorem 1.2 for the strongly maximal signed weights(
(1d), (m− d)

)
seen in Example 4.18(i) asserts that, if d is even, then the

plethysm coefficients 〈sν+(M) ◦ s(m), sλ⊕M((1d),(m−d))〉 are ultimately con-

stant. To prove this using the Signed Weight Lemma, we need a stable

partition system (P(M))M∈N0 such that λ ⊕M
(
(1d), (m − d)

)
∈ P(M) for

each M ∈ N0. As we saw in the overview in §2, we cannot usually take

P(M) to be the up-set
(
λ⊕M(κ−, κ+)

)�· , where �· is the d-twisted domi-

nance order, because typically the sizes of the up-sets grow, ruling out any

bijection between them. In this subsection we shall see this problem in the

particular case of the plethysm coefficients

〈s(3)+(M) ◦ s(4), s(4,4,4)⊕M((12),(2)〉 (8.2)

and resolve it using the stable partition system constructed in §8.1. Then

in §8.3 we use the 3-subsystem of this partition system to prove a different

stability result.

Up-sets are not stable. We take `− = 2 in the Signed Weight Lemma. The

2-decomposition of a partition π (see Definition 6.1) is then defined by π− =

(π′1, π
′
2) and π+ = (π1 − 2, π2 − 2, . . . , πr − 2), where r is maximal such that

πr > 2. For example, if π = (4 + 2M, 4, 4, 2M ) then π− = (M + 3,M + 3)

and π+ = (2 + 2M, 2, 2). By Lemma 6.12, if sσ is a summand of eπ−hπ+

then σ�· π. Therefore, taking gπ = eπ−hπ+ , the up-set of (4 + 2M, 4, 4, 2M )

in the 2-twisted dominance order satisfies condition (i) in the Signed Weight

Lemma. We cannot take the up-sets (4 + 2M, 4, 4, 2M )�· as our partition

system because, they are not stable. Indeed, since π↔
〈
(3+M, 3+M), (2+

2M, 2, 2)
〉

and (23+b+M , 16−2b+2M )↔
〈
(9− b+ 3M, 3 + b+M),∅

〉
we have

π�· (23+b+M , 19−2b+2M )

for all b ≤ 3 + M and hence
∣∣(4 + 2M, 4, 4, 2M )�·

∣∣ ≥ 3 + M and the sizes

of the up-sets tend to infinity with M . This behaviour, that some ‘cut’ is

necessary before a sequence of up-sets becomes stable, is typical.

Cut up-sets are stable. To get around the problem we use that condition (i)

in the Signed Weight Lemma (Lemma 7.3) does not require that supp(gπ) ⊆
P(M) for all π ∈ P(M) but instead, since ν = (3) and µ/µ? = (4), the weaker

condition that supp(gπ) ∩ supp(s(3+M) ◦ s(4)) ⊆ P(M) for all π ∈ P(M).

Since the support of the plethysm s(3+M) ◦ s(4) is contained in the support

of s(4)× 3+M. . . ×s(4), each partition in supp(s(3+M) ◦ s(4)) has at most 3 +M

parts. We therefore only need to consider partitions such as (4+2M, 4, 4, 2M )

for which `(σ) ≤ 3 +M . This motivates the definition

P(M) = (4 + 2M, 4, 4, 2M )�· ∩ {σ ∈ Par(12 + 4M) : `(σ) ≤ 3 +M}

already given in (8.1) in an obviously equivalent form. We saw in §8.1

that (P(M))M∈N0 is a stable partition system for M ≥ 1 with respect to

F : P(M) ! P(M+1) defined by F (λ) = λ⊕
(
(1, 1), (2)

)
= λ+ (2) t (2) and
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the symmetric functions gπ. We now use it below and in §8.3 to prove two

stability results.

Proof that 〈s(3)+(M) ◦ s(4), s(4,4,4)⊕M((12),(2)〉 is ultimately constant. We shall

check conditions (i) and (ii) in the Signed Weight Lemma (Lemma 7.3). Let

π ∈ P(M). As we saw in §8.1 we have π− = (3 +M, 3 +M). Hence

supp(gπ) ∩ supp(s(3+M) ◦ s(4))

⊆ π�· ∩ {σ ∈ Par(12 + 4M) : `(σ) ≤ 3 +M}

⊆ {σ ∈ (4 + 2M, 4, 4, 2M )�· : `(σ) ≤ 3 +M}
= P(M)

where the second line uses Lemma 6.12 on supp(gπ) and the length bound

in the previous paragraph on partitions in supp(s(3+M) ◦s(4)), and the third

line follows from π�· (4 + 2M, 4, 4, 2M ). Hence (i) holds for all M ∈ N0.

Now fix M ∈ N0 with M ≥ 1 (so meeting the stability bound) and

π ∈ P(M). For (ii), it suffices to define a bijection

H : PSSYT
(
(3 +M), (4)

)
((3+M,3+M),π+)

! PSSYT
(
(3 +M + 1), (4)

)
((3+M+1,3+M+1),π++(2))

Let T be in the right-hand side. Observe that T has 3+M+1 integer entries

of −1. necessarily lying in distinct (4)-tableau entries. A similar argument

considering −2 now shows that each inner (4)-tableau in T is of the form

1 2 x y where 1 ≤ x ≤ y. Since π ∈ P(M) we have π�· (4 + 2M, 4, 4, 2M )

and hence π+ +(2)�(2+2M+2, 2, 2). Therefore a(π+ +(2)) ≥ 4+2M and,

of the 8 + 2M positions in the (4)-tableau entries of T containing a positive

entry, all but four positions contain 1. In particular, since M ≥ 1, the

leftmost (4)-tableau in T is 1 2 1 1 . Hence we may define H by inserting

this inner (4)-tableau as a new leftmost inner tableau in a given plethystic

semistandard signed tableau in PSSYT
(
(3 +M), (4)

)
((3+M,3+M),π+).

We have now checked (i) and (ii) in the Signed Weight (Lemma 7.3) and

conclude that 〈s(3)+(M) ◦ s(4), s(4,4,4)⊕M((1,1),(2)〉 is constant for M ≥ 1. �

Computation shows that the stable multiplicity is in fact 1. The stability

of this plethysm is a special case of Theorem 1.2 and the map H is as in

the proof of condition (ii) of the Signed Weight Lemma in the proof of

Theorem 14.7.

Example 8.3. Applying the ω-involution to the result just proved, we ob-

tain that 〈s(3+M) ◦ s(14), s(3,3,3,3)⊕M((2),(1,1))〉 is constant for M ≥ 1. This is

not an instance of Theorem 1.2 since, according to Definition 4.10, the sin-

1
1
1
1

1
2
3
4

gleton strongly maximal tableau families of shape (14) have as their unique

elements the tableaux shown in the margin of signed weights
(
(4),∅

)
and(

∅, (14)
)

respectively. Therefore
(
(2), (1, 1)

)
is not the signed weight of a

strongly maximal tableau family of shape (14) and size 1. This illustrates

Remark 4.16.
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8.3. Re-use of a stable partition system: example of Theorem 1.1.

One reason for defining stable partition systems in Definition 7.1 as objects

of interest in their own right, rather than including conditions (a) and (b) as

hypotheses in the Signed Weight Lemma (Lemma 7.3) is that the same sta-

ble partition system can be used to prove the stability of multiple plethysms.

Here we use the Signed Weight Lemma to prove the special case of Theo-

rem 1.1 that 〈s(3) ◦ s(4+2M,2M ), s(4+6M,4,4,23M )〉 is ultimately constant, using

the stable partition system in our running example.

Proof that 〈s(3) ◦ s(4+2M,2M ), s(4+6M,4,4,23M )〉 is ultimately constant. We use

the 3-subsystem (see Definition 7.1) of the stable partition system (P(M))M∈N0

from §8.1. Thus we set Q(M) = P(3M), so that

Q(M) = (4 + 6M, 4, 4, 23M )�· ∩ {π ∈ Par(12 + 12M) : `(π) ≤ 3 + 3M}.

For condition (i) in the Signed Weight Lemma (Lemma 7.3), observe that

supp(s(3) ◦ s(4+2M,2M )) ⊆ supp(s(4+2M,2M ) × s(4+2M,2M ) × s(4+2M,2M ))

and so, by the Littlewood–Richardson rule, every partition in the right-hand

side has at most 3(M+1) parts. Hence (i) holds by the same argument used

in §8.2. For (ii), again a similar argument works. Fix M ∈ N0 with M ≥ 1

(so again the stability bound holds), let π ∈ Q(M) and let

T ∈ PSSYT
(
(3), (4 + 2(M + 1), 2M+1)

)
((3+3(M+1),3+3(M+1)),π++(6)).

Since T has 3M + 6 integer entries of −1 and 3M + 6 integer entries of −2,

each
(
4 + 2(M + 1), 2M+1

)
-tableau in T has first column entries all −1

and second column entries all −2. Since π ∈ Q(M) we have π+ � (2 +

6M, 2, 2). Therefore a(π+ + (6)) ≥ 6M + 8 and, of the 6M + 12 positive

entries in the three
(
4 + 2(M + 1), 2M+1

)
-tableaux entries of T , all but four

are equal to 1. Hence removing 1 2 from positions (2, 1) and (2, 2) in

each inner
(
4 + 2(M + 1), 2M+1

)
-tableau and 1 1 from positions (1, 3)

and (1, 4) in each inner (4+2(M+1), 2M+1)-tableau, shifting the remaining

entries one position up or left as appropriate, defines a bijection proving (ii).

Therefore, by the Signed Weight Lemma 7.3, the plethysm multiplicity 〈s(3)◦
s(4+2M,2M ), s(4+6M,4,4,23M )〉 is constant for M ≥ 1. �

8.4. Stable partition systems as intervals. A special feature of the sta-

ble partition system P(M) in our running example is that all the partitions

π ∈ P(M) have the same negative part in their 2-decomposition, namely

(3 + M, 3 + M). All partitions in P(M) have size 12 + 4M . The greatest

partition in the 2-twisted dominance order (see Definition 6.6) of 12 + 4M

with these first two columns is (8 + 2M, 2, 2, 2M ). By the definition in (8.1),

the least element of P(M) is (4 + 2M, 4, 4, 2M ). Therefore for each M ∈ N0

we have

P(M) =
[
(4 + 2M, 4, 4, 2M ), (8 + 2M, 2, 2, 2M )

]
�·

and each P(M) is an interval for the 2-twisted dominance order, but of the

special type where all partitions in the interval have the same negative part.
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This was a deliberate choice in order to give a system that was not imme-

diately stable, but still of manageable size and useful for proving stability

results. We revisit this example in Example 10.9, showing that the upper

bound in each interval is the partition given by Proposition 10.7.

To give a more typical example we suppose that instead of the plethysm

coefficients 〈s(3)+(M) ◦ s(4), s(4,4,4)⊕M((12),(2)〉 in (8.2), we want to prove that

〈s(4)+(M) ◦ s(4), s(6,6,4)⊕M((12),(2))〉

is ultimately constant. Since the Schur functions constituents of s(4+M)◦s(4)

have at most 4 +M parts we must relax the length bound in P(M), and so

we now define

R(M) =
{
σ ∈ Par(16 + 4M) : σ�· (6 + 2M, 6, 4, 2M ), `(σ) ≤ 4 +M

}
still working with the 2-twisted dominance order. Observe thatR(0) contains

(6, 6, 4), (7, 7, 1, 1), (6, 5, 4, 1), (5, 5, 4, 2) with increasing negative parts (3, 3),

(4, 2), (4, 3) and (4, 4) respectively. To show that (R(M))M∈N0 is stable we

reinterpret each set R(M) as an interval for the 2-twisted dominance order

using the idea seen in Example 6.15. Observe that `(σ) ≤ 4+M if and only if

σ−�(4+M, 4+M). Since (10+2M, 2, 2, 2, 2M )↔
〈
(4+M, 4+M), (8+2M)

〉
is

the greatest partition of 16+4M in the 2-twisted dominance order satisfying

this condition, we have

R(M) =
[
(6 + 2M, 6, 4, 2M ), (10 + 2M, 2, 2, 2, 2M )

]
�· .

The stability of (R(M))M∈N0 is then a special case of Corollary 9.20. The

four bounds in this corollary are M ≥ −2, M ≥ 1, M ≥ 2 and M ≥ 1,

respectively, so the stability bound is M ≥ 2. By this corollary, this bound is

a sufficient condition for F : R(M) ! R(M+1) to be a bijection; computation

using the Magma [2] mentioned after Definition 9.14 shows that this bound

is also necessary: |R(M)| = 40, 57, 60, 60 for 0 ≤M ≤ 3.

9. Stable partition systems defined by twisted intervals

In this section we prove the technical result, Corollary 9.20, that suitable

sequences of intervals in the `−-twisted dominance order define stable par-

tition systems. These are the stable partition systems we use in the Signed

Weight Lemma (Lemma 7.3) to prove Theorems 1.1 and 1.2.

9.1. Unsigned intervals. Recall from §3 that we write �� for the dom-

inance order extended to partitions possibly of different sizes. Given par-

titions γ and δ each with at most p parts, we define the unsigned interval

[γ, δ]
(p)
�� by

[γ, δ]
(p)
�� = {σ ∈ Par : γ�� σ�� δ and `(σ) ≤ p}.

Note that unless |γ| ≤ |δ| the interval is empty.

Remark 9.1. If |γ| = |δ| and `(γ) ≤ p then [γ, δ]
(p)
�� = {σ ∈ Par : γ � σ � δ}

since any partition σ such that γ � σ satisfies `(σ) ≤ `(γ); thus in this case
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we have [γ, δ]
(p)
�� = [γ, δ]� and there is no ambiguity in using this simpler

notation.

In our applications, whenever |γ| < |δ|, we will take p = `− where `−

is the length of the negative part of the relevant signed weight, and so the

partitions in the unsigned interval [γ, δ]
(p)
�� all have at most `− parts, as in

the `−-decomposition (see Definition 6.1).

Definition 9.2. Given partitions λ, ω with λ�� ω and a non-empty parti-

tion κ, all with at most p parts, let ` = `(κ) and set

Lk =
2
∑k−1

i=1 ωi + ωk + ωk+1 − 2
∑k

i=1 λi
κk − κk+1

for k such that 1 ≤ k ≤ ` and κk > κk+1. Set Lk = 0 if κk = κk+1. Define

L
(
[λ, ω]

(p)
�� , κ

)
be to be the maximum of L1, . . . , L` if p > ` and the maximum

of L1, . . . , L`−1 and (|ω| − |λ| − ω`)/κ` if p = `. Set L
(
[λ, ω]

(p)
�� ,∅

)
= 0.

We remark that if `(λ) ≤ ` and `(ω) ≤ ` then L` = (2|ω| − 2|λ| − ω`)/κ`.
Thus the bound in Definition 9.2 may in this case be strictly less than the

maximum of L1, . . . , L`.

Let κ be a partition with `(κ) ≤ p. Since α�� β implies α + κ �� β + κ

for any partitions α, β, adding κ defines an injective map from [γ, δ]
(p)
�� to

[γ + κ, δ + κ]
(p)
�� .

Proposition 9.3. Let λ and ω be partitions and let κ be a non-empty parti-

tion, all with at most p parts. Let F : Par! Par be defined by F (σ) = σ+κ.

Let M ∈ N. The injective map

F : [λ+Mκ,ω +Mκ]
(p)
�� ↪−! [λ+ (M + 1)κ, ω + (M + 1)κ]

(p)
��

is bijective provided M ≥ L
(
[λ, ω]

(p)
�� , κ

)
.

Proof. Let ` = `(κ) and let N = M + 1. Let τ ∈ [λ + Nκ, ω + Nκ]
(p)
�� .

Observe that τ is of the form σ + κ for a partition σ if and only if all `

inequalities in the chain

τ1 − κ1 ≥ τ2 − κ2 ≥ . . . ≥ τ` − κ` ≥ τ`+1 (9.1)

hold. (For instance if τk < κk for some k then since τk − κk < 0 ≤ τ`+1,

at least one inequality fails to hold.) Fix k ≤ `. Using the hypotheses

τ �� λ+Nκ and τ �� ω +Nκ we have

k−1∑
i=1

τi ≤
k−1∑
i=1

ωi +N
k−1∑
i=1

κi (9.2)

k∑
i=1

τi ≥
k∑
i=1

λi +N

k∑
i=1

κi (9.3)

k+1∑
i=1

τi ≤
k+1∑
i=1

ωi +N
k+1∑
i=1

κi. (9.4)
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Subtracting (9.2) from (9.3) we get τk ≥ −
∑k−1

i=1 ωk +
∑k

i=1 λi + Nκk and

subtracting (9.3) from (9.4) we get τk+1 ≤
∑k+1

i=1 ωk −
∑k

i=1 λi + Nκk+1.

Subtracting these two equations in turn, to form the linear combination

−(9.4) + 2(9.3)− (9.2), we get

τk − τk+1 ≥ −2

k−1∑
i=1

ωi − ωk − ωk+1 + 2

k∑
i=1

λi +N(κk − κk+1). (9.5)

Recalling that M = N − 1, we deduce that

(τk − κk)− (τk+1 − κk+1) ≥ Bk +M(κk − κk+1) (9.6)

where Bk = −2
∑k−1

i=1 ωi − ωk − ωk+1 + 2
∑k

i=1 λi. Note that if κk = κk+1,

the inequality τk − κk ≥ τk+1 − κk+1 holds simply because τ is a partition.

Therefore by taking M ≥ −Bk/(κk − κk+1) for each k such that κk > κk+1,

we deduce from (9.6) that every inequality in the chain (9.1) holds. Hence,

provided M ≥ L1, . . . , L`, we may define σ = τ − κ, knowing that σ is a

well-defined partition.

If p = ` then rather than M ≥ L`, we have only the weaker hypothesis

that M ≥ (|ω| − |λ| − ω`)/κ`. However, in this case `(λ) ≤ `, `(τ) ≤ ` and

`(ω) ≤ ` and

τ` =
∑̀
i=1

τi −
`−1∑
i=1

τi−1 ≥
(∑̀
i=1

λi +
∑̀
i=1

Nκi
)
−
(`−1∑
i=1

ωi +
`−1∑
i=1

Nκi
)

=
∑̀
i=1

λi −
`−1∑
i=1

ωi +Nκ` = |λ| − |ω|+ ω` +Nκ`.

Hence τ` ≥ κ`, as we require, provided (N − 1)κ` ≥ |ω|− |λ|−ω`. Therefore

in the case p = ` we may replace L` with the weaker bound (|ω|−|λ|−ω`)/κ`,
and again σ is a well-defined partition.

It remains to show that σ ∈ [λ+Mκ,ω +Mκ]
(p)
�� . Since τ �� λ+(M+1)κ

we have
∑k

i=1 τi ≥
∑k

i=1 λi + (M + 1)
∑k

i=1 κi for each k ∈ N. Therefore∑k
i=1 σi ≥

∑k
i=1 λi+M

∑k
i=1 κi for each k ∈ N, and hence σ�� λ+Mκ. Very

similarly one shows that σ�� ω+Mκ. Finally since τ ∈ [λ+Nκ, ω +Nκ]
(p)
��

we have `(τ) ≤ p, and since `(κ) = ` ≤ p, it follows that `(σ) ≤ p. Therefore

σ ∈ [λ+Mκ,ω +Mκ]
(p)
�� is a preimage of τ under F and since F is injective,

it follows that F is bijective for M ≥ L
(
[λ, ω]

(p)
�� , κ

)
. �

We give one of the smallest examples in which the bound in Definition 9.2

and Proposition 9.3 is 2: see Examples 9.13 and 9.15 for cases where two

parts of κ agree.

Example 9.4. We take λ = (1, 1, 1), ω = (3) and κ = (3, 2, 1). Routine cal-

culations show that the unsigned intervals [(1, 1, 1), (3)]�, [(4, 3, 2), (6, 2, 1)]�,
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[(7, 5, 3), (9, 4, 2)]� and [(10, 7, 4), (12, 6, 3)]� are as shown below


(3)

(2, 1)

(1, 1, 1)

 ↪!


(6, 2, 1)

(5, 3, 1)

(5,2,2)

(4,4,1)

(4, 3, 2)

 ↪!



(9, 4, 2)

(9,3,3)

(8, 5, 2)

(8, 4, 3)

(7, 6, 2)

(7, 5, 3)


↪!



(12, 6, 3)

(12, 5, 4)

(11, 7, 3)

(11, 6, 4)

(10, 8, 3)

(10, 7, 4)


.

The elements not in the image of the map σ
F
7−! σ + (3, 2, 1) are high-

lighted. Setting P(M) = [(1, 1, 1) + M(3, 2, 1), (3) + M(3, 2, 1)]� we see

that F : P(2) ! P(3) is a bijection. Correspondingly, by Proposition 9.3,

F : P(M) ! P(M+1) is bijective provided M ≥ L
(
[(1, 1, 1), (3)]�, (3, 2, 1)

)
and the right-hand side is the maximum of max{3−2

3−2 ,
6−4
2−1} = max{1, 2} = 2

and 3−3−0
1−0 = 0.

9.2. Twisted intervals. We now extend Proposition 9.3 to the twisted

case. Recall from §6.5 that for fixed `− ∈ N0, and partitions γ, δ of the

same size we defined the twisted interval [γ, δ]�· = {σ ∈ Par(p) : γ�· σ�· δ},
where �· is the `−-twisted dominance order. It is obvious that addition of

partitions preserves the dominance order. By conjugating partitions, the

same result holds for joining. Despite this, addition does not preserve the

`−-twisted dominance order. For instance, taking `− = 1 we have〈
(1), (1)

〉
↔(2)�· (1, 1)↔

〈
(2),∅

〉
,

whereas after adding (1, 1),〈
(2), (2)

〉
↔(3, 1)�· (2, 2)↔

〈
(2), (1, 1)

〉
.

The problem does not arise for addition of δ when the partitions involved

are
(
`−, `(δ)

)
-large, in the sense of Definition 3.1. Moreover, joining is better

behaved. We establish this in a series of easy lemmas.

Lemma 9.5. Fix `− ∈ N0. Let α, γ and δ be partitions.

(i) If α is
(
`−, `(δ)

)
-large then (α+ δ)− = α− and (α+ δ)+ = α+ + δ.

(ii) If `(γ) ≤ `− then (α t γ′)− = α− + γ− and (α t γ′)+ = α+.

Proof. The most transparent proof uses Young diagrams. By hypothesis [α]

contains the boxes (i, j) for 1 ≤ i ≤ `(δ) and 1 ≤ j ≤ `−. Hence addition

of δ creates no new boxes in the first `− columns of α. Similarly joining γ′

creates no new boxes outside the first `− columns of α. �

Lemma 9.6. Let κ−, κ+ be partitions. If α is a
(
`(κ−), `(κ+)

)
-large parti-

tion then
(
α⊕ (κ−, κ+)

)−
= α− + κ− and

(
α⊕ (κ−, κ+)

)+
= α+ + κ+. and

adding and joining to α are commuting operations.

Proof. This is immediate from Lemma 9.5. �

In particular, if K ∈ N and α is a
(
`(κ−), `(κ+)

)
-large partition then

α⊕ (K − 1)(α−, α+) is a partition having `−-decomposition K
〈
α−, α+

〉
. We

use this remark in the proof of Lemma 13.21.
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Lemma 9.7 (Twisted dominance order on large partitions is preserved by

adjoining). Let κ−, κ+ be partitions. Set `− = `(κ−). Suppose that α and β

are
(
`(κ−), `(κ+)

)
large. Then, working in the `−-twisted dominance order,

α�· β if and only if α⊕ (κ−, κ+)�· β ⊕ (κ−, κ+).

Proof. By Lemma 9.6 we have, taking λ as either α or β,(
λ⊕ (κ−, κ+)

)−
= λ− + κ− (9.7)(

λ⊕ (κ−, κ+)
)+

= λ+ + κ+. (9.8)

Therefore it is equivalent to show that
〈
α−, α+

〉
�
〈
β−, β+

〉
if an only if〈

α− + κ−, α+ + κ+
〉
�
〈
β− + κ−, β+ + κ+

〉
, which is obvious. �

Lemma 9.8. Fix `− ∈ N0 and let `+ ∈ N0. Let ω be a (`− + 1, `+)-large

partition. If π �· ω then π is (`− + 1, `+)-large.

Proof. A partition β is (`−+1, `+)-large if and only if `(β+) ≥ `+. Therefore

`(ω+) ≥ `+ and since π �· ω, Lemma 6.10 implies that `(π+) ≥ `+. �

Lemma 9.9. Fix `− ∈ N0 and let `+ ∈ N0. Let λ and ω be partitions

such that ω is (`− + 1, `+)-large. If π ∈ [λ, ω]�· then π is (`−, `+)-large. In

particular λ is (`−, `+)-large.

Proof. This is immediate from Lemma 9.8 since if a partition is (`−+ 1, `+)-

large then it is (`−, `+)-large. �

The hypothesis in the previous lemma cannot be weakened to the appar-

ently more natural condition that ω is (`−, `+)-large. For example, both (3, 2)

and (2, 2, 1) are (2, 2)-large, but the twisted interval [(3, 2), (2, 2, 1)]�· for the

2-twisted dominance order contains (3, 1, 1) which is not (2, 2)-large. See

Remark 6.2 for one sign that the hypothesis in Lemma 9.9 is in fact the cor-

rect one. By Remark 3.2, any partition can be made
(
`(κ−)+1, `(κ+)

)
-large

by sufficiently many applications of the adjoining map λ 7! λ⊕ (κ−, κ+) so,

as usual, any ‘largeness’ assumption can be made without loss of generality.

The L bounds in the following proposition are defined in Definition 9.2.

Remark 9.1 explains the different notations for intervals in the dominance

order in the first two bounds in the lemma.

Proposition 9.10 (Partition Stability). Let κ− and κ+ be partitions. Set

`− = `(κ−) and `+ = `(κ+). Let ω be a
(
`− + 1, `+

)
-large partition and let

λ �· ω in the `−-twisted dominance order. For each M ∈ N0, there is an

injective map of intervals for the `−-twisted dominance order

F :
[
λ ⊕M(κ−, κ+), ω ⊕ M(κ−, κ+)

]
�·

↪!
[
λ ⊕ (M + 1)(κ−, κ+), ω ⊕ (M + 1)(κ−, κ+)

]
�·

defined, using the `−-decomposition, by F (σ) = σ ⊕ (κ−, κ+). This map is

bijective provided M ≥ L where L is the maximum of

• L
(
[λ−, ω−](`

−)

�� , κ−
)
,

• L
(
[λ+, ω+ + (|λ+| − |ω+|)]�, κ+

)
,

•
(
ω+

1 + ω+

2 − 2λ+

1 + 2|λ+| − 2|ω+|
)
/(κ+

1 − κ
+

2 ),
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•
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/κ−

`−

where the third is omitted if κ+

1 = κ+

2 and the fourth is omitted if κ− = ∅.

Proof. By hypothesis the partitions ω⊕M(κ−, κ+) and ω⊕ (M+1)(κ−, κ+)

are
(
`−+ 1, `+

)
-large. Hence, by Lemma 9.9, every partition in each twisted

interval is
(
`−, `+

)
-large. By the ‘only if’ direction of Lemma 9.7 it now

follows that the map F on these twisted intervals preserves the `−-twisted

dominance order. Hence the image of the left-hand twisted interval under F

is contained in the right-hand twisted interval. Set N = M + 1 and suppose

that M satisfies the inequalities in the proposition. By Lemma 9.6 and

Lemma 6.7 we have τ ∈
[
λ ⊕ N(κ−, κ+), ω ⊕ N(κ−, κ+)

]
�· if and only if

(a) λ− +Nκ−�� τ−�� ω− +Nκ−;

(b)(i) λ+ +Nκ+ � τ+ +
(
|λ+|+N |κ+| − |τ+|

)
and |τ+| ≤ |λ+|+N |κ+|;

(b)(ii) τ+ � ω+ +Nκ+ +
(
|τ+| − |ω+| −N |κ+|

)
and |ω+|+N |κ+| ≤ |τ+|.

It is easily seen that (b)(i) and (b)(ii) are equivalent to the two conditions

λ+ +Nκ+ � τ+ +
(
|λ+|+N |κ+| − |τ+|

)
� ω+ +Nκ+ +

(
|λ+| − |ω+|

)
and

|ω+|+N |κ+| ≤ |τ+| ≤ |λ+|+N |κ+|. (9.9)

Note that by definition of the `−-decomposition (see Definition 6.1), λ−

and ω− have at most `− parts, where `− = `(κ−). Thus (a), (b)(i) and

(b)(ii) hold if and only if (9.9) holds and

τ− ∈ [λ− +Nκ−, ω− +Nκ−](`
−)

��

and

τ+ +
(
|λ+|+N |κ+| − |τ+|

)
∈
[
λ+ +Nκ+, ω+ +Nκ+ + (|λ+| − |ω+|)

]
�.

By Proposition 9.3, the map

[λ− + (N − 1)κ−, ω− + (N − 1)κ−](`
−)

�� ! [λ− +Nκ−, ω− +Nκ−](`
−)

��

defined by adding κ− is bijective if N − 1 ≥ L
(
[λ−, ω−](`

−)

�� , κ−
)
, as we have

assumed. Similarly, the map

[λ+ + (N − 1)κ+,ω+ + (N − 1)κ+ + (|λ+| − |ω+|)]�
! [λ+ +Nκ+, ω+ +Nκ+ + (|λ+| − |ω+|)]�

defined by adding κ+ is bijective if N − 1 ≥ L
(
[λ+, ω+ + (|λ+|− |ω+|)]�, κ+

)
,

again as we have assumed. Hence there exists unique partitions

σ− ∈ [λ− + (N − 1)κ−, ω− + (N − 1)κ−](`
−)

�� (9.10)

such that τ− = σ− + κ− and

ϑ ∈ [λ+ + (N − 1)κ+, ω+ + (N − 1)κ+ + (|λ+| − |ω+|)
]
� (9.11)

such that

τ+ + (|λ+|+N |κ+| − |τ+|) = ϑ+ κ+. (9.12)

The unique weight σ+ such that σ+ + κ+ = τ+ is

σ+ = ϑ− (|λ+|+N |κ+| − |τ+|). (9.13)
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We shall show that σ+ is a partition, provided N is sufficiently large. Sup-

pose first of all that κ+

1 = κ+

2 . Then by (9.12), ϑ1−ϑ2 = τ+

1 +(|λ+|+N |κ+|−
|τ+|)− τ+

2 ≥ |λ+|+N |κ+| − |τ+| and hence by (9.13), σ+

1 − σ
+

2 ≥ 0, with no

condition on N . Now suppose that κ+

1 > κ+

2 . By (9.11), we have

ϑ1 − ϑ2 = 2ϑ1 − (ϑ1 + ϑ2)

≥ 2
(
λ+

1 + (N − 1)κ+

1

)
−
(
ω+

1 + ω+

2 + (N − 1)(κ+

1 + κ+

2 ) + (|λ+| − |ω+|)
)

= 2λ+

1 − ω
+

1 − ω
+

2 + (N − 1)(κ+

1 − κ
+

2 )− |λ+|+ |ω+|

By (9.13),

σ+

1 − σ
+

2 = ϑ1 − ϑ2 − |λ+| −N |κ+|+ |τ+|
≥ ϑ1 − ϑ2 − |λ+|+ |ω+|
≥ 2λ+

1 − ω
+

1 − ω
+

2 + (N − 1)(κ+

1 − κ
+

2 )− 2|λ+|+ 2|ω+|

where the middle line follows from the first inequality in (9.9) that |ω+| +
N |κ+| ≤ |τ+| and the third line by substituting the expression for ϑ1 − ϑ2

just found. Hence it suffices if

N − 1 ≥ ω+

1 + ω+

2 − 2λ+

1 + 2|λ+| − 2|ω+|
κ+

1 − κ
+

2

which, setting M = N − 1, is the third condition.

We have now defined partitions σ− and σ+ such that, provided
〈
σ−, σ+

〉
is a well-defined `−-decomposition, the partition σ defined by σ↔

〈
σ−, σ+

〉
satisfies σ ⊕ (κ−, κ+) = τ . If `− = 0 this is immediate, so we may assume

that `− ≥ 1 and κ+ 6= ∅. We then require σ−
`− ≥ `(σ+). By (9.10) we have

σ−�� ω− + (N − 1)κ−. Define a weight ψ by ψj = σ−j for 1 ≤ j < `− and

ψ`− = σ−
`− + |ω−| + (N − 1)|κ−| − |σ−|. After this equalization of sizes, we

have ψ � ω− + (N − 1)κ−. Since each side has at most `− parts, it follows

from the dominance order that ψ`− ≥ ω−
`− + (N − 1)κ−

`− . Now using that

|ω−|+ (N − 1)|κ−| − |σ−| = |ω−|+N |κ−| − |τ−| ≤ (|ω−|+N |κ−|)− (|λ−|+
N |κ−|) = |ω−| − |λ−| we obtain

σ−
`− ≥ ω

−
`− + (N − 1)κ−

`− − (|ω−| − |λ−|).

By (9.11) we have ϑ� λ+ + (N − 1)κ+, and since `(κ+) = `+ we have

`(σ+) = `(ϑ) ≤ max(`(λ+), `+).

Therefore, comparing the two previous displayed equations, a sufficient con-

dition for σ to be well-defined is

ω−
`− + (N − 1)κ−

`− − (|ω−| − |λ−|) ≥ max(`(λ+), `+).

Rearranging and, as before, setting M = N − 1, this becomes the fourth

condition. �

This shows that twisted intervals for the `−-twisted dominance order,

defined for suitable large partitions, satisfy condition (i) in the definition of

a stable partition system (Definition 7.1) for the map F in Proposition 9.10

(Partition Stability). We remark that the example in §8.4 shows one case
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where the third bound, required in the middle part of the proof, is the only

bound that is tight and Example 9.13 below shows that the most technical

fourth bound may also be the only bound that is tight.

9.3. Positions for tableau stability. We must now verify condition (b)

in the definition of a stable partition system (Definition 7.1). The critical

positions in tableaux are defined below. In this section, only the case where

µ? = ∅ is needed: the definition is used in full generality in §11.5 below.

Definition 9.11. Let κ− and κ+ be partitions. Fix `− = `(κ−) and let

`+ = `(κ+). Let µ/µ? be a skew partition. For 1 ≤ r− ≤ `− and 1 ≤ r+ ≤ `+,

(a) the r−-top position of µ/µ? is
(
max(`(µ?), `(µ

+), `+, µ−
r−+1

), r−),

(b) the r−-bottom position of µ/µ? is (k+ κ−
r− − κ

−
r−+1

, r−) where (k, r−)

is the r−-top position of µ/µ?.

(c) the r+-left position of µ/µ? is
(
r+, `− + max(a(µ?), µ

+

r++1
)
)
,

(d) the r+-right position of µ/µ? is (r+, k+ κ+

r+
− κ+

r++1
) where (r+, k) is

the r+-left position of µ/µ?.

Note that if µr+ < `− then µ+

r++1
= 0 and so the r+-left position of µ/µ?

is (r+, `− + a(µ?)) and is not contained in [µ]. Similarly, if µ? = ∅ and

µ+ = ∅ and κ+ = ∅ then since µ− has at most `− parts, the `−-top position

is (0, `−). We therefore refer to ‘positions’ rather than ‘boxes’.

Example 9.12. Take κ− = (1, 1) and κ+ = (2). The map F : Par !
Par in Proposition 9.10 is defined by F (σ) = σ ⊕

(
(1, 1), (2)

)
= σ + (2) t

(2). The numbers in the diagrams below show the 1-top, 2-top and 1-

left positions in the partitions obtained from (2) and (1, 1) by adjoining

according to F . Following our usual convention, top positions, relevant to

the insertion of negative entries, are marked by bold numbers. For instance

the 2-top position is (1, 2) in every partition.

1 1/2

1

1/2 1/2

1

1 1/2

1

1/2

1

1/2

Since κ−1 = κ−2 the 1-top and 1-bottom positions coincide in every case. (We

shall see in Definition 9.14 that this makes them irrelevant to our applica-

tion.) The 2-bottom and 1-right positions are indicated by lighter shading;

to reduce clutter, the number is not given, but can be inferred from the

column, for bottom positions, or the row, for right positions. For example

the 2-bottom position is (2, 2) in every partition. Since κ−2 −κ
−
3 = 1−0 = 1,

the 2-bottom position is always one position below the 2-top position and
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since κ+

1 − κ
+

2 = 2− 0 = 2, the 1-right position is always two positions right

of the 1-left position.

For a further example in the general skew case, also showing the behaviour

when `(µ+) > `(κ+), see Example 11.5.

9.4. The F insertion map on tableaux. We now show how these posi-

tions can be used to define a bijection between semistandard signed tableaux.

We admit the following results are technical, and so we give two substantial

examples. See also Example 7.2 and §8.3 for two earlier bijections; both can

now be seen to be instances of F .

Example 9.13. Consider the twisted intervals

P(M) = [(4, 2) + (2M) t (2M ), (3, 2, 1) + (2M) t (2M )]�· .

for the 2-twisted dominance order. By Proposition 9.10 (Partition Stability),

the map F : P(M) ! P(M+1) defined by λ 7! λ ⊕
(
(1, 1), (2)

)
is bijective

for M ≥ 0. (Note that (3, 2, 1) is (3, 1)-large; the four bounds on M are

respectively M ≥ −1, M ≥ −1, M ≥ −1
2 and M ≥ 0.) This gives a bijection

between the row and column labels of the matrices K(M) in condition (b)

of a stable partition system (Definition 7.1), as indicated below. We include

the set P(−1) = [(2), (1, 1)]�· below: even though (2) is not (3, 1)-large, the

proof of Proposition 9.10 still applies; the bounds on M are now M ≥ 0,

M ≥ 0, M ≥ 0 and M ≥ 1, so the necessary restriction on M comes from

the technical final paragraph of the proof.

( (1
,1

)

(2
)

〈(2),∅〉 1 ·
〈(1,1),∅〉 1 1

) 

(3
,2
,1

)

(4
,1
,1

)

(4
,2

)

〈(3,2),(1)〉 1 · ·
〈(3,1),(2)〉 1 1 ·
〈(2,2),(2)〉 2 1 1

 

(5
,2
,2
,1

)

(6
,2
,1
,1

)

(6
,2
,2

)

〈(4,3),(3)〉 1 · ·
〈(4,2),(4)〉 1 1 ·
〈(3,3),(4)〉 2 1 1


The tableaux enumerated by the bottom left matrix entries of 1, 2 and 2

are shown below.

1

2

1 2 1

1 2

1

1 2 1

1 1

2

F
7−!

F
7−!

1 2 1

1 2

1

1 1

1 2

1 2 1

1 1

2

1 1

1 2

We saw in Example 9.12 that the 2-top and 1-left positions of (3, 2, 1) are

both (1, 2); these positions are shaded dark grey in all tableaux. Insertion

of 1 2 in the two positions (2, 1), (2, 2) below the 2-top position, moving

each box in columns 1 and 2 one row down, gives a semistandard tableau.

Similarly insertion of 1 1 into the positions (1, 3), (1, 4), right of the
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1-left position, moving each box in row 1 two columns right, again gives

a semistandard tableau. These operations commute. The inverse map is

defined by deleting 1 2 and 1 1 from the 2-bottom and 1-right positions

in the (5, 2, 2, 1)-tableau; these positions are again shaded and the newly

inserted boxes which should be deleted are hatched. We therefore have a

bijection

SSYT
(
(3, 2, 1)

)
((2,2),(2))

F
−! SSYT

(
(5, 2, 2, 1)

)
((3,3),(4))

.

This bijection establishes, via Lemma 5.3 (Twisted Kostka Numbers), that

the bottom-left entries 〈e(2,2)h(2), s(3,2,1)〉 and 〈e(3,3)h(4), s(5,2,2,1)〉 of the sec-

ond two matrices above are equal. This bijection is generalized in Defini-

tion 9.14: in general κ−r − κ−r+1 rows of length r and κ+
r − κ+

r+1 columns of

length r are inserted/deleted. This feature may be seen in this example:

for instance, since κ−1 = κ−2 , there was no need to consider the 1-top and

1-bottom positions.

Generalizing this example, we now define the insertion map F in the

general skew case; this generality is needed later in the proof of Proposi-

tion 11.13. Note that when σ? = ∅ then the only hypothesis needed is

that σ is
(
`(κ−), `(κ+)

)
-large. Recall from Definition 3.3 that YT

(
σ/σ?) is

the set of signed tableaux of shape σ/σ?; note the tableaux in YT
(
σ/σ?

)
are not necessarily semistandard.

Definition 9.14. Let κ− and κ+ be partitions. Let σ/σ? be a
(
`(κ−) +

a(σ?), `(κ
+)
)
-large and

(
`(κ−), `(µ?)

)
-large skew partition. Define

F : SSYT(σ/σ?)! YT
(
σ/σ? ⊕ (κ−, κ+)

)
by performing (1) then (2) below:

(1) starting with r− = 1 and finishing with r− = `(κ−), insert κ−
r− −

κ−
r−+1

new rows each with entries −1, . . . ,−r−, each with their right-

most box immediately below the r−-top position of σ;

(2) starting with r+ = 1 and finishing with r+ = `(κ+), insert κ+

r+
−κ+

r++1
new columns each with entries 1, . . . , r+, each with their bottom box

immediate right of the r+-left position of σ.

If κ−
r− = κ−

r−+1
or κ+

r+
= κ+

r++1
then there is nothing to do in that step.

The partitions κ− and κ+ will always be clear from context. It has to be

checked that F is well-defined (meaning that the insertions give a tableau

of skew partition shape), but as we shall see in Lemma 9.18, this is not hard

to prove. Our aim, achieved in Proposition 9.19, is to show that

F : SSYT
(
σ
)
(π−,π+) ! SSYT

(
σ ⊕ (κ−, κ+)

)
(π−+κ−,π++κ+).

is a well-defined bijection for σ and π suitable elements of a twisted interval

for the `(κ−)-twisted dominance order. Example 9.13 shows the special case

where σ = (3, 2, 1) and π =
〈
(2, 2), (2)

〉
↔(4, 2).

To help guide the reader through the remaining technicalities we give a

further ‘unsigned’ example below. This example, like many others in this
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paper, was created with the help of the Magma [2] code available as part

of the arXiv submission of this paper using TwistedIntervalInjectionM(

[], [3,3,1], [2,1,1] : q := [4], NSteps := 2); varying the param-

eters to [1,1], [2], [4,2], q := [3,2,1] gives the bijection in Exam-

ple 9.13.

Example 9.15. Take κ− = ∅, κ+ = (3, 3, 1) so `− = 0 and `+ = 3. By Defi-

nition 9.2, L
(
[(2, 1, 1), (4)]�, (3, 3, 1)

)
= 1; the only strictly positive quantity

coming from the case k = 2. (Note that we disregard the case k = 1 since

κ1 = κ2.) Therefore, by Proposition 9.3, the F map adding (3, 3, 1) is an

injection

[(2, 1, 1), (4)]�
+(3,3,1)−−−! [(5, 4, 2), (7, 3, 1)]�

+(3,3,1)−−−! [(8, 7, 3), (10, 6, 2)]�

and the second map is a bijection. (We remark that Proposition 9.10 could

also be used; the intervals are then interpreted for the 0-twisted dominance

order, which by Remark 6.8 is the usual dominance order on partitions, and

the additional bounds are, as expected, irrelevant.) Figure 9.1 shows the

Kostka matrices 〈hπ, sσ〉 for π, σ in each interval; and several features of

the F bijection

SSYT
(
(7, 3, 1)

)
(∅,(5,4,2))

F
−! SSYT

(
(10, 6, 2)

)
(∅,(8,7,3))

establishing the equality 〈h(5,4,2), s(7,3,1)〉 = 〈h(8,7,3), s(10,6,2〉 of the bottom-

left matrix entries of 2.

9.5. Technical lemmas on positions. In the following lemma we use

L
(
[λ, ω]

(p)
�� , κ

)
and L

([
λ+, ω+ + (|λ+| − |ω+|)

]
, κ+
)
�, defined in Definition 9.2.

(See Remark 9.1 for the difference in notation.) We remark that the bounds

in the following lemma are the first, second and fourth from Proposition 9.10

(Partition Stability), so whenever the conditions for this proposition hold, so

do the conditions for this lemma. Informally, given that Proposition 9.19 is

a corollary of the following lemma, we say ‘partition stability implies tableau

stability’.

Lemma 9.16. Let κ− and κ+ be partitions. Set `− = `(κ−) and `+ =

`(κ+). Let λ and ω be (`−, `+)-large partitions and let λ�· ω in the `−-twisted

dominance order. Let L be the maximum of the twisted interval bounds

• L
(
[λ−, ω−](`

−)

�� , κ−
)
,

• L
([
λ+, ω+ + (|λ+| − |ω+|)

]
�, κ

+
)

•
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/κ−

`−

omitting the third if κ− = ∅. Let σ and π be partitions in the interval

[λ ⊕ M(κ−, κ+), ω ⊕ M(κ−, κ+)
]
�·

for the `−-twisted dominance order such that σ is (`−, `+)-large. Let t ∈
SSYT(σ)(π−,π+). If M − 1 ≥ L then

(i) the r−-bottom position of t contains −r− if r− < `− and κ−
r− > κ−

r−+1
;

(ii) if κ− 6= ∅ then the `−-bottom position of t contains −`−;

(iii) if κ− 6= ∅ and κ+ 6= ∅ then the box (`+, `−) of t contains −`−;
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(4
)

(3
,1

)

(2
,2

)

(2
,1
,1

)

1 · · ·
1 1 · ·
1 1 1 ·
1 2 1 1




(7
,3
,1

)

(7
,2
,2

)

(6
,4
,1

)

(6
,3
,2

)

(5
,5
,1

)

(5
,4
,2

)

1 · · · · ·
1 1 · · · ·
1 0 1 · · ·
2 1 1 1 · ·
1 0 1 0 1 ·
2 1 2 1 1 1





(1
0
,6
,2

)

(1
0
,5
,3

)

(9
,7
,2

)

(9
,6
,3

)

(8
,8
,2

)

(8
,7
,3

)

1 · · · · ·
1 1 · · · ·
1 0 1 · · ·
2 1 1 1 · ·
1 0 1 0 1 ·
2 1 2 1 1 1


1

2

3
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2 2 2 2 2 2/3

3 3

Figure 9.1. Kostka matrices for the intervals [(2, 1, 1), (4)]�,

[(5, 4, 2), (7, 3, 1)]�, [(8, 7, 3), (10, 6, 2)]� labelled to show the bijec-

tion F between the two larger intervals defined by adding (3, 3, 1). Observe

that while (7, 3, 1) = (4)+(3, 3, 1) and (5, 4, 2) = (2, 1, 1)+(3, 3, 1), we have

|SSYT
(
(4)
)
(∅,(2,2,1))| = 1 but |SSYT

(
(7, 3, 1)

)
(∅,(5,4,2))

∣∣ = 2 so in the step

from the first interval to the second we do not have tableau stability, in the

sense of Proposition 9.19, even if we consider only those partitions in the

image of the addition map. Below the matrices we show the 1-, 2- and 3-left

and 1-, 2- and 3-right position for the partitions (4), (7, 3, 1), (10, 6, 2);

note the 1-left and 1-right positions coincide. At the bottom we show

the bijection F : SSYT
(
(7, 3, 1)

)
(∅,(5,4,2))

F
−! SSYT

(
(10, 6, 2)

)
(∅,(8,7,3))

defined by inserting two columns of length 2 immediately right of the

2-left position (2, 1) and a single column of height 3 immediately right

of the 3-left position (3, 0), using 2/3 and 3/2 to indicate the two boxes

that have a choice of entry. The shading and hatching conventions are as

Example 9.13. This gives a bijective proof of the equality of the bottom

left entries of 2 in the two larger matrices marked in bold.

(iv) the r+-right position of t contains r+ if r+ < `+ and κ+

r+
> κ+

r++1
.

(v) the `+-right position of t contains `+.

Moreover if M ≥ L then the same results hold replacing ‘bottom’ with ‘top’

and ‘right’ with ‘left’, except that

(ii) if σ+ = ∅ and κ+ = ∅ then the `−-top position is (0, `−);

(iv) and (v) if σr++1 ≤ `−, and so the r+-left position is (r+, `−), then it

contains a negative entry.

Proof. First note that, by Lemma 9.6, we have
(
λ ⊕M(κ−, κ+)

)−
= λ− +

Mκ− and three further analogous equations replacing − with + or λ with ω.

We also record a key observation on where negative entries lie in t:
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(−) The negative entries of t lie in the boxes in [α] where α is a subpar-

tition of σ such that a(α) ≤ `− and |α| = |π−|.
For (i), there is nothing to prove if κ− = ∅. Let r− < `−. Since σ

is (`−, `+)-large, we have σ−
r−+1

≥ `+. Hence the r−-top position of t is

(σ−
r−+1

, r−). Suppose for a contradiction that this position has either a

positive entry, or some −s with −s > −r− in the order in Definition 3.7,

meaning that s > r. In either case, (−) implies that the total number of

entries of t in the set {−1, . . . ,−r−} is at most σ−1 + · · ·+σ−
r−−1

+σ−
r−+1

−1.

(We suggest the reader refers to Figure 9.2 to see (−) graphically: it is also

helpful to note that σ−j = σ′j for 1 ≤ j ≤ `−. See Figure 6.1 for a reminder

of this notation.) On the other hand, t has exactly π−1 + · · ·+ π−
r−−1

+ π−
r−

such entries. Hence
r−−1∑
j=1

σ−j + σ−
r−+1

>
r−∑
j=1

π−j . (9.14)

Using π �· λ⊕M(κ−, κ+) and so, by Lemma 6.7(a), π−�� λ− + Mκ− we

have
∑r−

j=1 π
−
j ≥

∑r−

j=1 λ
−
j +M

∑r−

j=1 κ
−
j . Hence

r−−1∑
j=1

σ−j + σ−
r−+1

>

r−∑
j=1

λ−j +M

r−∑
j=1

κ−j . (9.15)

Since σ ∈ [λ ⊕ M(κ−, κ+), ω ⊕ M(κ−, κ+)
]
�· we have σ �· ω ⊕ M(κ−, κ+)

and so by Lemma 6.7(a), σ−�� ω− +Mκ−, we also have for each k,

k∑
j=1

λ−j +M
k∑
j=1

κ−j ≤
k∑
j=1

σ−j ≤
k∑
j=1

ω−j +M
k∑
j=1

κ−j . (9.16)

Taking k = r− in (9.15) and k = r− + 1 in (9.16) the right-hand inequality

and subtracting we get σ−r+1 ≤
∑r−+1

j=1 ω−j −
∑r−

j=1 λ
−
j +Mκ−

r−+1
. Hence by

another use of the right-hand inequality in (9.16) taking k = r− − 1,

r−−1∑
j=1

σ−j +σ−
r−+1

≤ 2

r−−1∑
j=1

ω−j +ω−
r−+ω−

r−+1
−

r−∑
j=1

λ−j +M

r−−1∑
j=1

κ−j +Mκ−
r−+1

.

Now (9.15) and the previous inequality imply

2
r−−1∑
j=1

ω−j + ω−
r− + ω−

r−+1
− 2

r−∑
j=1

λ−j > M(κ−
r− − κ

−
r−+1

). (9.17)

Taking k = r− in the definition of L
(
[λ−, ω−](`

−)

�� , κ−
)

in Definition 9.2 we

get 2
∑r−−1

j=1 ω−j + ω−k + ω−k+1 − 2
∑r−

j=1 λ
−
j ≤M(κr− − κr−+1). This contra-

dicts (9.17). Hence, provided we have the first condition on M that M ≥
L
(
[λ−, ω−](`

−)

�� , κ−
)
, (i) holds for top positions.

The r−-bottom position, lies κ−
r−−κ

−
r−+1

boxes below the r−-top position.

Supposing similarly that it does not contain r− we deduce that the total

number of entries of t in the set {−1, . . . ,−r−} is at most κ−
r− − κ

−
r−+1

plus

the left-hand side of (9.14). Running the same argument, using the same

inequalities (9.15) and (9.16) to obtain (9.17) with κ−
r− −κ

−
r−+1

subtracted
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from the right hand side, which is therefore (M − 1)(κ−
r− −κ

−
r−+1

). We then

get a contradiction as before from M − 1 ≥ L
(
[λ−, ω−](`

−)

�� , κ−
)
.

For (ii), we may assume that κ− 6= ∅; then by Definition 9.11, the `−-

top position of µ/µ? is
(
max(`(σ+), `+

)
, `−). If σ+ = ∅ then we are in the

exceptional case at the end of the statement of the lemma; otherwise, since

σ is (`−, `+)-large, this is a box of t. Suppose for a contradiction that this

box does not contain −`−. The analogue of (9.15) is

`−−1∑
j=1

σ−j + max(`(σ+), `+) >

`−∑
j=1

λ−j +M

`−∑
j=1

κ−j = |λ−|+M |κ−|.

By

`−−1∑
j=1

σ−j ≤
`−−1∑
j=1

ω−j +M

`−−1∑
j=1

κ−j = |ω−| − ω−
`− +M |κ−| −Mκ−

`− (9.18)

obtained from the upper bound in (9.16) we deduce |λ−|−max(`(σ+), `+) <

|ω−| − ω−
`− −Mκ−

`− . By Lemma 6.10, since σ �· λ, we have `(σ+) ≤ `(λ+).

Therefore

Mκ−
`− < |ω

−| − |λ−| − ω−
`− + max(`(λ+), `+). (9.19)

This contradicts the third bound in the statement of this lemma, namely

M ≥
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/κ−

`− . This proves (ii) for the

top position. The modifications for the `−-bottom position are precisely

analogous to (i), leading to (9.18) with κ−
`− subtracted from the right-hand

side, and (9.19) with M replaced by M − 1, as required.

Part (iii) follows from (ii) because the `−-top position is (k, `−) where

k ≥ `+, and since this position contains −`−, so does position (`+, `−). This

argument is indicated in the caption to Figure 9.2.

For (iv) and (v), we first note that if κ+ = ∅ then there is nothing to

prove. Suppose that κ+ 6= ∅. By (iii) we have

(+) The positive entries of t in {1, 2, . . . , `+} lie either in boxes in the

first `− columns of t in rows strictly below row `+, or in boxes (i, j)

with i ≤ `+ and j > `−.

This restrictions from (−) and (+) are shown diagrammatically in Figure 9.2.

By (+), there are exactly |σ−|−|π−| positive entries in the first `− columns

of t. Let r+ ≤ `+ and suppose, as we may, that κr+ > κr++1. The r+-

left position of t is (r+, `− + σ+

r++1
). If σ+

r++1
= 0 then (iii) implies that

this position contains a negative entry, as required in the exceptional cases

for left-positions. We may therefore assume that σ+

r++1
> 0, so the r+-left

position is not in the first `− columns of t. Suppose, for a contradiction, that

this position does not contain r+. The total number of entries of t lying in

the set {1, . . . , r+} is then at most |σ−| − |π−|+ σ+

1 + · · ·+ σ+

r+
+ σ+

r++1
− 1.

On the other hand t has exactly π+

1 + · · ·+ π+

r+−1
+ π+

r+
such entries. Hence

|σ−| − |π−|+
r+−1∑
i=1

σ+

i + σ+

r++1
>

r+∑
i=1

π+

i . (9.20)



66 ROWENA PAGET AND MARK WILDON
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+
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. . .
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. .
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. .
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. .
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. .
.

•

1 `̀̀−−− 1

1 `̀̀−−−

`+

`−

Figure 9.2. Entries in a tableau t ∈ SSYT(σ)(π−,π+) when σ is (`−, `+)-

large showing the conditions (−) and (+) in the proof of Lemma 9.16. The

positive entries not in the first `+ rows lie in the regions marked +. Note

that by (iii) in Lemma 9.16 the box in position (`−, `+) contains −`−.

We have shown the case where `(σ+) > `+, and so the `−-top position is(
`(σ+), `−) marked •. By part (ii) of the lemma, when M is sufficiently

large, this position also contains `−, and so the first `(σ+) rows of t are

equal in their first `− columns. The `−-bottom position is κ−
`− rows below

the `−-top position. Observe that since the `−-top position is in row `(σ+),

deleting a row of length `− strictly below the `−-top position and weakly

above the `−-bottom position preserves partition shape: this is relevant to

the bijection F defined in Definition 9.14.

Now using π�· λ ⊕ M(κ−, κ+) and so, by Lemma 6.7(b), π+ +
(
(|λ+| +

M |κ+|)− |π+|
)
� λ+ +Mκ+, we have

r+∑
i=1

π+

i ≥
r+∑
i=1

λ+

i +M

r+∑
i=1

κ+

i − |λ
+| −M |κ+|+ |π+|. (9.21)

In exactly the same way, since σ�· λ⊕M(κ−, κ+), we have, for each k ≥ 1,

k∑
i=1

σ+

i ≥
k∑
i=1

λ+

i +M
k∑
i=1

κ+

i − |λ
+| −M |κ+|+ |σ+| (9.22)

and using σ�· ω⊕M(κ−, κ+) and so σ+�ω+ +
(
|σ+|−|ω+|−M |κ+|)+Mκ+,

we have

k∑
i=1

σ+

i ≤
k∑
i=1

ω+

i +M
k∑
i=1

κ+

i + |σ+| − |ω+| −M |κ+| (9.23)
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for each k. Taking k = r+ in (9.22) and k = r+ +1 in (9.23) and subtracting

(as before for the negative case) we get

σ+

r++1
≤

r++1∑
i=1

ω+

i −
r+∑
i=1

λ+

i +Mκr++1 + |λ+| − |ω+|.

Hence

r+−1∑
i=1

σi + σr++1 ≤
r+−1∑
i=1

ω+

i +M
r+−1∑
i=1

κ+

i + |σ+| − |ω+| −M |κ+|

+

r++1∑
i=1

ω+

i −
r+∑
i=1

λ+

i +Mκ+
r++1

+ |λ+| − |ω+|

= 2
r+−1∑
i=1

ω+

i + ω+

r+
+ ω+

r++1
−

r+∑
i=1

λ+

i +M
r+−1∑
i=1

κ+

i +Mκ+

r++1

+ |σ+|+ |λ+| − 2|ω+| −M |κ+|

and so, writing A for the right-hand side above, (9.20) and (9.21) imply

|π−| − |σ−|+
r+∑
i=1

λ+

i +M
r+∑
i=1

κ+

i − |λ
+| −M |κ+|+ |π+| < A.

We now rearrange and simplify using |σ−|+ |σ+| = |π−|+ |π+| to get

M(κ+

r+
− κ+

r++1
) < 2

r+−1∑
i=1

ω+

i + ω+

r+
+ ω+

r++1
− 2

r+∑
i=1

λ+

i (9.24)

+ |σ+|+ 2|λ+| − 2|ω+| − |π−|+ |σ−| − |π+|

= 2

r+−1∑
i=1

ω+

i + ω+

r+
+ ω+

r++1
− 2

r+∑
i=1

λ+

i + 2|λ+| − 2|ω+|.

(9.25)

But from the hypothesis M ≥ L
(
[λ+, ω+ + (|λ+| − |ω+|)]�, κ+

)
we have

M ≥
2
∑r+−1

i=1 ω+

i + ω+

r+
+ ω+

r++1
− 2

∑r+

i=1 λ
+

i + 2|λ+| − 2|ω+|
κ+

r+
− κ+

r++1

. (9.26)

Comparing with the previous inequality we get a contradiction. This proves

(iv) and (v) for left positions. The modifications for (iv) and (v) for right po-

sitions are precisely analogous to the negative case; the relevant quantity to

subtract from the left-hand side of (9.25) is κ+

r+
−κ+

r++1
, so we obtain (9.26)

with M replaced by M − 1, as already seen twice before. This completes

the proof. �

For later use in the proof of Lemma 11.7 we give the following lemma in

the general skew case.
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Lemma 9.17. Let κ− and κ+ be partitions. Set `− = `(κ−) and `+ = `(κ+).

Let σ/σ? be a
(
`−+a(σ?), `

+
)
-large and

(
`−, `(σ?)

)
-large skew partition. The

r−-top position of σ/σ? is{(
σ′r−+1, r

−
)

if r− < `−(
max(`(σ?), `

+, `(σ+)), `−
)

if r− = `−

and the r+-left position of σ is{(
r+, σr++1

)
if r+ < `+(

`+,max(`− + a(σ?), σ`++1)
)

if r+ = `+

Either σ? = ∅ and σ+ = ∅ and `+ = 0 or all top positions are in row

max(`(σ?), `(σ
+), `+) of σ or further below. All left positions are in column

`− + a(σ?) of σ or further right.

Proof. Since σ is
(
`−, `(σ?)

)
-large, we have σ−

`− ≥ `(σ?). Since σ is
(
`− +

a(σ?), `
+
)
-large we have σ−

`− ≥ `
+ and `− + σ+

`+
≥ `− + a(σ?). Moreover, by

Remark 6.2, we have σ−
`− ≥ `(σ

+). Summarising

σ−
`− ≥ max(`(σ?), `(σ

+), `+) (9.27)

σ+

`+
≥ a(σ?). (9.28)

By Definition 9.11, the r−-top position of σ/σ? is(
max(`(σ?), `(σ

+), `+, σ−
r−+1

), r−
)

for each r− ≤ `−. The claim on the `−-top position is now immediate. If

r− < `−, then by (9.27), the maximum defining the row is at least σ−
`− , and

so the position is (σ−
r−+1

, r−), as required. This also proves the claim on

the rows of these positions. Again by Definition 9.11, the r+-left position of

σ/σ? is (
r+, `− + max(a(σ?), σ

+

r++1
)
)

for r+ ≤ `+. If r+ < `+, then by (9.28), the maximum is at least σ`+ and so

the position is
(
r+, `− + σ+

r++1

)
, which is as required. If σ+

`++1
= 0 then the

column of the `+-left position is `− + a(σ?), as claimed, while if σ+

`++1
> 0

then σ`++1 = `− + σ+
`++1

and so

`− + max(a(σ?), σ
+

`++1
) = max(`− + a(σ?), σ`++1

)
as required. This also proves the claim on the columns of these positions. �

Recall from Definitions 3.3 and 3.7 that YT(µ/µ?) is the set of signed

tableaux of shape µ/µ? and SSYT±(µ/µ?) is the subset of signed semistan-

dard tableaux of shape µ/µ?.

Lemma 9.18. Let κ− and κ+ be partitions. Let σ/σ? be a
(
`(κ−)+a(σ?), `(κ

+)
)
-

large and
(
`(κ−), `(σ?)

)
-large skew partition.

(i) The map F : SSYT±(σ/σ?)! YT
(
σ/σ? ⊕ (κ−, κ+)

)
is well-defined.

(ii) If t ∈ SSYT±(σ/σ?) has signed weight (π−, π+) then F(t) has signed

weight (π− + κ−, π+ + κ+).
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Proof. For (i) we must check that the insertions preserve partition shape.

By Lemma 9.17, each r−-top position is immediately above a row of length

at most r− not meeting [σ?]. (Note particularly that this holds when r− = `−

because the `−-top position lies in row max(`(σ?), `(σ
+), `+), as remarked on

in the caption to Figure 9.2.) The definition of F in Definition 9.14 specifies

that insertions are performed working from bottom to top, top positions

used for later insertions in (1) are not changed by earlier insertions in (1).

Therefore the column insertions are well-defined. By the claim on the rows

of the top positions in the lemma, the left positions are not changed by these

insertions. Therefore the insertions in (2) and (1) commute, and a similar

argument shows that the row insertions in (2) are well-defined. Hence F
is well-defined as required in (i). Part (ii) is obvious from the definition

of F . �

9.6. Tableau stability. We now show that F is bijective in the case rel-

evant to our stable partition system. We later quote the main part of this

proof of the following lemma in the proof of the extension to the skew case in

Proposition 11.13. Since this extension has other details that are somewhat

fiddly, we do not attempt to continue the unified exposition. We remark

that, by Lemma 9.8, the hypothesis that ω is
(
`− + 1, `(κ+)

)
-large implies

the same condition on λ.

Proposition 9.19 (Tableau Stability). Let κ− and κ+ be partitions. Set

`− = `(κ−) and `+ = `(κ+). Let λ be a partition and let ω be a
(
`−+1, `(κ+)

)
-

large partition such that λ�· ω. Let σ and π be partitions in the twisted

interval [
λ ⊕ M(κ−, κ+), ω ⊕ M(κ−, κ+)

]
�·

for the `−-twisted dominance order. Provided M is at least the maximum of

• L
(
[λ−, ω−](`

−)

�� , κ−
)

• L
([
λ+, ω+ + (|λ+| − |ω+|)

]
�, κ

+
)

•
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/κ−

`−

the map F is a well-defined bijection

F : SSYT
(
σ
)
(π−,π+) ! SSYT

(
σ ⊕ (κ−, κ+)

)
(π−+κ−,π++κ+).

Proof. By Lemma 9.8 the partitions λ and σ are both (`−+ 1, `+)-large and

so (`−, `+)-large. Hence, by Lemma 9.18(i), the map F is well-defined. Fix a

semistandard signed tableau t ∈ SSYT
(
σ
)
(π−,π+). By hypothesis the three

bounds on M required to apply Lemma 9.16 all hold, and we have just seen

the required largeness conditions hold. Therefore we have properties (i), (ii),

(iii), (iv) and (v) in this lemma.

By (i) and (ii) for top positions, each of the κ−r −κ−r+1 new rows of length

r− ≤ `− with entries −1, . . . ,−r− are inserted below a row of t having −r−
in column r− and so having the same entries in its first r− positions. These

row insertions therefore preserve the semistandard condition for columns.

By (iv) and (v) for left positions, each new column of height r+ ≤ `+

with entries 1, . . . , r+ is inserted to the right of a column having r+ in row

r+ and so having the same entries as the inserted column in its first r+
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positions, or as a new column `− + 1, immediately to the right of a column

having only negative entries. These column insertions therefore preserve the

semistandard condition.

It is clear that the overall effect of these insertions is to change the signed

weight of t from (π−, π+) to (π− + κ−, π+ + κ+). Hence F has image in the

set SSYT
(
σ ⊕ (κ−, κ+)

)
(π−+κ−,π++κ+)) as claimed.

The map F is defined by inserting certain rows and columns into fixed

positions in a tableau, so is clearly injective.

To see that F is surjective, let u ∈ SSYT
(
σ ⊕ (κ−, κ+)

)
(π−+κ−,π++κ+).

Suppose that κ−
r− > κ−

r−+1
. Then, by definition of the r−-top position, the

row containing the r−-bottom position of u, and each of the κ−
r− − κ

−
r−+1

rows weakly above it (including the row itself) has length r−. By (i) and

(ii) for bottom positions, the r−-bottom position in u contains r−; since

boxes in column r− contain entries at least r− in the order in Definition 3.7,

all entries in this column are r−. Therefore all κ−
r− − κ

−
r−+1

rows have the

form −1, . . . ,−r−. Deleting these rows and shifting the remaining boxes in

lower rows up gives a signed semistandard tableau because (as remarked

at the start of the proof of Lemma 9.18), by Lemma 9.17, each r−-top

position is immediately above a row of length at most r− not meeting [σ?].

Therefore this deletion undoes the insertion map in (1). Our assumption

that κ−
r− > κ−

r−+1
is now seen to be without loss of generality, since if equality

holds then no rows were inserted. The argument for right positions and

column deletion is very similar: if κ+

r+
> κ+

r++1
then the column containing

the r+-right position of u and each of the κ+

r+
−κ+

r++1
columns weakly left of

it (including the column itself) has length r+ and entries 1, . . . , r+. Deleting

these columns undoes the insertion map in (2). (Here it is obvious that

deletion preserves the signed semistandard condition.) Hence F is surjective

and so bijective. �

9.7. Stable partition systems from twisted intervals. We summarise

this section in the following corollary. Recall that the first two bounds are

defined in Definition 9.2. We remark that (as seen at the start of proof of

Proposition 9.10), the hypotheses below imply, via Lemma 6.10, that λ is

(`− + 1, `)-large; thus adjoining to λ behaves as expected from Lemma 9.6,

and we do no need an explicit hypothesis that λ is suitably large.

Corollary 9.20. Let κ−, κ+ be partitions. Set `− = `(κ−) and `+ = `(κ+).

Let gπ = eπ−hπ+ for each π ∈ Par. Let ω be a
(
`− + 1, `+

)
-large partition

and let λ�· ω in the `−-twisted dominance order. Let L be the maximum of

the quantities

• L
(
[λ−, ω−](`

−)

�� , κ−
)
,

• L
(
[λ+, ω+ + (|λ+| − |ω+|)]�, κ+

)
,

•
(
ω+

1 + ω+

2 − 2λ+

1 + 2|λ+| − 2|ω+|
)
/(κ+

1 − κ
+

2 ),

•
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/κ−

`−

omitting the third if κ+

1 = κ+

2 and the fourth if κ− = ∅. Let

P(M) =
[
λ⊕M(κ−, κ+), ω ⊕M(κ−, κ+)

]
�·
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for each M ∈ N0. Then (P(M))M∈N0 is a stable partition system with respect

to the map F : Par! Par defined by F (σ) = σ⊕(κ−, κ+) and the symmetric

functions gπ. The system is stable for M ≥ L.

Proof. We check the two conditions in the definition of a stable partition sys-

tem in Definition 7.1. The four bounds above give the hypotheses required

in Proposition 9.10 (Partition Stability). Therefore condition (a) holds for

M ≥ K. The hypotheses on M in Proposition 9.19 (Tableau Stability) are

the first two bounds above and M ≥
(
|ω−|−ω−

`−+`+−|λ−|
)
/κ−

`− , which is im-

plied by the fourth bound above. The condition that ω is (`−+1, `++1)-large

holds by assumption. Hence |SSYT(σ)(π−,π+)| = |SSYT(F (σ))(F (π)−,F (π)+)|
for all π, σ ∈ P(M) providedM ≥ K. By Lemma 5.3 (Twisted Kostka Num-

bers) it follows that 〈eπ−hπ+ , sσ〉 = 〈eF (π)−hF (π)+ , sF (σ)〉 for all π, σ ∈ P(M)

provided M ≥ K. Therefore condition (b) holds for M ≥ K. �

10. Twisted weight bound for Theorem 1.1

To apply Corollary 9.20 in the proofs of our two main theorems we need

an upper bound in the `−-twisted dominance order on the constituents of

an arbitrary plethysm. For instance, in the overview in §2, we implicitly

used (see Example 6.15) the 1-twisted dominance order with the twisted

intervals
[
(6, 2) ⊕M

(
(1), (1)

)
, (5, 1, 1, 1) ⊕M

(
(1), (1)

)]
, arguing that if sλ

is a constituent in s(3,1,1M ) ◦ s(2) then λ �· (5, 1, 1, 1) ⊕ M
(
(1), (1)

)
. The

aim of this section is to prove Corollary 10.10 which gives the upper bound

we use for Theorem 1.1. En route we obtain Proposition 10.7 which is

of independent interest. We show in Example 10.8 that, in the case of the

plethysm s(3,1,1M )◦s(2), Proposition 10.7 specializes to give the upper bound

obtained earlier by ad-hoc arguments; Example 10.9 shows the connection

between our upper bound and the extended example in §8.

10.1. Weight large skew partitions. There is an analogous technicality

to that pointed out before Definition 3.1 about adjoining to partitions. Re-

call from Definition 4.3 and Lemma 4.4 that t`−(τ/τ?) is the semistandard

tableau of shape τ/τ? with greatest signed weight in the `−-signed domi-

nance order. By Lemma 6.4 the signed weight
(
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
)

of

t`−(τ/τ?) is the `−-decomposition of a partition.

Definition 10.1. Fix `− ∈ N0. Let τ/τ? be a skew partition and let σ be

the partition such that τ has `−-decomposition
〈
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
〉
.

Let a ∈ N0. We say τ/τ? is

(a) (a, `+)-weight large for `− if σ is (a, `+)-large,

(b) (`−, `+)-weight large if σ is (`−, `+)-large.

We state the definition in this form to emphasise the connection with

Definition 3.1. When `− ≥ 1, the skew partition τ/τ? is (`−, `+)-weight large

if and only if part `− of ω`−(τ/τ?)
− is at least `+, or equivalently, if and only

if t`−(τ/τ?) has at least `+ entries of −`−. This is the interpretation we need

most often.
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Example 10.2. From Example 4.5, where `− = 2, we see that (6, 4, 4, 1),

(6, 4, 4, 1)/(1, 1) and (6, 4, 4, 1)/(2, 1) are (2, `+)-weight large if and only if

`+ ≤ 3 and (6, 4, 4, 1)/(3, 3) is (2, `+)-weight large if and only if `+ ≤ 2. This

is most easily seen using the final characterisation just mentioned: for exam-

ple the tableau t2
(
(6, 4, 4, 1)/(2, 1)

)
shown in the margin evidently has three

entries of −2. It is easily checked from the other tableaux in Example 4.5

1 2 1 1
1 2 1

1 2 1 2
1

that (6, 4, 4, 1) and (6, 4, 4, 1)/(1, 1) are (3, 3)-weight large for 2 because the

relevant partitions σ in Definition 10.1 have (3, 3) as a box (or equivalently

the greatest tableaux both have 3 as an entry) but (6, 4, 4, 1)/(2, 1) is not,

because, as the marginal tableau shows, 3 is not an entry. Working directly

from the definition, we instead compute〈
ω`−((6, 4, 4, 1)/(2, 1))−, ω`−((6, 4, 4, 1)/(2, 1))+

〉
=
〈
(4, 3), (4, 1)

〉
↔(6, 3, 2, 1)

and note that (6, 3, 2, 1) does not have a box in position (3, 3). Thus

(6, 4, 4, 1)/(2, 1) is (2, 3)-weight large and (3, 2)-weight large for 2 but not

(3, 3)-weight large. Note also that while (6, 4, 4, 1)/(3, 3) is not (2, 3)-weight

large, it is (2, 3)-large, since (6, 4, 4, 1)3 = 4 ≥ 2.

We have just seen that ‘(`−, `+)-large’ does not imply ‘(`−, `+)-weight

large’. The following lemma gives the complete picture.

Lemma 10.3. Let τ/τ? be a skew partition.

(i) If τ/τ? is (`−+ a(τ?), `
+)-large then τ/τ? is (`−, `+)-weight large.

(ii) If τ/τ? is (`−, `+)-weight large then τ/τ? is (`−, `+)-large

Moreover, if τ? = ∅ then the converses also hold.

Proof. For (i), by hypothesis [τ ]\[τ?] contains all the boxes (i, a(τ/τ?)+j) for

1 ≤ i ≤ `+ and 1 ≤ j ≤ `−. As in the proof of Lemma 6.4, rows 1, 2, . . . , `+

of t`−(τ/τ?) begin 1 2 . . . `̀̀−−− . (These boxes form part of the heavy

marked region [α] in Figure 11.1.) Hence t`−(τ/τ?) has at least `+ entries

of −`− and so τ/τ? is (`−, `+)-weight large. For (ii), we have just seen that

t`−(τ/τ?) has at least `+ entries equal to −`−. Hence there are at least `+

rows such that (τ − τ?)i ≥ `−. It easily follows that (`+, `−) ∈ [τ ] and so

τ/τ? is (`−, `+)-large. Finally, if τ? = ∅ then a(τ?) = 0 and so (i) and (ii)

are opposite directions of the required implication. �

We also have the following remark, analogous to Remark 3.2.

Remark 10.4. Fix partitions κ− and κ+ and let `− = `(κ−), `+ = `(κ+).

When κ− 6= ∅, each application of the map τ/τ? 7! τ/τ? ⊕ (κ−, κ+) inserts

κ−
`− new parts of length `−, and so increases the number of parts of length

at least `− by at least κ−
`− . Therefore after d`(τ?)/κ−`−e steps, the skew

partition obtained has (`(τ?), `
−) as a box. On each subsequent step we

insert κ−
`− new boxes in column ` which in the greatest tableau all contain `−.

Therefore the original skew partition τ/τ? becomes (`−, `+)-weight large after

at most d`(τ?)/κ−`−e+ d`+/κ−
`−e steps. Each further step creates at least κ+

`+

new boxes containing `+. Therefore, when κ+ 6= ∅, for any a ∈ N, the

original skew partition τ/τ? becomes (`−+a, `+)-weight large, meaning that

(`+, `− + a) is a box of the partition corresponding to the signed weight of
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t`−
(
τ/τ?⊕M(κ−, κ+)

)
, after at most M = d`(τ?)/κ−`−e+d`

+/κ−
`−e+da/κ

+

`+
e

steps.

By this remark, there is no loss of generality in assuming in all the results

below that the partitions involved are suitably weight large.

For example, take κ− = (2, 1, 1), κ+ = (1, 1) and τ/τ? = (1, 1, 1)/(1, 1, 1),

so that `− = 3 and `+ = 2. The tableaux in Figure 10.1 show that three

applications of the adjoining map τ/τ? 7! τ/τ? ⊕
(
(2, 1, 1), (1, 1)

)
are neces-

sary and sufficient to obtain a (3, 2)-weight large skew partition; this skew

partition is also (3, 3)-weight large. One further application gives a (3, 4)-

weight large skew partition. As is typically the case, this beats the bound

in Remark 10.4, which specifies d3/1e+ d2/1e = 5 adjoinings.

〈∅,∅〉
∅

7!

(2,1,1,1,1)

〈(5,1),∅〉

1

1

1

2

1

1

7!

(3,23,13)

〈(7,4,1),∅〉

1

1

1

2

1

1

2

2

2

2

3

1

1

7!

(4,32,22,14)

〈(9,5,3),(1)〉

1

1

1

2

1

1

2

2

2

3

1

2
...

3

1

2

2

3

1

7!

(5,4,32,23,15)

〈(11,6,4),(2,1)〉

1

1

1

2

1

1

1

2

3

2

2

2

2

3

1

1

3
...

1

2

2

3

3

1

Figure 10.1. The map τ/τ? 7! τ/τ?⊕
(
(2, 1, 1), (1, 1)

)
applied repeatedly

to the skew partition (1, 1, 1)/(1, 1, 1), showing the tableaux t3
(
(1, 1, 1) ⊕

M
(
(2, 1, 1), (1, 1)

))
forM ∈ {0, 1, 2, 3, 4}. The corresponding ‘weight’ parti-

tions ω3

(
(1, 1, 1)⊕M

(
(2, 1, 1), (1, 1)

))
and their 3-decompositions are shown

above the tableaux. In each subsequent step the weight partition grows by

⊕
(
(2, 1, 1), (1, 1)

)
; note that this is not the case until the weight partition

becomes (3, 2)-large, thus the technical nature of Remark 10.4.

Finally we have the expected analogue of Lemma 9.6.

Lemma 10.5. Let κ− and κ+ be partitions. If τ/τ? is a
(
`(κ−), `(κ+)

)
-

weight large skew partition then

ω`−
(
τ/τ? ⊕ (κ−, κ+)

)−
= ω`−(τ/τ?)

− + κ−

ω`−
(
τ/τ? ⊕ (κ−, κ+)

)+
= ω`−(τ/τ?)

+ + κ+.

Proof. By Lemma 10.3(ii) and Lemma 9.6 we have
(
τ⊕(κ−, κ+)

)−
= τ−+κ−

and
(
τ ⊕ (κ−, κ+)

)+
= τ+ + κ−. This implies the two equations. �

10.2. Bounding plethysms by greatest weights. If
〈
α−, α+

〉
is an `−-

decomposition then so is
〈
nα−, nα+

〉
for any n ∈ N. Therefore, by Lemma 6.4,

the following definition is well posed.
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Definition 10.6. Let `− ∈ N0 and let n ∈ N0. Given a skew partition τ/τ?

we define ω
(n)
`− (τ/τ?) to be the unique partition whose `−-decomposition is

n
〈
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
〉
.

We give examples after the next proposition, which is the main result in

this section, giving an upper bound in the `−-twisted dominance order on

the constituents of an arbitrary plethysm.

Proposition 10.7. Let `− ∈ N0. Let ρ be a partition of n and let τ/τ? be a

skew partition. If sσ is a constituent of sρ ◦ sτ/τ? then π�· ω(n)
`− (τ/τ?).

Proof. By Lemma 6.12, sπ is a summand of eπ−hπ+ with multiplicity 1.

Hence, using Proposition 5.6 (Plethystic Signed Kostka Numbers) for the

first equality below, we have

|PSSYT(ρ, τ/τ?)(π−,π+)

∣∣ = 〈eπ−hπ+ , sρ ◦ sτ/τ?〉 ≥ 〈sπ, sρ ◦ sτ/τ?〉 = 1.

Let T ∈ PSSYT
(
ρ, τ/τ?

)
(π−,π+) and let t be an inner τ/τ?-tableau in T . By

Lemma 4.4
(
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
)

is the greatest weight (in the `−-signed

dominance order onW`−×W defined in Definition 4.1) of all signed weights

of τ/τ?-tableaux. Thus, writing swt(t) for the signed weight of t, we have(
swt(t)−, swt(t)+

)
�
〈
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
〉

where we regard either side as a composition, as in the definition of the

twisted dominance order in Definition 6.6. Hence, summing over all inner

τ/τ?-tableaux in T , we have〈
π−, π+

〉
�
〈
nω`−(τ/τ?)

−, nω`−(τ/τ?)
+
〉
.

(Note that
〈
π−, π+

〉
is an `−-decomposition simply because π is a partition.)

By definition of the `−-twisted dominance order this inequality holds if and

only if π�· ω(n)
`− (τ/τ?), as required. �

By Remark 13.23, Proposition 10.7 also follows from a special case of

Corollary 13.22; this alternative proof brings in many technicalities irrel-

evant to Theorem 1.1, and so we much prefer the proof above which is

self-contained to this section. We pause to give two examples.

Example 10.8. Fix `− = 1. Take ρ = (3, 1, 1M ) and τ/τ? = (2). Then

t1
(
(2)
)

= 1 1 , and so ω1

(
(2)
)

=
(
(1), (1)

)
. Hence

ω
(4+M)
1

(
(2)
)
↔(4 +M)

〈
1, 1
〉

=
〈
(4 +M), (4 +M)

〉
↔(5 +M, 13+M ).

and ω
(4+M)
1

(
(2)
)

= (5 + M, 13+M ). Note, as claimed at the start of this

section, that the right-hand side is the partition used as the upper bound in

§2.5 (see Example 6.15).

Example 10.9. Fix `− = 2. Taking ρ = (3 + M) and τ/τ? = (4) in

Proposition 10.7 we obtain

supp s(3+M) ◦ s(4) ⊆
{
λ ∈ Par(12 + 4M) : λ�· ω(3+M)

2 (4)
}
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where �· is the 2-twisted dominance order. Since t2
(
(4)
)

= 1 2 1 1 has

signed weight
(
(12), (2)

)
we have

ω
(3+M)
2

(
(3 +M)

)
↔(3 +M)

〈
(12), (2)

〉
=
〈
(3 +M, 3 +M), (6 + 2M)

〉
↔(8 + 2M, 22+M )

and so ω
(3+M)
2

(
(3 + M)

)
= (8 + 2M, 22+M ) is an upper bound in the 2-

twisted dominance order for the constituents of the plethysm s(3+M) ◦ s(4).

In particular, if sσ appears in s(3+M)◦s(4) then `(σ) ≤ 3+M , as used earlier

in §8.2. Correspondingly, (8 + 2M, 22+M ) is the upper bound in the twisted

interval defining the stable partition system P(M) used through §8: see §8.4

for the twisted interval interpretation.

The following corollary is used shortly in Lemma 11.3 to verify condi-

tion (i) in the Signed Weight Lemma (Lemma 7.3).

Corollary 10.10 (Inner Twisted Weight Bound). Let κ− and κ+ be parti-

tions. Fix `− = `(κ−) and let `+ = `(κ+). Let ρ be a partition of n and let

µ/µ? be an (`−, `+)-weight large skew partition. If sσ is a constituent of the

plethysm sρ ◦ sµ/µ?⊕M(κ−,κ+) then

σ�· ω(n)
`− (µ/µ?)⊕ nM(κ−, κ+).

Proof. By Proposition 10.7 taking τ/τ? = µ/µ? ⊕M(κ−, κ+) we have

σ�· ω(n)
`−

(
µ/µ? ⊕M(κ−, κ+)

)
(10.1)

Since µ/µ? is (`−, `+)-weight large, by Lemma 10.5 we have

ω`−
(
µ/µ? ⊕M(κ−, κ+)

)
=
(
ω`−(µ/µ?)

− +Mκ−, ω`+(µ/µ?)
− +Mκ+

)
and so

ω
(n)
`−

(
µ/µ? ⊕M(κ−, κ+)

)
= ω

(n)
`−

(
µ/µ?)⊕ nM(κ−, κ+).

Therefore (10.1) is equivalent to σ�· ω(n)
`− (µ/µ?)⊕ nM(κ−, κ+). �

This result should be compared to Corollary 13.22, which gives a more

sophisticated bound used in the proof of Theorem 1.2.

11. Proof of Theorem 1.1

We begin in §11.1 by proving the second part of this theorem where

the stable multiplicity is zero. We then use the Signed Weight Lemma

(Lemma 7.3) to prove the remaining part of the theorem. In §11.2 we con-

struct a suitable stable partition system. In §11.5 we construct a bijection

satisfying (ii) in the Signed Weight Lemma. Finally in §11.6 we put together

all the pieces proving Theorem 11.15 which restates Theorem 1.1 with an

explicit bound.
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11.1. The vanishing case of Theorem 1.1. We require the following

statistic. Recall that
〈
λ−, λ+

〉
denotes the `−-decomposition of a partition λ,

as defined in Definition 6.1.

Definition 11.1. Let (κ−, κ+) and (η−, η+) be signed weights. Set `− =

max(`(η−), `(κ−)). Let λ and ω be partitions of the same size. We define

LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
to be the minimum of the quantities

•
∑k

i=1 ω
−
i −

∑k
i=1 λ

−
i∑k

i=1 η
−
i −

∑k
i=1 κ

−
i

.

•
|ω−|+

∑k
i=1 ω

+

i − |λ−| −
∑k

i=1 λ
+

i

|η−|+
∑k

i=1 η
+

i − |κ−| −
∑k

i=1 κ
+

i

taken in each case over those k for which the denominator is strictly positive;

if there are no such k, we leave LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
undefined.

If, as in the first case of Theorem 1.1, we have (η−, η+) 6� (κ−, κ+) in the

`−-signed dominance order (see Definition 4.1), then it immediately follows

from the definition of this order that LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
is defined

for any partitions λ and ω.

In the following proposition we prove a generalization of the final part of

Theorem 1.1, with an explicit bound from Definition 11.1. Recall from Def-

inition 10.6 that ω
(n)
`− (µ/µ?) is the unique partition whose `−-decomposition

is n
〈
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
〉
, where

〈
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
〉

is the signed

weight of the `−-greatest tableau: see Definition 4.3 and Lemma 4.4. See

Definitions 3.1 and 10.1 for the definitions of ‘large’ and ‘weight large’.

Proposition 11.2. Let κ− and κ+ be partitions. Let `− = `(κ−), Let η− and

η+ be partitions with `(η−) ≤ `−. Let `+ = max(`(κ+), `(η+)) and let µ/µ?
be an (`−, `+)-weight large skew partition. Let λ be a (`−, `+)-large partition.

For each M ∈ N0, let ν(M) be a partition of n. If (η−, η+) 6� (κ−, κ+) then〈
sν(M) ◦ sµ/µ?⊕M(κ−,κ+), sλ⊕nM(η−,η+)

〉
= 0

for all

M > LZ
(
[λ, ω

(n)
`− (µ/µ?)]�· , (κ

−, κ+), (η−, η+)
)
/n.

Proof. By Corollary 10.10, applied with ρ = ν(M), if sσ is a constituent

of the plethysm sν(M) ◦ sµ/µ?⊕M(κ−,κ+) then σ�· ω(n)
`− (µ/µ?)⊕ nM(κ−, κ+).

Therefore, by Definition 10.6 and the definition of the `−-twisted dominance

order (see Definition 6.6) we have

(σ−, σ+) � n
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+ nM(κ−, κ+) (11.1)

in the `−-signed dominance order (see Definition 4.1). Since λ is (`−, `+)-

large and `(η−) ≤ `− and `(η+) ≤ `+ by hypothesis, we may apply Lemma 9.6

to get that the `−-decomposition of λ ⊕ nM(η−, η+) is
〈
λ− + nMη−, λ+ +

nMη+
〉
. We now substitute (λ−, λ+) + nM(η−, η+) for (σ−, σ+) in (11.1) to

obtain the inequality

(λ−, λ+) + nM(η−, η+)� n
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+ nM(κ−, κ+) (11.2)
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Thus, by Lemma 6.7(a), we have, for each k ≤ `−,

k∑
i=1

λ−i + nM
k∑
i=1

η−i ≤
k∑
i=1

nω`−(µ/µ?)
−
i + nM

k∑
i=1

κ−i

and so

nM
( k∑
i=1

η−i −
k∑
i=1

κ−i

)
≤

k∑
i=1

nω`−(µ/µ?)
−
i −

k∑
i=1

λ−i .

Hence, if
∑k

i=1 η
−
i >

∑k
i=1 κ

−
i then nM is at most the relevant bound from

the first case of Definition 11.1. The proof for the second family of bounds

is very closely analogous: by (11.2) and Lemma 6.7(b) we obtain

|λ−|+
k∑
i=1

λ+

i + nM
k∑
i=1

η+

i

≤ n|ω`−(µ/µ?)
−|+

k∑
i=1

nω`−(µ/µ?)
+

i + nM

k∑
i=1

κ+

i + nM
(
|η+| − |κ+|

)
and so using |η+| − |κ+| = −|η−|+ |κ−| we have

nM
( k∑
i=1

η+

i −
k∑
i=1

κ+

i + |η−| − |κ−|
)

≤ n|ω`−(µ/µ?)
−|+

k∑
i=1

nω`−(µ/µ?)
+

i − |λ
−| −

k∑
i=1

λ+

i

showing that nM is at most the relevant bound from the second case of

Definition 11.1. �

11.2. Stable partition system for Theorem 1.1. The stable partition

system we require to prove the main part of Theorem 1.1 again comes from

Corollary 10.10.

Lemma 11.3. Let κ− and κ+ be partitions. Set `− = `(κ−) and `+ = `(κ+).

Let ρ be a partition of n and let µ/µ? be an (`− + 1, `+)-weight large for `−

skew partition. Let λ be a partition of n|µ/µ?| such that λ �· ω(n)
`− (µ/µ?),

where �· is the `−-twisted dominance order. Let

P(M) = [λ⊕ nM(κ−, κ+), ω
(n)
`− (µ/µ?)⊕ nM(κ−, κ+)]�· .

Then (P(M))M∈N0 is a stable partition system for the symmetric functions

gπ = eπ−hπ+. Moreover, if π ∈ P(M) and sσ is a summand of eπ−hπ+

appearing in the plethysm sρ ◦ sµ/µ?⊕M(κ−,κ+) then σ ∈ P(M).

Proof. By the hypothesis that µ/µ? is (`−+1, `+)-weight large for `−, the par-

tition ω`−(µ/µ?) is (`− + 1, `+)-large (see Definition 10.1) and so ω
(n)
`− (µ/µ?)

is also (`− + 1, `+)-large. We therefore may apply Corollary 9.20 to deduce

that the partition system is stable. For the final claim, by Lemma 6.12,

we have σ�· π. By Corollary 10.10, we have σ�· ω(n)
`− (µ/µ?) ⊕ nM(κ−, κ+).

Hence σ ∈ P(M). �
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11.3. Positions for plethystic tableaux: motivating example. The

aim in the next three subsections is to prove Proposition 11.13, the plethys-

tic analogue of Proposition 9.19 (Tableau Stability), using the map G on

plethystic semistandard signed tableaux defined in Definition 11.9. We be-

gin with a motivating example that gives a good idea how to define G using

the earlier map F on semistandard tableaux from Definition 9.14. We use

this example throughout this section.

Example 11.4. The special case of Theorem 1.1 taking ν = (2), µ = (2, 2),

µ? = ∅, (κ−, κ+) =
(
(1, 1), (1)

)
and λ = (8− b, b) with b ∈ {2, 3, 4} is that

〈s(2) ◦ s(2+M,2,2M ), s(8−b+2M,b,22M )〉 (11.3)

is ultimately constant. In our proof using the Signed Weight Lemma (Lemma

7.3) we must verify condition (ii), that∣∣PSSYT
(
(2), (2 +M, 2, 2M )((2+2M,2+2M),(6−b+2M,b−2))

∣∣ (11.4)

is constant for all M sufficiently large. (Here
(
(2 + 2M, 2 + 2M), (6 − b +

2M, b − 2)
)

is the 2-decomposition of (8 − b, b) ⊕ 2M
(
(1, 1), (1)

)
: see Defi-

nition 6.1.) In any plethystic semistandard tableau s t of signed weight(
(2 + 2M, 2 + 2M), (6 − b + 2M, b − 2)

)
, the inner tableaux s and t have

2 + 2M entries of 1 and 2 and 6 − b + 2M entries of 1 between them. By

the signed semistandard condition in Definition 3.10, the entries of 1 and 2

lie in the first two columns. Thus when M is large, both s and t have the

form

1 2 1 1 . . . 1 1, 2

1 2

1 2
...

1 2

1,2

1, 2

where the two shaded regions in the bottom 2 rows and rightmost 2 columns

are marked with the possible entries. (As ever negative entries may be

repeated in a column, and positive entries repeated in row.) Clearly, almost

all the entries of t and u are determined by their weight. In particular both

s and t are obtained from a tableau for the case M − 1 by inserting 1 2
as a new complete second row and 1 as a new complete third column.

By Definition 9.11, the 2-top and 1-left positions of (2 + M, 2M ) are both

(1, 2). Thus these insertions are exactly as specified by the map F from

Definition 9.14. We have shown that provided M is sufficiently large, the

map

s t 7−! F(s) F(t)
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is surjective (with inverse defined by deleting the hatched boxes and per-

forming suitable shifts) and so the cardinality in (11.4) is ultimately con-

stant. In fact F(s) and F(t) are semistandard provided that the 2-top

positions of both s and t both contain −2. As we show in Example 11.8,

using Lemma 11.7 in the following subsection, this holds provided M ≥
max(3, b+ 2),

11.4. Lemma on positions for plethystic tableaux. The critical posi-

tions are defined in Definition 9.11 and were seen in the non-skew case in

the previous subsection. To remind the reader of the general definition we

begin with an example in the skew case.

Example 11.5. We take κ− = (2, 1) and κ+ = (1, 1) so `− = `+ = 2.

Let µ/µ? = (7, 6, 3, 1)/(4, 3, 1). The diagrams below show the 1-left, 2-

left, 1-top and 2-top positions in the partitions µ/µ? ⊕M(κ−, κ+) for M ∈
{0, 1, 2}. Following our usual convention, top positions, relevant to the in-

sertion of negative entries, are marked by bold numbers. The skew partition

µ/µ? is (a(µ?) + `−, `+)-large as it contains (2, 6), and (`−, `(µ?))-large as

it contains (3, 2); all these positions are contained within [µ]. Moreover,

also as promised by Lemma 9.17, the top positions are no higher than

row max(`(µ?), `(µ
+), `+) and left positions are no further left than col-

umn `− + a(µ?). The relevant boxes (2, 6) and (3, 2) are hatched, as in

Figure 11.1.

1 2

1

2

1

2

1

2

1

2

1

2

We remark that if we changed µ? = (4, 3, 1) to (a) with a ∈ {0, 1, 2, 3, 4}
then the 1-top and 2-top positions remain unchanged, because they always

lie in rows weakly below max(`(µ?), `
+, `(µ+)), and this statistic remains 3

since µ+ = (5, 4, 1). The 1-left position is also unchanged, but the 2-left

position is now
(
2, `− + max(a, µ+

3 )
)

=
(
2, 2 + max(a, 1)

)
which is (2, 3) if

and only if a ≤ 1. Note that in this case it is possible to insert a column of

height 2 immediately right of column 3, and the entries of this column must

be positive.

Definition 11.6. Let κ, µ and λ be partitions. Let A ∈ N0. We define

LP
(
n, µ : λ, κ : A) to be 0 if κ = ∅ and otherwise to be the maximum of

n
∑k

i=1 µi −
∑k

i=1 λi − µk + max(A,µk+1)

κk − κk+1
.

for 1 ≤ k ≤ `(κ), omitting any expressions with zero denominator.
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The following lemma is the analogue of Lemma 9.16. The statement,

apart from the change of bounds, is very similar, but the proof is somewhat

easier, apart from some technicalities arising from the skew case, because the

shape is known to be µ/µ? ⊕M(κ−, κ+), rather than an arbitrary partition

in an interval for the `−-twisted dominance order. The relevant positions

are defined in Definition 9.11.

Lemma 11.7. Let κ−, κ+ be partitions. Set `− = `(κ−) and `+ = `(κ+).

Let µ/µ? be an
(
`− + a(µ?), `

+
)
-large and

(
`−, `(µ?)

)
-large skew partition.

Let λ and ω be (`−, `+)-large partitions of n|µ/µ?|. Let

π ∈
[
λ⊕ nM(κ−, κ+), ω ⊕ nM(κ−, κ+)

]
�· .

Let T ∈ PSSYT
(
ρ, µ/µ?⊕M(κ−, κ+)

)
(π−,π+) and let t be a µ/µ?⊕M(κ−, κ+)-

inner tableau of T . Let L be the maximum of

• LP
(
n, µ′ : λ−, κ− : max(`(µ?), `(µ

+), `+
)
)

• LP
(
n, µ : λ+, κ+ : a(µ?) + `−

)
+ |λ+| − |ω+|.

If M − 1 ≥ L then

(i) the r−-bottom position of t contains −r− if r− < `− and κ−
r− > κ−

r−+1
;

(ii) the `−-bottom position of t contains −`−;

(iii) if κ− 6= ∅ and either κ+ 6= ∅ or µ? 6= ∅ or µ+ 6= ∅ then the box(
max(`(µ?), `(µ

+), `+), `−
)

of t contains a negative entry;

(iv) the r+-right position of t contains r+ if r+ < `+ and κ+

r+
> κ+

r++1
;

(v) the `+-right position of t contains `+.

Moreover if M ≥ L then the same results hold replacing ‘bottom’ with ‘top’

and ‘right’ with ‘left’, except that

(ii) if µ? = ∅ and κ+ = ∅ and µ+ = ∅ then the `−-top position is (0, `−);

(iv) and (v) if µr++1 ≤ `−+ a(µ?) and so the r+-left-position is
(
r+, `−+

a(µ?)
)
, then it may contain −`−.

Proof. Since µ is
(
`− + a(µ?), `

+
)
-large, it is (`−, `+)-large. Therefore, by

Lemma 9.6, we have
(
µ⊕M(κ−, κ+)

)−
= µ−+Mκ− and

(
µ⊕M(κ−, κ+)

)+
=

µ+ + Mκ+. For use throughout the proof we define a subpartition α of

µ ⊕ M(κ−, κ+) containing µ? by

αi = min(µ?i + `−, µi) for 1 ≤ i ≤ `(µ) +Ma(κ−). (11.5)

Thus [α/µ?] consists of the first `− boxes in each row of µ/µ?⊕M(κ−, κ+), or

the whole row if it has fewer than `− boxes. We show [α/µ?] in Figure 11.1.

As a final preliminary, for ease of reference, we record the following imme-

diate corollary of Lemma 9.17: the r−-top position of µ/µ? ⊕ M(κ−, κ+)

is {(
µ′r−+1 +Mκ−

r−+1
, r−
)

if r− < `−(
max(`(µ?), `(µ

+), `+
)
, `−) if r− = `−.

(11.6)

and the r+-left position of µ/µ? ⊕M(κ−, κ+) is{(
r+, µr++1 +Mκ+

r++1

)
if r+ < `+(

`+,max(`− + a(µ?), µ`++1)
)

if r+ = `+.
(11.7)
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`+

`(µ?)

a(µ?) `−
`−

`−

+

+

•

[α/µ?]

[τ/µ?]

r−

Figure 11.1. Entries in a tableau t ∈ SSYT
(
µ/µ? ⊕M(κ, κ+)

)
(π−,π+)

when µ/µ? is (`− + a(µ/µ?), `
+)-large and (`−, `(µ?))-large, and so con-

tains the hatched boxes. The case `(µ/µ?) > `(µ+) > `+, in which the

skew part of the partition is most important in determining the quantity

max(`(µ?), `(µ
+), `+) defining the row of the `−-top position is shown. The

heavy lines show the region [α/µ?] defined in (11.5) that contains all nega-

tive entries of t in the proof of Lemma 11.7(i). It contains the region [τ/µ?]

shaded in blue which contains all entries of {−1, . . . ,−r−}, under the as-

sumption in this part of the proof that the r−-top position marked • does

not have −r−. In the figure we have taken r− = 2.

For (i), we have r− < `− so may suppose κ− 6= ∅. If s is an arbitrary

µ/µ?⊕M(κ−, κ+)-inner tableau in T then the total number of entries of s in

the set {−1, . . . ,−r−} is at most
∑r−

j=1 µ
′
j + M

∑r−

j=1 κ
−
j . To simplify some

arithmetic steps later, we write this quantity as D− + µ′r− +Mκ−
r− where

D− =
r−−1∑
j=1

µ′j +M
r−−1∑
j=1

κ−j (11.8)

is (as we have just seen) an upper bound on the number of entries of s

in {−1, . . . ,−(r− − 1)}. By (11.6) the r−-top position of s is
(
µ′r−+1 +

Mκ−
r−+1

, r−
)
. We assume, for a contradiction, that, in some tableau t in T ,

this position has either a positive entry, or some −q with −q > −r− in the

order in Definition 3.7, meaning that q > r−. Define a subpartition τ of α
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by

τi =

{
min(µ?i + r−, µi) if 1 ≤ i < µ′r−+1 +Mκ−

r−+1

min(µ?i + r− − 1, µi) if i ≥ µ′r−+1 +Mκr−+1.
(11.9)

Thus [τ/µ?] consists of the first r− boxes in each row of µ/µ?⊕M(κ−, κ+), or

the whole row if it has fewer than r− boxes, except that the boxes of µ/µ? at

or below the r−-top position known, by our assumption, not to contain −r−,

are excluded. By construction τ contains µ? and, by our assumption, all the

entries of t in {−1, . . . ,−r−} are contained in [τ ]. (This is the blue shaded

region in Figure 11.1.) Hence using (11.8), the total number of entries of t in

the set {−1, . . . ,−r−} is strictly less than D−+µ′r−+1 +Mκ−
r−+1

. The n−1

tableaux other than t forming T have at most (n − 1)D− + (n − 1)
(
µ′r− +

Mκ−
r−

)
entries in {−1, . . . ,−r−}. Therefore T has strictly less than

(n− 1)D− + (n− 1)
(
µ′r− +Mκ−

r−

)
+D− + µ′r−+1 +Mκ−

r−+1

= n
r−∑
j=1

µ′j − µ′r− + nM
r−∑
j=1

κ−j −Mκ−
r− + µ′r−+1 +Mκ−

r−+1

(11.10)

entries in the set {−1, . . . ,−r−}. On the other hand, as π�· λ⊕ nM(κ−, κ+),

and λ is (`−, `+) large, it follows from Lemma 6.7(a) and Lemma 9.6 that

there are at least
r−∑
j=1

λ−j + nM
r−∑
j=1

κ−j (11.11)

entries of t in {−1, . . . ,−r−}. From (11.10) and (11.11) we obtain

n

r−∑
j=1

µ′j − µ′r− + µ′r−+1 −
r−∑
j=1

λ−j > M(κ−
r− − κ

−
r−+1

). (11.12)

This contradicts the first bound. Therefore (i) holds for top positions. For

bottom positions we mimic the proof of Lemma 9.16, and run the same ar-

gument, replacing each µ′r−+1 with µ′r−+1 + κ−
r−−κ

−
r−+1

, and obtain (11.12)

with κ−
r− − κ

−
r−+1

subtracted from the right-hand side, which therefore be-

comes (M − 1)(κ−
r− − κ

−
r−+1

). We then get a contradiction as before from

the first bound.

For (ii), we may again suppose κ− 6= ∅; then by (11.6) the `−-top position

of t is
(
max(`(µ?), `(µ

+), `+
)
, `−). We may suppose that either µ? 6= ∅ or

κ− 6= ∅ or µ+ 6= ∅, so that this is a box of µ/µ?. The proof is then almost

identical to (i) using (11.6) to replace every appearance of µ′r−+1 in the

argument for (i) with max(`(µ?), `(µ
+), `+). This also proves (iii), since the

hypotheses for (iii) imply that
(
max(`(µ?), `(µ

+), `+
)
, `−) is a box of µ/µ?.

Comparing (11.6) and (11.7) for r− < `− and r+ < `+, we see that they

are symmetric with respect to conjugation. While a further non-symmetric

change is necessary later on, this indicates the most conceptual way to
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prove (iv). Read the proof of (i), replacing µ′ with µ and κ− with κ+.

Thus the subpartition τ is now defined by

τ ′j =

{
min(µ?

′
j + r+, µj) if 1 ≤ j < µr++1 +Mκ+

r++1

min(µ?
′
i + r+ − 1, µ′i) if j ≥ µ′r++1 +Mκ+

r++1
.

and the analogue of (11.10) is that there are strictly less than

n
r+∑
i=1

µj − µr+ + nM
r+∑
i=1

κ+

j −Mκ+

r+
+ µr++1 +Mκ+

r++1
(11.13)

entries of t in {1, . . . , r+}. The only non-symmetric change is that from

π�· λ⊕ nM(κ−, κ+) and Lemma 6.7(b) we now get

π+ +
(
|λ+|+ nM |κ+| − |π+|

)
� λ+ + nMκ+

where |π+| ≤ |λ+| + nM |κ+|. We must therefore bring in the upper bound

π�· ω ⊕ nM(κ−, κ+) to get, again by Lemma 6.7(b), |π+| ≥ |ω+|+ nM |κ+|.
Hence

|λ+|+ nM |κ+| − |π+| ≤
(
|λ+|+ nM |κ+|

)
−
(
|ω+|+ nM |κ+|

)
= |λ+| − |ω+|.

The replacement for (11.11) is therefore that there are at least

r+∑
i=1

λ+

i + nM

r+∑
i=1

κ+

i − |λ
+|+ |ω+| (11.14)

entries of t in {1, . . . , r+}. From (11.13) and (11.14) we get

n
r+∑
i=1

µi − µr+ + µr++1 −
r+∑
i=1

λ+

j + |λ+| − |ω+| > M(κ+

r+
− κ+

r++1
). (11.15)

This contradicts the second bound. The modifications for right positions are

precisely analogous to the negative case; the relevant quantity to subtract

from the right-hand side of (11.15) is κ+

r+
− κ+

r++1
, and as before we get a

contradiction from the second bound.

For (v) we first note that, by (11.7), the `+-left position of t is
(
`+,max(`−+

a(µ?), µ`++1)
)
. Since µ is

(
`− + a(µ?), `

+
)
-large, we have (µ − µ?)`+ ≥

`− + a(µ?) − µ?`+ ≥ `−. Therefore if this position contains a negative en-

try, equality holds and the entry is −`−. In the remaining case, and for

the `+-right position, the proof of (iv) adapts routinely. This completes the

proof. �

Example 11.8. Take µ = (2, 2), µ? = ∅, (κ−, κ+) =
(
(1, 1), (1)

)
and

λ = (8 − b, b)↔
〈
(2, 2), (6 − b, b − 2)

〉
with b ∈ {2, 3, 4} and n = 2 as in

Example 11.4. Since ω2

(
(2, 2)

)
=
(
(2, 2),∅

)
is the signed weight of the

2-greatest semistandard signed tableau t2
(
(2, 2)

)
shown in the margin, we

1 2
1 2

have

ω
(2)
2

(
(2, 2)

)
↔2

〈
(2, 2),∅

〉
=
〈
(4, 4),∅

〉
and so we take ω = (2, 2, 2, 2). Since κ−1 = κ−2 , the important cases of

Lemma 11.7 are (ii) and (v). We saw in Example 11.4 that the 2-top posi-

tion and 1-left position are both (1, 2), and so the 2-bottom position is (2, 2)
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and the 1-right position is (1, 3). From (ii) we get that the 2-bottom posi-

tion (1, 2) contains 2 in every (2 + M, 2, 2M )-tableau entry in a plethystic

semistandard signed tableau of outer shape (2) provided

M − 1 ≥ LP(2, (2, 2) : (2, 2), (1, 1) : 1) =
2(2+2)−(2+2)−2+max(1, 0)

1− 0
= 3.

(Note that (ii) was proved using only the first bound in the statement of

Lemma 11.7.) From (v), using that |λ+| = 4 and |ω+| = 0, we get that the

1-right position (1, 3) contains 1 in every (2 + 2M, 2, 2M )-tableau entry in a

plethystic semistandard signed tableau of outer shape (2) provided

M − 1 ≥ LP(2, (2, 2) : (6− b, b− 2), (1) : 2) + 4− 0

=
2.2− (6− b)− 2 + max(2, 2)

1
+ 4 =

b+ 2

1
= b+ 2.

(Again note that (v) was proved using only the second bound in the state-

ment of Lemma 11.7.) Therefore provided M−1 ≥ max(3, b+2) the hatched

boxes in the diagram in Example 11.4 contain 1 2 and 1 and the inser-

tion map from plethystic semistandard signed tableaux defined for M to

plethystic semistandard signed tableaux defined for M + 1 is surjective for

M ≥ max(3, b + 2), as stated in Example 11.4. The table below shows the

number of plethystic semistandard signed tableaux of outer shape (2), inner

shape (2+M, 2, 2M ) and signed weight
(
(2+2M, 2+2M), (6−b+2M, b−2)

)
as in (11.4) and the limiting values of 〈s(2) ◦ s(2+M,2,2M ), s(8−b+2M,b,22M )〉 as

in (11.3), for each 0 ≤M ≤ 3 and b ∈ {2, 3, 4}.

b M = 0 M = 1 M = 2 M = 3 (11.4) (11.3) b+ 2 max(3, b− 2)

2 1 1 1 1 1 0 4 3

3 4 5 5 5 5 0 5 3

4 10 19 20 20 20 1 6 3

As expected the values are constant for M ≥ max(3, b + 2). For example,

taking M = 2, the plethystic semistandard signed tableau in the margin

is the unique element of PSSYT
(
(2), (4, 2, 2, 2)

)
(6,6),(6,2)

having 2 in the 1-

right box (1, 3) of an inner (4, 2, 2, 2)-tableau entry, and so not in the image

of the insertion map from the 19 plethystic tableaux for M = 1 to the 20

plethystic tableaux for M = 2. The insertion map is then surjective at

1 2 1 1
1 2
1 2
1 1

1 2 2 2
1 2
1 2
1 1

each subsequent step. The final column in the table above is relevant to

Example 11.14 below.

11.5. The G insertion map on plethystic tableaux. We now define

the plethystic extension of the insertion map F in Definition 9.14. Recall

from after Definition 3.9 that PYT(ρ, µ/µ?) denotes the set of plethystic

signed tableaux of shape ρ having entries from the set YT(µ/µ?) of all

signed tableaux of shape µ/µ?. Given a plethystic signed tableau T ∈
PYT(ρ, µ/µ?), we define its conjugate T ′ ∈ PYT(ρ′, µ/µ?) by T ′(i, j) =

T (j, i) for (i, j) ∈ [ρ]. Note that the conjugation is defined with respect

to the outer Young diagram [ρ]; it does not change the shape of the inner
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tableaux of T . The map F on signed semistandard tableaux is defined in

Definition 9.14.

Definition 11.9. Let κ− and κ+ be partitions. Let µ/µ? be a
(
`(κ−) +

a(µ?), `(κ
+)
)
-large and

(
`(κ−), `(µ?)

)
-large skew partition. Let ρ be a par-

tition. Let ρ† = ρ if |κ−| is even and let ρ† = ρ′ if |κ−| is odd. We define

G : PSSYT(ρ, µ/µ?)! PYT
(
ρ†, µ/µ? ⊕ (κ−, κ+)

)
by applying F to each inner µ/µ?-tableau entry of T ∈ PSSYT(ρ, µ/µ?)

to obtain U ∈ PYT
(
ρ, µ/µ? ⊕ (κ−, κ+)

)
. If |κ−| is even then we define

G(T ) = U ; if |κ−| is odd then we define G(T ) = U ′.

By Lemma 9.18(i), using the largeness hypotheses on µ/µ?, the map G is

well-defined.

The following example is relevant to the special case of Theorem 1.1, tak-

ing ν = (n), µ = (m), (κ−, κ+) =
(
(1),∅

)
, that 〈s(n)(M) ◦ s(m,1M ), sλt (1nM )〉

is ultimately constant for any partition λ of mn, where (n)(M) = (n) if M

is even and (n)(M) = (1n) if M is odd. In fact, as we mentioned in the

discussion of Theorem 1.1 in [8] in §1.7, provided `(λ) ≥ n, the plethysm

coefficient is constant for all M ∈ N0. Correspondingly, one can check that

G : PSSYT
(
(n), (m, 1M )

)
(λ−,λ+) ! PYT

(
(1n), (m, 1M+1)

)
is a bijection onto

PSSYT
(
(1n), (m, 1M+1)

)
(λ−+(n),λ+).

Example 11.10. We take ρ = (13), µ = (4) and λ = (8, 3, 1). Take

`− = 1 and note that λ has 1-decomposition
〈
(3), (7, 2)

〉
. The map G :

PSSYT
(
(13), (4)

)
! PSSYT

(
(3), (4, 1)

)
in Definition 11.9 for (κ−, κ+) =(

(1),∅
)

is shown below on both elements of PSSYT
(
(13), (4)

)
((3),(7,2)):

1 1 1 1

1 1 1 2

1 1 1 2

G
7−! 1 1 1 1

1
1 1 2 2
1

1 1 1 2
1

1 1 1 1

1 1 1 1

1 1 2 2

G
7−! 1 1 1 1

1
1 1 1 1
1

1 1 2 2
1

.

As expected from the fact that G is a bijection onto PSSYT
(
(3), (4, 1)

)
,

the image is PSSYT
(
(3), (4, 1)

)
((6),(7,2)). Note that the conjugation in the

outer shape is essential: in each plethystic tableau there is a repeated inner

tableau, and this is permitted because each has sign −1 in the plethystic

tableau of outer shape (13) and each has sign +1 in the plethystic tableaux

of outer shape (3). Moreover, the example

1 1 1 1

1 1 1 2

1 2 1 1

G
7−! 1 1 1 1

1
1 1 2 2
1

1 2 1 1
1
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shows that the convention that, in the right-hand plethystic semistandard

signed tableau, negative inner tableaux are greater than positive inner tabl-

eaux, is essential to make the plethystic tableau semistandard.

The following two lemmas and proposition generalize Example 11.10 and

show that G respects the semistandard condition on inner tableaux in differ-

ent positions in a plethystic semistandard signed tableau, up to the technical

order reversal required in Lemma 11.12(iii). Recall that the signed colexi-

cographic order < is defined in Definition 3.8.

Lemma 11.11. Let τ/τ? be a skew partition and let s and t be semistandard

signed tableaux of shape τ/τ? and the same sign such that s < t in the signed

colexicographic order.

(i) Let s̃ and t̃ be the signed tableaux of shape τ t (r−)/τ? obtained from s

and t by inserting a single new row with entries −1, . . . ,−r− into each. If s̃

and t̃ are semistandard then s̃ < t̃.

(ii) Let s̃ and t̃ be the signed tableaux of shape τ+(1r
+

)/τ? obtained from s

and t by inserting a single new column with entries 1, 2, . . . , r+ as column c,

moving the existing columns c, c+ 1, . . . one box to the right. If s̃ and t̃ are

semistandard then s̃ < t̃.

Proof. Let m be the rightmost column in which the multisets of entries in s

and t differ. For (i), since a single new entry of −k is added to column k for

each k ≤ r− in both s and t, it is clear that m is again the rightmost column

in which the multisets of entries in s̃ and t̃ differ. Since s̃ and t̃ have the

same sign, the relative order of s̃ and t̃ is determined by the multisets C(s)

and C(t) of entries of s and t in column m. If m > r− then C(s̃) = C(s)

and C(t̃) = C(t) and hence the greatest entry (taken with multiplicity)

still lies in t̃, and hence s̃ < t̃. If m ≤ r− then C(s̃) = C(s) ∪ {−m} and

C(t̃) = C(t) ∪ {−m}, and again s̃ < t̃. For (ii), note that column m of s

becomes column m + 1 of s̃, and similarly column m of t becomes column

m + 1 of t̃. If m ≥ c then we compare s̃ and t̃ on column m + 1 and get

s̃ < t̃. Otherwise m < c and since the inserted column c is equal in s̃ and t̃,

we still compare on column m and again get s̃ < t̃. �

As mentioned earlier, the following lemma re-uses a large part of the proof

of Proposition 9.19 (Tableau Stability). Again we use the signed colexico-

graphic order < from Definition 3.8.

Lemma 11.12. Let κ− and κ+ be partitions. Let µ/µ? be a
(
`(κ−) + a(µ?),

`(κ+)
)
-large and

(
`(κ−), `(µ?)

)
-large skew partition. Let λ and ω be (`−, `+)-

large partitions of n|µ/µ?|. Let

π ∈
[
λ⊕ nM(κ−, κ+), ω ⊕ nM(κ−, κ+)

]
�· .

Let T ∈ PSSYT
(
ρ, µ/µ? ⊕ M(κ−, κ+)

)
(π−,π+) and let s and t be µ/µ? ⊕

M(κ−, κ+)-inner tableaux of T such that s < t. Suppose that M is at least

the maximum of

• LP
(
n, µ′ : λ−, κ− : max(`(µ?), `(µ

+), `(κ+)
)
)

• LP
(
n, µ : λ+, κ+ : a(µ?) + `(κ−)

)
+ |λ+| − |ω+|.
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Then

(i) We have F(s), F(t) ∈ SSYT
(
µ/µ? ⊕ (M + 1)(κ−, κ+)

)
.

(ii) If |κ−| is even then F(s) and F(t) have the same sign and F(s) < F(t).

(iii) If |κ−| is odd and s and t have the same sign then F(s) and F(t) have

the same sign and F(s) < F(t). Otherwise s is negative, t is positive, F(s)

is positive, F(t) is negative, and F(s) > F(t).

Proof. We have all the hypotheses for Lemma 11.7. Using the results on left

and top positions from this lemma, the proof of Proposition 9.19 generalizes

to show that F(s) and F(t) are semistandard µ/µ? ⊕ (M + 1)(κ−, κ+)-

tableaux. The only extra points to note are that, by Lemma 9.17, each

top position is in row `(µ?) or lower, and each left position is in column

`(κ−) + a(µ?) or further right, and hence the inserted columns do not meet

µ?, and, by (iii) in the lemma, inserting or deleting a new row with entries

−1, . . . ,−`− immediately below the `−-top position gives a well-defined semi-

standard signed tableau. (This is where we need that this position is in row

`(µ+) or lower, as remarked on in the caption to Figure 9.2 and seen in the

proof of the earlier lemma.) This proves (i).

Suppose that s and t have the same sign. Then, by Lemma 11.11, applied

to each row and column insertion in turn, we have F(s) < F(t). To prove

(ii) and (iii) in the remaining case where s and t have opposite sign, observe

that since s < t, it follows immediately from Definition 3.8 that s is negative

and t is positive. If |κ−| is even then, by Lemma 9.18(ii), F is sign preserving,

and so F(s) is negative and F(t) is positive, and F(s) < F(t), proving (ii).

Finally for (iii), when |κ−| is odd then, again by Lemma 9.18(ii), F is sign

reversing, and so F(s) is positive and F(t) is negative, and F(s) > F(t). �

We are now ready to prove the analogue of Proposition 9.19 (Tableau Sta-

bility). Again we re-use part of its proof. This is the point where we need

the sign-reversed colexicographic order on semistandard signed tableaux, de-

fined in Definition 3.8 and the corresponding set PSSYT∓ of sign-reversed

plethystic semistandard signed tableaux defined in Definition 3.10 and mo-

tivated in Example 11.10. Recall, as seen in this example, in PSSYT∓,

negative inner tableaux are greater than positive inner tableaux. The map

G is defined in Definition 11.9.

Proposition 11.13 (Inner stability for plethystic tableaux). Let κ− and κ+

be partitions. Let ρ be a partition of n. Let µ/µ? be a
(
`(κ−)+a(µ?), `(κ

+)
)
-

large and
(
`(κ−), `(µ?)

)
-large skew partition. Let ρ† = ρ if |κ−| is even and

let ρ† = ρ′ if |κ−| is odd. Let ω be a (`(κ−), `(κ+))-large partition and let

λ �· ω in the `−-twisted dominance order. Let π be a partition in the interval[
λ⊕ nM(κ−, κ+), ω ⊕ nM(κ−, κ+)

]
�·

for the `−-twisted dominance order. If M is at least

• LP
(
n, µ′ : λ−, κ− : max(`(µ?), `(µ

+), `(κ+)
)
)

• LP
(
n, µ : λ+, κ+ : a(µ?) + `−

)
+ |λ+| − |ω+|.
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then the map G is a well-defined bijection

G : PSSYT
(
ρ, µ/µ? ⊕M(κ−, κ+)

)
(π−,π+)

−!

{
PSSYT

(
ρ†, µ/µ?⊕(M+1)(κ−, κ+)

)
(π−+nκ−,π++nκ+)

if |κ−| is even

PSSYT∓
(
ρ†, µ/µ?⊕(M+1)(κ−, κ+)

)
(π−+nκ−,π++nκ+)

if |κ−| is odd.

Proof. Note that we have all the hypotheses for Lemma 11.12. Let T ∈
PSSYT

(
ρ, µ/µ? ⊕ M(κ−, κ+)

)
(π−,π+). By this lemma, after applying F

to each inner µ/µ? ⊕M(κ−, κ+)-tableau in T we have a plethystic signed

tableau U of shape ρ having well-defined entries from SSYT±
(
µ/µ?⊕ (M +

1)(κ−, κ+)
)
. By Lemma 11.12(i), U has signed weight (π−+nκ−, π+ +nκ+),

as required.

Suppose that |κ−| is even. Then G(T ) = U . By Lemma 11.12(ii), F
preserves strict equality in the signed colexicographic order, it follows that

U ∈ PSSYT
(
ρ, µ/µ? ⊕M(κ−, κ+)

)
(π−+nκ−,π++nκ+), as required.

Now suppose that |κ−| is odd. Then G(T ) = U ′. By Lemma 11.12(ii) F
preserves strict inequality in the signed colexicographic order on inner tableaux

of the same sign, it follows that the conjugate plethystic semistandard signed

tableau U ′ is semistandard with respect to inner µ/µ? ⊕ (M + 1)(κ−, κ+)-

tableaux of the same sign. Moreover, since in T , equal positive inner

tableaux are repeated only in the same row, and equal negative inner tableaux

are repeated only in the same column, the same holds in U , swapping

‘row’ and ‘column’. Let β be the subpartition of ρ such that the neg-

ative µ/µ? ⊕ M(κ−, κ+)-tableau entries in T lie in [β]. In U , since F
is sign reversing, the positive inner µ/µ? ⊕ (M + 1)(κ−, κ+)-tableau lie

in [β] and the negative inner µ/µ? ⊕ (M + 1)(κ−, κ+)-tableau entries lie

in [ρ/β]. Therefore the conjugate plethystic signed tableau U ′ is semi-

standard with respect to the sign-reversed colexicographic order; that is

U ′ ∈ PSSYT∓
(
ρ†, µ/µ?⊕(M+1)(κ−, κ+)

)
(π−+nκ−,π++nκ+)

as required.

We have now shown that the image G(T ) is in the set specified in the

proposition. Let t be an inner µ/µ?⊕(M+1)(κ−, κ+)-tableau entry of G(T ).

Using the results on right and bottom positions from Lemma 11.7, and

noting that the removed rows are strictly below row `(µ?) and the removed

columns are strictly to the right of column `−+a(µ?), it follows as in the proof

of Proposition 9.19 that t is in the image of F . Hence G is surjective. �

We remark that the bounds in Proposition 11.13 are typically not optimal.

Example 11.14. We continue Example 11.8 to show how the general bounds

coming ultimately from Lemma 11.7 can be sharpened when one wants the

best possible result, by considering negative and positive entries together.

From the diagram in Example 11.4 we see that the entries of 1 in the two

semistandard tableaux s and t forming

T ∈ PSSYT
(
(2), (2 +N, 2, 2N )

)
(2+2N,2+2N),(6−b+2N,b−2)

lie either in the bottom two rows of their first two columns, or in the N boxes

ending their first rows. At most two 1s can be in the first two columns of
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each. Therefore each of s and t has at most 2 + N entries of 1, and if

the 1-right position (1, 3) in either s or t does not contain 1 then the total

number of entries of 1 in T is at most (2 + N) + 2 = 4 + N . Therefore

4 +N ≥ 6− b+ 2N and we deduce that N ≤ b− 2. Hence if N ≥ b− 1 then

the 1-right position (1, 3) in both tableaux s and t contains 1. Therefore,

provided M ≥ b−2, and M ≥ 3 (as we needed from Lemma 11.7), insertion

of 1 and 1 2 defines a surjective map

PSSYT
(
(2), (2 +M, 2, 2M )

)
(2+2M,2+2M),(6−b+2M,b−2)

−! PSSYT
(
(2), (2 + (M + 1), 2, 2M+1)

)
(2+2(M+1),2+2(M+1)),(6−b+2(M+1),b−2)

.

(Note that in this context N becomes M + 1, hence M ≥ b − 2 and N ≥
b − 1.) This gives the improved bound max(3, b − 2) shown in the table in

Example 11.8. Note that the bound from Proposition 9.19 is M ≥ 2, so this

bound still holds.

11.6. Proof of Theorem 1.1. We prove Theorem 1.1 with an explicit

stability bound. Note that by Remarks 3.2 and 10.4 there is no loss of

generality in the ‘largeness’ hypotheses in the theorem. The L and LP

bounds are defined in Definitions 9.2 and 11.6, respectively. (Remark 9.1

explains the small difference in notation for the intervals in the first two

bounds.) As long promised, we use the Signed Weight Lemma (Lemma 7.3)

for the main part of the proof. An example of the six bounds, proving (1.2)

in §1.7, is given after the proof.

Theorem 11.15 (Signed inner stability with bound). Let κ− and κ+ be

partitions. Let ν be a partition of n. Set `− = `(κ−) and `+ = `(κ+). Let

µ/µ? be a
(
`−+a(µ?), `

+
)
-large and

(
`−, `(µ?)

)
-large and

(
`−+1, `+

)
-weight

large for `(κ−) skew partition. Let ω be the partition ω
(n)
`− (µ/µ?) of n|µ/µ?|

defined in Definition 10.6. Let λ be an (`−, `+)-large partition. Let L be the

maximum of

• L
(
[λ−, ω−](`

−)

�� , κ−
)
/n,

• L
(
[λ+, ω+ + (|λ+| − |ω+|)]�, κ+

)
/n

•
(
ω+

1 + ω+

2 − 2λ+

1 + 2|λ+| − 2|ω+|
)
/n(κ+

1 − κ
+

2 ),

•
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/nκ−

`(κ−)
.

• LP
(
n, µ′ : λ−, κ− : max(`(µ?), `(µ

+), `(κ+)
)

• LP
(
n, µ : λ+, κ+ : a(µ?) + `(κ−)

)
+ |λ+| − |ω+|

omitting the third if κ+

1 = κ+

2 and the fourth if κ− = ∅. Then〈
sν(M) ◦ sµ/µ?⊕M(κ−,κ+), sλ⊕nM(κ−,κ+)

〉
is constant for M ≥ L, where if |κ−| is even then ν(M) = ν for all M , and if

|κ−| is odd then ν(M) = ν if M is even and ν(M) = ν ′ if M is odd. Moreover

if λ 6�· ω in the `−-twisted dominance order then the plethysm coefficient is 0

for all M ∈ N0.

Proof. We apply the Signed Weight Lemma (Lemma 7.3). For M ∈ N0 set

P(M) =
[
λ⊕M(κ−, κ+), ω

(n)
`− (µ/µ?)⊕M(κ−, κ+)

]
.
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If λ 6�· ω(n)
`− (µ/µ?) then Lemma 9.6 implies that

λ⊕M(κ−, κ+) 6�· ω(n)
`− (µ/µ?)⊕M(κ−, κ+)

for all M ∈ N0 and hence, by Proposition 10.7, 〈sν(M) ◦ sµ/µ?⊕M(κ−,κ+),

sλ⊕nM(κ−,κ+)〉 = 0 for all M ∈ N0. Thus all the plethysm coeficients are

zero, as claimed in the final part of the statement.

We may therefore assume that λ�· ω(n)
`− (µ/µ?). By the hypothesis that

µ/µ? is (`− + 1, `+)-weight large, the partition is ω
(n)
`− (µ/µ?) is (`− + 1, `+)-

large, which is the other hypothesis required in Corollary 9.20. Hence, by

this corollary, (P(M))M∈N0 is a stable partition system with respect to the

map π 7! π ⊕ (κ−, κ+) and the symmetric functions gπ = eπ−hπ+ . We take

the subsystem (Q(M))M∈N0 where Q(M) = P(nM). Up to the factor 1/n, the

first four bounds in our hypotheses are those in Corollary 9.20. Therefore

Q(M) is stable for M ≥ L.

We are now ready to verify the conditions in the Signed Weight Lemma

(Lemma 7.3) taking ν(M) as already defined, µ/µ?
(M) = µ/µ? ⊕M(κ−, κ+),

and Q(M) as our stable partition system. Since λ ⊕ nM(κ−, κ+) ∈ Q(M),

this implies the theorem.

Condition (i) in the Signed Weight Lemma. By Lemma 11.3 the stable

partition system Q(M) satisfies condition (i) of the Signed Weight Lemma

(Lemma 7.3) for the plethysms sν(M) ◦ sµ/µ?⊕M(κ−,κ+).

Condition (ii) in the Signed Weight Lemma. We must verify that∣∣PSSYT
(
ν(M), µ/µ?

(M)
)
(π−,π+)

∣∣
=
∣∣PSSYT

(
ν(M+1), µ/µ?

(M+1)
)
(π−+nκ−,π++nκ+)

∣∣ (11.16)

for all M ∈ N0. By hypothesis µ/µ? is
(
`(κ−) + a(µ?), `(κ

+)
)
-large and(

`(κ−), `(µ?)
)
-large as required in Proposition 11.13. The final two bounds

on M in the statement are those required by Proposition 11.13. Fix M ∈ N
at least these bounds and let ρ = ν(M). By this proposition we have∣∣PSSYT

(
ρ, µ/µ? ⊕ M(κ−, κ+

)
(π−,π+)

∣∣
=

{∣∣PSSYT
(
ρ†, µ/µ? ⊕ (M+1)(κ−, κ+)

)
(π−+nκ−,π++nκ+)

∣∣ if |κ−| is even∣∣PSSYT∓
(
ρ†, µ/µ? ⊕ (M+1)(κ−, κ+)

)
(π−+nκ−,π++nκ+)

∣∣ if |κ−| is odd

for all π ∈ Q(M). If |κ−| is even then ν(M+1) = ρ† = ρ = ν(M) and we

have (11.16). Otherwise we use the final part of Lemma 5.5 to obtain∣∣PSSYT∓
(
ρ′, µ/µ? ⊕ (M + 1)(κ−, κ+

)
(π−+nκ−,π++nκ+)

∣∣
=
∣∣PSSYT

(
ρ′, µ/µ? ⊕ (M + 1)(κ−, κ+

)
(π−+nκ−,π++nκ+)

∣∣,
and since ρ′ = ν(M+1) and ρ = ν(M), we again get (11.16). Therefore the

stable partition system Q(M) satisfies condition (ii) of the Signed Weight

Lemma. �
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Example 11.16. We use Theorem 11.15 to show that the plethysm coeffi-

cients 〈sν† ◦ sµ′+(1`(µ
′))t (1M ), sλ′+(1n`(µ

′))t (1nM )〉 in (1.2) relevant to [8, The-

orem 1.1] are constant for all M ≥ 0. (All we need about ν† is that it is a

partition of n.) Take κ− = (1) and κ+ = ∅ in Theorem 11.15 and replace ν

in the theorem with ν† and µ in the theorem with µ′+(1`(µ
′)). Since `− = 1,

the negative part of a partition α is simply (`(α)) and the 1-decomposition

is 〈
(`(α)), (α1 − 1, . . . , αk − 1)

〉
(11.17)

where k is greatest such that αk ≥ 2. Therefore the negative part of λ′ +

(1n`(µ
′)) is max(`(λ′), n`(µ′)). Denote this quantity P . Since the greatest

signed tableau t1(µ′+ (1`(µ
′))) of shape µ′+ (1`(µ

′)) defined in Definition 4.2

has `(µ′) entries of −1, we have ω− = (n`(µ′)). Therefore the first bound in

Theorem 11.15 is

 L
(
[(P ), n`(µ′)]

(1)
�� , (1)

)
=
n`(µ′)− P − n`(µ′)

n
= −P

n
< 0.

(Note that the exceptional case in Definition 9.2 applies, giving a smaller

bound than that obtained by using L1.) Since κ+ = ∅, the second and third

bounds vanish. Now observe that, by (11.17), if `(λ′) < n`(µ′) then the

positive part of λ′ + (1n`(µ
′)) is λ′, while if `(λ′) ≥ n`(µ′) then the positive

part has length at most `(λ′). Therefore `(λ+) ≤ `(λ′) and the fourth bound

is at most

max(`(λ′), 0) + n`(µ′)− P − n`(µ′)
n

≤ `(λ′)− P
n

≤ 0.

Since the positive part of µ′ + (1`(µ
′)) is µ′, the fifth bound is

LP
(
n, (µ′ + (1`(µ

′)))′ : (P ), (1) : max(0, `(µ′), 0)
)

=
n`(µ′)− P − `(µ′) + max(`(µ′), `(µ′), 0)

1− 0
≤ 0.

Since κ+ = ∅, the sixth bound vanishes. Hence, as claimed earlier in §1.7,

the plethysm coefficient is constant for all M ≥ 0. Finally, note that a

semistandard signed tableau of shape µ′ + (1`(µ
′)) can have at most `(µ′)

entries of −1. Therefore if `(λ′) > n`(µ′), and so P > n`(µ′), the set

PSSYT
(
ν†, µ+(1`(µ

′))
)
((`(λ′)),π+) is empty for any partition π+. Correspond-

ingly, since `(λ′) > n`(µ′) implies that then λ 6�· ω in the 1-twisted dominance

order, it follows from the final part of Theorem 11.15, the plethysm coeffi-

cient vanishes when M = 0. Since this is its constant value, it vanishes for

all M ∈ N0.

We end this section with a generalization of the final part of the example

above. Observe that when µ? = ∅, the greatest signed weight ω`−(µ) is

simply the `−-decomposition of µ and so it is immediate from Definition 10.6

that the partition ω
(n)
`− (µ) has `−-decomposition n〈µ−, µ+〉. Hence, by the

definition of the `-twisted dominance order in Definition 6.6 we have λ �
ω

(n)
`− (µ) if and only if (λ−, λ+) � n(µ−, µ+). Therefore, the final part of
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Theorem 11.15 implies that, unless (λ−, λ+) � n(µ−, µ+),

〈sν ◦ sµ⊕M(κ−,κ+), sλ⊕nM(κ−,κ+)〉 = 0

for all M ∈ N0. This justifies the remark after Theorem 1.1 in the introduc-

tion.

12. The positive case of Theorem 1.1

In this section we state the special case of Theorem 11.15 when κ− =

∅, and then the still more special case where µ? = ∅. As mentioned in

Remark 4.16, by applying the ω involution, these special cases easily imply

the analogous special cases where κ+ = ∅. The L and LP bounds are

defined in Definitions 9.2 and 11.6, respectively. By Definition 3.5, wt(t)

is the positive part of the signed weight of a tableau having only positive

integer entries.

Corollary 12.1. Let κ be a partition. Let ν be a partition of n, and let

µ/µ? be a
(
a(µ?), `(κ)

)
-large skew partition. Let λ be a partition of n|µ/µ?|

with `(λ) ≥ `(κ). Let t be the semistandard tableau of shape µ/µ? having 1,

2, . . . , µ′j − µ′?j as its entries in column j, for each j ≤ a(µ). Suppose that

wt(t) is
(
a(µ?)+1, `(κ)

)
-large. Set ω = nwt(t). Then 〈sν ◦sµ?+Mκ, sλ+nMκ〉

is constant for

M ≥ max
(L
(
[λ, ω]�, κ

)
n

,LP
(
n, µ : λ, κ : a(µ?)

))
If λ 6� ω then the plethysm coefficient is 0 for all M ∈ N0. Moreover if η 6� κ

then 〈sν ◦ sµ/µ?+Mκ, sλ+nMη〉 = 0 for all M > L where L is the minimum of∑k
i=1 ωi −

∑k
i=1 λi

n
(∑k

i=1 ηi −
∑k

i=1 κi
)

taken over those k such that the denominator is strictly positive.

Proof. The final part is immediate from Proposition 11.2 applied with κ− =

η− = ∅ and κ+ = κ, η+ = η. For the main part we apply Theorem 11.15

with κ− = ∅ and κ+ = κ. By Definition 4.2, ω is ω
(n)
0 (µ/µ?) and so by

Lemma 4.4 we have wt(t) = ω0(µ/µ?)
+. Therefore, by Definition 10.1, the

condition that µ/µ? is (a(µ?) + 1, `(κ))-weight large for 0 in Theorem 11.15

is equivalent to wt(t) being (a(µ?) + 1, `(κ))-large. The condition that λ is(
1, `(κ)

)
-large simplifies to `(λ) ≥ `(κ) Of the six bounds, the first is 0, the

second simplifies to L([λ, ω]�, κ), the third to (ω1 + ω2 − 2λ1)/n(κ1 − κ2)

which is either one of the bounds contributing to L([λ, ω]�, κ), or ignored

because κ1 = κ2, the fourth and fifth bounds are 0 and the sixth simplifies

to LP
(
n, µ : λ, κ : a(µ?)

)
. �

Corollary 12.2. Let κ be a partition. Let ν be a partition of n, let µ be

a partition of m and let λ be a partition of mn such that `(µ) ≥ `(κ) and

`(λ) ≥ `(κ). Then 〈sν ◦ sµ+Mκ, sλ+nMκ〉 is constant for M at least the

maximum of
n
∑r

i=1 µi −
∑r

i=1 λi − µr + µr+1

κr − κr+1
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for 1 ≤ r ≤ `(κ), where any terms with zero denominator are ignored. If

λ 6� nµ then the plethysm coefficient is 0 for all M ∈ N0. Moreover if η 6� κ

then 〈sν ◦ sµ+Mκ, sλ+nMη〉 = 0 for all M > L where L is the minimum of

n
∑k

i=1 µi −
∑k

i=1 λi

n
(∑k

i=1 ηi −
∑k

i=1 κi
)

taken over those k such that the denominator is strictly positive.

Proof. We apply Corollary 12.1. By Lemma 10.3, since µ? = ∅ then the

largeness conditions in this corollary become that µ and λ are
(
1, `(κ)

)
-

large, or equivalently, `(µ) ≥ `(κ) and `(λ) ≥ `(κ). Note that, again since

µ? = ∅, we have wt(t) = µ and so the partition ω in the corollary is simply

nµ, and so by part of the corollary, if λ 6� nµ then the plethysm coefficients

are zero. If n = 1 then the plethysm coefficient is 〈sµ+Mκ, sλ+Mκ〉, which is

obviously constant. When n ≥ 2, the bound M ≥ LP
(
n, µ : λ, κ : 0

)
(see

Definition 11.6) is equivalent to

M(κk − κk+1) ≥ n
k∑
i=1

µi −
k∑
i=1

λi − µk + µk+1

for each 1 ≤ k ≤ `(κ). Using that ω = nµ, the bound we require, namely

that M ≥ L([λ, ω]�, κ)/n is equivalent to

M(κk − κk+1) ≥ 1

n

(
2

k∑
i=1

nµi + nµk + nµk+1 − 2

k∑
i=1

λi

)
again for each 1 ≤ k ≤ `(κ). Fixing k the difference of the two right-hand

sides is

(n− 2)

k−1∑
i=1

µi + (n− 2)µk −
n− 2

n

k∑
i=1

λi =
n− 2

n

k∑
i=1

(nµi − λi)

which is non-negative because λ�nµ. Therefore the hypotheses of this corol-

lary imply that M ≥ L([λ, ω]�, κ)/n, as required to apply Corollary 12.1.

The final claim of this corollary is immediate from Corollary 12.1. �

We remark that if κ = (1R) then by one further specialization we obtain

that 〈sν ◦ sµ + (MR), sλ+n(MR)〉 is constant for M ≥ n
∑R

i=1 µi −
∑R

i=1 λi −
µR + µR+1. Except for the assumptions that `(λ) ≥ R and `(µ) ≥ R,

which as we mentioned following Remark 3.2 can be dropped, this recovers

Theorem 1.2 in [8].

13. Twisted weight bound for Theorem 1.2

This section is the analogue of §10, culminating in Corollary 13.22, the

analogue of Corollary 10.10, giving an upper bound (in a sense made precise

in the corollary) on the constituents sσ of the plethysm sν(M) ◦ sµ/µ? such

that σ�· λ ⊕M(κ−, κ+) in the `(κ−)-twisted dominance order. Here, as in

Theorem 1.2, ν(M) + (RM ) if the strongly maximal signed weight (κ−, κ+)

has sign +1 and ν(M) = ν t (MR) if the strongly maximal signed weight
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(κ−, κ+) has sign −1. We give an overview of the strategy in §13.2 after the

essential preliminaries in the following subsection.

13.1. Adapted signed colexicographic order for a strongly maximal

signed weight. By Lemma 4.11, if (κ−, κ+) is a strongly maximal signed

weight then there is a unique semistandard signed tableau family of signed

weight (κ−, κ+) of the same shape, size and type as (κ−, κ+). By Defini-

tion 4.10 the sign of (κ−, κ+) is the common sign of the tableaux in this

family; in the sense of Definition 4.7, the family has row-type if the common

sign is −1 and column-type if the common sign is +1.

Definition 13.1. Let (κ−, κ+) be a strongly maximal signed weight of sign ε.

Let M(κ−,κ+) be the unique semistandard signed tableau family of signed

weight (κ−, κ+). Let T(κ−,κ+) be the unique plethystic semistandard tableau

of outer shape ρ and inner shape µ/µ? having as its entries the elements of

M(κ−,κ+), where ρ = (1R) if ε = +1 and ρ = (R) if ε = −1.

As we mentioned in Remark 5.7, in this section we use the freedom in

Lemma 5.5 to define plethystic semistandard signed tableaux using an or-

der on their inner tableaux adapted to our strongly maximal semistandard

signed tableau family.

Definition 13.2 (Adapted colexicographic order). Let (κ−, κ+) be a strongly

maximal signed weight of sign ε. Let ≤ be the signed colexicographic order if

ε = −1 and the sign-reversed colexicographic order if ε = +1. The (κ−, κ+)-

adapted colexicographic order, denoted ≤κ, is the total order on semistan-

dard signed tableaux of shape µ/µ? defined by s ≤κ t if s ∈ M(κ−,κ+) and

t 6∈ M(κ−,κ+), and, in the remaining case, s ≤κ t if and only if s ≤ t.
Observe that, thanks to the choice of the signed colexicographic order

when (κ−, κ+) has sign −1 (and so the elements of M(κ−,κ+) are all neg-

ative) and the sign-reversed colexicographic order when the (κ−, κ+) has

sign +1 (and so the elements of M(κ−,κ+) are all positive), the elements

of M(κ−,κ+) always come first in the adapted colexicographic order for

(κ−, κ+). Moreover, by Lemma 4.17, if (κ−, κ+) is the signed weight of a

strongly c+-maximal singleton semistandard signed tableau family of shape

µ/µ? then the family is {t`(κ)−(µ/µ?)}; since by Remark 4.6, t`(κ)−(µ/µ?) is

the unique least semistandard signed tableau in the signed colexicographic

order if ε = +1 and in the sign-reversed colexicographic order if ε = −1, the

adapted order agrees with the usual order.

Example 13.3. Let (κ−, κ+) =
(
∅, (4, 1, 1)

)
of shape (2), size 3 and sign

+1. This is the strongly maximal signed weight seen in Example 4.12,

for which the unique semistandard signed tableau family is M(κ−,κ+) ={
1 1 , 1 2 , 1 3

}
of column-type. In the adapted colexicographic or-

der for κ we have

1 1 <κ 1 2 <κ 1 3 <κ 2 2 <κ 2 3 <κ . . . <κ 1 1 <κ 1 2 <κ . . .

whereas in the sign-reversed colexicographic order, we have

1 1 < 1 2 < 2 2 < 1 3 < 2 3 < . . .< 1 1 < 1 2 < . . . .



95

Definition 13.4. Given a strongly maximal signed weight (κ−, κ+), let

PSSYTκ(ρ, µ/µ?) be the set of all plethystic semistandard of outer shape ρ

and inner shape µ/µ? with negative entries from
{
−1, . . . ,−`(κ−)

}
, defined

as in Definition 3.10, but using the (κ−, κ+)-adapted colexicographic order

to order the inner µ/µ?-tableaux. We say that such plethystic semistandard

signed tableaux are (κ−, κ+)-adapted. We write PSSYTκ(ρ, µ/µ?)(π−,π+) for

the adapted plethystic semistandard signed tableaux in PSSYTκ(ρ, µ/µ?)

whose signed weight is (π−, π+).

This is the obvious extension of the notation in Definitions 3.9 and 3.11.

Note that the plethystic semistandard signed tableau T(κ−,κ+) defined in

Definition 13.1 is (κ−, κ+)-adapted; in fact, since all its inner tableau entries

have the same sign, it is semistandard for any of our orders on semistandard

signed tableaux.

13.2. Overview and running example. Fix a strongly maximal signed

weight (κ−, κ+). We shall substantially simplify the exposition in this section

and from §13.4 onwards by stating and proving all results only in the case

when (κ−, κ+) has sign +1. The modifications for sign −1 are routine and

are indicated briefly in the final subsection.

Remark 13.5. The underlying principle in this section and the next is pro-

vided M is sufficiently large, every (κ−, κ+)-adapted plethystic semistandard

signed tableau in PSSYTκ

(
ν + M(1R), µ/µ?

)
(λ−+Mκ−,λ++Mκ+) has the ele-

ments ofM(κ−,κ+), which form the inner tableaux of the plethystic semistan-

dard signed tableau T(κ−,κ+), in the top R positions of almost all its columns.

In Definition 13.8 we say that such columns are ‘typical’. In particular, as

we make precise in Corollary 13.17, the number of columns whose top R

positions contain semistandard signed tableaux whose total signed weight

is not dominated in the `−-signed dominance order by (κ−, κ+) is bounded

independently of M .

We see this principle in the first running example begun below, proving

the special case of Theorem 1.2 that 〈s(2,1)+M(1,1,1) ◦ s(2), s(4,2)+M(4,1,1)〉 is

ultimately constant.

Example 13.6. Let (κ−, κ+) =
(
∅, (4, 1, 1)

)
be the strongly maximal signed

weight of the column-type tableau family
{

1 1 , 1 2 , 1 3
}

in Exam-

ple 13.3 of shape (2), size 3 and sign +1. To apply the Signed Weight Lemma

(Lemma 7.3) to prove that 〈s(2,1)+M(1,1,1) ◦ s(2), s(4,2)+M(4,1,1)〉 is ultimately

constant, it is natural to look for a stable partition system
(
P(M))M∈N0 such

that (4, 2) +M(4, 1, 1) ∈ P(M) for each M ∈ N0 and, for condition (ii), such

that

|PSSYT(∅,(4,1,1))

(
(2, 1) +M(1, 1, 1), (2)

)
(∅,π)|

is ultimately constant for all π ∈ P(M). Note that here the first sub-

script refers to adapted plethystic semistandard signed tableau (in the sense

of Definition 13.4), whose inner (2)-tableaux are ordered according to the(
∅, (4, 1, 1)

)
-sign-reversed colexicographic order. In this case however, since
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there are no negative entries, the distinction between the sign-reversed colex-

icographic order and the usual colexicographic order is irrelevant.

In the special case where π = (4, 2) +M(4, 1, 1) the
(
∅, (4, 1, 1)

)
-adapted

plethystic semistandard signed tableaux in this set are, when M = 0,

1 1 1 1

2 2
,

1 1 1 2

1 2

and, when M = 1,

1 1 1 1 1 1

1 2 1 2

2 3

,

1 1 1 1 1 1

1 2 1 3

2 2

,

1 1 1 1 1 1

1 2 2 2

1 3

,

1 1 1 1 1 2

1 2 1 2

1 3

.

There are four plethystic semistandard signed tableaux when M = 2. They

are obtained by inserting the tableau T(κ−,κ+) shown in the margin as a new

first column into each of the four plethystic semistandard signed tableaux

for M = 1. Note that since 1 3 <κ 2 2 in the
(
∅, (4, 1, 1)

)
-adapted

colexicographic order, this preserves the semistandard condition even when

we insert into the second plethystic semistandard tableau for M = 1.

1 1

1 2

1 3

In the previous example we saw that inserting T(κ−,κ+) as a new column

of height R in a (κ−, κ+)-adapted plethystic semistandard signed tableau

of weight λ ⊕M(κ−, κ+) give a bijection establishing hypothesis (ii) in the

Signed Weight Lemma (Lemma 7.3). But still it is not obvious how to choose

P(M), or that the same bijection will work when λ⊕M(κ−, κ+) is replaced

with an arbitrary π ∈ P(M). We continue the example to show one difficulty,

circumvented using the final result of this section (see Corollary 13.22).

Example 13.7. Since the greatest partition (6) in the dominance order is

obviously an upper bound for the constituents of s(2,1) ◦ s(2), Example 13.6

suggests we might apply the Signed Weight Lemma (Lemma 7.3) with the

stable partition system[
(4, 2) +M(4, 1, 1), (6) +M(4, 1, 1)

]
�

=
{

(4, 2) +M(4, 1, 1), (5, 1) +M(4, 1, 1), (6) +M(4, 1, 1)
}
.

for M ∈ N0. (Here � is the usual dominance order: by Remark 6.8, this

is the 0-twisted dominance order, so we have `− = 0 and the symmetric

functions in the lemma are hπ for π ∈ Par.) However condition (i) in the

Signed Weight Lemma fails when M = 1: we have (8, 3, 1) ∈ [(4, 2) +

(4, 1, 1), (6) + (4, 1, 1)]� and since (8, 4) � (8, 3, 1) and s(8,4) is a constituent

of s(3,2,1) ◦ s(2) — for instance, this follows from the generalized Cayley–

Sylvester formula (5.3) in §5.4 — we have

s(8,4) ∈ supp(h(8,3,1)) ∩ supp(s(3,2,1) ◦ s(2)).

But (8, 4) 6∈ [(4, 2) + (4, 1, 1), (6) + (4, 1, 1)]� since (8, 4) and (10, 1, 1) are

incomparable. It might seem that the problem is that our chosen upper

bounds (6)+M(4, 1, 1) are too small to contain all partitions in the support
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of s(2,1)+M(1,1,1) ◦ s(2). However, one can show using Theorem 1.5 of [8] that

the maximal constituents of s(2,1)+M(1,1,1) ◦ s(2) are precisely the partitions{
(5, 1) + (M − a)(4, 1, 1) + a(3, 3) : 0 ≤ a ≤M

}
(13.1)

and since (4, 1, 1) and (3, 3) are incomparable in the dominance order, there

is no stable partition system of intervals

[λ+ (M − S)(4, 1, 1), ω + (M − S)(4, 1, 1)]� (13.2)

with λ and ω partitions of 6S that contains all the maximal constituents

of s(2,1)+M(1,1,1) ◦ s(2) for all M ≥ S, or even for all M sufficiently large.

(Beginning with partition of 6S gives ample freedom to avoid technical issues

to do with ‘largeness’, in the sense of Definition 3.1 and Definition 10.1, so

this is not the problem.) Perhaps surprisingly, we conclude that it is essential

to use the lower bound as well. And because a plethystic semistandard

signed tableau of shape (2, 1) + M(1, 1, 1) and signed weight
(
∅, (4, 2) +

M(4, 1, 1)
)

may have an exceptional column in the sense of Definition 13.8

(see Example 13.18), the stable partition system we define has to start with

partitions of 12. (This corresponds to taking S = 1 in (13.2).) Since (4, 2)+

(4, 1, 1) = (8, 3, 1) we therefore consider the intervals[
(8, 3, 1) +N(4, 1, 1), (12) +N(4, 1, 1)

]
� (13.3)

for N ∈ N0. Since κ− = ∅, the `(κ−)-twisted symmetric function gπ from

Definition 6.11 used in the Signed Weight Lemma (Lemma 7.3) is the com-

plete homogeneous symmetric function hπ. If π ∈
[
(8, 3, 1)+N(4, 1, 1), (12)+

N(4, 1, 1)
]
� and

σ ∈ supp(hπ) ∩ supp(s(2,1)+(N+1)(1,1,1) ◦ s(2)

then, by Lemma 6.12 applied to supp(hπ) we have

σ � π � (8, 3, 1) +N(4, 1, 1) (13.4)

and, by (13.1), we have

σ � (9, 2, 1) + (N − a)(4, 1, 1) + a(3, 3)

= (9− a, 2 + 2a, 1− a) +N(4, 1, 1) (13.5)

for some a with 0 ≤ a ≤ N . If a = 0 then by (13.5) σ � (9, 2, 1) +

N(4, 1, 1)� (12) +N(4, 1, 1). Similarly if a = 1 then σ� (8, 4) +N(4, 1, 1)�
(12) +N(4, 1, 1), which despite involving the problematic partition (8, 4) is,

thanks to our choice in (13.3), in the interval for all N ∈ N0. Finally if

a ≥ 2 then we must have N ≥ 1 and we get σ1 ≤ 9 − a + 4N which, using

the lower bound on the intervals in (13.3) (justified by (13.4) obtained using

Lemma 6.12) that σ � (8, 3, 1) + N(4, 1, 1), contradicts that σ1 ≥ 8 + 4N .

Therefore condition (i) in the Signed Weight Lemma (Lemma 7.3) holds for

all N ∈ N0. We note that this contradiction was obtained by comparing in

the dominance order just on the first part, and correspondingly, (4, 1, 1) is

a strongly 1-maximal signed weight.

We continue this example in Example 13.10.
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13.3. Exceptional columns and rows. We define the signed weight of a

subset B of the boxes of a plethystic semistandard tableau to be the sum

of the weights of the inner tableaux in B. In the following definition we use

the `−-signed dominance order on the setW`−×W defined in Definition 4.1

to compare (φ−, φ+) and (κ−, κ+). Adapted plethytic semistandard signed

tableau are defined in Definition 13.4.

Definition 13.8. Let (κ−, κ+) be a strongly c+-maximal signed weight of

shape µ/µ? and size R. Let T be a (κ−, κ+)-adapted plethystic semistandard

signed tableau of inner shape µ/µ?. When (κ−, κ+) has sign +1, we say

that a column of T of height at least R whose top R boxes have signed

weight (φ−, φ+) is small if (φ−, φ+) � (κ−, κ+), typical if the top R boxes

in the column form the plethystic semistandard signed tableau T(κ−,κ+) and

exceptional if (φ−, φ+) 6� (κ−, κ+). In the latter case we say the column is

(a) large-exceptional if `(φ+) > `(κ+);

(b) negative-exceptional if |φ−| < |κ−|;
(c) positive-exceptional if |φ−|+

∑c+

i=1 φ
+

i < |κ−|+
∑c+

i=1 κ
+

i .

When (κ−, κ+) has sign −1 we make the analogous definitions replacing

‘column’ with ‘row’, now considering the leftmost R boxes in the row.

The relevant strongly maximal signed weight (κ−, κ+) in this definition

will always be clear from the context. We shall prove in Lemma 13.12(i) a

column is either small, typical or exceptional, and in Lemma 13.12(ii) that

an exceptional column is either large-exceptional, negative-exceptional or

positive-exceptional. Note the latter three cases are not mutually exclusive:

in fact any combination of them may hold.

Remark 13.9. If R = 1 then, by Lemma 4.17, the unique strongly maxi-

mal semistandard signed tableau family of shape µ/µ? is {t`−(µ/µ?)}. By

Lemma 4.4, {t`−(µ/µ?)} has the greatest signed weight, in the `−-signed

dominance order on all µ/µ?-tableaux with entries from {−1, . . . ,−`−}∪N.

Therefore in the notation of Definition 13.8, we always have (φ−, φ+) �
(κ−, κ+) where (κ−, κ+) =

(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

is the signed weight of

t`−(µ/µ?), and so there are no exceptional columns or rows. It is instructive

to see how the remaining results in this section specialize to easy corollaries

1 1 1 1 1 1

1 2 1 2

2 3

small

1 1 1 1 1 1

1 2 1 3

2 2

positive-e

1 1 1 1 1 1

1 2 2 2

1 3

typical

1 1 1 1 1 2

1 2 1 2

1 3

typical

of Lemma 4.4 in this case: we summarise the situation in Remark 13.23 at

the end of this section.

Example 13.10. Of the four (∅, (4, 1, 1))-adapted plethystic semistandard

signed tableaux in the set PSSYT(∅,(4,1,1))

(
(3, 2, 1), (2)

)
(∅,(8,3,1) shown at

the end of Example 13.6, and repeated in the margin for ease of refer-

ence, the first column of the first tableau has signed weight
(
∅, (3, 2, 1)

)
�

(∅, (4, 1, 1)
)

so is small. The first column of the second has signed weight(
∅, (3, 3)

)
, which is incomparable with the strongly 1-maximal signed weight(

∅, (4, 1, 1)
)
; this column is therefore exceptional and since the sums on the

left- and right-sides of (c) are 3 and 4 respectively it is positive-exceptional.

The final two tableaux each have first column T(∅,(4,1,1)) of signed weight
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∅, (4, 1, 1)

)
; these two columns are typical. The boxes not in the column

of height 3 are not classified by Definition 13.8.

This example is continued in Example 13.18. We now give a further

example to show the full generality of Definition 13.8.

Example 13.11. Let (κ−, κ+) =
(
(2, 2), (3, 1)

)
. By Example 4.18(ii), this is

the strongly 1-maximal weight of the column-type tableau familyM((2,2),(3,1))

of shape (4), size 2 and sign +1 shown below{
1 2 1 1 , 1 2 1 2

}
.

The special case ν = (2, 1) and µ/µ? = (4)/∅ of Theorem 1.2 is that

the plethysm coefficients 〈s(2,1)+(M,M) ◦ s(4), sλ+M(3,1)t (2M )〉 are ultimately

constant for all partitions λ of 12. First we take λ = (8, 3, 1) with 2-

decomposition
〈
(3, 2), (6, 1)

〉
. There are three ((2, 2), (3, 1))-adapted plethys-

tic semistandard tableaux in PSSYT((2,2),(3,1))

(
(2, 1), (4)

)
((3,2),(6,1)), namely

1 2 1 1 1 2 1 1

1 1 1 2

negative-e

,
1 2 1 1 1 2 1 2

1 1 1 1

negative-e

,
1 2 1 1 1 1 1 1

1 2 1 2

typical

.

In each of the first two, the first column is negative-exceptional, being defi-

cient in negative entries. In the third the first column is typical. Since the

second column is singleton, it is not classified by Definition 13.8. Growing by

ν 7! ν+(1, 1) and λ 7! λ⊕
(
(2, 2), (3, 1)

)
as in Theorem 1.2, we find that the

four plethystic semistandard tableaux in PSSYT((2,2),(3,1)

(
(3, 2), (4)

)
((5,4),(9,2))

are

1 2 1 1 1 2 1 1 1 2 1 1

1 2 1 2 1 1 1 2

typical negative-e

,
1 2 1 1 1 2 1 1 1 2 1 2

1 2 1 2 1 1 1 1

typical negative-e

,
1 2 1 1 1 2 1 1 1 2 1 1

1 2 2 2 1 1 1 1

small negative-e

,
1 2 1 1 1 2 1 1 1 1 1 1

1 2 1 2 1 2 1 2

typical typical

.

For instance, in the third tableau the signed weight of the first column is(
(2, 2), (2, 2)

)
�
(
(2, 2), (3, 1)

)
and so this column is small. We remark that

in fact

|PSSYT((2,2),(3,1)

(
(2, 1) +M(1, 1), (4)

)
((3+2M,2+2M),(6+3M,1+M))| = 4

for all M ≥ 1; a bijective proof is given by insertion of the plethystic semi-

standard signed tableau shown in the margin corresponding toM((2,2),(3,1))

as a new first column; this is the H map in the proof of Theorem 14.7. (In

1 2 1 1

1 2 1 2

this case, unlike Example 13.6, the
(
(2, 2), (3, 1)

)
-adapted colexicographic

order defined in Definition 13.2 coincides with the usual sign-reversed colex-

icographic order of Definition 3.8, and so using either order, the insertion

map preserves semistandardness.) Computation by computer algebra shows

that the constant value of the plethysm coefficient is 2.

In this case there are no large-exceptional columns because the maxi-

mum positive entry permitted permitted by the signed weight
(
(3 + 2M, 2 +

2M), (6 + 3M, 1 + M)
)
, namely 2, is also the length of the positive part of

the strongly maximal weight, namely `((3, 1)) = 2.
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Taking instead λ = (6, 3, 3) with 2-decomposition
〈
(3, 3), (4, 1, 1)

〉
, the

three elements of PSSYT((2,2),(3,1))

(
(2, 1), (4)

)
((3,3),(4,1,1)) are

1 2 1 1 1 2 1 1

1 2 2 3

!!small

,
1 2 1 1 1 2 1 2

1 2 1 3

large-e

,
1 2 1 1 1 2 1 3

1 2 1 2

typical

and the four elements PSSYT((2,2),(3,1)

(
(3, 2), (4)

)
((5,5),(7,2,1)) are

1 2 1 1 1 2 1 1 1 2 1 1

1 2 1 2 1 2 2 3

typical small

,
1 2 1 1 1 2 1 1 1 2 1 2

1 2 1 2 1 2 1 3

typical large-e

,
1 2 1 1 1 2 1 1 1 1 1 3

1 2 1 2 1 2 1 2

typical typical

,
1 2 1 1 1 2 1 1 1 2 1 1

1 2 2 2 1 2 1 3

small large-e

.

We leave it to the reader to verify the annotations above and to show that

the same insertion map gives a bijective proof that

|PSSYT((2,2),(3,1)

(
(2, 1) +M(1, 1), (4)

)
((3+2M,3+2M),(4+3M,1+M,1))| = 4

for all M ≥ 1. Here it is helpful to note that since the negative part of

the signed weight is (3 + 2M, 3 + 2M), every inner tableau has the form

1 2 · · ; this explains the absence of negative-exceptional columns in

this case. Computation by computer algebra shows that the constant value

of the plethysm coefficient is 1.

13.4. Exceptional column bound. The aim of this subsection is to prove

Lemma 13.15, making the underlying principle in Remark 13.5 precise. As

promised earlier, to simplify the exposition, from now on we assume that the

strongly maximal signed weight has sign +1. See §13.7 for the modifications

for sign −1.

In the next lemma it is important to note that while the strongly maxi-

mal signed weights defined in Definition 4.10 are of tableau families having

all elements of the same sign (by (b) the sign is +1 for column-type and

−1 for row-type), the comparison in Definition 4.8 is with all families of

the relevant shape and size, with negative entries from the prescribed set{
−1, . . . ,−`(κ−)

}
— see the italicised end to the paragraph after Defini-

tion 4.8.

Lemma 13.12. Let (κ−, κ+) be a strongly maximal signed weight of shape

µ/µ?, size R and sign +1. Let T be a (κ−, κ+)-adapted plethystic semistan-

dard signed tableau of inner shape µ/µ?. Let (φ−, φ+) be the signed weight

of the top R boxes in a column of T .

(i) If (φ−, φ+) = (κ−, κ+) then the top R boxes in the column form the

plethystic semistandard signed tableau T(κ−,κ+).

(ii) If (φ−, φ+) 6� (κ−, κ+), then the column is large-exceptional, negative-

exceptional or positive-exceptional.

Proof. Part (i) follows from the uniqueness of the plethystic semistandard

signed tableau family corresponding to a strongly maximal signed weight,

proved in Lemma 4.11. For (ii) let (φ−, φ+) 6� (κ−, κ+) and suppose that the

column is not large-exceptional. Let (ψ−, ψ+) be a maximal signed weight in

the dominance order on W`(κ−) ×W of a column-type semistandard signed
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tableau family of shape µ/µ? and size R such that (φ−, φ+) � (ψ−, ψ+), as

in Definition 4.8. By hypothesis, (ψ−, ψ+) 6= (κ−, κ+). Since the column is

not large-exceptional, by Lemma 4.13, either (4.2) holds and we have

|φ−| ≤ |ψ−| < |κ−|

and the column is negative-exceptional or (4.3) holds and

|φ−|+
∑c+

i=1 φ
+

i ≤ |ψ−|+
∑c+

i=1 ψ
+

i < |κ−|+
∑c+

i=1 κ
+

i

and the column is positive-exceptional. �

To state our bound on the number of exceptional columns we need the

statistics on partitions defined in the following two definitions.

Definition 13.13. Given a partition ν and R ∈ N, we define BR(ν) =

|ν| −RνR.

In the general setting of §13.7 this statistic is B+

R(ν), and B−R(ν) is the

row version of Definition 13.13 needed when (κ−, κ+) has sign −1.

Equivalently BR(ν) is the number of boxes (i, j) of [ν] such that either

i > R or ν ′j < R; these are precisely the boxes not in the top R positions of

a column of height at least R. We shall use many times below that

BR
(
ν +M(1R)

)
= BR(ν) (13.6)

for all M ∈ N0, as can be seen from Figure 13.1.

. .
.

. .
.

...

...

R

νR M

Figure 13.1. The partition ν + M(1R) with the boxes not in the top

R positions of a column of height at least R shaded. These are the boxes

counted byBR
(
ν+M(1R)

)
. The diagram also shows thatBR

(
ν+M(1R)

)
=

BR(ν) and that we can visualize the boxes added by the summand M(1R)

as lying in columns νR + 1, . . . , νR +M .

Note also that if T is a plethystic semistandard signed tableau of outer

shape ν and inner shape µ/µ? then, by Lemma 4.4, the contribution from

the boxes counted by BR(ν) in this tableau to the signed weight of T is at

most

BR(ν)
(
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
)

(13.7)

where
(
ω−` (µ/µ?), ω

+

` (µ/µ?)
)

is the greatest signed weight of Definition 4.3.
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Definition 13.14. Given a skew partition µ/µ? and `− ∈ N0 and c+ ∈
N0, we define A−(µ/µ?) = |ω`−(µ/µ?)

−| and A+(µ/µ?) = |ω`−(µ/µ?)
−| +∑c+

i=1 ω`−(µ/µ?)
+

i .

Note that A−(µ/µ?) is the number of negative entries in the `−-negative

greatest tableau t`−(µ/µ?) of signed weight
(
ω`(µ/µ?)

−, ω`(µ/µ?)
+
)
; as we

saw in Lemma 4.4 this is the greatest signed weight in the `−-signed domi-

nance order (see Definition 4.1) of a semistandard signed tableau of shape

µ/µ?. In particular, no semistandard signed tableau of shape µ/µ? with en-

tries from
{
−1, . . . ,−`(κ−)

}
can have more than A−(µ/µ?) negative entries.

The set PSSYTκ

(
ν +M(1R), µ/µ?

)
(π−,π+) is defined in Definition 13.4.

Lemma 13.15 (Bound on exceptional columns). Let (κ−, κ+) be a strongly

c+-maximal signed weight of shape µ/µ?, size R and sign +1. Set `− =

`(κ−). Let ν be a partition. Let (λ−, λ+) and (π−, π+) ∈ W`− ×W be signed

weights. Let

T ∈ PSSYTκ

(
ν +M(1R), µ/µ?

)
(π−,π+).

If (π−, π+) � (λ−, λ+) +M(κ−, κ+) then T has at most

(i)
∑`(λ+)

i=`(κ+)+1
λ+

i large-exceptional columns;

(ii) BR(ν)A−(µ/µ?) + νR|κ−| − |λ−| negative-exceptional columns;

(iii) BR(ν)A+(µ/µ?) + νR
(
|κ−| +

∑c+

i=1 κ
+

i

)
−
(
|λ−| +

∑c+

i=1 λ
+

i

)
positive-

exceptional columns that each are neither large-exceptional nor negative-

exceptional.

Proof. Consider the integer entries of the inner µ/µ?-tableaux in T . Ex-

actly
∑`(λ+)

i=`(κ+)+1
π+

i of these entries are strictly greater than `(κ+). Since

(π−, π+) � (λ−, λ+) +M(κ−, κ+), we have

`(λ+)∑
i=`(κ+)+1

π+

i ≤
`(λ+)∑

i=`(κ+)+1

λ+

i .

Therefore there at most
∑`(λ+)

i=`(κ+)+1
λ+

i such entries. Now (i) follows since, by

Definition 13.8(a), each large-exceptional column has at least one of them.

By Lemma 13.12, each remaining exceptional column is either positive-

exceptional or negative-exceptional.

To prove (ii) and (iii), we consider the integer entries of T in the sets

{−1, . . . ,−`−} and {−1, . . . ,−`−, 1, . . . , c+}, respectively, and the inner µ/µ?-

tableaux in which they lie. There are BR(ν) such entries not lying in the

top R boxes of a column having at least R boxes. By the remark immediately

before this lemma, the µ/µ?-tableaux in these boxes have between them, at

most BR(ν)A−(µ/µ?) entries in {−1, . . . ,−`−}. Moreover, by Lemma 4.4,

each such µ/µ?-tableau has signed weight bounded above (in the `−-signed

dominance order in Definition 4.1) by
(
ω`(κ−)(µ/µ?)

−, ω`(κ−)(µ/µ?)
+
)
, and

so there are at most BR(ν)A+(µ/µ?) entries in {−1, . . . ,−`−, 1, . . . , c+} in

these µ/µ?-tableaux. Each remaining µ/µ?-tableau entry lies in the top

R boxes of a column of T having at least R boxes. As can be seen from

Figure 13.1, there are νR +M such columns.
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For (ii), suppose that E−(T ) of these columns are negative-exceptional. In

a non-negative-exceptional column whose top R entries have signed weight

(φ−, φ+), we have, by Definition 13.8(b), |φ−| = |κ−|. Hence the µ/µ?-

tableaux in the top R rows of the non-negative-exceptional columns have,

between them, exactly
(
νR +M − E−(T )

)
|κ−| entries in {−1, . . . ,−`−}. By

(4.2) in Lemma 4.13, in each negative-exceptional column there are at most

|κ−| − 1 entries in {−1, . . . ,−`−}. Summing these bounds gives

`−∑
i=1

π−i ≤ BR(ν)A−(µ/µ?) +
(
νR +M − E−(T )

)
|κ−|+ E−(T )

(
|κ−| − 1

)
= BR(ν)A−(µ/µ?) + (νR +M)|κ−| − E−(T ).

On the other hand, since (π−, π+) � (λ−, λ+) +M(κ−, κ+) we have

|π−| ≥ |λ−|+M |κ−|.

Combining the two displayed inequalities and cancelling M |κ−| we get

E−(T ) ≤ BR(ν)A−(µ/µ?) + νR|κ−| − |λ−|

as required.

For (iii), suppose there are E+(T ) exceptional columns of T of height

at least R that are not large-exceptional and not negative-exceptional. By

Lemma 13.12(ii) these columns are positive-exceptional. Let (φ−, φ+) be

the signed weight of such a column. Using (4.3) in Lemma 4.13 and Def-

inition 13.8(c), we have |φ−| +
∑c+

i=1 φ
+

i < |κ−| +
∑c+

i=1 κ
+

i . The analogous

inequalities are therefore

|π−|+
c+∑
i=1

π+

i ≤ BR(ν)A+(µ/µ?) + (νR +M)
(
|κ−|+

c+∑
i=1

κ+

i

)
− E+(T )

and

|π−|+
c+∑
i=1

π+

i ≥ |λ
−|+

c+∑
i=1

λ+

i +M
(
|κ−|+

c+∑
i=1

κ+

i

)
.

Combining these two inequalities and cancelling M
(
|κ−|+

∑c+

i=1 κ
+

i

)
we get

E+(T ) ≤ BR(ν)A+(µ/µ?) + νR
(
|κ−|+

c+∑
i=1

κ+

i

)
− |λ−| −

c+∑
i=1

λ+

i

again as required. �

Motivated by this result we make the following definition. The statistics

BR(ν), A−(µ/µ?) and A+(µ/µ?) are defined in Definitions 13.13 and 13.14.

Definition 13.16. Let (κ−, κ+) be a strongly c+-maximal signed weight of

shape µ/µ?, size R and sign +1. Let ν be a non-empty partition and let λ

be a partition of |ν||µ/µ?|. Fix `− = `(κ−). Define

E− = BR(ν)A−(µ/µ?) + νR|κ−| − |λ−|

E+ = BR(ν)A+(µ/µ?) + νR
(
|κ−|+

∑c+

i=1 κ
+

i

)
−
(
|λ−|+

∑c+

i=1 λ
+

i

)
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and if R ≥ 2,

Ec+,(κ−,κ+)(ν, µ/µ? : λ) = max
(
E− + E+ +

∑`(λ+)
i=`(κ+)+1

λ+

i , 0
)
.

If R = 1 we instead define Ec+,(κ−,κ+)(ν, µ/µ? : λ) = 0. Finally we set

Ec+,(κ−,κ+)(∅, µ/µ? : ∅) = −1.

Note that since R = (|κ−| + |κ+|)/|µ/µ?|, there is no need to state R

explicitly in the definition of Ec+,(κ−,κ+)(ν, µ/µ? : λ). The reason for the

technical final case when ν = ∅ will be seen in the proof of Corollary 13.22.

Corollary 13.17. Let (κ−, κ+) be a strongly c+-maximal signed weight of

shape µ/µ?, size R and sign +1. Let ν be a partition. Let λ be an
(
`(κ−),

`(κ+)
)
-large partition. Suppose that π�· λ⊕M(κ−, κ+) in the `(κ−)-twisted

dominance order. If T ∈ PSSYTκ(ν + M(1R), µ/µ?)(π−,π+) then T has at

most Ec+,(κ−,κ+)(ν, µ/µ? : λ) exceptional columns.

Proof. By Lemma 9.6 the `(κ−)-decomposition of λ is
〈
λ− + Mκ−, λ+ +

Mκ+
〉
. Therefore π�· λ ⊕M(κ−, κ+) is equivalent, by the definition of the

`−-twisted dominance order in Definition 6.6, to (π−, π+)�
(
λ−+Mκ−, λ+ +

Mκ+
)
. If R ≥ 2 the corollary is now immediate from Lemma 13.15, given

the definition of Ec+,(κ−,κ+)(ν, µ/µ? : λ) in Definition 13.16. When R = 1 it

follows from Remark 13.9. �

See Example 13.20 for the bound in this corollary in the running example

of the ‘signed’ case begun in Example 13.11.

Example 13.18. Continuing our running ‘unsigned’ example (see Exam-

ples 13.6, 13.7 and 13.10), let (κ−, κ+) be the strongly 1-maximal signed

weight
(
∅, (4, 1, 1)

)
of shape (2), size 3 and sign +1. (Note that this size

can be computed directly from
(
∅, (4, 1, 1)

)
knowing the shape using the

remark immediately after Definition 13.16.) Thus µ/µ? = (2)/∅ and R = 3.

We have `− = 0 and c+ = 1. Generalizing slightly, to show more clearly the

effect of columns of height at least R in ν, let ν = (2, 1) + C(1, 1, 1). The

relevant statistics are B3

(
(2, 1) + C(1, 1, 1)

)
= 3, and, since ω0

(
(2)
)

= (2)

corresponding to the greatest tableau 1 1 , we have A−(µ/µ?) = 0 and

A+(µ/µ?) = 2. The quantities E− and E+ in Definition 13.16 are

E− = 0

E+ = 3× 2 + 4C − 0− λ1 = 6 + 4C − λ1

and so E1,(∅,(4,1,1))

(
(2, 1), (2) : λ

)
= 0 + 6 + 4C − λ1 + λ4 + · · · for any

partition λ of 6 + 4C. Taking C = 0 and λ = (4, 2) as earlier we have

E1,(∅,(4,1,1))

(
(2, 1), (2) : (4, 2)

)
= 2 and so, by Lemma 13.15, a

(
∅, (4, 1, 1)

)
-

adapted plethystic semistandard signed tableaux lying in the set

PSSYT(∅,(4,1,1))

(
(2, 1) +M(1, 1, 1), (2)

)
(∅,π+)

where π+ � (4, 2) +M(4, 1, 1) may have at most two exceptional columns.

For a general C, we note that if λ = (4, 2) +C(4, 1, 1) then λ1 = 4C+ 4 and

so

E1,(∅,(4,1,1))

(
(2, 1) + C(1, 1, 1), (2):(4, 2) + C(4, 1, 1)

)
= 2
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giving the same bound; this is expected from the proof of Lemma 13.15,

because the contribution (4, 1, 1) to λ can only come from a typical column,
1 1

1 2

1 3
equal to the plethystic semistandard signed tableau shown in the margin.

Of course if C is large and λ is not of this special form then there may be

many more exceptional columns.

We now show by a direct argument that if π+ � (4, 2) + M(4, 1, 1) and

T ∈ PSSYT(∅,(4,1,1))

(
(2, 1) + M(1, 1, 1), (2)

)
(∅,π+)

then T has at most one

exceptional column. Thus as is usually the case, the bound from Corol-

lary 13.17 is not optimal. The key observation is that each typical column

contain four 1s as entries of its inner (2)-tableaux, and since the maxi-

mum positive entry is 3 and there are no negative entries, a column that

is not typical, i.e. not equal to the plethystic semistandard signed tableau

T(∅,(4,1,1)) shown earlier in the margin, has at most three 1s. The three

boxes in T not in columns of length 3 contribute at most five 1s. (This can

be easily seen from the tableaux in Example 13.6.) Therefore if there are

N non-typical columns, T has at most 4M − N + 5 entries of 1. On the

other hand, since π+ � (4, 2) +M(4, 1, 1), we have π+

1 ≥ 4 + 4M . Therefore

4M −N + 5 ≥ 4 + 4M and so N ≤ 1. Since exceptional columns are non-

typical, this implies there is at most one exceptional column, as claimed,

and moreover, this exceptional column is positive-exceptional. Since the

signed weight of the column is not dominated by (∅, (4, 1, 1)
)
, it is neces-

sarily equal to the plethystic semistandard signed tableau T(∅,(3,3)) shown in

the margin, defined by the strongly 2-maximal semistandard signed tableau

1 1

1 2

2 2

family of signed weight
(
∅, (3, 3)

)
. We continue this line of argument in

Example 13.24.

We finish this example in Example 13.24 below.

13.5. Signed weight bound in the `−-signed dominance order. We

now turn the bound on the number of exceptional columns in Lemma 13.15

into an upper bound on signed weights in the `−-signed dominance order

in Definition 4.1. We continue to simplify the exposition by assuming

the strongly maximal signed weight has sign +1. See §13.7 for the mod-

ifications for sign −1. Recall from Definition 4.3 and Lemma 4.4 that(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

is the greatest signed weight in the `−-signed

dominance order of a semistandard signed tableau of shape µ/µ?. The

set PSSYTκ

(
ν + M(1R), µ/µ?

)
(π−,π+) is defined in Definition 13.4. Small

columns were defined in Definition 13.8 and the statistic BR(ν) in Defini-

tion 13.13. An example is given after the proposition.

Proposition 13.19. Let (κ−, κ+) be a strongly c+-maximal signed weight

of shape µ/µ?, size R and sign +1. Let ν be a partition and let µ/µ? be a

skew partition. Set E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). Let M ∈ N0. Suppose that

T ∈ PSSYTκ

(
ν +M(1R), µ/µ?

)
(π−,π+) where

(π−, π+) � (λ−, λ+) +M(κ−, κ+)

in the `(κ−)-signed dominance order. Suppose that T has d small columns

and that their top R boxes have signed weights (φ−1 , φ
+

1 ), . . . , (φ−d , φ
+

d ). If
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M ≥ −νR + d+ E,

(π−, π+) �
(
BR(ν) + ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+ (φ−1 , φ
+

1 ) + · · ·+ (φ−d , φ
+

d ) +
(
νR − d− E +M

)
(κ−, κ+).

and if M ≥ E − νR, the weaker bound

(π−, π+) �
(
BR(ν)+ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
+
(
νR−E +M

)
(κ−, κ+)

also holds.

Proof. The second bound on (π−, π+) follows easily from the first since, by

the definition of small in Definition 13.16, we have (φ−i , φ
+

i ) � (κ−, κ+) for

all i, and so the first bound is maximized when d = 0. It remains to prove

the first bound.

If R = 1 then by Remark 13.9, (κ−, κ+) =
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

and

there are no exceptional columns. The claim is therefore that

(π−, π+) �
(
B1(ν) + ν1 − d+M

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+ (φ−1 , φ
+

1 ) + · · ·+ (φ−d , φ
+

d ).

By Lemma 4.4, each box that is not the top-most box in one of the d non-

small columns of T contributes at most
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

to the

signed weight of T . There are B1

(
ν + (M)

)
+ ν1− d+M such boxes. Since

by (13.6), we have B1

(
ν + (M)

)
= B1(ν), the first bound now follows.

Now suppose that R ≥ 2. Suppose that T has e exceptional columns, so T

has eR boxes in the top R rows of exceptional columns. By (13.6) and (13.7)

and Lemma 4.4, these boxes, together with the BR
(
ν + M(1R)

)
= BR(ν)

boxes not in the top R positions of a column of length R, contribute at most(
BR(ν) + eR

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

(13.8)

to the signed weight of T . Each of the νR−d−e+M columns of height at least

R that is both non-exceptional and non-small is typical (see Lemma 13.12)

and so contributes (κ−, κ+) to the signed weight of T . There are also d small

columns which contribute (φ−1 , φ
+

1 ) + · · · + (φ−d , φ
+

d ). Taken together these

columns therefore contribute(
νR +M − e− d

)
(κ−, κ+) + (φ−1 , φ

+

1 ) + · · ·+ (φ−d , φ
+

d ) (13.9)

to the signed weight of T . This is shown diagramatically in Figure 13.2.

The sum of (13.8) and (13.9) is an upper bound on the signed weight

of T . Since (κ−, κ+) is the signed weight of a tableau of outer shape (1R)

and inner shape µ/µ?, it follows, again by Lemma 4.4, that

(κ−, κ+) �R
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
.

We conclude that (for fixed d), this upper bound is maximized in the `(κ−)-

signed dominance order when e is as large as possible. By Lemma 13.15 we

have e ≤ Ec+,(κ−,κ+)(ν, µ/µ? : λ). Therefore we obtain an upper bound on

(π−, π+) by substituting E for e in the sum of (13.8) and (13.9). (Note that

by hypothesis νR − d − E + M ≥ 0 so the right-hand side is a valid signed

weight, having non-negative entries.) This proves the first bound. �
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d

small exc.

e

typical

. .
.

. .
.

...

...

R

νR+M−e−d

Figure 13.2. A plethystic semistandard signed tableau of outer shape

ν + M(1R) showing the contributions to the signed weight identified

in the proof of Proposition 13.19. Each of the BR(ν) + eR shaded

boxes has an inner µ/µ?-tableau whose contribution is bounded by(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
. The hatched small columns contributing

(φ−j , φ
+
j ) for 1 ≤ j ≤ d. The white boxes are in typical columns, the top R

boxes in each contributing (κ−, κ+). (It is possible that some of the e excep-

tional columns appear to the left of the d small columns.) Note that as M

varies, all but a constant number of boxes are in typical columns and so

their signed weight (per column) is bounded by the stronger bound (κ−, κ+)

rather than the weaker bound (per box) from
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
.

Example 13.20. As in Example 13.11 we take the strongly 1-maximal

signed weight
(
(2, 2), (3, 1)

)
of shape (2), size 2 and sign +1, and take ν =

(2, 1). We have BR(ν) = B2

(
(2, 1)

)
= 1. Since

(
ω`−
(
4)
)−
, ω`−

(
(4)
)+)

=(
(1, 1), (2)

)
,

from Definition 13.14 we have A−
(
(4)
)

= 2, A+
(
(4)
)

= 4 and from Defi-

nition 13.16 we have

E− = 1.2 + 1.4− |λ−| = 6− |λ−|
E+ = 1.4 + 1.(4 + 3)−

(
|λ−|+ λ+

1

)
= 11− |λ−| − λ+

1

and so, if λ is a partition of 12 having exactly k parts of size at least 2, we

have

E1,((2,2),(3,1))

(
(2, 1), (4) : λ

)
= 17− 2|λ−| − (λ1 − 2) + λ+

3 + · · ·
= 17− 2|λ−| − (λ1 − 2) + (λ3 − 2) + · · ·+ (λk − 2).

We denote this quantity by E as usual.

The plethystic semistandard signed tableaux relevant to the plethysm

coefficients 〈s(2,1)+M(1,1) ◦ s(4), sλ⊕M((2,2),(3,1)〉 for M ∈ N0 lie in the set

PSSYT((2,2),(3,1))

(
(2, 1) +M(13), (4)

)
(π−,π+). Since νR = ν2 = 1, the weaker

bound from Proposition 13.19 is that if M ≥ E−1 and (π−, π+)�(λ−, λ+)+

M
(
(2, 2), (3, 1)

)
then

(π−, π+) � (1 + 2E)
(
(1, 1), (2)

)
+ (1− E +M)

(
(2, 2), (3, 1)

)
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in the 2-signed dominance order. We consider the two cases in the earlier

Example 13.11. If λ = (8, 3, 1) with 2−-decomposition
〈
(3, 2), (6, 1)

〉
then

E− = 1, E+ = 0 and E = 1 and so the upper bound in the 2-signed

dominance order is that if (π−, π+) �
(
(3, 2), (6, 1)

)
+M

(
(2, 2), (3, 1)

)
then

(π−, π+) � 3
(
(1, 1), (2)

)
+M

(
(2, 2), (3, 1)

)
=
(
(3, 3), (6)

)
+M

(
(2, 2), (3, 1)

)
for M ≥ 0. If instead λ = (6, 3, 3) with 2−-decomposition

〈
(3, 3), (4, 1, 1)

〉
then E− = 0, E+ = 1 but because the proof of Lemma 13.15 allows, as it

must in general, one exceptional column for each integer entry in {3, 4, . . .},
of which there are λ+

3 = 1, we have E = 0 + 1 + 1 = 2 and the upper

bound in the 2-signed dominance order is that if (π−, π+)�
(
(3, 3), (4, 1, 1)

)
+

M
(
(2, 2), (3, 1)

)
then

(π−, π+) � (1 + 2.2)
(
(1, 1), (2)

)
+ (1− 2 +M)

(
(2, 2), (3, 1)

)
=
(
(3, 3), (7,−1)

)
+M

(
(2, 2), (3, 1)

)
for M ≥ 1, where just for this inequality, to facilitate comparison, we allow a

negative entry in what would normally be a signed weight. Note in each case

the upper bound is conditional on the lower bound, as we saw is necessary

in Example 13.7.

We conclude this example in Example 14.6 in which small columns also

must be considered.

13.6. Signed weight bound in the `-twisted dominance order. We

are now almost ready to prove Corollary 13.22; it is the analogue of Propo-

sition 10.7 and Corollary 10.10. First though we must address the technical

point that to apply Corollary 9.20 we require an (`(κ−) + 1, `(κ+)
)
-large

partition as the upper bound.

Lemma 13.21. Let (κ−, κ+) be a strongly maximal signed weight. Set `− =

`(κ−). Let µ/µ? be a skew partition. Given any K ∈ N and W ∈ N0, the

pair

K
〈
κ−, κ+

〉
+W

〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
−
〉

is the `−-decomposition of the (`− + 1, `(κ+)
)
-large partition

κ⊕ (K − 1)(κ−, κ+)⊕W
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
−
)

where κ is the partition with `−-decomposition
〈
κ−, κ+

〉
.

Proof. Proposition 6.5 states that
〈
κ−, κ+

〉
is the `−-decomposition of an(

`− + 1, `(κ−)
)
-large partition and so κ is well-defined. By Remark 6.2, κ

is
(
`(κ−), `(κ+)

)
-large. Since the parts of

〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉

are

partitions by Lemma 4.4, the same holds for

K
〈
κ−, κ+

〉
+W

〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉
.

Now by Lemma 9.6 and the following remark, this pair is the `−-decomposition

of the partition κ ⊕ (W − 1)(κ−, κ+) ⊕W
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
−
)
. This

partition is
(
`− + 1, `(κ+)

)
-large because κ is. �
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As some motivation for the definition of ω in the following corollary, we

recall from Example 13.7 that to get suitable upper bounds in a stable

partition system when λ = (4, 1, 1) and (κ−, κ+) =
(
∅, (4, 1, 1)

)
we had

to begin with λ ⊕ (κ−, κ+), rather than λ, because there could be a single

exceptional column. The partition κ is well defined by Proposition 6.5.

Corollary 13.22 (Outer Twisted Weight Bound). Let κ be a strongly c+-

maximal weight of shape µ/µ?, size R and sign +1. Let ν be a partition

and set ν(M) = ν + (MR). Let λ be an
(
`(κ−), `(κ+)

)
-large partition of

|µ/µ?||ν|. Let κ be the unique partition with `(κ−)-decomposition
〈
κ−, κ+

〉
.

Set E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). If ν = ∅ then define ω = ∅ and otherwise

define

ω =

{
κ⊕ (BR(ν) + ER)

(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

κ⊕ (BR(ν) + ER)
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
⊕ (νR − E − 1)(κ−, κ+)

choosing the case according to whether E ≥ νR or E < νR. Then ω is an(
`(κ−) + 1, `(κ+)

)
-large partition of{
|λ|+ (E − νR + 1)Rm if E ≥ νR
|λ| if E < νR.

Suppose that σ�· λ ⊕M
(
κ−, κ+

)
in the `(κ−)-twisted dominance order. If

sσ is a constituent of the plethysm sν(M) ◦ sµ/µ? then

σ�·
{
ω ⊕

(
−(E − νR + 1) +M

)
(κ−, κ+) if E ≥ νR

ω ⊕M(κ−, κ+) if E < νR

for all M ∈ N0 such that M > E − νR.

Proof. Let m = |µ/µ?| and let n = |ν|. By Definition 13.13, we have

BR(ν) + ER =

{
|ν|+ (E − νR)R if E ≥ νR
|ν| − (νR − E)R if E < νR.

Hence, using that |κ−|+ |κ+| = Rm and |ω`−(µ/µ?)
−|+ |ω`−(µ/µ?)

+| = m,

we obtain

|ω| =

{
Rm+ (|ν|+ (E − νR)R)m if E ≥ νR
Rm− (νR − E)Rm+mn+ (νR − E − 1)Rm = mn if E < νR

which, since |λ| = |ν|Rm, shows that the size of ω is as claimed. By

Lemma 13.21, ω is
(
`(κ−) + 1, `(κ+)

)
-large. Note that if ν = ∅ then since

E = −1, the final case applies and ω = ∅. Note also that, by Lemma 13.21,〈
ω−, ω+

〉
= κ+K

〈
κ−, κ+

〉
+ (BR(ν) + ER)

〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉 (13.10)

where K = 0 if E ≥ νR and K = νR−E − 1 otherwise. We now follow part

of the proof of Proposition 10.7. By Lemma 6.12, sσ is a direct summand

of eσ−hσ+ . Hence, by Proposition 5.6 we have

|PSSYT
(
ν +M(1R), µ/µ?

)
(σ−,σ+)

∣∣ = 〈eσ−hσ+ , sν+M(1R) ◦ sµ/µ?〉 ≥ 1.



110 ROWENA PAGET AND MARK WILDON

By hypothesis σ�· λ ⊕M
(
κ−, κ+

)
. Hence, by the definition of the `(κ−)-

twisted dominance order in Definition 6.6, the largeness assumption on λ

and Lemma 9.6, we have〈
σ−, σ+

〉
�
〈
λ−, λ+

〉
+M(κ−, κ+).

Suppose that E ≥ νR. Then applying the weaker second bound in Propo-

sition 13.19 to the hypothesis PSSYTκ

(
ν + M(1R), µ/µ?

)
(σ−,σ+) 6= ∅ we

obtain

(σ−, σ+) � (κ−, κ+) +
(
BR(ν) + ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+
(
νR − E +M − 1

)
(κ−, κ+)

= (ω−, ω+) +
(
νR − E +M − 1

)
(κ−, κ+)

for M > E − νR. By (13.10) this is equivalent to

σ�· ω ⊕
(
νR − E +M − 1

)
(κ−, κ+),

as required. The proof in the remaining case E < νR is entirely analogous,

now using Proposition 13.19 to get

(σ−, σ+) � (νR − E)(κ−, κ+)

+
(
BR(ν) + ER

)〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉

+M(κ−, κ+)

where again, since νR − E ≥ 1, the first two summands are the `(κ−)-

decomposition of the partition ω. �

Remark 13.23. If R = 1 and ν 6= ∅ then E = 0 and, as we show in

§15.1, the conclusion of Corollary 13.22 reduces to σ � ω
(n)
`− (µ/µ?) where

ω
(n)
`− (µ/µ?) is as defined in Definition 10.6. The special case of the corollary

is therefore logically equivalent to Proposition 10.7. This should be expected,

because the unique strongly maximal signed weight of shape µ/µ? and size 1

is the signed weight of the greatest semistandard signed tableau t`−(µ/µ?).

The upper bound in Corollary 13.22 is usually far from tight.

Example 13.24. We finish our first ‘unsigned’ running example (see Ex-

amples 13.6, 13.7, 13.10 and 13.18), with the strongly 1-maximal signed

weight
(
∅, (4, 1, 1)

)
of shape (2) and size 3, so µ/µ? = (2)/∅. As in Ex-

ample 13.18 we take ν = (2, 1) + C(1, 1, 1) and λ = (4, 2) + C(4, 1, 1).

We saw in this example that BR(ν) = B3

(
(2, 1) + C(1, 1, 1)

)
= 3 and

E1,(∅,(4,1,1))

(
(2, 1) + C(1, 1, 1), (2); (4, 2) + C(4, 1, 1)

)
= 2 for all C ∈ N0.

Since κ = κ+ = (4, 1, 1) we have `(κ−) = 0. Since ω0

(
(2)
)−

= ∅ and

ω0

(
(2)
)+

= (2), the partition ω in Corollary 13.22 is therefore

ω =

{
(4, 1, 1)⊕ (3 + 2.3)(2)

(4, 1, 1)⊕ (3 + 2.3)(2)⊕ (C − 3)(4, 1, 1)

choosing the case according to whether 2 ≥ C or 2 < C. Remembering

that the 0-twisted dominance order is simply the usual dominance order,
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the conclusion of the corollary is that if σ � (4, 2) + C(4, 1, 1) + M(4, 1, 1)

and PSSYTκ

(
(2, 1) + (C +M)(1, 1, 1), (2)

)
(∅,σ)

6= ∅ then

σ �

{
(4, 1, 1) + 9(2) + (C − 3 +M)(4, 1, 1)

(4, 1, 1) + 9(2) + (C − 3)(4, 1, 1) +M(4, 1, 1)

= (22, 1, 1) + (C +M − 3)(4, 1, 1) (13.11)

for all M > 2 − C. (The unification of the two cases is expected for the

same reason mentioned in Example 13.18 that columns of signed weight(
∅, (4, 1, 1)

)
are typical.) We verify this bound directly when C = 0. Recall

from after Definition 3.5 that wt(t) is the positive part of the signed weight

of a tableau having only positive integer entries. We saw in Example 13.18

that if π+ � (4, 2) +M(4, 1, 1) then there is at most one non-typical column

in any T ∈ PSSYTκ

(
(2, 1)+(M,M,M), (2)

)
(∅,π+)

, and this column is large-

exceptional. Hence T has the form

1 1

1 2

1 3

. . .

1 1 1 1

1 2 1 2

1 3 t

1 1 u

v

where, by counting 1s as in the earlier example, we require 4M+1+wt(t)1 +

wt(u)1 + wt(v)1 ≥ 4M + 4. Similarly, by counting entries in {1, 2} and

{1, 2, 3}, we obtain the necessary and sufficient condition wt(t) + wt(u) +

wt(v) � (3, 2, 1). If there is an exceptional column then t = 2 2 and

u = 1 1 and either v = 1 2 or v = 1 3 . If v = 1 2 then T has

weight (M − 1)(4, 1, 1) + (3, 3) + (5, 1) = (16, 6, 2) + (M − 3)(4, 1, 1) and

if v = 1 3 then, very similarly T has weight (16, 5, 3) + (M − 3)(4, 1, 1).

Otherwise there are two cases:

(a) t = 1 3 and either u = 1 2 , v = 1 2 or u = 1 1 , v = 2 2 ;

(b) t = 2 3 and u = 1 1 and v = 1 2 ;

in which, once again, T has weight (M − 1)(4, 1, 1) + (4, 1, 1) + (4, 2) =

(M − 1)(4, 1, 1) + (3, 2, 1) + (5, 1) = (16, 5, 3) + (M − 3)(4, 1, 1) Thus, as

expected from the remark before this example, the upper bound (13.11) is

easily met.

See Example 15.10 for the stable plethysm from the example above. For a

further ‘signed’ example of Corollary 13.22, used in the context of the proof

of Theorem 1.2, see Example 14.6, which continues the running example in

Examples 13.11 and 13.20.

13.7. Results for both signs. We now give the analogous definitions and a

combined final result applicable to strongly maximal signed weights of either

sign. We have already defined exceptional rows in Definition 13.8. In the

following definition B+

R(ν) is the same as BR(ν) defined in Definition 13.13.

Definition 13.13. (Both signs.) Given a partition ν, R ∈ N and a sign

±1, let B+

R(ν) be the number of boxes (i, j) of [ν] such that either i > R or
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ν ′j < R and let B−R(ν) be the number of boxes (i, j) of [ν] such that either

j > R or νi < R.

In the following definition Ec+,(κ−,κ+)(ν, µ/µ? : λ) is as already defined

in Definition 13.16 if (κ−, κ+) has sign +1. For ease of reference we recall

from Definition 13.14 that we have defined A−(µ/µ?) = |ω`−(µ/µ?)
−| and

A+(µ/µ?) = |ω`−(µ/µ?)
−| +

∑c+

i=1 ω`−(µ/µ?)
+

i .

Definition 13.16. (Both signs.) Let (κ−, κ+) be a strongly c+-maximal

signed weight of shape µ/µ? and size R where R ≥ 2. Let ν be a partition

and let λ be a partition of |ν||µ/µ?|. Fix `− = `(κ−). Set ν+
R = νR and

ν−R = ν ′R. Define

E− = B±R(ν)A−(µ/µ?) + ν±R |κ−| − |λ−|

E+ = B±R(ν)A+(µ/µ?) + ν±R
(
|κ−|+

∑c+

i=1 κ
+

i

)
− |λ−| −

∑c+

i=1 λ
+

i

where the sign in the four appearances of ± is the sign of (κ−, κ+). Define

Ec+,(κ−,κ+)(ν, µ/µ? : λ) = max
(
E− + E+ +

∑`(λ+)
i=`(κ+)+1

λ+

i , 0
)
.

If R = 1 we instead define Ec+,(κ−,κ+)(ν, µ/µ? : λ) = 0. Finally we set

Ec+,(κ−,κ+)(∅, µ/µ? : ∅) = −1.

Again we remind the reader that the partition κ in the following corollary

is well-defined by Proposition 6.5.

Corollary 13.22 (Outer Twisted Weight Bound). (Both signs.) Let

(κ−, κ+) be a strongly c+-maximal signed weight of shape µ/µ? and size R.

Let ν be a partition. Let λ be an
(
`(κ−), `(κ+)

)
-large partition. Set ν+

R = νR
and ν−R = ν ′R. Let

ν(M) =

{
ν +M(1R) if (κ−, κ+) has sign +1

ν t (RM ) if (κ−, κ+) has sign −1.

Set E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). Suppose that π�· λ ⊕M(κ−, κ+) in the

`(κ−)-twisted dominance order and that T ∈ PSSYTκ(ν(M), µ/µ?)(π−,π+).

Throughout ± is the sign of (κ−, κ+).

(i) If (κ−, κ+) has sign +1 then T has at most E exceptional columns and

if (κ−, κ+) has sign −1 then T has at most E exceptional rows.

(ii) Let M ≥ −ν±R + E. If T has d small columns whose top R boxes

have signed weights (φ−1 , φ
+

1 ), . . . , (φ−d , φ
+

d ) (when (κ−, κ+) has sign +1) or d

small rows whose leftmost R boxes have signed weights (φ−1 , φ
+

1 ), . . . , (φ−d , φ
+

d )

(when (κ−, κ+) has sign −1) then

(π−, π+) �
(
B±R(ν) + ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+ (φ−1 , φ
+

1 ) + · · ·+ (φ−d , φ
+

d ) +
(
ν±R − d− E +M

)
(κ−, κ+)

in the `(κ−)-signed dominance order for M ≥ −ν±R + d+E and the weaker

bound

(π−, π+) �
(
B±R(ν) + ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+
(
ν±R − E +M

)
(κ−, κ+)



113

for M ≥ −ν±R + E also holds.

(iii) Let κ be the unique partition with `(κ−)-decomposition
〈
κ−, κ+

〉
. If

ν = ∅ then define ω = ∅ and otherwise define

ω =

{
κ⊕ (B±R(ν) + ER)

(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

κ⊕ (B±R(ν) + ER)
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
⊕ (ν±R − E − 1)(κ−, κ+)

choosing the case according to whether E ≥ ν±R or E < ν±R . Then ω is an(
`(κ−) + 1, `(κ+)

)
-large partition of |λ|+ SR|µ/µ?| where

S =

{
E − ν±R + 1 if E ≥ ν±R
0 if E < ν±R .

Suppose that σ�· λ ⊕M
(
κ−, κ+

)
in the `(κ−)-twisted dominance order. If

sσ is a constituent of the plethysm sν(M) ◦ sµ/µ? then

σ�·
{
ω ⊕

(
−(E − ν±R + 1) +M

)
(κ−, κ+) if E ≥ ν±R

ω ⊕M(κ−, κ+) if E < ν±R

for all M ∈ N0 such that M > ν±R − E.

Proof. In (iii) the size of ω and that ω is
(
`(κ−) + 1, `(κ+)

)
-large follow ex-

actly as in Corollary 13.22; note that the sign of (κ−, κ+) is irrelevant to this

first part of the proof. Part (i) is proved in Corollary 13.17 when (κ−, κ+)

has sign +1; the proof is precisely analogous for sign −1, using the mod-

ified definitions above and the obvious modifications of Lemma 13.15 and

Remark 13.9. When the sign is +1, (ii) is the stronger bound in Proposi-

tion 13.19, and (iii) is Corollary 13.22. Again in all three cases the proof is

precisely analogous for sign −1. �

14. Proof of Theorem 1.2

In this section we prove Theorem 1.2 using the Signed Weight Lemma

(Lemma 7.3). We begin with the second part of the theorem where the

stable multiplicity is zero in §14.1. In §14.2 we construct a suitable stable

partition system. Then in §14.3 we prove a final preliminary lemma on the

length of signed weights, closely analogous to a well known result on the

length of vectors in the Type A root system. Then finally in §14.5 we prove

Theorem 14.7 which restates Theorem 1.2 with an explicit bound.

14.1. The vanishing case of Theorem 1.2. Recall from Definition 11.1

that LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
is defined whenever (η−, η+) 6� (κ−, κ+),

and so in particular, whenever (η−, η+) � (κ−, κ+). See Definition 13.16

in §13.7. for the definition of Ec+,(κ−,κ+)(ν, µ/µ? : λ) in its ‘both signs’

version.

Proposition 14.1. Let (κ−, κ+) be a strongly maximal signed weight of size

R, shape µ/µ? and sign ε. Set `− = `(κ−). Let η− and η+ be partitions

with `(η−) ≤ `−. Let `+ = max(`(κ+), `(η+). Let ν be a partition and let

λ be an (`−, `+)-large partition of |ν||µ/µ?|. Set ν(M) = ν + (MR) if κ has

sign +1 and ν(M) = ν t (RM ) if κ has sign −1. Set ν+
R = νR and ν−R = ν ′R
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and let ± be the sign of (κ−, κ+). Set E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). If

(κ−, κ+) � (η−, η+) then〈
sν(M) ◦ sµ/µ? , sλ⊕M(η−,η+)

〉
= 0

for all

M >

{
LZ
(
[λ⊕ (E−ν±R+1)(η−, η+), ω]�· , (κ−, κ+), (η−, η+)

)
+(E−ν±R+1)

LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
choosing the case according to whether E ≥ ν±R or E < ν±R , where ω is the

relevant partition for the two cases taken from Corollary 13.22.

Proof. By Corollary 13.22(iii), if sσ is a constituent of sν(M) ◦sµ/µ? such that

σ�· λ⊕M(κ−, κ+) then

σ�·
{
ω ⊕

(
−(E − ν±R + 1) +M

)
(κ−, κ+) if E ≥ ν±R

ω ⊕M(κ−, κ+) if E < ν±R

for all M ∈ N0 such that M > −ν±R + E. Since (η−, η+) � (κ−, κ+) we

may apply this result taking σ = λ ⊕M(η−, η+). In the second case, when

E < ν±R , the proposition then follows by an argument very closely analogous

to the proof of Proposition 11.2; the analogue of (11.1) is that if σ↔
〈
σ−, σ+

〉
then

(σ−, σ+) � (κ−, κ+) + (B±R(ν) + ER)(ω`−(µ/µ?)
−, ω`−(µ/µ?)

+)

+ (ν±R − E − 1)(κ−, κ+) +M(κ−, κ+)

and so, substituting (λ−, λ+) + M(η−, η+) for (σ−, σ+), as it justified by

Lemma 9.6 since (η−, η+) � (κ−, κ+), the analogue of (11.2) is

(λ−, λ+) +M(η−, η+)� (B±R(ν) + ER)(ω`−(µ/µ?)
−, ω`−(µ/µ?)

+)

+ (ν±R − E)(κ−, κ+) +M(κ−, κ+)

where since E < ν±R , we add M(κ−, κ+) to a well-defined signed weight. The

application of the inequalities is then exactly as before, giving a contradic-

tion whenever M > LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
. In the first case, when

E ≥ ν±R , we note that because of the shift in M , we now require

−(E − ν±R + 1) +M ≥ LZ
(
[λ⊕ (E − ν±R + 1)(η−, η+), ω]�· , (κ

−, κ+), (η−, η+)
)

where ω is now defined by the first case in Corollary 13.22. The argument

is otherwise the same. �

14.2. Stable partition system for Theorem 1.2. The following lemma

is the analogue of Lemma 11.3. Again we remind the reader that the statistic

statistic Ec+,(κ−,κ+)(ν, µ/µ? : λ) is defined in Definition 13.16. Here we also

use B±R(ν) from Definition 13.13; each definition is given in its ‘both signs’

versions in §13.7. The partition κ in the following lemma is well-defined by

Proposition 6.5.
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Lemma 14.2. Let (κ−, κ+) be a strongly c+-maximal signed weight of shape

µ/µ? and size R. Let ν be a partition. Let λ be an
(
`(κ−) + 1, `(κ+)

)
-large

partition of |ν||µ/µ?|. Let ν±R = νR if (κ−, κ+) has sign +1 and let ν±R = ν ′R
if (κ−, κ+) has sign −1. Define

ν(M) =

{
ν +M(1R) if (κ−, κ+) has sign +1

ν t (RM ) if (κ−, κ+) has sign −1.

Set E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). Let κ be the unique partition with `(κ−)-

decomposition
〈
κ−, κ+

〉
. Define ω = ∅ if ν = ∅ and otherwise

ω =

{
κ⊕ (B±R(ν) + ER)

(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

κ⊕ (B±R(ν) + ER)
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
⊕ (ν±R − E − 1)(κ−, κ+)

choosing the case according to whether E ≥ ν±R or E < ν±R . If E ≥ ν±R then

set S = −ν±R + E + 1 and set P(M) = ∅ for M < S and

P(M) =
[
λ⊕M(κ−, κ+), ω ⊕ (M − S)(κ−, κ+)

]
�·

if M ≥ S. If E < ν±R then set S = 0 and set

P(M) =
[
λ⊕M(κ−, κ+), ω ⊕M(κ−, κ+)

]
�·

for all M ∈ N0. Then (P(M))M∈N0 is a stable partition system with respect

to the map π 7! π ⊕ (κ−, κ+) and the symmetric functions hπ = eπ−hπ+,

stable for M ≥ S +K where K is the maximum of

• L
(
[λ− + Sκ−, ω−]`(κ

−)

�� , κ−
)
,

• L
(
[λ+ + Sκ+, ω+ + (|λ+|+ S|κ+| − |ω+|)]�, κ+

)
,

•
(
ω+

1 + ω+

2 − 2λ+

1 − 2Sκ+

1 + 2|λ+|+ 2S|κ+| − 2|ω+|
)
/(κ+

1 − κ
+

2 ),

•
(
max(`(λ+), `(κ+)) + |ω−| − |λ−| − S|κ−| − ω−

`−

)
/κ−

`(κ−)
.

and zero. Moreover, if π ∈ P(M) and sσ is a summand of eπ−hπ+ appearing

in the plethysm sν(M) ◦ sµ/µ? then σ ∈ P(M).

Proof. By Corollary 13.22(iii) in its ‘both signs’ version in §13.7, ω is an(
`(κ−) + 1, `(κ+)

)
-large partition, of size |λ|+ SR|µ/µ?|. If E < ν±R then it

is immediate from Corollary 9.20 applied with λ and ω that the partition

system (P(M))M∈N0 is stable, and since S = 0, the bounds above defining K

are exactly the bounds defined in the statement of this lemma. If E ≥ ν±R
then S = E − ν±R + 1 and we instead apply the corollary to the partitions

λ ⊕ S(κ−, κ+) and ω. Since, by Lemma 9.6 we have
(
λ ⊕ S(κ−, κ+)

)−
=

λ− ⊕ Sκ−, and so on, the result from Corollary 9.20 is that the partition

system (P(N+S))N∈N0 is stable for N ≥ K, where again K is as defined

in the statement of this lemma. Hence (P(M))M∈N0 is stable for M ≥
S +K. (The reader may easily check that Definition 7.1 permits any finite

number of the sets P(M) to be empty.) For the ‘moreover’ part of the

result, first note that by Lemma 6.12, σ�· π. By Corollary 13.22(iii) we have

σ�· ω ⊕ (M − S)(κ−, κ+). Hence σ ∈ P(M). This completes the proof. �
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14.3. Box moving bound. Let V`−×V be the abelian group generated by

the setW`−×W of signed weights. Identifying
(
(α−1 , . . . , α

−
`−), (α+

1 , α
+

2 , . . .)
)

∈ V`−×V with
(
α−1 , . . . , α

−
`− , α

+

1 , α
+

2 , . . .) as in the definition of the `−-signed

dominance order on W`− ×W (see Definition 4.1) we define ε(j) ∈ V`− × V
for each j ∈ N by

ε
(j)
i =


1 if i = j

−1 if i = j + 1

0 otherwise.

For example if `− = 2 then ε(1) =
(
(1,−1),∅

)
, ε(2) =

(
(0, 1), (−1)

)
, ε(3) =(

(0, 0), (1,−1)
)
, and so on. Observe that the ε(j) for j ∈ N form a Z-basis for

the subgroup of V`−×V of elements of sum 0. We say that (γ−, γ+) ∈ V`−×V
is root-positive if, under this identification, it is a linear combination of the

ε(j) with non-negative coefficients. Given a root-positive element (β−, β+) ∈
V`− × V expressed uniquely in the ε(j) basis as

(β−, β+) =
∑
j∈N

bjε
(j),

we define the root-length of (β−, β+), denoted ||(β−, β+)|| by

||(β−, β+)|| =
∑
j

bj . (14.1)

Note the sum in (14.1) is a finite sum of non-negative integers. In practice,

it is more often helpful to think of each ε(j) as defining a single box move

as in the remark following Example 6.9.

Lemma 14.3. Fix `− ∈ N. Let π, σ and τ be partitions such that π�· σ�· τ .

Then τ−σ is root-positive and ||(τ−, τ+)−(σ−, σ+)|| ≤ ||(τ−, τ+)−(π−, π+)||.

Proof. By Definition 6.6 we have (σ−, σ+) � (τ−, τ+) in the `−-signed dom-

inance order on W`− × W. By Definition 4.1 this is the usual dominance

order on concatenated weights. Hence by a standard result on the domi-

nance order familiar from the Type A root system, which also follows from

the remark above about single box moves, (τ−−σ−, τ+−σ+) is root-positive.

Let

(σ− − π−, σ+ − π+) =
∑

j∈N bjε
(j)

(τ− − σ−, τ+ − σ+) =
∑

j∈N cjε
(j)

where bj , cj ≥ 0 for each j. Now (τ−−π−, τ+−π+) =
∑

j∈N(bj + cj)ε
(j) and

since bj + cj ≥ cj the remaining claim follows. �

The `−-signed dominance order on the setW`−×W of signed weights used

in the following lemma is defined in Definition 4.1.

Lemma 14.4. Let (φ−i , φ
+

i ) for 1 ≤ i ≤ d and (κ−, κ+) be signed weights

of the same size such that (φ−i , φ
+

i ) � (κ−, κ+) in the `−-signed dominance
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order for each i. Then d(κ−, κ+)−
∑d

i=1(φ−i , φ
+

i ) is root-positive and

∣∣∣∣d(κ−, κ+)−
d∑
i=1

(φ−i , φ
+

i )
∣∣∣∣ ≥ d.

Proof. By Lemma 14.3, (κ−, κ+) − (φ−, φ+)i is root-positive. Write (κ− −
φ−i , κ

+ − φ+

i ) =
∑

j∈N bijε
(j) where bij ∈ N0 for all i and j. For each i, at

least one coefficient bij is non-zero, and so

d(κ−, κ+)−
d∑
i=1

(φ−i , φ
+

i ) =
∑
j∈N

( d∑
i=1

bij

)
ε(j)

where the total sum of coefficients is at least d. �

14.4. Small columns and rows. Let (κ−, κ+) be a strongly c+-maximal

signed weight of shape µ/µ? and size R. We use ‘/’ to distinguish the cases

when (κ−, κ+) has sign +1/−1. Recall from Definition 13.8 that in each

non-exceptional column/row of a plethystic semistandard signed tableau T

of inner shape µ/µ? either the top/leftmost R boxes in the column/row form

the plethystic semistandard signed tableau T(κ−,κ+), or the column/row is

small having signed weight (φ−, φ+) such that (φ−, φ+) � (κ−, κ+) in the

`(κ−)-signed dominance order on set W`−× W defined in Definition 4.1.

The bound Ec+,(κ−,κ+)(ν, µ/µ? : λ) in the following lemma is defined in

Definition 13.16 and the statistic B±R(ν) is defined in Definition 13.13, each

in their ‘both signs’ version in §13.7.

Lemma 14.5. Let (κ−, κ+) be a strongly c+-maximal signed weight of shape

µ/µ? and size R. Let ν be a partition. Set `− = `(κ−). Let λ be a
(
`−, `(κ+)

)
-

large partition of |µ/µ?||ν|. Let E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). Let ν±R = νR if

(κ−, κ+) has sign +1 and let ν±R = ν ′R if (κ−, κ+) has sign −1. Let M ∈ N0

and set

ν(M) =

{
ν +M(1R) if (κ−, κ+) has sign +1

ν t (RM ) if (κ−, κ+) has sign −1.

Let T ∈ PSSYTκ(ν(M), µ/µ?)(π−,π+) be a (κ−, κ+)-adapted plethystic semis-

tandard signed tableau where (π−, π+)�(λ−, λ+)+M(κ−, κ+) in the `−-signed

dominance order on W`−×W. Set

D=
∣∣∣∣(B±R(ν)+ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
+(ν±R−E)(κ−, κ+)−(λ−, λ+)

∣∣∣∣
where in this equation the root-length is of a root-positive element. If M ∈ N0

and M ≥ D + E − ν±R then T has at most D small columns/rows.

Proof. For ease of notation set (ω−, ω+) =
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
. Sup-

pose that T has exactly d small columns/rows. The bound in the ‘both

signs’ version of Corollary 13.22(ii) states that, in the `−-signed dominance

order, (π−, π+) � (σ−, σ+) where

(σ−, σ+) =
(
B±R(ν)+ER

)
(ω−, ω+)+

d∑
i=1

(φ−i , φ
+)+(ν±R −E+M−d)(κ−, κ+)
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for M ≥ −ν±R + d + E and the weaker bound in the same result is that

(π−, π+) � (τ−, τ+) where

(τ−, τ+) =
(
B±R(ν) + ER

)
(ω−, ω+) + (ν±R − E +M)(κ−, κ+)

for M ≥ E − ν±R . Applying Lemma 14.3 to (π−, π+) � (σ−, σ+)(τ−, τ+) we

obtain ∣∣∣∣(τ−, τ+)− (π−, π+)
∣∣∣∣ ≥ ∣∣∣∣d(κ−, κ+)−

d∑
i=1

φi
∣∣∣∣ ≥ d. (14.2)

where the final inequality uses Lemma 14.4. On the other hand, applying

Lemma 14.3 to the chain of inequalities

(λ−, λ+) +M(κ−, κ+) � (π−, π+) � (τ−, τ+)

valid for M ∈ N0 with M ≥ −ν±R + d+ E we get∣∣∣∣(τ−, τ+)− (π−, π+)
∣∣∣∣

≤
∣∣∣∣(B±R(ν) + ER

)
(ω−, ω+) + (ν±R − E +M)(κ−, κ+)

−
(
(λ−, λ+) +M(κ−, κ+)

)∣∣∣∣
=
∣∣∣∣(B±R(ν) + ER

)
(ω−, ω+) + (ν±R − E)(κ−, κ+)− (λ−, λ+)

∣∣∣∣. (14.3)

By the same lemma, the right-hand side is the norm of a root-positive ele-

ment. Combining (14.2) and (14.3) we obtain the required bound d ≤ D,

valid for all M ∈ N0 with M ≥ D + E − ν±R . �

Example 14.6. Continuing Examples 13.11 and 13.20 we take the strongly

1-maximal signed weight
(
(2, 2), (3, 1)

)
, defined by the maximal plethystic

semistandard tableau family
{

1 2 1 1 , 1 2 1 2
}

of size 2 and sign

+1, and consider the plethysm coefficients 〈s(2,1)+M(1,1)◦s(4), sλ⊕M((2,2),(3,1)〉
for M ∈ N0. The partition κ with 2-decomposition

〈
(2, 2), (3, 1)

〉
is (5, 3).

Let E = E1,((2,2),(3,1))

(
(2, 1), (4) : λ). Note that BR(ν) = B2

(
(2, 1)

)
= 1. If

E ≥ ν2 = 1 then the first case for ω in Corollary 13.22 and Lemma 14.2

applies and so the partition ω is

ω = (5, 3)⊕ (1 + 2E)
(
(1, 1), (2)

)
= (7 + 4E, 3, 21+2E).

If instead E = 0 then the second case for ω in these results applies, but now

ν±R − E − 1 = 1 − 0 − 1 = 0, and so the second case defines exactly the

same partition. Similarly, in either case, the statistic S in Lemma 14.2 is

−ν2 +E+ 1 = −1 +E+ 1 = E and so the stable partition system from this

lemma is

P(M) =
[
λ⊕M

(
(2, 2), (3, 1)

)
, ω ⊕ (M − E)

(
(2, 2), (3, 1)

)]
�·

for M ≥ E. As a small check, note that λ is a partition of 12 and ω is a

partition of 12+8E, and so the sizes of the partitions defining the interval for

the 2-twisted dominance order agree, as they must. In the remainder of this

example we take λ = (8, 3, 1), the first of the cases in the earlier examples;

note that λ is
(
`(κ−) + 1, `(κ+)

)
= (3, 2)-large as required by Lemma 14.2.

We show all the ideas in the proof of Theorem 14.7 by checking the conditions

for the Signed Weight Lemma (Lemma 7.3).
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The stable partition system for λ = (8, 3, 1) explicitly. We saw in Exam-

ple 13.20 that E = 1, and so ω = (11, 3, 23) = (8, 2, 2) ⊕
(
(2, 2), (3, 1)

)
. It

is routine to check using the definition of the 2-twisted dominance order in

Definition 6.6 that the partition system (P(M))M∈N0 is

P(M) =
{

(8, 3, 1), (9, 2, 1), (7, 3, 2), (8, 2, 2)
}
⊕M

(
(2, 2), (3, 1)

)
for M ≥ 1, where the notation indicates that M

(
(2, 2), (3, 1)

)
is adjoined

to all four partitions in the given set. The bounds in Lemma 14.2 are −2,

−1, −3 and −1 and so K = max(−2,−1,−3,−1, 0) = 0. The shift S in this

lemma is −ν±R + E + 1 = −1 + 1 + 1 = 1. Therefore, Lemma 14.2 states

that (P(M))M∈N0 is stable for M ≥ 1. Here the bound is tight, since, by the

definition in Lemma 14.2, we have P(0) = ∅.

Condition (ii) in the Signed Weight Lemma for λ = (8, 3, 1). We start

with (ii) because the calculations are helpful for (i). We saw in Exam-

ple 13.11 that

|PSSYT((2,2),(3,1)

(
(2, 1) +M(1, 1), (4)

)
((3+2M,2+2M),(6+3M,1+M))| = 4

for allM ≥ 1, giving condition (ii) in the Signed Weight Lemma (Lemma 7.3)

for the partitions obtained by adjoining to (8, 3, 1)↔
〈
(3, 2), (6, 1)

〉
. It is rou-

tine to check by similar arguments using the 2-decompositions
〈
(3, 2), (7)

〉
,〈

(3, 3), (5, 1)
〉

and
〈
(3, 3), (6)

〉
of the three larger partitions in P(0) that the

corresponding sets of plethystic semistandard signed tableaux for these par-

titions have sizes 1, 1 and 0 for all M ≥ 0. However, rather than use this

ad-hoc argument, we take the opportunity to motivate the relevant part of

the proof of Theorem 14.7. Let
〈
π−, π+

〉
be the 2-decomposition of one of

the four partitions in P(M). Then the map defined by inserting the plethys-

tic semistandard signed tableau shown in the margin as a new typical first

1 2 1 1

1 2 1 2

column into a plethystic semistandard tableau in PSSYT((2,2),(3,1))

(
(2, 1) +

M(1, 1), (4)
)

(π−,π+)
is surjective, and so bijective, if and only if every plethys-

tic semistandard signed tableaux in PSSYT((2,2),(3,1)

(
(2, 1) + (M + 1)(2, 2),

(4)
)

(π−+(3,1),π++(2))
has at least one typical column, i.e. one equal to the

tableau in the margin. Since E = 1, each such T has at most one excep-

tional column. By Lemma 14.5, with (λ−, λ+) =
(
(3, 2), (6, 1)

)
, T has at

most ∣∣∣∣(1 + 2.1)
(
(1, 1), (2)

)
+ (1− 1)

(
(2, 2), (3, 1)

)
−
(
(3, 2), (6, 1)

)∣∣∣∣
=
∣∣∣∣((3, 3), (6)

)
−
(
(3, 2), (6, 1)

)∣∣∣∣
=
∣∣∣∣((0, 1), (0,−1)

)∣∣∣∣
=
∣∣∣∣ε(2) + ε(3)

∣∣∣∣
= 2

small columns. By Lemma 13.12, every column that is not small or excep-

tional is typical. Since E = 1, there is at most one exceptional column,

and so the insertion map is surjective for M ≥ 3. In fact, as seen in Exam-

ple 13.11 when (π−, π+) = (8, 3, 1) +M
(
(1, 1), (2)

)
, and as follows from the
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ad-hoc calculation earlier in this paragraph, the insertion map is surjective

for all M ≥ 1.

As a further illustration of this bound, we remark that if instead λ =

(6, 3, 3) then E = 2, as seen in Example 13.20, and the bound on the

number of small columns from Lemma 14.5 is now
∣∣∣∣(1 + 2.2)

(
(1, 1), (2)

)
+

(1 − 2)
(
(2, 2), (3, 1)

)
−
(
(3, 3), (4, 1, 1)

)∣∣∣∣ = ||(0, 0, 3,−2,−1)|| = 4. In Ex-

ample 13.11 we saw that in fact there is at most one small column in

each plethystic semistandard tableau of outer shape (2, 1) + M(1, 1), in-

ner shape (3) and signed weight
(
(3 + 2M, 3 + 2M), (4 + 3M, 1 +M, 1)

)
, so

in this case, as is typical, the bound is not very strong.

Condition (i) in the Signed Weight Lemma for λ = (8, 3, 1). As promised

by the final claim in Lemma 14.2, if σ�· (8, 3, 1) ⊕M
(
(2, 2), (3, 1)

)
and sσ

appears in s(2,1)+M(1,1) ◦ s(4) then σ is one of the four partitions in P(M);

in fact, since there are no plethystic semistandard signed tableaux of signed

weight
(
(3, 3), (6)

)
+M

(
(1, 1), (2)

)
equal to the 2-decomposition of the upper

bound (8, 2, 2)⊕M
(
(2, 2), (3, 1)

)
, only the first three partitions listed in P(M)

appear.

Conclusion. Using computer algebra one may obtain the constant values of

〈s(2,1)+M(1,1) ◦ s(4), sσ⊕M((2,2),(3,1)〉 for σ ∈ P(0); they are 2, 1, 1 and 0,

attained for M ≥ 1 when σ = λ = (8, 3, 1) and M ≥ 0 when σ =

(9, 2, 1), (7, 3, 2) or (8, 2, 2). We shall see below in Example 14.8 that the

bound from Theorem 14.7 is M ≥ 2 for (8, 3, 1).

We mention that since the insertion map inserts a new column of height R,

it is a new first column if and only if `(ν) ≤ R, and otherwise it must become

a new column νR+1 +1. This is the main feature of the general positive sign

case not seen in the previous example; in the negative sign case we instead

insert a new row, and a similar remark applies.

14.5. Proof of Theorem 1.2. The ‘moreover’ part of Theorem 1.2 has

already been proved in Proposition 14.1. The next theorem proves the

main part of Theorem 1.2 with an explicit stability bound. Note that by

Remark 3.2 there is no loss of generality in the ‘largeness’ hypotheses in the

theorem. The greatest signed weight
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+) is defined

in Definition 4.3 and strongly c+-maximal signed weights are defined in

Definition 4.10. The L bounds are defined in Definition 9.2. (Remark 9.1

explains the small difference in notation for the intervals in the first two

bounds.) The statistics BR(ν) and Ec+,(κ−,κ+)(ν, µ/µ? : λ) are defined in

Definition 13.16 in its ‘both signs’ version in §13.7. The ‘shift’ S below was

first seen in Example 13.7 and then in the definition of ω in its continuation

in Example 13.24.

Theorem 14.7. Let (κ−, κ+) be a strongly c+-maximal signed weight of

a semistandard tableau family of shape µ/µ? and size R. Set `− = `(κ−).

Let ν be a partition and let λ be a
(
`−, `(κ+)

)
-large partition of |ν||µ/µ?|. Set

ν+

R = νR and ν−R = ν ′R and let ± denote the sign of κ. Set ν(M) = ν t (RM )
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if (κ−, κ+) has sign −1 and ν(M) = ν + (MR) if (κ−, κ+) has sign +1. Set

E = Ec+,(κ−,κ+)(ν, µ/µ? : λ) and

S =

{
E − ν±R + 1 if E ≥ ν±R
0 if E < ν±R .

Set

D =
∣∣∣∣(B±R(ν)+ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
+(ν±R−E)(κ−, κ+)−(λ−, λ+)

∣∣∣∣.
Let κ be the unique partition with `−-decomposition 〈κ−, κ+〉. Define ω = ∅
if ν = ∅ and otherwise

ω =

{
κ⊕ (B±R(ν) + ER)

(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

κ⊕ (B±R(ν) + ER)
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
⊕ (ν±R − E − 1)(κ−, κ+)

choosing the case according to whether E ≥ ν±R or E < ν±R . Let L be the

maximum of

• S + L
(
[λ− + Sκ−, ω−]`

−
�� , κ

−
)
,

• S + L
(
[λ+ + Sκ+, ω+ + (|λ+|+ S|κ+| − |ω+|)]�, κ+

)
,

• S +
(
ω+

1 + ω+

2 − 2λ+

1 − 2Sκ+

1 + 2|λ+|+ 2S|κ+| − 2|ω+|
)
/(κ+

1 − κ
+

2 ),

• S +
(
max(`(λ+), `(κ+)) + |ω−| − |λ−| − S|κ−| − ω−

`−

)
/κ−

`(κ−)
• E +D − ν±R + ν±R+1,

omitting the third if κ+

1 = κ+

2 and the fourth if κ− = ∅. Then〈
sν(M) ◦ sµ/µ? , sλ⊕M(κ−,κ+)

〉
is constant for M ≥ L. Moreover if λ ⊕ S(κ−, κ+) 6�· ω in the `−-twisted

dominance order then the plethysm coefficient is 0 for all M ∈ N0.

Proof. We apply the Signed Weight Lemma (Lemma 7.3) to the stable par-

tition system

P(M) =
[
λ⊕M(κ−, κ+), ω ⊕ (M − S)(κ−, κ+)

]
�·

defined in Lemma 14.2. The intervals are, as ever, for the `−-twisted dom-

inance order. By hypothesis λ is
(
`−, `(κ+)

)
-large. By Corollary 13.22, ω

is an
(
`(κ−) + 1, `(κ+)

)
-large partition of |λ| + SR|µ/µ?|. Again by this

corollary, if σ is a partition of |λ|+MR|µ/µ?|, such that σ�· λ⊕M(κ−, κ+)

such that sσ is a constituent of the plethysm sν(M) ◦ sµ/µ? then σ�· ω ⊕
(M − S)(κ−, κ+). But by Lemma 9.6 and the ‘if’ direction of Lemma 9.7, if

λ⊕ S(κ−, κ+) 6�· ω then, writing

λ⊕M(κ−, κ+) = λ⊕ S(κ−, κ+)⊕ (M − S)(κ−, κ+),

we have

λ⊕M(κ−, κ+) 6�· ω ⊕ (M − S)(κ−, κ+).

Hence if λ ⊕ S(κ−, κ+) 6�· ω then 〈sλ⊕ (κ−,κ+), sν(M) ◦ sµ/µ?〉 = 0 for all

M ≥ S. This proves the final claim in the theorem. Moreover, we may now

assume that, for all M ≥ S, the twisted interval P(M) is non-empty.
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Condition (i) in the Signed Weight Lemma. By Lemma 14.2 the stable

partition system P(M) satisfies condition (i) of the Signed Weight Lemma

(Lemma 7.3) for the plethysms sν(M) ◦ sµ/µ? .

Condition (ii) in the Signed Weight Lemma. Let M ∈ N0 and let π ∈ P(M).

Recall that PYT(ν, µ/µ?) denotes the set of plethystic signed tableaux of

shape ν having entries from the set YT(µ/µ?) of signed tableaux of shape

µ/µ?. Let ρ = (1R) if (κ−, κ+) has sign +1 and let ρ = (R) if (κ−, κ+) has

sign −1. Recall from Definition 13.1 that T(κ−,κ+) is the unique plethystic

semistandard signed tableau of size R, outer shape ρ, inner shape µ/µ? and

signed weight (κ−, κ+). Define

H : PSSYTκ(ν(M), µ/µ?)! PYT(ν(M+1), µ/µ?)

on T ∈ PSSYTκ(ν(M), µ/µ?) by inserting T(κ−,κ+) as a new column imme-

diately after column νR of T when (κ−, κ+) has sign +1 and as a new row

immediately after row ν ′R of T when (κ−, κ+) has sign −1. Since T(κ−,κ+) has

semistandard entries, all µ/µ?-tableau entries in the image are semistandard.

Suppose that M ≥ E − ν±R + ν±R+1. (The reason for adding ν±R+1 to the

bound from Lemma 14.5 will be seen shortly.) By Corollary 13.22(i), T

has at most E exceptional columns/rows. By Lemma 14.5, using that λ ⊕
S(κ−, κ+)�· ω, the bound D is well-defined (i.e. we take the root-length of

a root-positive element) and T has at most D small columns/rows. By

Definition 13.8, a column/row is either exceptional, typical or small. Since

there M + ν±R columns/rows of T of height at least R, there are at least

M + ν±R − D − E typical columns, in which the top/leftmost R entries

form the plethystic semistandard signed tableau T(κ−,κ+). (This requires

our use of the (κ−, κ+)-adapted colexicographic order to order the inner

µ/µ?-tableau entries of T ; see Figure 13.2.) Therefore if M + ν±R −D−E ≥
ν±R+1, the map H inserts T(κ−,κ+) as a new column/row immediately to

the right/below an identical column/row. (Note that this condition implies

M ≥ −ν±R +D+E, and since D is an upper bound for the number of small

columns, the hypothesis on M in Corollary 13.22 is satisfied.) Hence H is a

well-defined bijection for M ≥ E +D − ν±R + ν±R+1. �

Example 14.8. In the final part of the running example in Examples 13.11,

13.20 and 14.6 using the strongly 1-maximal signed weight
(
(2, 2), (3, 1)

)
we saw that 〈s(2,1)+M(1,1) ◦ s(4), sλ⊕M((2,2),(3,1))〉 is ultimately constant for

each λ ∈
{

(8, 3, 1), (9, 2, 1), (7, 3, 2), (8, 2, 2)
}

. To illustrate Theorem 14.7

we find an explicit bound for (8, 3, 1). In this context we have R = 2,

B2

(
(2, 1)) = 1, E = 1 and

(
ω2

(
(4))+, ω2

(
(4))−

)
= ((1, 1), (2)) and we saw

that the bound D on the number of small columns is 2. The fifth bound

in Theorem 14.7 is therefore 1 + 2 − 1 + 0 = 2. We saw earlier that the

other bounds are respectively −2,−1,−3 and −1, and so the overall bound

is 2. We also saw that when λ = (8, 3, 1) the constant value was attained

for M = 1, so in this case the bound from Theorem 14.7 is not sharp. We

remark that if instead λ = (8, 2, 2)↔
〈
(3, 3), (6)

〉
then E = 0, S = 0 and

ω = (5, 3) ⊕
(
(1, 1), (2, 2)

)
= (7, 3, 2)↔

〈
(3, 3), (5, 1)

〉
and so we are in the
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final case of the theorem where λ 6�· ω in the 2−-twisted dominance order (in

fact λ�· ω), and so the plethysm coefficient is 0 for all M ∈ N0.

14.6. The case ν = ∅ of Theorem 14.7. This is a notable and simple

corollary of the theorem. The partitions κ(M) in the following corollary are

well defined by Proposition 6.5.

Corollary 14.9. Let (κ−, κ+) be a strongly c+-maximal signed weight of

shape µ/µ? and size R. Fix `− ∈ N0 and let κ(M) be the unique partition

with `−-decomposition M〈κ−, κ+〉. If (κ−, κ+) has sign −1 then

〈s(RM ) ◦ sµ/µ? , sκ(M)〉 = 1

for all M ∈ N0 and if (κ−, κ+) has sign +1 then the same holds replacing

(RM ) with (MR).

Proof. We apply Theorem 14.7 with (κ−, κ+) and ν = λ = ∅. Thus ν(M) =

(RM ) if (κ−, κ+) has sign −1 and ν(M) = (MR) if (κ−, κ+) has sign +1.

Moreover λ(M) = ∅⊕M(κ−, κ+) = κ(M). Therefore the theorem states that

the plethysm coefficients in the corollary are constant for all M at least the

bound in the theorem. Since ν = ∅ we have E = −1 by Definition 13.16,

and so the case E < ν±R applies and we have S = 0 and ω = ∅. It is

now easily seen that the first three bounds specified in Theorem 14.7 are 0;

the fourth is `(κ+)/κ−
`− and the fifth is 0 since D is the root-length of the

zero weight. The fourth bound comes from Lemma 14.2. Inspection of the

proof shows that in this case the stable partition system is P(M) = {κ(M)},
which is stable for M ≥ 0, and so this bound can be dropped. Therefore

the constant value is attained for M = 0, and since s∅ ◦ sµ/µ? = 1 (the unit

element in the ring of symmetric functions) and κ(0) = ∅, the constant value

is 1, as claimed. �

For example, we saw in Example 4.18(i) that
(
(1d), (m− d)

)
is a strongly

1-maximal signed weight of shape (m) and sign (−1)d. The unique partition

κ(M) with d-decomposition M
〈
(1d), (m− d)

〉
is (dM ) + (M(m− d)) and so

Corollary 14.9 implies that if d is odd then

〈s(1M ) ◦ s(m), s(dM )+M(m−d)〉 = 1

for all M ≥ 0 and the same holds replacing (1M ) with (M) if d is even. The

analogous stability result, which we believe is even less obvious, obtained

from the case R = 2 of Example 4.18(ii) is that if d is odd then

〈s(2M ) ◦ s(m), s(d2M )+M(2m−2d−1,1)〉 = 1

for all M ≥ 0, and the same holds replacing (2M ) with (M,M) if d is

even. For an example of the corollary in the case of skew partitions see

Example 15.2.

15. Applications of Theorem 1.2

15.1. Theorem 1.2 for singleton strongly maximal signed weights.

We saw in Lemma 4.17 that the signed weight (ω`−(µ/µ?)
−, ω`−(µ/µ?)

+)
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of the greatest semistandard signed tableau t`−(µ/µ?) in Definitions 4.2

and 4.3 is a strongly c+-maximal signed weight where c+ = `(ω`−(µ/µ?)
+)

is the greatest positive entry appearing in t`−(µ/µ?). In this subsection we

give the special case of Theorem 14.7 for such strongly maximal weights,

which we call singleton. The L bounds below are defined in Definition 9.2

see Remark 9.1 for the reason for the difference in the notation for intervals.

Corollary 15.1. Let ν be a partition of n, let µ/µ? be a skew partition, and

let λ be a partition of |ν||µ/µ?|. Fix `− ∈ N0. Set (κ−, κ+) =
(
ω`−(µ/µ?)

−,

ω`−(µ/µ?)
+
)
. Let ν(M) = ν t (1M ) if |κ−| is odd and ν(M) = ν+ (M) if |κ−|

is even. Then

〈sν(M) ◦ sµ/µ? , sλ⊕M(κ−,κ+)〉
is constant for all M ≥ L where L is the maximum of

• L
(
[λ−, nκ−](`

−)

�� , κ−
)
,

• L
(
[λ+, nκ+ + (|λ+| − n|κ+|)]�, κ+

)
•
(
nκ+

1 + nκ+

2 − 2λ+

1 + 2|λ+| − 2n|κ+|
)
/(κ+

1 − κ
+

2 ),

•
(
max(`(λ+), `(κ+)) + n|κ−| − |λ−| − nκ−

`(κ−)

)
/κ−

`(κ−)

•
∣∣∣∣n(κ−, κ+)− (λ−, λ+)

∣∣∣∣− ν±1 + ν±2 ,

omitting the third if κ+

1 = κ+

2 and the fourth if `− = 0 and so κ− = ∅.

Moreover if λ 6�· ω(n)(µ/µ?) then the plethysm coefficient is 0 for all M ∈ N0.

Proof. By Lemma 4.17,
(
κ−, κ+

)
is the strongly `

(
ω`−(µ/µ?)

+
)
-maximal

signed weight of the singleton tableau family {t`−(µ/µ?)} of shape µ/µ?.

(Note this holds even if t`−(µ/µ?) has only negative entries, in which case

the positive part of the signed weight is ∅.) Since t`−(µ/µ?) has |κ−| neg-

ative entries, its sign is (−1)|κ
−|. Since the tableau family has size R = 1,

Definition 13.16 states that E = 0, unless ν = ∅ when E = −1. Either way,

the case E < ν±R of Theorem 14.7 applies. The partition κ in Theorem 14.7

is the unique partition with `−-decomposition
〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+)
〉
.

(This `−-decomposition is well-defined by Lemma 6.4.) We have

B±R(ν) = n− a(ν±).

If ν = ∅ then the upper bound partition ω in Theorem 14.7 is ∅, and

otherwise it is

κ⊕
(
n− a(ν±)

)
(κ−, κ+)⊕

(
a(ν±)− 0− 1

)
(κ−, κ+) = κ⊕ (n− 1)(κ−, κ+)

with `−-decomposition n
〈
κ−, κ+

〉
= n

〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉
. Thus in

all cases ω is the partition ω
(n)
`− (µ/µ?) defined in Definition 10.6. Similarly,

we have

D =
∣∣∣∣(n− a(ν±)

)
(κ−, κ+) +

(
a(ν±)− 0)

)
(κ−, κ+)− (λ−, λ+)

∣∣∣∣
=
∣∣∣∣n(κ−, κ+)− (λ−, λ+)

∣∣∣∣.
Since we are in the case E < ν±R , we have S = 0. It is now very easily seen

that the five bounds in Theorem 14.7 simplify as claimed. The corollary,

including the final claim that if λ 6�· ω(n)(µ/µ?) then the plethysm coefficient

is 0 for all M ∈ N0, now follows from this theorem. �
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Note that the condition for the plethysm coefficient to vanish is the same

as the one in Remark 13.23. The following example illustrates the skew

partition case of Corollary 15.1.

Example 15.2. Take `− = 2 and µ/µ? = (4, 2)/(1). The tableau t2
(
(4, 2)/(1)

)
is as shown in the margin and correspondingly

1 2 1
1 2(

ω2

(
(4, 2)/(1)

)−
, ω2

(
(4, 2)/(1)

)+)
=
(
(2, 2), (1)

)
.

By Lemma 4.17, this is a strongly 1-maximal signed weight of shape (4, 2)/(1),

size 1 and sign +1. Let ν be a partition of n. By Corollary 15.1 the plethysm

coefficients

〈sν+(M) ◦ s(4,2)/(1), sλ⊕M((2,2),(1))〉

are constant for M at least the bound in this corollary, and the constant

value is 0 unless λ�· ω(n)
(
(4, 2)/(1)

)
= (n + 2, 22n−1) ↔

〈
(2n, 2n), (n)

〉
.

Note that s(4,2)/(1) = s(4,1) + s(3,2) is not a single Schur function, so, as

in Example 4.21, this result needs the generality of skew partitions. Taking

ν = (1, 1), the table below shows values for the inner product for vary-

ing partitions λ of 12 (shown decreasing in the 2-twisted dominance order),

together with the bound from the corollary.

λ 0 1 2 3 4 5 bound

(4, 2, 14) 0 0 0 0 0 0 0

(3, 3, 2, 2) 1 1 1 1 1 1 1

(4, 4, 2) 1 12 19 22 22 22 5

(8, 1, 1) 1 9 17 17 17 17 5

(8, 2) 0 7 15 16 16 16 6

In the first case (4, 2, 1, 1, 1)↔
〈
(5, 2), (2)

〉
is incomparable with (4, 2, 2, 2)↔〈

(4, 4), (2)
〉

in the 2-twisted dominance order, and so the constant multiplic-

ity is 0. In each remaining case, the fifth bound,
∣∣∣∣2((2, 2), (1))− (λ−, λ+)

∣∣∣∣
is the largest. For instance s(1+M,1) ◦ (s(4,1) + s(3,2)), s(4+M,4,22M+1)〉 = 22 for

all M ≥ 3. Similar calculations by computer algebra using the bound from

Corollary 15.1 show that

〈s(1+M,1) ◦ s(4,1), s(4+M,4,22M+1)〉 = 0 for all M ≥ 0

〈s(1+M,1) ◦ s(3,2), s(4+M,4,22M+1)〉 = 7 for all M ≥ 3;

this illustrates the failure of the plethysm product to be distributive over

addition in its second component.

There are two special cases of Corollary 15.1 worth noting, first when

µ/µ? = ∅, and secondly when κ− = ∅.

Remark 15.3. If µ? = ∅ then, by (6.1), we have
(
ω`−(µ)−, ω`−(µ)+) =

(µ−, µ+) and we may replace κ− with µ− and κ+ with µ+ in all the expressions

in Corollary 15.1.
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We use this remark in §15.3 and §15.2 below. Combining Corollary 14.9

with this remark it follows that, for any fixed `−-decomposition (µ−, µ+), if

|µ−| is odd then

〈s(1M ) ◦ sµ, sM(µ−,µ+)〉 = 1

for all M ∈ N0; if |µ−| is even then the same holds replacing (1M ) with M .

For ease of reference in the following corollary for the case κ− = ∅, we

recall that the greatest tableau t`−(µ/µ?) is defined in Definition 4.2, the L

bound in Definition 9.2 and the root-length ||α|| in (14.1).

Corollary 15.4. Let ν be a partition of n, let µ/µ? be a skew partition,

and let λ be a partition of |ν||µ/µ?|. Let κ be the positive part of the signed

weight of the greatest tableau t0(µ/µ?). Then

〈sν+(M) ◦ sµ/µ? , sλ+Mκ〉

is constant for all M ∈ N0 such that M ≥ L, where L is the maximum of

L
(
[λ, nκ]�, κ

)
and ||nκ− λ|| − ν1 + ν2.

Proof. Apply Corollary 15.1 taking `− = 0. Thus
(
ω0(µ/µ?)

−, ω0(µ/µ?)
+
)

=

(∅, κ). Thus the first bound is one that should ignored, The second is

L
(
[λ, nκ]�, κ

)
, the third is the case k = 1 in Definition 9.2, and so is implied

by the second. The fourth bound is again one that should be ignored, and

the fifth becomes ||nκ− λ|| − ν1 + ν2. �

15.2. Explicit bounds for hook stability. By Lemma 4.17, if 1 ≤ d ≤ m
then

(
(d), (m − d)

)
is a strongly 1-maximal signed weight of shape (m −

d + 1, 1d−1), corresponding to the singleton tableau family
{
t1
(
(m − d +

1, 1d−1)
)}

. For instance t1
(
(3, 1, 1, 1)

)
is as shown in the margin.

1 1 1
1
1
1

Proposition 15.5. Let ν be a partition of n and let 1 ≤ d ≤ m. Let

ν(M) = ν + (M) if d is even and let ν(M) = ν t (1M ) if d is odd. If λ is a

partition of mn with 1-decomposition
〈
(`(λ)), λ+

〉
then

〈sν(M) ◦ s(m−d+1,1d−1), sλ+M(m−d)t (1dM )〉

is constant for all M ≥ L where L is the maximum of

•
(
|λ+| − 2λ+

1 )/(m− d),

•
(
2|λ+| − 2λ+

1 − n(m− d)
)
/(m− d),

•
∣∣∣∣((nd), (n(m− d))

)
−
(
(`(λ), λ+

)∣∣∣∣− ν1 + ν2

Moreover if λ 6�· (1nd) + (n(m − d)) in the 1-twisted dominance order then

the plethysm coefficient is 0 for all M ∈ N0.

Proof. We take the singleton strongly maximal weight (κ−, κ+) =
(
(d), (m−

d)
)

in Corollary 15.1, together with µ/µ? = (m − d + 1, 1d−1) and `− = 1.

By Definition 6.1, the 1-decomposition of the partition λ is
〈
(`(λ)), (λ1 −

1, . . . , λb−1)
〉
, where b is maximal such that λb ≥ 2. Hence, by Definition 9.2,

the first bound in Theorem 14.7 is (nd− `(λ)−nd)/d, which is non-positive.

(Note the case where `(λ−) ≤ `− applies since λ− has at most one part.)

Similarly since `(κ+) = 1 the second bound is (n(m − d) + |λ+| − n(m −
d) − 2λ+

1 )/(m − d) which simplifies to the first bound above. (Again this
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ignores a potentially stronger bound if `(λ+) ≤ 1.) The third and fifth

bounds in the corollary simplify to the final two bounds above. The fourth

bound is
(
max(`(λ+), 1) + nd − `(λ) − nd

)
/d =

(
max(`(λ+), 1) − `(λ)

)
/d

which, since λ+ has length b ≤ `(λ), is non-positive. Since the partition

ω(n)
(
(m− d+ 1, 1d−1) with 1-decomposition n

〈
κ−, κ+

〉
= n

〈
(d), (m− d)

〉
is

(1nd) +
(
n(m− d)

)
, the result now follows from Corollary 15.1. �

For example, taking ν = (2, 1), m = 4 and d = 2 so µ = (3, 1) we find

that

〈s(2+M,1) ◦ s(3,1), sλ+(2M)t (12M )〉
is ultimately constant, and zero unless λ�· (7, 15) in the 1-twisted domi-

nance order. (This is equivalent to the condition `(λ) ≤ 6.) The case

λ = (4, 3, 3, 2), for which the sequence of plethysm coefficients is 2, 16, 31,

33, 33, . . . is illustrative. Here λ+ = (3, 2, 2, 1) and so the bounds from Propo-

sition 15.5 are (8−6)/(4−2) = 1,
(
2×8−2×3−3(4−2)

)
/(4−2) = 4/2 = 2

and 11− 2 + 1 = 10 since∣∣∣∣((6), (6)
)
−
(
(4), (3, 2, 2, 1)

)∣∣∣∣ =
∣∣∣∣((2), (3,−2−2,−1)

)∣∣∣∣ = 2+5+3+1 = 11.

Therefore 〈s(2+M,1) ◦ s(3,1), s(4+2M,3,3,2,12M )〉 = 33 for all M ≥ 10.

15.3. Explicit bounds for Law–Okitani stability. Using Corollary 15.1

and Remark 15.3, and very similar arguments to the proof of Proposi-

tion 15.5, we can give the first explicit bounds for the stability result dis-

cussed in §1.7 due to Law and Okitani [13], and a sufficient condition for the

stable plethysm coefficient to be zero. We exclude the case d = 0 because it

is a special case of Corollary 15.4, and the case d = m because it reduces to

the case d = 0 by applying the ω involution.

Proposition 15.6. Let ν be a partition of n and let 1 ≤ d < m. Let

ν(M) = ν + (M) if d is even and let ν(M) = ν t (1M ) if d is odd. If λ is a

partition of mn with d-decomposition
〈
λ−, λ+

〉
then

〈sν(M) ◦ s(m), sλ+M(m−d)t(dM )〉

is constant for all M ≥ L where L is the maximum of

• n(d− 1)− |λ−|,
•
(
|λ+| − 2λ+

1

)
/(m− d),

•
(
2|λ+| − 2λ+

1 − n(m− d)
)
/(m− d),

• max(1, `(λ+)) + n(d− 1)− |λ−|,
•
∣∣∣∣((nd), (n(m− d))

)
− (λ−, λ+)

∣∣∣∣− ν1 + ν2

Moreover if λ 6�· (dn) + (n(m−d)) in the d-twisted dominance order then the

plethysm coefficient is 0 for all M ∈ N0.

Proof. By Example 4.18(i),
(
(1d), (m − d)

)
is a strongly 1-maximal signed

weight of shape (m), size 1 and sign (−1)d. We take this as (κ−, κ+) in

Corollary 15.1, together with µ/µ? = (m) and `− = d. Observe that κ−k −
κ−k+1 is non-zero only when k = d. Hence, by Definition 9.2, the first bound

in Theorem 14.7 is (nd − |λ−| − n)/1, which simplify to the first bound

above. (Note the case where `(λ−) ≤ `− applies.) Similarly since `(κ+) = 1
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the second bound is (n(m−d)+ |λ+|−n(m−d)−2λ+

1 )/(m−d) which again

simplifies as shown. (Again, as in the earlier proof of Proposition 15.5, this

ignores a potentially stronger bound if `(λ+) ≤ 1.) The third, fourth and

fifth bounds are routine specializations of the bounds in the corollary. Since

the partition ω(n)
(
(m)) with d-decomposition n

〈
κ−, κ+

〉
= n

〈
(1d), (m− d)

〉
is (dn) + n(m− d) the result now follows from Corollary 15.1. �

Example 15.7. We take m = 4, d = 3 and ν = (2, 1). The table below

shows values of 〈s(2,1M+1) ◦s(4), sλ+(M)t (3M )〉 for small values of M for vary-

ing partitions λ of 12 (shown decreasing in the 2-twisted dominance order)

together with the bound from the corollary.

λ 0 1 2 3 4 5 6 bound

(5, 3, 3, 1) 0 0 0 0 0 0 0 0

(6, 3, 3) 0 0 0 0 0 0 0 0

(7, 3, 2) 1 1 1 1 1 1 1 0

(7, 4, 1) 1 2 2 2 2 2 2 3

(7, 5) 1 4 5 6 6 6 6 7

(6, 6) 0 2 5 6 7 7 7 8

In the first case (5, 3, 3, 1)↔
〈
(4, 3, 3), (2)

〉
is greater than the upper bound

(6, 3, 3)↔
〈
(3, 3, 3), (3)

〉
in the 3-twisted dominance order, and so the con-

stant multiplicity is 0. For (7, 5) the constant multiplicity is indeed 6,

as can be checked by using computer algebra to compute the next three

values, or using the generalized Cayley–Sylvester formula in (5.3). Thus

〈s(2,1M+1) ◦ s(4), s(7+M,5,3M )〉 = 6 for M ≥ 3. It is worth noting that we

can obtain further information about the same plethysm s(2,1M+1) ◦ s(4)

by instead taking d = 1 in Proposition 15.6, now using the strongly 1-

maximal signed weight
(
(1), (3)

)
. For instance the proposition implies that

〈s(2,1M+1) ◦ s(4), s(7+3M,5,1M )〉 = 6 for M ≥ 4; in fact the constant value is

attained for M ≥ 3. Similarly 〈s(2,1M+1) ◦ s(4), s(6+3M,6,1M )〉 = 8 for M ≥ 5;

now the constant value is attained for M ≥ 4. These results and bounds

may be verified using the Magma code already mentioned.

15.4. The positive non-skew case of Theorem 1.2. In this section we

specialize Theorem 14.7 in two ways at once by assuming that κ− = ∅
and µ/µ? = ∅. (Taken separately, these specializations do not lead to

simplifications significant enough to be worth recording.) We begin by giving

the special case of Definition 4.8 and Definition 4.10 since the latter simplifies

greatly in this case. Recall that max T denotes the maximum integer entry

of a family of tableaux with integer entries.

Definition 15.8. Let µ be a non-empty partition and let R ∈ N. A family

M of R distinct semistandard µ-tableaux with entries from N is maximal if

its weight is maximal in the dominance order amongst all such families and

strongly c-maximal if whenever φ is the weight of a maximal family T such

that max T ≤ maxM then either T =M or
∑c

i=1 φi <
∑c

i=1 κi.
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It is clear that κ is a strongly c-maximal weight if and only if (∅, κ) is a

strongly c-maximal signed weight in the sense of Definition 4.10. We give

examples in §15.5 below. In the following corollary, the L bound is defined

in Definition 9.2. The unsigned analogue of the LZ bound in Definition 11.1

is defined by specializing this definition: given partitions λ and ω of the

same size, and partitions η and κ, we define LZ
(
[λ, ω]�· , κ, η

)
to to be the

minimum of the quantities

•
∑k

i=1 ωi −
∑k

i=1 λi∑k
i=1 ηi −

∑k
i=1 κi

.

taking those k for which the denominator is strictly positive. Below we have

κ� η so the minimum is well-defined.

Corollary 15.9. Let ν be a partition of n, let µ be a partition of m and

let λ be a partition of mn. Let κ be a strongly c-maximal weight of shape µ

and size R. Set E = 0 if R = 1 and otherwise set

E = BR(ν)
c∑
i=1

µi + νR

c∑
i=1

κi −
c∑
i=1

λi +

`(λ)∑
i=`(κ)+1

λi.

Set D =
∣∣∣∣(BR(ν) + ER)µ+ (νR − E)κ− λ

∣∣∣∣. Let L be the maximum of{
E − νR + L

(
[λ+ (E − νR)κ, (BR(ν) + ER)µ]�, κ

)
if E ≥ νR

L
(
[λ, (BR(ν) + ER)µ+ (νR − E)κ]�, κ

)
if E < νR

and D + E − νR + νR+1. Then 〈sν+(MR) ◦ sµ, sλ+Mκ〉 is constant for M ≥
L. Moreover if η is a partition of MR such that κ � η then 〈sν+(MR) ◦
sµ, sλ+Mη〉 = 0 for all

M >

{
E − νR + LZ

(
[λ+ (E − νR)η, (BR(ν) + ER)µ]�· , κ, η

)
if E ≥ νR

LZ
(
[λ, (BR(ν) + ER)µ+ (νR − E)κ]�· , κ, η

)
if E < νR.

Proof. We apply Theorem 14.7 with κ− = ∅ and κ+ = κ. Thus `− = 0

and
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+) = (∅, µ) by (6.1) and the following remark.

The sign of (∅, κ+) is +1 so the definitions given in the main part of §13

apply and ν+ = ν in the statement of the theorem. It is easily seen from

Definition 13.16 that Ec,(∅,κ)(ν, µ : λ) is E as stated in the corollary and

similarly from Theorem 14.7 using that ω0(µ)− = ∅ and

ω =

{
(BR(ν) + ER)µ+ κ if E ≥ νR
(BR(ν) + ER)µ+ (νR − E)κ if E < νR

that D is as stated. Since |λ| + SR|µ| = |λ+| + S|κ+| = |ω| = |ω+|, where

the second equality uses Corollary 13.22(iii) and that L
(
[∅,∅]�,∅

)
= 0,

the bounds defining L in this theorem simplify to S, S+ L
(
[λ+Sκ, ω]�, κ

)
,

S+(ω1 +ω2−2λ1−2Sκ1)/(κ1−κ2), 0, and D+E−νR+νR+1, respectively.

If κ1 = κ2 then the third quantity should be disregarded; otherwise it is one

of the lower bounds appearing in Definition 9.2 defining L
(
[λ + Sκ, ω], κ

)
.

Finally we slightly simplify L
(
[λ + Sκ, ω], κ

)
using the lemma that L

(
[α +

κ, β+κ]�, κ
)

= L
(
[α, β]�, κ

)
−1 to show that L is as claimed in the statement
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of the corollary. The proof of the ‘moreover’ part is very similar, using the

bounds from Proposition 14.1 with the same specializations and the same

simplification of the LZ bound. �

15.5. Examples of Corollary 15.9. In Examples 4.9 and 4.12, we saw

that (4, 1, 1) and (3, 3) are the two strongly maximal weights of shape (2)

and size 3 and that the corresponding semistandard tableau families are{
1 1 , 1 2 , 1 3

}
,
{

1 1 , 1 2 , 2 2
}

respectively.

Example 15.10. In the running example using the strongly 1-maximal

weight (4, 1, 1) of shape (2), size 3 and sign +1 completed in Example 13.24

we saw that if ν = (2, 1) + C(1, 1, 1) and λ = (4, 2) + C(4, 1, 1) then E = 2;

this can now be computed more simply using the formula in Corollary 15.9.

The quantity D in this corollary is∣∣∣∣(3 + 2.3)(2) + (C − 2)(4, 1, 1)−
(
(4, 2) +C(4, 1, 1)

)∣∣∣∣ =
∣∣∣∣(6,−4,−2)

∣∣∣∣ = 8,

independent of the value of C. Exploiting similar cancellation we have, for

C = 0 or C = 1,

L
([

(4, 2) + C(4, 1, 1) + (2− C)(4, 1, 1), (3 + 2.3)(2)
]
�, (4, 1, 1)

)
= L

([
(12, 4, 2), (18)

]
�, (4, 1, 1)

)
= 0.

Now taking C = 0, Corollary 15.9 implies that

〈s(2,1)+M(1,1,1) ◦ s(2), s(4,2)+M(4,1,1)〉

is constant for M ≥ 10; the two bounds are respectively 2 and 10. In fact

it follows from the enumeration of plethystic semistandard tableaux in the

running example that the plethysm coefficient is constant for M ≥ 2; the

constant value is 2.

It is routine to give a similar example using the strongly 2-maximal weight

(3, 3). This gives a special case of Proposition 15.11 below. The proof is a

good example of how stronger bounds than the generic bounds in our main

theorems can be obtained by ad-hoc reasoning. Note that the assumption

`(µ) ≤ ` is without loss of generality, as this is necessary for there to be a

semistandard µ-tableau with entries from {1, . . . , `}.

Proposition 15.11. Fix ` ∈ N and let µ be a partition with `(µ) ≤ `.

Let R be the number of semistandard tableaux of shape µ with entries from

{1, . . . , `}. Set q = R|µ|/`. Then for any partitions ν and λ with `(ν) < R

and `(λ) ≤ `,
〈sν+M(1R) ◦ sµ, sλ+M(q`)〉

is constant for M ≥ 0.

Proof. Let T be the strongly maximal tableau family consisting of all semi-

standard µ-tableaux with entries from {1, . . . , `}. By Lemma 4.20 this cor-

responds to the strongly `-maximal weight (q`) of shape µ and size R. Since

`(ν) < R we have BR(ν) = |ν| and since `(λ) ≤ `, the exceptional column



131

bound E in the corollary is |ν||µ| − |λ| = 0. The bounds in Corollary 15.9

are therefore

L
(
[λ, |ν|µ]�, (q

`)
)

= (|ν||µ| − |λ| − |ν|µ`)/q − |ν|µ`/q < 0

and
∣∣∣∣ |ν|µ − λ ∣∣∣∣. Inspection of the proof of Theorem 14.7 shows that the

second bound is needed to ensure that the insertion map H, defined by

inserting a new column of height R into a plethystic semistandard tableau

with entries from the tableau family T , is surjective. But since T contains

all tableaux of shape µ, any column of height R in a plethystic semistandard

signed tableau having µ-tableau entries from {1, . . . , `} is of this special form.

Therefore the plethysm coefficient is immediately constant. �

Example 15.12. Take µ = (2, 1) and ` = 3 and the strongly maximal

semistandard tableau family of all (2, 1)-tableaux with entries from {1, 2, 3}
relevant to the famous eightfold way adjoint representation of SU3(C) (see

[10, page 179]), containing the 8 tableaux shown below

1 1
2

, 1 2
2

, 1 1
3

, 1 2
3

, 1 3
2

, 1 3
3

, 2 2
3

, 2 3
3

.

The corresponding 3-strongly maximal weight is (8, 8, 8). By Proposition 15.11

〈sν+M(18) ◦ s(2,1), sλ+M(8,8,8)〉

is constant for M ≥ 0, whenever ν and λ are partitions with `(ν) < 8 and

`(λ) ≤ 3. For example, taking ν = (2) and λ = (3, 2, 1), the stable value of

the plethysm coefficient is 1.

Many further examples of non-obvious stability results can be given using

the strongly maximal weights found in Example 4.22 and the table in §4.5.
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