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Abstract. The plethysm product of Schur functions corresponds to

composing polynomial representations of infinite general linear groups.

Finding the plethysm coefficients 〈sν ◦ sµ, sλ〉 that express an arbitrary

plethysm sν ◦sµ as a sum
∑
λ〈sν ◦sµ, sλ〉sλ of Schur functions is a funda-

mental open problem in algebraic combinatorics. We prove two stability

theorems for plethysm coefficients under the operations of adding and/or

joining an arbitrary partition to either µ or ν. In both theorems µ may

be replaced with an arbitrary skew partition. As special cases we ob-

tain all stability results on the plethysm product of two Schur functions

in the literature to date. The proofs are entirely combinatorial using

plethystic semistandard tableaux with positive and negative entries.
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1. Introduction

1.1. Background. Determining the decomposition of an arbitrary plethysm

product sν ◦ sµ into Schur functions was identified by Richard Stanley in

[23] as a central open problem in algebraic combinatorics. It is equivalent

to decomposing a polynomial representation of GLn(C) defined by a com-

position of Schur functors into a direct sum of irreducible representations of

GLn(C) and to decomposing a representation of a symmetric group induced

from an arbitrary irreducible representation of a wreath product subgroup

into a direct sum of irreducible representations. The plethysm coefficients

are the multiplicities in these decompositions. We refer the reader to the

introduction to [19] for a full account of these connections.

1.2. Stability. In this paper we prove two theorems showing that certain

sequences of plethysm coefficients are ultimately constant, with explicit

bounds for when stability occurs. We also give practical sufficient condi-

tions for the stable value to be zero. These theorems include as special cases

all stability results on the plethysm product of two Schur functions in the

current literature, sometimes with new bounds when none were proved orig-

inally. For instance a special case of Theorem 1.1, first proved in [6, p354], is

that 〈sν ◦ sµ+Mκ, sλ+M |ν|κ〉 is ultimately constant for large M , while a spe-

cial case of Theorem 1.2 is a key motivating result, proved in [14] without an

explicit bound, that if d is even then
〈
sν+(M) ◦ s(m), sλt (dM )+M(m−d)

〉
is ul-

timately constant for large M . Our proofs are entirely combinatorial, using

the plethystic semistandard signed tableaux defined in Definition 3.10 below.

1.3. Main results. In both our main theorems, ν is a partition, µ/µ? is a

skew partition and λ is a partition of |ν||µ/µ?|. We define µ/µ? ⊕ (γ, δ) =(
(µ t γ′) + δ

)
/µ? and µ/µ? ⊕ M(γ, δ) = µ/µ? ⊕ (Mγ,Mδ), where t is

the join of partitions, defined formally before (3.1). The order � on pairs

of partitions is defined in Definition 4.1 by reading the pair as a composi-

tion and then applying the dominance order. Example 10.10 motivates the

conjugation seen when |κ−| is odd.

Theorem 1.1 (Signed inner stability). Let ν be a partition of n and let

µ/µ? be a skew partition. Let κ− and κ+ be partitions. If |κ−| is even then

set ν(M) = ν for all M ; if |κ−| is odd then set ν(M) = ν if M is even and

ν(M) = ν ′ if M is odd. Then〈
sν(M) ◦ sµ/µ?⊕M(κ−,κ+), sλ⊕nM(κ−,κ+)

〉
is constant for M at least the explicit bound in Theorem 10.16. Moreover

if η− and η+ are partitions with `(η−) ≤ `(κ−) and |η−|+ |η+| = |κ−|+ |κ+|
and (η−, η+) 6� (κ−, κ+) then〈

sν(M) ◦ sµ/µ?⊕M(κ−,κ+), sλ⊕nM(η−,η+)

〉
is zero for M greater than the explicit bound in Proposition 10.2.

Our second main theorem requires the strongly maximal signed weights

defined in Definition 4.10 and first exemplified in Example 4.12. To orient
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the reader, we remark that, by Lemma 4.17, (∅, µ) and (µ′,∅) are strongly

maximal signed weights of shape µ and size 1; their signs are 1 and (−1)|µ|,

respectively. The strongly maximal signed weight relevant to the stability of〈
sν+(M) ◦ s(m), sλt (dM )+M(m−d)

〉
for even d is

(
(1d), (m − d)

)
. This signed

weight has shape (m), size 1 and sign (−1)d: see Example 4.18(i).

Theorem 1.2 (Signed outer stability). Let ν be a partition and let µ/µ? be

a skew partition. Let (κ−, κ+) be a strongly maximal signed weight of shape

µ/µ? and size R ∈ N. Set ν(M) = ν + (MR) if (κ−, κ+) has sign +1 and

ν(M) = ν t (RM ) if (κ−, κ+) has sign −1. Then〈
sν(M) ◦ sµ/µ? , sλ⊕M(κ−,κ+)

〉
is constant for M at least the explicit bound in Theorem 13.7. Moreover

if η− and η+ are partitions with `(η−) ≤ `(κ−) and (κ−, κ+) � (η−, η+) then〈
sν(M) ◦ sµ/µ? , sλ⊕M(η−,η+)

〉
is zero for M greater than the explicit bound in Proposition 13.1.

The full versions of both theorems give practical sufficient conditions for

the constant multiplicity in their first parts to be zero. For instance, as

we explain after Example 10.17, the final part of Theorem 10.16 implies

that unless (λ−, λ+)�n(µ−, µ+), the plethysm coefficient 〈sν ◦ sµ⊕M(κ−,κ+),

sλ⊕nM(κ−,κ+)〉 is zero for M sufficiently large. Here (λ−, λ+) and (µ−, µ+)

are the `(κ−)-decompositions of λ and µ, as defined in Definition 6.1, and �
is the `(κ−)-signed dominance order in Definition 4.1.

In Corollaries 11.1, 11.2 and 14.9, we give the corollaries of our two main

theorems for the special cases where κ− = ∅ and µ? = ∅, showing how the

explicit bounds and conditions in Theorems 10.16 and 13.7 simplify. Corol-

lary 13.9 and Corollary 14.1 are the cases ν = ∅ and R = 1, respectively, of

Theorem 1.2 and are also of significant interest in their own right.

1.4. Strongly maximal signed weights. An important motivation for

strongly maximal signed weights is that if µ/µ? is a skew partition and κ is

the lexicographically maximal partition labelling a Schur function summand

of s(1R) ◦ sµ/µ? then (∅, κ) is a strongly maximal signed weight of a µ/µ?-

tableau family of size R. We plan to prove this result in a separate paper

on signed maximal constituents of plethysms. Many further examples of

strongly maximal signed weights, with full proofs, are given in §4.4. In

particular we draw attention to Lemma 4.20. This was motivated by (9)

in [5] by Briand, Orellana and Rosas, as we discuss in §1.7.

1.5. Skew partitions. It is worth noting that the results on plethysms

sν ◦ sµ/µ? where µ/µ? is a skew partition with µ? 6= ∅ are entirely novel to

this paper: it is a feature of our method that this extension from partitions to

skew partitions is mostly routine. See Examples 4.21 and 14.2 for examples

exploiting this generality. Remark 5.1 explains why the further extension

replacing ν with a skew partition is a straightforward corollary of our main

theorems.
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1.6. A stronger conjecture. Theorem 1.2 was motivated by Proposi-

tion 5.3 in [13], which in turn was motivated by a conjecture of Bessen-

rodt, Bowman and Paget [1, Conjecture 1.2], that the plethysm coefficients

〈sν t (1M )◦s(2), sλ⊕M((1),(1))〉 are non-decreasing with M . A proof of this con-

jecture appears to require fundamentally different methods to those used in

this paper: we believe it is true and that a proof will be of wide inter-

est. More generally, we make the following conjecture, which includes the

BBP-conjecture as a special case.

Conjecture 1.3. The sequences of plethysm coefficients in Theorems 1.1

and 1.2 are non-decreasing with respect to M .

1.7. Earlier work. We believe the two main theorems in this paper imply

all the stability results on Schur functions published in the literature. These

include the stable version of Foulkes’ Conjecture. In this subsection we

survey [3] by Bowman and Paget, [5] by Briand, Orellana and Rosas, [6]

by Brion, [7] by Carré and Thibon, [8] by Colmenarejo, [9] by de Boeck,

Paget and Wildon, [14, 13] by Law and Okitani, [17] by Manivel and [24] by

Weintraub. (Except in the case of [7], we silently change the notation used

by these authors to be consistent, as far as possible, with this paper.)

Bowman–Paget. Theorem A of [3]. This states that the plethysm coeffi-

cients 〈s(n+N) ◦ s(m+M), sλ+(mN+nM+MN)〉 are ultimately constant. For M

varying this is the special case of Theorem 1.1 for ν = (n + N), µ = (m)

taking (κ−, κ+) =
(
∅, (1)

)
. The bound from Corollary 11.2, applied replac-

ing λ with λ+ (mN), is M ≥ (n+N − 1)m− (λ1 +mN) = (n− 1)m− λ1

which improves on M ≥ |λ| = mn in [3]. For N varying this is the special

case of Theorem 1.2 for ν = (n), µ = (m+M), again with the same choice

of (κ−, κ+); by Lemma 4.17,
(
∅, (1)

)
is a strongly 1-maximal signed weight.

The bound from Corollary 14.9 is in general worse than N ≥ |λ| in [3]. A

corollary (see [3, Corollary 9.4]) is that the stable version of Foulkes’ Conjec-

ture [10] holds with equality. We emphasise that the main contribution of [3]

is to prove the result using Schur–Weyl duality with the partition algebra,

thereby giving an explicit and clearly positive formula for the multiplicities.

This goes significantly beyond the results obtainable by the general methods

in this paper.

Bowman–Paget–Wildon. Theorem A of [4]. This generalises the Bowman–

Paget result replacing the one-row partition (n + N) with ν + (N) for an

arbitrary partition ν; very similar remarks apply.

Briand–Orellana–Rosas. Result (7) in [5]. This states that 〈sν ◦ sµ, sλ〉 =

〈sν ◦ sµ+(M`), sλ+n(M`)〉 provided that `(ν) ≤ `. This is a weaker version of

Theorem 1.2 in [9] by de Boeck, Paget and Wildon, discussed below.

Result (9) in [5]. This states that

〈sν+M(1R) ◦ sµ, sλ+M(q`)〉 (1.1)

is constant, where R is the number of semistandard tableaux of shape µ with

entries from {1, . . . , `} and q = R|µ|/`. By Theorem 1.2 applied with the
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strongly `-maximal signed weight
(
∅, (q`)

)
(see Lemma 4.20) the plethysm

coefficient is ultimately constant. In fact Theorem 1.2 implies the more

general result in which µ is replaced with an arbitrary skew partition. The

relevant strongly maximal semistandard signed tableau family is, as one

would expect from the statement of (9), all semistandard tableaux of shape µ

with entries from {1, . . . , `}. Corollary 14.9 can be used to give explicit

stability bounds for (1.1); Proposition 14.11 shows that in many cases of

interest, stability is immediate.

Brion. Theorem [6, §2.1]. This states that 〈sν ◦ sµ+Mκ, sλ+nMκ〉 is ulti-

mately constant. There is a bound implicitly defined using the root system

of type A. This is the special case of Theorem 1.1 taking (κ−, κ+) = (∅, κ).

The bound from Theorem 10.16 is the same.

Theorem [6, §3.1]. This states that 〈sν+(M) ◦ sµ, sλ+Mµ〉 is ultimately con-

stant with an explicit bound. This is the special case of Theorem 1.2 taking

(κ−, κ+) = (∅, µ); by Lemma 4.17 this is a strongly `(µ)-maximal signed

weight. Brion’s bound improves on the bound from Theorem 13.7 or Corol-

lary 14.9 by using orthogonality in the type A root system.

Carré–Thibon.. We first note that in [7] J is a partition and Jp is, in

our notation (p) t J . If J has first part a and p ≥ a then (p) t J =(
J t (a)

)
+ (p − a), and so, by taking p sufficiently large, we can interpret

Jp as an addition of (p− a) to the partition J t (a).

Theorem 4.1 in [7]. The special case (see the remark after the proof in [7])

relevant to plethysm coefficients is equivalent, by the previous notational

remark, to the theorem in §2.1 of Brion [6], discussed above.

Theorem 4.2 in [7]. It follows very similarly that the special case relevant to

plethysm coefficients is that 〈sν+(M) ◦ sµ, sλ+(M |µ|)〉 is ultimately constant.

When µ = (m) this is a special case of the theorem in §3.1 of Brion [6] dis-

cussed above. When µ 6= (m) we have µ� (m) and so the stable multiplicity

is zero by the ‘moreover’ part of Theorem 1.2 applied with the strongly max-

imal signed weight (∅, µ). (By Lemma 4.17 this is a strongly `(µ)-maximal

signed weight.)

We remark that [7] precedes [6] and the method of vertex operators used in

[7] is completely different to Brion’s geometric arguments.

Colmenarejo. Theorem 1.1 in [8]. This states four stability results. The

first is the special case of the second taking, in the notation of [8], π = (1).

The remaining three are:

• 〈sν ◦ sµ+Mκ, sλ+nMκ〉 is ultimately constant. As just seen, this is the

special case of Theorem 1.1 taking (κ−, κ+) =
(
∅, κ

)
.

• 〈sν+(M) ◦ sµ, sλ+Mµ〉 is ultimately constant. This is the special case of

Theorem 1.2 taking (κ−, κ+) = (∅, µ); by Lemma 4.17 this is a strongly

`(µ)-maximal signed weight.

• 〈sν+(M) ◦ sµ, sλ+M(|µ|)〉 is ultimately constant. This is the same as

Theorem 4.2 in Carré and Thibon [7] already discussed.
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deBoeck–Paget–Wildon. Theorem 1.1 in [9]. This states the equality

〈sν ◦ s(M)tµ, s(nM)tλ〉 = 〈sν ◦ sµ, sλ〉 provided M is at least the greatest

part of µ. Applying the ω-involution (see [16, page 21] or [22, §7.6]) this

becomes

〈sν† ◦ sµ′+(1M ), sλ′+(1nM )〉 = 〈sν ◦ sµ, sλ〉,
provided M ≥ `(µ′), where ν† = ν if M is even and ν† = ν ′ if M is odd.

Observe that when M ≥ `(µ′) we have µ′ + (1M+1) =
(
µ′ t (1)

)
+ (1M )

and when nM ≥ `(λ′) we have λ′ + (1n(M+1)) =
(
λ′ t (1M )

)
+ (1nM ). The

plethysm coefficient above is therefore

〈sν† ◦ sµ′t (1M )+(1`(µ
′)), sλ′t (1nM )+(1n`(µ

′))〉. (1.2)

That it is ultimately constant now follows from Theorem 1.1, taking κ− =

(1), and κ+ = ∅ and replacing µ with µ′+(1`(µ
′)) and λ with λ′+(1n`(µ

′)). As

we show in Example 10.17, the explicit bounds in Theorem 10.16 show that

in fact the plethysm coefficient, as stated in (1.2), is immediately constant

provided `(λ′) ≤ n`(µ′).

Theorem 1.2 in [9]. This states that 〈sν ◦ sµ+M(1r), sλ+M(nr)〉 is constant

for M greater than an explicit bound. By Theorem 1.1, applied with κ− = ∅
and κ+ = (1r), the plethysm coefficient is ultimately constant. The bound

from Theorem 10.16 is the same, as we show at the end of §10.

Law–Okitani. Proposition 5.3 in [13]. This states that 〈sνt (1M ) ◦ s(2),

sλ⊕M((1),(1))〉 is ultimately constant. This is the special case of Theorem 1.2

taking µ = (2) and (κ−, κ+) =
(
(1), (1)

)
; by Lemma 4.17

(
(1), (1)

)
is a

strongly 1-maximal signed weight.

Theorem 1 in [14]. This paper followed [13]. An equivalent statement of

Theorem 1 is that when d is even

〈sν+(M) ◦ s(m), sλ⊕M((1d),(m−d))〉 (1.3)

is ultimately constant and when d is odd

〈sν t (1M ) ◦ s(m), sλ⊕M((1d),(m−d))〉 (1.4)

is ultimately constant. This result was briefly known between March 2022

and September 2022 as Wildon’s Conjecture: it was an important motivation

for Theorem 1.2, and is exemplified in §7.4. No bounds on M were proved

in [14]. These results are unified as the special case of Theorem 1.2 taking

µ = (m) and (κ−, κ+) =
(
(1d), (m−d)

)
; by Example 4.18(i) this is a strongly

1-maximal signed weight.

Manivel. Main result and Theorem 4.3.1 in [17]. This is the same result as

Theorem A in [3] by Bowman and Paget, already discussed. We emphasise

that the proof in [17] is by novel geometric methods.

Weintraub. Theorem 0.1 in [24]. This states that 〈sν+(M) ◦sµ, sλ+M(|µ|)〉 is

ultimately constant. It is the same as Theorem 4.2 in [7] and the final result

of Colmenarejo [8] both discussed above; we mention that Weintraub’s proof

precedes both these papers and the methods used are different from either.
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1.8. Outline. This paper is split into the five parts indicated in the table of

contents. Each section is written to be read independently as far as possible.

Introduction and overview (§1–2). In §2 we give an overview of the proof: we

hope this will persuade the reader that while the proof is lengthy, because

of many minor technical difficulties, the overall concept of finding stable

bijections between certain semistandard signed tableaux and between certain

plethystic semistandard signed tableaux is quite simple.

Preliminaries (§3–6). In §3 we give basic definitions. In particular we de-

fine plethystic semistandard signed tableaux in Definition 3.10. The reader

should be able to skip this section and then use it as a reference. In §4 we

define the strongly maximal signed weights in Theorem 1.2. In §5 we give

background results on plethysms of symmetric functions. Finally in §6 we

define the `−-twisted dominance order in Definition 6.6 and generalize clas-

sical results on Kostka numbers to the twisted case. This is a key definition

novel to this paper.

Signed Weight Lemma and stable partition systems (§7–§8). In §7 we prove

the critical Signed Weight Lemma (Lemma 7.3): this lemma specifies the

overall strategy of the proof of the main theorems and is motivated by §2. To

apply the lemma we require the idea of a stable partition system, as defined

in §7.1. We give two motivating examples of stable partition systems in §7.3

and §7.5 and then in §8 we construct the stable partition systems used to

prove Theorems 1.1 and 1.2. Also in §7.4 we show some of the main ideas

in the proofs of Theorems 1.1 and Theorem 1.2 by examples using the three

key results proved by the end of §8, namely

• Proposition 5.6 on plethystic signed Kostka numbers, stating that

〈sν ◦ sµ/µ? , eα−hα+〉 = |PSSYT(ν, µ/µ?)(α−,α+)|;
• Lemma 7.3, the Signed Weight Lemma;

• Corollary 8.20, that intervals for the `−-twisted dominance order

define stable partition systems.

Proof of Theorem 1.1 (§9–§11). In §9 we prove Proposition 9.7 giving an

upper bound in the `−-twisted dominance order on the constituents of an

arbitrary plethysm sν ◦ sµ/µ? . This is the final technical preliminary needed

to apply Corollary 8.20, and hence the Signed Weight Lemma (Lemma 7.3),

to prove Theorem 1.1 in §10. We give the important special case of this

theorem when all tableaux have only positive entries in §11.

Proof of Theorem 1.2 (§12–§14). In §12 we prove the analogous upper bound

in Corollary 12.24 on the constituents in the plethysms in Theorem 1.2,

and in §13 we prove Theorem 1.2. In §14 we give many applications of

this theorem, including its important special case when all tableaux have

partition shape and only positive entries.
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1.9. Computer software. Magma [2] code that can be used to verify all

of our examples and compute with the `−-twisted dominance order in Defi-

nition 6.6 may be downloaded as part of the arXiv submission of this paper.

Example 4.26 is most easily checked using the second author’s Haskell [21]

code [25]. Computer algebra is not essential to any of our proofs or examples.

2. Overview of proof

The original Law–Okitani stability result [13, Proposition 5.3], later gen-

eralized in the main theorem of [14], is that, for any partition ν and any

partition λ of 2|ν|, the sequence of plethysm coefficients

〈sνt (1M ) ◦ s(2), sλt (1M )+(M)〉 (2.1)

is ultimately constant. This is the special case of Theorem 1.2 for the

strongly maximal signed weight
(
(1), (1)

)
of shape (2), size 1 and sign −1.

(This weight is strongly maximal by Example 4.18(i); see §4.6 for motivation

for strongly maximal weights.) Here we use the special case ν = (3, 1) and

λ = (6, 2) of (2.1) that

〈s(3,1,1M ) ◦ s(2), s(6+M,2,1M )〉

is ultimately constant to sketch the overall strategy of the proofs of the two

main results in this paper, indicating why certain steps cannot, we believe,

be simplified. In particular, in §2.9 we give the bijection on plethystic semi-

standard signed tableaux (see Definition 3.10) used to prove this stability

result; it is generalized in Theorem 13.7.

2.1. Elementary-homogeneous products. The first key idea is to ap-

proximate Schur functions as products of elementary and homogeneous sym-

metric functions. For (2.1), we set α = λ− (1`(λ)) and decompose the parti-

tion λt (1M )+(M) as (1`(λ)+M )+
(
α + (M)

)
. It then follows from Young’s

rule (see the start of §5) that sλt (1M )+(M) is a summand of e(`(λ)+M)hα+(M).

In our specific example, λ = (6, 2), α = (5, 1), and so, when M = 0, the

product is

e(2)h(5,1) = s(6,2) + s(7,1) + 2s(6,1,1) + s(5,2,1) + s(5,1,1,1). (2.2)

As expected, this has s(6,2) as a summand, but also, of course, some Schur

functions labelled by extra partitions. For general M ∈ N, (2.2) becomes

e(2+M)h(5+M,1) = s(6+M,2,1M ) + s(7+M,1,1M ) + 2s(6+M,1,1,1M )

+ s(5+M,2,1,1M ) + s(5+M,1,1,1,1M ). (2.3)

Note that the summands in (2.3) are in bijection with the summands in (2.2)

and the coefficients are independent of M . This points to a potential in-

ductive proof, provided all the partitions in (2.2) are ‘inductively smaller’

than (6, 2) in some sense. However, we must consider not just the partitions

appearing in (2.2), but the new partitions that arise when we apply this

‘approximation’ strategy to them. For instance, s(5,1,1,1) appears in (2.2)

and (5, 1, 1, 1) = (1, 1, 1, 1) + (4), so we must also consider the product

e(4)h(4) = s(5,1,1,1) + s(4,1,1,1,1), (2.4)
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where we see s(4,1,1,1,1) for the first time. It therefore appears we need an

order in which (6, 2), (5, 1, 1, 1) and (4, 1, 1, 1, 1) form a chain. This is a

property of the 1-twisted dominance order, defined by taking `− = 1 in

Definition 6.6. The up-set of (6, 2) (as defined in §6.5), in this order is

(6, 2)�· ={(6, 2), (5, 2, 1), (4, 2, 1, 1), (3, 2, 13), (2, 2, 14)}

∪ {(7, 1), (6, 1, 1), (5, 1, 1, 1), (4, 14), (3, 15), (2, 16), (18)}.
(2.5)

Note that both (5, 1, 1, 1) and (4, 1, 1, 1, 1) appear and that each of the two

subsets in the decomposition above is a chain, increasing when read left to

right. (Thus ‘inductively smaller’ means ‘bigger in the 1-twisted dominance

order’.) See Figure 6.2 for the Hasse diagram of the order. By Lemma 6.12,

for every σ ∈ (6, 2)�· , the summands of e(`(σ))hσ−(1`(σ)) are in σ�· and so in

(6, 2)�· ; for example, this is clear for σ = (6, 2) and σ = (5, 1, 1, 1) from the

products e(2)h(5,1) and e(4)h(4) given in (2.2) and (2.4) above.

Remark 2.1. Many other strategies for ‘approximating’ s(6+M,2,1M ) by a

product of more tractable symmetric functions, for example any strategy us-

ing homogeneous symmetric functions alone, would fail at the point of (2.3)

by giving an expansion with a growing number of Schur functions, or with

non-constant coefficients.

2.2. Rough inductive hypothesis. We now suppose inductively — but

see §2.5 below for a difficulty here — that 〈s(3,1,1M ) ◦ s(2), sσt (1M )+(M)〉
is ultimately constant for each of the partitions σ ∈ (6, 2)�· except per-

haps for (6, 2). Since stability is known inductively for each summand of

e(2+M)h(5+M,1), except s(6+M,2,1M ), to show that the plethysm coefficients

〈s(3,1,1M ) ◦ s(2), s(6+M,2,1M )〉 are ultimately constant, it suffices to show that

〈s(3,1,1M ) ◦ s(2), e(2+M)h(5+M,1)〉 (2.6)

is ultimately constant.

2.3. Plethystic semistandard signed tableaux. To show that the pleth-

ysm coefficients 〈s(3,1,1M ) ◦ s(2), e(2+M)h(5+M,1)〉 in (2.6) are ultimately con-

stant we need the second key idea: sν ◦ sµ/µ? is the generating function

enumerating the plethystic semistandard signed tableaux defined in Defini-

tion 3.10. Moreover, by Proposition 5.6, the inner product of sν ◦sµ/µ? with

eπ−hπ+ is the number of plethystic semistandard signed tableaux of signed

weight (π−, π+), in the sense of Definition 3.11. For instance,

〈s(3,1) ◦ s(2), e(2)h(5,1)〉 =
∣∣PSSYT

(
(3, 1), (2)

)
((2),(5,1))

∣∣ (2.7)

is the number of plethystic semistandard signed tableaux of shape
(
(3, 1), (2)

)
and signed weight

(
(2), (5, 1)

)
. The three such plethystic semistandard

signed tableaux are:

1 1 1 2 1 1

1 1
,

1 1 1 1 1 1

1 2
,

1 1 1 1 1 2

1 1
,
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where 1 stands for the negative entry −1. More generally,

〈s(3,1,1M ) ◦ s(2), e(2+M)h(5+M,1)〉 =
∣∣PSSYT

(
3, 1, 1M ), (2)

)
((2+M),(5+M,1)

∣∣.
Thus 〈s(3,1,1M ) ◦ s(2), e(2+M)h(5+M,1)〉 is ultimately constant if and only if∣∣PSSYT

(
(3, 1, 1M ), (2)

)
((2+M),(5+M,1))

∣∣
is ultimately constant. Hence proving the stability of the plethysm coeffi-

cient 〈s(3,1,1M ) ◦ s(2), s(6+M,2,1M )〉 reduces to the combinatorial problem of

enumerating certain plethystic semistandard signed tableaux. We solve this

problem in §2.9 below by exhibiting explicit bijections between the sets

PSSYT
(
(3, 1, 1M ), (2)

)
((2+M),(5+M,1))

for M sufficiently large. (The proof of

Theorem 13.7 has the general argument.) In our specific example, M = 0 is

already sufficiently large and the constant multiplicity is 3.

2.4. Why the inductive step as described fails in general. This is

an honest sketch of the proof, except for one problem. We saw in §2.1 that

we have to consider all the partitions in the up-set (6 + M, 2, 1M )�· , not

just those in the support (see Definition 5.2) of e(2+M)h(5+M,1). If all these

partitions were of the form σt(1M )+(M) for σ ∈ (6, 2)�· , then nothing new

would be needed, and the inductive step would go through. The problem is

that this is not the case: for instance

(7, 2, 1)�· = {σ t (1) + (1) : σ ∈ (6, 2)�· } ∪ {(2, 2, 16), (110)}

where the union is disjoint, and there is no way to deduce from the inductive

assumptions for partitions in (6, 2)�· that 〈s(3,1,1M+1) ◦ s(2), s(2+M,2,16,1M )〉 is

ultimately constant, as required in the inductive step.

2.5. Cut up-sets. We get around this obstacle to the inductive strategy as

presented in §2.2 by the third key idea: we do not need to consider every

partition appearing in the up-set (6 +M, 2, 1M )�· , only those that appear in

the plethysm s(3,1,1M ) ◦ s(2). It follows from the Littlewood–Richardson rule

that only partitions with at most 4 + M parts appear in this plethysm, so

rather than work with (6 +M, 2, 1M )�· , we can instead take the ‘cut’ up-set

P(M) =
{
σ ∈ Par(8 + 2M) : σ�· (6 +M, 2, 1M ), `(σ) ≤ 4 +M

}
.

Thus P(0) = {(6, 2), (5, 2, 1), (4, 2, 1, 1), (7, 1), (6, 1, 1), (5, 1, 1, 1)} and in gen-

eral we have

P(M) =
{

(6 +M, 2, 1M ), (5 +M, 2, 1, 1M ), (4 +M, 2, 1, 1, 1M ),

(7 +M, 1, 1M ), (6 +M, 1, 1, 1M ), (5 +M, 1, 1, 1, 1M )
}

for each M ∈ N0. When M = 1 the ‘cut’ removes the two partitions (2, 2, 16)

and (110) blocking the inductive argument, and in general, every partition

in P(M) is of the form σ t (1M ) + (M) for σ ∈ P(0). Note however that P(0)

contains (4, 2, 1, 1) and so P(0) is not contained in the support of e(2)h(5,1).

Thus we must still consider more partitions than are immediately required

by (2.2).
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2.6. Signed Weight Lemma. As we show by proving the Signed Weight

Lemma (Lemma 7.3), after this refinement, the inductive step goes through.

Because of our use of this critical lemma, our proofs are not explicitly in-

ductive. Instead, each proof specifies the relevant way to apply the Signed

Weight Lemma, and verifies its hypotheses: the most technical part of the

argument is captured in the notion of a stable partition system, as defined

in Definition 7.1.

2.7. Twisted dominance order. The definition of a stable partition sys-

tem is deliberately quite general. This generality is needed for other appli-

cations of the Signed Weight Lemma (Lemma 7.3) beyond the scope of this

paper, and, in any case, seems to us to be the clearest way to present the

proof. In practice, the stable partition systems we use are certain families of

intervals for the twisted dominance order on partitions (see Definition 6.6).

For instance P(M) above is the interval [(6, 2)⊕M(1, 1), (5, 1, 1, 1)⊕M(1, 1)]�·
for the 1-twisted dominance order. Definition 6.6 is a key definition in this

paper; more broadly, the attractive interplay between the `-decomposition

〈π−, π+〉 defined in Definition 6.1, the partition π, and the symmetric func-

tion eπ−hπ+ is seen in many results and proofs below, notably Lemma 6.12

and Proposition 9.7.

2.8. Counting plethystic tableaux. The plethystic semistandard signed

tableaux in PSSYT
(
(3), (2)

)
((1),(4,1))

are

1 1 1 1 1 2 , 1 2 1 1 1 1
(2.8)

By Proposition 5.6 we have

|PSSYT
(
(3), (2)

)
((1),(4,1))

| = 〈s3 ◦ s2, e1h(4,1)〉.

This is the second key idea seen in §2.3, showing the tight connection be-

tween plethystic semistandard signed tableaux and symmetric functions.

For instance, since by Young’s rule e1h(4,1) = s(6) + 2s(5,1) + s(4,2) + s(4,1,1),

we may count these plethystic semistandard signed tableaux algebraically

by evaluating the inner product displayed above using the known plethysm

s3 ◦ s2 = s(6) + s(4,2) + s(2,2,2) (see for instance [16, I.8 Example 6(a)]).

2.9. Bijections between plethystic tableaux. In §2.3 we claimed that

|PSSYT
(
(3, 1, 1M ), (2)

)
((2+M),(5+M,1))

| = 3 for all M ∈ N0 and showed the

three tableaux when M = 0. Two of these plethystic semistandard signed

tableaux are obtained from the tableaux in (2.8) by inserting 1 1 as a new

entry in position (1, 1), moving the existing entry down to row 2. But the

plethystic semistandard signed tableau shown in the margin is not obtained

in this way, because by the row semistandard condition in Definition 3.10,

1 1 cannot appear left of 1 2 . Generally this insertion map defines an

injection between the sets for M and M + 1 and, by the part of the proof

of Theorem 13.7 dealing with condition (ii) in the Signed Weight Lemma

(Lemma 7.3), it is surjective for M ≥ 1, proving the claimed stability result.

1 1 1 2 1 1

1 1

For a larger example see Example 12.26.
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3. Partitions, tableaux and plethystic tableaux

In this section we give numbered definitions for the key terms novel to this

paper. Other than these, we believe our notation is standard; we hope that

the reader will be able to skim this section and then treat it as a reference.

For essential preliminaries on symmetric functions see the start of §5.

Weights, compositions and partitions. A weight, also sometimes called a

composition, is an infinite sequence of non-negative integers with finite sum,

called its size. The length of a weight α, denoted `(α), is the maximum `

such that α` 6= 0. (We set `(∅) = 0.) Dually, we often write a(α) for α1.

A weight is a partition if α is non-increasing. The terms in a weight or

partition are called parts. We always omit the infinite tail of zero parts

when writing weights or partitions. Let W be the set of weights, let Par be

the set of partitions, and let Par(n) be the set of partitions of n.

Young diagrams and skew partitions. We write [λ] for the Young diagram

of a partition λ, defined by

[λ] =
{

(i, j) : 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi
}
.

The elements of [λ] are called boxes. A skew partition is a pair of partitions,

denoted λ/λ?, such that [λ?] ⊆ [λ]. The size of a skew partition λ/λ?,

denoted |λ/λ?|, is |λ| − |λ?|. We extend the definition of Young diagrams to

skew partitions in the obvious way, by setting [λ/λ?] = [λ]\[λ?]. We draw

Young diagrams in the ‘English’ convention with box (1, 1) in the top-left of

the page. The conjugate partition to λ, denoted λ′, is the unique partition

with Young diagram
{

(j, i) : (i, j) ∈ [λ]
}

. For example (3, 2)′ = (2, 2, 1).

The conjugate of a skew partition µ/µ? is µ′/µ′?.

Operations on partitions. The sum and difference of partitions is defined

componentwise by (α + β)i = αi + βi, and (α − β)i = αi − βi when β is

a subpartition of α. Let α t β be the partition whose multiset of non-zero

parts is the disjoint union of the multisets of non-zero parts of α and β;

equivalently (α t β)′ = α′ + β′. We say that α t β is the join of α and β.

For instance,

, , ,

are the Young diagrams of (3, 2), (3, 2) t (3, 1), (3, 2) t (3, 1) + (2, 2) and

(6, 4, 3, 1)\(4, 3, 1), respectively. As already seen in the statements of the

two main theorems, we define, for partitions γ and δ,

µ/µ? ⊕ (γ, δ) =
(
(µ t γ′) + δ

)
/µ? (3.1)

with the special case that λ ⊕ (γ, δ) = (λ t γ′) + δ. Note the conjugation

of γ. (In examples we often omit the parentheses, writing instead λ t γ′+δ.)
We suggest ‘⊕’ be read as ‘adjoin’. For example, (3, 2)⊕

(
(2, 1, 1), (2, 2)

)
=(

(3, 2)t (3, 1)
)

+ (2, 2) = (3, 3, 2, 1) + (2, 2) = (5, 5, 2, 1) was seen above, and
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(3, 2) ⊕ 2
(
(2, 1, 1), (2, 2)

)
= (7, 7, 3, 2, 1, 1). Note this agrees with (3, 2) ⊕(

(2, 1, 1), (2, 2)
)
⊕
(
(2, 1, 1), (2, 2)

)
. There is one annoyingly technical point,

seen by comparing ∅ ⊕
(
(1), (2)

)
= ∅ t (1) + (2) = (1) + (2) = (3) with

∅+(2)t(1) = (2)t(1) = (2, 1), which we address in the following definition.

Definition 3.1. Let µ/µ? be a skew partition. Given `− and `+ ∈ N0, we

say that µ/µ? is (`−, `+)-large if either `− = 0 or `+ = 0 or µ`+ ≥ `−.

It is deliberate that µ? does not enter in the body of Definition 3.1. Equiv-

alently, µ/µ? is (`−, `+)-large if (`+, `−) either has a zero coordinate or is a

box of [µ]: see Figure 3.1 for an example.

`+= 3

`−= 4

Figure 3.1. The skew partition (6, 5, 5, 2)/(3, 1) above is (4, 3)-large in the

sense of Definition 3.1 because (3, 4) ∈ [(6, 5, 5, 2)]. It is also (5, 3)-large,

but not (5, 4)-large.

By Lemma 8.6, joining γ′ and adding δ are commuting operations when

applied to a partition that is
(
`(γ), `(δ)

)
-large. For instance (3, 2) is not

(3, 2)-large, and (3, 2) + (2, 2) t (3, 1) = (5, 4, 3, 1) is not equal to (3, 2) t
(3, 1) + (2, 2) = (5, 5, 2, 1). But (3, 3) is (3, 2)-large, and applied to this

partition the operations commute. See Remark 6.2 for why we choose to

join first.

Remark 3.2. Fix partitions κ− and κ+ and let `− = `(κ−), `+ = `(κ+). For

any partition µ, the adjoining map µ 7! µ⊕ (κ−, κ+) increases µ`+ by at least

κ+

`+
and increases µ′`− by at least κ−

`− . (The example ∅ ⊕
(
(1), (2)

)
= (3)

above shows that ‘at least’ cannot be replaced with ‘exactly’.) If κ− = ∅
then µ is already (`−, `+)-large; otherwise µ becomes (`−, `+)-large after at

most d`+/κ−
`−e adjoinings. The dual result holds for κ+, now with d`−/κ+

`+
e

adjoinings. Thus there exists C such that µ/µ? ⊕ C(κ−, κ+) is (`−, `+)-large.

For later use, for instance in the context of Lemma 8.9, we remark that one

further application of the adjoining map gives an (`−+1, `+)-large partition.

Setting σ/σ? = µ/µ? ⊕ C(κ−, κ+), it follows from Lemma 8.6 that for all

M ≥ C,

µ/µ? ⊕M(κ−, κ+) = σ/σ? ⊕ (M − C)(κ−, κ+)

= σ/σ? ⊕ (κ−, κ+)⊕ M−C· · · ⊕(κ−, κ+)

By this remark, there is no loss of generality in assuming in our main

theorems that all the partitions involved are large, and so, in practice, there

is rarely any need to worry about whether to add κ+ or join κ−′ first in the

map λ 7! λ ⊕ (κ−, κ+). (By (3.1), joining first is our definition.) In the

important special case where κ− = ∅, this technicality does not arise.
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Dominance order. We partially order partitions of the same size by the

dominance order, defined as usual by κ � λ if and only if κ1 + · · · + κi ≤
λ1+· · ·+λi for all i. We use the obvious extension of the dominance order to

compositions and to partitions of different size: in the latter case, to indicate

that the partitions may have different sizes, we write �� rather than �.

Signed tableaux and signed weights. We work throughout with tableaux hav-

ing entries from Z\{0}.

Definition 3.3 (Signed tableau). Let µ/µ? be a skew partition. A signed

tableau of shape µ/µ? is a function t : [µ/µ?] ! Z\{0}. If t(i, j) = x then

we say that t has entry x in box (i, j).

We write YT(µ/µ?) for the set of signed tableaux of shape µ/µ?. Recall

that W is the set of weights.

Definition 3.4 (Signed weight). A signed weight is an element of W ×W.

Definition 3.5 (Signed weight of a signed tableau). The signed weight of a

signed tableau t is the pair (α−, α+) ∈ W ×W where, for each i ∈ N, α−i is

the number of entries of t equal to −i, and α+

i is the number of entries of t

equal to i.

If a tableau t has only positive entries then its signed weight is (∅, α) for

some weight α, and in this case we say, as usual, that α is the weight of t

and write α = wt(t).

Definition 3.6 (Sign of a signed tableau). The sign of a signed tableau t,

denoted sgn(t), is −1 if t has an odd number of negative entries and +1 if t

has an even number of negative entries. A signed tableau is negative if its

sign is −1 and positive if its sign is +1.

Equivalently, the sign of a signed tableau of weight (α−, α+) is (−1)|α
−|.

Semistandard signed tableaux. Recall that a horizontal strip is a skew par-

tition whose Young diagram has at most one box in each column and a

vertical strip is a skew partition whose Young diagram has at most one box

in each row. For instance the skew partition (6, 4, 3, 1)/(4, 3, 1) seen earlier

in this section is a horizontal strip but not a vertical strip, and its conjugate

(4, 3, 3, 2, 1, 1)/(3, 2, 2, 1) is a vertical strip but not a horizontal strip. (The

diagrams are shown in the margin.)

Definition 3.7 (Semistandard signed tableau). Let t be a signed tableau.

We say t is semistandard if

(a) equal positive entries of T lie in horizontal strips

(b) equal negative entries of T lie in vertical strips,

(c) all entries are weakly increasing when rows are read left-to-right and

columns are read top-to-bottom with respect to the total order on

Z\{0} defined by

−1 ≺ −2 ≺ . . . ≺ 1 ≺ 2 . . . .
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Note that −1 is the least element in this order. We write SSYT±(µ/µ?)

for the set of all semistandard signed µ/µ?-tableaux and SSYT(µ/µ?)(α−,α+)

for the subset of those signed µ/µ?-tableaux of signed weight (α−, α+). We

omit ± in the second case since it is clear from the signed weight that

signed tableaux are required. As already seen, we adopt the convention

that negative entries are shown in tableaux by bold numbers. For example,

SSYT
(
(5, 4, 3, 1)

)
((2,2),(5,3,1)) has size two, containing the two semistandard

signed tableaux
1 2 1 1 1
1 2 2 2
1 1 3
2

,

1 2 1 1 1
1 1 2 2
2 2 3
1

and SSYT
(
(5, 4, 3, 1)

)
((3,1),(5,3,1)) has a unique semistandard signed tableau,

obtained from the second semistandard signed tableau above by changing

the entry of −2 in box (3, 1) to −1.

Definition 3.8 (Signed colexicographic order). Let s and t be distinct semi-

standard signed tableaux of the same shape. We set s < t if and only if

either

(i) sgn(s) = −1 and sgn(t) = 1 or

(ii) sgn(s) = sgn(t) and considering the largest entry, m say, that appears

in a different position in s and t, in the rightmost column in which

the multiplicity of m differs between s and t, the multiplicity is less

in s than in t.

This is the signed colexicographic order. The sign-reversed colexicographic

order is defined identically except that if sgn(s) = −1 and sgn(t) = 1 then

now s > t.

We emphasise that here ‘largest entry’ is with respect to the order in

Definition 3.7 in which −1 ≺ −2 ≺ . . . ≺ 1 ≺ 2 < . . .. For example, the

signed colexicographic order restricted to semistandard signed tableaux of

shape (2, 1) having entries from {1, 2, 3} is

1 1
2

< 1 1
3

< 1 2
2

< 1 2
3

< 2 2
3

< 1 3
2

< 1 3
3

< 2 3
3

and the total order on SSYT±
(
(12)

)
is

1
1
< 2

1
< 3

1
< 4

1
< . . . < 1

2
< 2

2
< 3

2
< 4

2
< . . .

. . . < 1
1
< 1

2
< 2

2
< 1

3
< 2

3
< 3

3
< 1

4
< . . . < 1

2
< 1

3
< 2

3
< 1

4
< . . . .

Changing the order to the sign-reversed colexicographic order, the positive

tableaux seen in the bottom row instead come first, and the order within

each line is unchanged. In either order we have 1
1
< 1

2
; the greatest entry

that has different multiplicity is −2 and it appears only in the tableau that

is larger. More generally, the signed colexicographic order on (1m)-tableaux

with only positive entries agrees with the colexicographic order on m-subsets

of N, whence its name. It is notable that the signed colexicographic order
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could be replaced with any other total order on semistandard tableaux in

which negative tableaux (in the sense of Definition 3.6) precede positive

tableaux without changing any of our results: we explain this in Remark 5.7

below and use this freedom in the proof of Theorem 1.2 (see Definition 12.2).

Plethystic semistandard signed tableaux. We can now define our key combi-

natorial objects.

Definition 3.9 (Plethystic signed tableau). A plethystic signed tableau T

of outer shape ν and inner shape µ/µ? is a function T : [ν]! YT(µ/µ?). If

T (i, j) = t then we say that T has entry t in box (i, j). We call the entries

of T inner tableaux.

Let PYT(ν, µ/µ?) denote the set of plethystic signed tableaux of outer

shape ν and inner shape µ/µ?. For example three elements of PYT
(
(3, 2), (2)

)
are shown below

1 1 1 2 2 2

1 2 1 3
,

1 1 2 2 1 2

1 2 1 3
,

1 1 2 2 2 2

1 2 1 3
.

Note that each inner µ/µ?-tableau in a plethystic signed tableau has a sign

defined by Definition 3.6. For example, the first plethystic signed tableau

above has 1 1 , 1 2 as its two negative entries, and so has sign (−1)2

and therefore is positive, in the sense of this definition. Moreover, if these

inner µ/µ?-tableaux are semistandard in the sense of Definition 3.7, as in

the second and third examples above (but not the first, because of 1 1 ),

then they are totally ordered by the signed and sign-reversed colexicographic

orders in Definition 3.8. We use this to lift Definition 3.7 almost verbatim

to the plethystic setting.

Definition 3.10 (Plethystic semistandard signed tableau). Let T be a

plethystic signed tableau with semistandard inner tableau entries. We say

that T is semistandard if

(a) equal positive entries of T lie in horizontal strips

(b) equal negative entries of T lie in vertical strips,

(c) all entries are weakly increasing when rows are read left-to-right and

columns are read top-to-bottom with respect to the signed colexico-

graphic order.

We say that T is sign-reversed semistandard if the same holds with respect

to the sign-reversed colexicographic order.

Let PSSYT±(ν, µ/µ?) and PSSYT∓(ν, µ/µ?) denote the sets of all plethys-

tic semistandard signed tableaux and sign-reversed plethystic semistandard

signed tableaux of outer shape ν and inner shape µ/µ?. Thus the first

two tableaux displayed above are in PYT
(
(3, 2), (2)

)
but not in either of

these subsets, because in the first 1 1 is not semistandard and in the sec-

ond 2 2 > 1 2 violates condition (c) above. The third tableau is in

PSSYT±
(
(3, 2), (2)

)
but not in PSSYT∓

(
(3, 2), (2)

)
.



17

Definition 3.11 (Signed weight of a plethystic signed tableau). The signed

weight of a plethystic signed tableau T is the sum of the signed weights of

its inner tableaux.

We denote by PSSYT(ν, µ/µ?)(α−,α+) and PSSYT∓(ν, µ/µ?)(α−,α+) the

subsets of those plethystic semistandard signed tableaux of signed weight

(α−, α+). For instance the signed weights of the elements of PYT
(
(3, 2), (2)

)
shown above are

(
(3, 1), (2, 3, 1)

)
,
(
(2, 1), (3, 3, 1)

)
and

(
(2, 1), (2, 4, 1)

)
.

The definition of the signed colexicographic order (Definition 3.8) applies

to both these subsets, since the inner µ/µ?-tableau entries are totally or-

dered. The three elements of PSSYT
(
(2, 2), (3)

)
((3),(7,2)) are, ordered by the

signed colexicographic order,

1 1 1 1 1 2

1 1 2 1 1 1
,

1 1 1 1 2 2

1 1 1 1 1 1
,

1 1 1 1 1 2

1 1 1 1 1 2
.

For instance, the third plethystic semistandard signed tableau is greater

than the second because the greatest (3)-tableau entry of the third, namely

1 1 2 , is not in the second. To explain one feature that may at first seem

surprising, note that since 1 1 1 has negative sign, it may appear multiple

times in the same column of a plethystic semistandard tableau, but it cannot

be repeated within the same row. See before Remark 5.7 for the analogous

example using sign-reversed plethystic semistandard signed tableaux and

also Example 10.10 for another example showing repeated inner tableaux.

4. Maximal and strongly maximal signed weights

The results and definitions in §4.1 are needed throughout; the remainder

of this section has the definitions needed in Theorem 1.2. In §4.4, §4.5

and §4.6 we give motivating examples: these final three subsections are not

logically essential.

4.1. Greatest signed weights. We begin with a partial order on signed

weights. Let W`− be the set of weights of length at most `− ∈ N0.

Definition 4.1 (`−-Signed dominance order). Let `− ∈ N0. The `−-signed

dominance order is the partial order on W`−× W defined by (α−, α+) �
(β−, β+) if

(α−1 , . . . , α
−
`− , α

+

1 , α
+

2 , . . .) � (β−1 , . . . , β
−
`− , β

+

1 , β
+

2 , . . .).

For example we have
(
(1, 1, 1), (2, 1)

)
�
(
(2, 1), (3)

)
in the 3-signed dom-

inance order because (1, 1, 1, 2, 1) � (2, 1, 0, 3, 0), whereas
(
(3), (2, 1)

)
and(

(2, 1), (3)
)

are incomparable in the 2-signed dominance order since (3, 0, 2, 1)

and (2, 1, 3, 0) are incomparable in the dominance order. This example

should make it clear that no ambiguity arises from using the same sym-

bol � for both the dominance and `−-signed dominance order. The value

of `− will always be clear from context; in all our main theorems, `− is the

length of the partition κ−.
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Definition 4.2. Let `− ∈ N0. Given a skew partition τ/τ?, let t− be the

semistandard signed tableau with only negative entries defined by putting

min(`−, τi − τ?i) entries from −1, . . . ,−`− into row i of [τ/τ?]. Supposing

that t− has shape σ/τ?, let t`−(τ/τ?) be the semistandard signed tableau

of shape τ/τ? obtained from t− by putting τ ′j − σ′j entries from 1, 2, . . . into

column j.

Definition 4.3 (Greatest signed weight). Let `− ∈ N0. Given a skew par-

tition τ/τ? we define the `−-greatest signed weight of shape τ/τ?, denoted

ω`−(τ/τ?), to be the signed weight of t`−(τ/τ?).

We immediately justify calling ω`−(τ/τ?) ‘greatest’. Examples of both

definitions are given following this lemma.

Lemma 4.4. Let τ/τ? be a skew partition and let `− ∈ N0. The tableau

t`−(τ/τ?) is the greatest signed tableau of shape τ/τ? when signed weights

are ordered by the `−-signed dominance order. Moreover, given any τ/τ?-

tableau t with negative entries from {−1, . . . ,−`−} we have, writing swt(t)

for the signed weight of t,

(swt(t)−, swt(t)+) �
(
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
)

where both ω`−(τ/τ?)
− and ω`−(τ/τ?)

+ are partitions.

Proof. It is clear from the construction of t`−(τ/τ?) that, amongst all semis-

tandard signed τ/τ?-tableaux, t`−(τ/τ?) greedily maximizes first the number

of −1s, then the number of −2s, and so on, until all the negative entries in

{−1, . . . ,−`−} are placed, and then the number of 1s, then the number of

2s, and so on, until all positive entries are placed. The displayed inequality

is therefore obvious from the definition of the `−-signed dominance order in

Definition 4.1. By the construction of t`−(τ/τ?), each entry −k for k ≥ 2

has an entry −(k − 1) to its left, and each entry k for k ≥ 2 has an entry

k − 1 above it. Therefore ω`−(τ/τ?)
− and ω`−(τ/τ?)

+ are partitions. �

See Lemma 6.4 for a strengthening of the final part of this lemma.

Example 4.5. The 2-greatest tableaux t2
(
(6, 4, 4, 1)/τ?

)
for the four choices

∅, (1, 1), (2, 1), (3, 3) of τ? are shown below

1 2 1 1 1 1
1 2 2 2
1 2 3 3
1

,

1 2 1 1 1
1 2 2

1 2 1 3
1

,

1 2 1 1
1 2 1

1 2 1 2
1

,

1 2 1
1

1 2 1 1
1

.

Their greatest signed weights ω2

(
(6, 4, 4, 1)/τ?

)
are

(
(4, 3), (4, 2, 2)

)
,
(
(4, 3),

(4, 1, 1)
)
,
(
(4, 3), (4, 1)

)
and

(
(4, 2), (3)

)
. We continue this example in Ex-

ample 9.2.

In general it is quite fiddly to specify ω`−(τ/τ?) except by the algorithmic

construction above. In the partition case however there is a simple formula,

which the reader will easily guess from the previous example. We postpone

it to (6.1) since it is an example of the `−-decomposition of partitions in §6.
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The final remark below is not logically essential, but will help orient the

reader, while addressing one potential confusion.

Remark 4.6. Let `− ∈ N0 and let τ/τ? be a skew partition. Recall from

Definition 3.8 that negative tableaux precede positive tableaux in the signed

colexicographic order and vice versa in the sign-reversed colexicographic

order. It follows, by a similar argument to Lemma 4.4, that t`−(τ/τ?) is

the least tableau in the signed colexicographic order if |ω`−(τ/τ?)
−| is odd,

and in the sign-reversed colexicographic order if |ω`−(τ/τ?)
−| is even. More

generally signed tableaux of large signed weight (in the `−-signed dominance

order) are small in the sign and sign-reversed colexicographic orders.

4.2. Semistandard signed tableau families. For Theorem 1.2 we must

extend these ideas to families of semistandard signed tableaux.

Definition 4.7 (Semistandard signed tableau families). Let τ/τ? be a skew

partition and let R ∈ N.

(a) A row-type semistandard signed tableau family of shape τ/τ? and size R

is the multiset of entries in a plethystic semistandard signed tableau of

outer shape (R) and inner shape τ/τ?.

(b) A column-type semistandard signed tableau family of shape τ/τ? and

size R is the multiset of entries in a plethystic semistandard signed

tableau of outer shape (1R) and inner shape τ/τ?.

The signed weight of a semistandard signed tableau family is the sum of the

signed weights of its τ/τ?-tableau elements. A tableau family is singleton if

it has a single element.

Signed weights are ordered by the `-signed dominance order in Defini-

tion 4.1.

Definition 4.8 (Maximal signed weights). A semistandard signed tableau

family of signed weight (κ−, κ+) is maximal if its signed weight is maximal in

the `(κ−)-signed dominance order amongst all semistandard signed tableau

families of its type, shape and size, considering only those families whose

negative entries come from {−1, . . . ,−`(κ−)}. A maximal signed weight is

the signed weight of a maximal semistandard signed tableau family.

For example, the maximal singleton semistandard signed tableau families

of shape (2, 2) have as their unique elements the tableaux t`−
(
(2, 2)

)
for

`− = 2, 1 and 0, shown below:

1 2
1 2

, 1 1
1 2

, 1 1
2 2

. (4.1)

Their maximal signed weights are
(
(2, 2),∅

)
,
(
(2), (1, 1)

)
and

(
∅, (2, 2)

)
,

respectively. This shows that ‘maximal’ must be interpreted using the ap-

propriate value of `−: for instance, while
(
(2), (1, 1)

)
�
(
∅, (2, 2)

)
in the

1-signed dominance order of Definition 4.1, the signed weight
(
∅, (2, 2)

)
is

still maximal according to Definition 4.8, because it is compared only with

other signed weights of the form
(
∅, τ+) using the 0-signed dominance order.
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Note also that the tableau shown in the margin of signed weight
(
(1), (2, 1)

)
is not maximal, because

(
(1), (2, 1)

)
�
(
(2), (1, 1)

)
in the 1-signed dominance1 1

1 2
order; this illustrates that Definition 4.8 requires a comparison with tableaux

of both possible signs.

More generally Lemma 4.17 classifies all singleton maximal semistandard

signed tableau families. In these singleton examples, the row/column-type

is irrelevant. We now give an example showing all features of Definition 4.8.

Example 4.9. The five maximal row-type semistandard signed tableau fam-

ilies of shape (2) and size 3 are{
1 2 , 1 2 , 1 2

}
,
{

1 1 , 1 2 , 1 3
}
,
{

1 1 , 1 2 , 1 1
}
,{

1 1 , 1 1 , 1 1
}
,
{

1 1 , 1 1 , 1 1
}

of signed weights
(
(3, 3),∅

)
,
(
(3), (1, 1, 1)

)
,
(
(2), (3, 1)

)
,
(
(1), (5)

)
and

(
∅, (6)

)
,

respectively. Note that two of the families have tableaux of both signs and

three have a repeated positive tableau. The seven maximal column-type

semistandard signed tableau families of shape (2) and size 3 are{
1 2 , 1 3 , 1 4

}
,
{

1 2 , 1 3 , 2 3
}
,{

1 1 , 1 2 , 1 3
}
,
{

1 1 , 1 1 , 1 2
}
,
{

1 1 , 1 1 , 1 1
}
,{

1 1 , 1 2 , 2 2
}
,
{

1 1 , 1 2 , 1 3
}

of signed weights
(
(3, 1, 1, 1),∅

)
,
(
(2, 2, 2),∅

)
,
(
(3, 1, 1), (1)

)
,
(
(3, 1), (2)

)
,(

(3), (3)
)
,
(
∅, (3, 3)

)
and

(
∅, (4, 1, 1)

)
, respectively. Again note that two

families have a repeated negative tableau. We continue this example in

Example 4.12.

We use Definition 4.8 at a critical point in the proof of Lemma 12.14; it

is also needed in Definition 4.10 shortly below.

4.3. Strongly maximal signed weights. We define the maximal semis-

tandard signed tableau families in the statement of Theorem 1.2 as follows.

Say that a τ/τ?-tableau is `−-negative greatest if it agrees with t`−(τ/τ?) in

its negative entries. Let maxM denote the maximum integer entry of all

the tableaux in a semistandard signed tableau family M.

Definition 4.10 (Strongly maximal). Let τ/τ? be a non-empty skew par-

tition. Let c+ ∈ N0. Let (κ−, κ+) be a signed weight and set `− = `(κ−).

Let ε ∈ {−1,+1} be the sign of t`−(τ/τ?). A semistandard signed tableau

family M of shape τ/τ? and signed weight (κ−, κ+) is strongly c+-maximal

if

(a) each t ∈M is `(κ−)-negative greatest;

(b) if ε = +1 then M has column-type; if ε = −1 then M has row-type;

(c) if (φ−, φ+) is the signed weight of a maximal semistandard signed

tableau family T of the same shape, size and type as M, such that

each member of T is `(κ−)-negative greatest and max T ≤ maxM,

then
∑c+

i=1 φ
+

i ≤
∑c+

i=1 κ
+

i with equality if and only if T =M.
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The sign of M is ε. A signed weight is strongly c+-maximal if it is the

signed weight of a strongly c+-maximal semistandard signed tableau family;

its shape and sign are the common shape and sign of the tableaux in the

family and its size is the size of the family.

See §4.6 for motivation for this definition and Remark 12.7 for how strongly

maximal tableau families are used to define a bijection on plethystic semi-

standard signed tableaux. Later in §12 we give a running example using

the strongly 1-maximal signed weight (∅, (4, 1, 1)) of the tableau family{
1 1 , 1 2 , 1 3

}
found in Example 4.12(0) using Example 4.9; this

running example illustrates the significance of condition (c).

As an immediate example of Definition 4.10, it is routine to check that

the three singleton tableau families of shape (2, 2) in (4.1) are strongly 0-,

2- and 1-maximal respectively. The relevant values of `(κ−), specifying the

least negative entry, are 2, 1 and 0 respectively. The final tableau family is

also strongly 2-maximal.

Lemma 4.11. If (κ−, κ+) is a strongly maximal signed weight of shape µ/µ?
then there is a unique semistandard signed tableau family M of shape µ/µ?
and the same size and type as (κ−, κ+). The µ/µ?-tableau entries of M are

distinct and agree in their negative entries.

Proof. By (a) in Definition 4.10, the tableaux in M are equal in their neg-

ative entries. If the sign is +1 then by (b), M has column-type, and since

the inner tableaux of sign +1 in a plethystic semistandard tableau of shape

(1R) are distinct, the tableaux inM are distinct. The proof is similar if the

sign is −1. The uniqueness of M is obvious from (c). �

Example 4.12. Using Lemma 4.11 we find all strongly maximal signed

tableau families and signed weights of shape (2) and size 3, considering each

possibility for `−, the length of the negative part of the signed weight, in

turn.

(0) Take `− = 0. Then all integer entries are positive and, by (b) the

family has column-type. The two relevant maximal signed weights

of shape (2) and size 3 seen in Example 4.9 are
(
∅, (3, 3)

)
and(

∅, (4, 1, 1)
)
. Now

(
∅, (4, 1, 1)

)
is strongly 1-maximal, satisfying (c)

because when compared to
(
∅, (3, 3)

)
, we have (4, 1, 1)1 > (3, 3)1.

Similarly
(
∅, (3, 3)

)
is strongly 1- and 2-maximal. (This is relevant

to the end of Example 4.12 below.) Note that to verify (c),
(
∅, (3, 3)

)
should not be compared to

(
∅, (4, 1, 1)

)
because (4, 1, 1) has strictly

greater length, corresponding to a larger maximum integer entry.

(1) Take `− = 1. By Lemma 4.11, a strongly maximal semistandard

signed tableau family of shape (2) and size 3 has the form{
1 x , 1 y , 1 z

}
where, since by (b) the family has row-type, x < y < z. Taking

x = 1, y = 2 and z = 3 we obtain
{

1 1 , 1 2 , 1 3
}

. None
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of the four other maximal row-type weights (φ−, φ+) of shape (2)

and size 3 seen in Example 4.9 are of a family all of whose mem-

bers are 1-greatest. Therefore (c) holds and so the tableau fam-

ily above is strongly 3-maximal, of strongly maximal signed weight(
(3), (1, 1, 1)

)
. It is clear that this choice of x, y and z defines the

unique strongly 3-maximal signed weight of shape (2) and size 3.

(2) There is no strongly maximal semistandard signed tableau family

with `− = 2 because by (a) each (2)-tableau element is 1 2 ,

but, as observed above, by (b) the three (2)-tableaux in the fam-

ily are distinct. In particular, while we saw in Example 4.9 that{
1 2 , 1 3 , 2 3

}
is a maximal semistandard signed tableau

family of shape (2) and size 3 in the 3-signed dominance order, it

is not strongly maximal in the 3-signed dominance order. (If in-

stead R = 1 then
{

1 2
}

is strongly 0-maximal in the 2-signed

dominance order.)

Note we do not assume in Definition 4.10 that M is maximal; instead,

as we now show, this follows from the three hypotheses, as the reader may

have guessed from the previous example.

Lemma 4.13. LetM be a strongly c+-maximal semistandard signed tableau

family of signed weight (κ−, κ+). Let (ψ−, ψ+) be the signed weight of a

maximal semistandard signed tableau family S of the same shape, size and

type as M with negative entries from
{
−1, . . . ,−`(κ−)

}
and such that S 6=

M. Then

|ψ−| ≤ |κ−| (4.2)

with equality if and only if either maxS > maxM or

|ψ−|+
∑c+

i=1 ψ
+

i < |κ−|+
∑c+

i=1 κ
+

i . (4.3)

Moreover (κ−, κ+) is a maximal signed weight in the sense of Definition 4.8.

Proof. Set `− = `(κ−). Let τ/τ? be the shape of S and M. Suppose there

exists t ∈ S such that t is not `−-negative greatest. By Lemma 4.4, if t has

signed weight (α−, α+) then |α−| < |ω`−(τ/τ?)
−| and, by summing over all

t ∈ S, we see that (4.2) holds. Moreover ψ−�κ− and so (κ−, κ+) 6� (ψ−, ψ+),

as required in the final claim.

In the remaining case every element of S is `−-negative greatest. Hence

ψ− = κ−. If maxS > maxM then we need only verify the final claim. Since

maxS = `(ψ+) and maxM = `(κ+), we have

|ψ−|+
`(κ+)∑
i=1

ψ+

i < |ψ
−|+ |ψ+| = |κ−|+ |κ+| = |κ−|+

`(κ+)∑
i=1

κ+

i .

Hence, by definition of the `−-signed dominance order in Definition 4.1,

we have (κ−, κ+) 6� (ψ−, ψ+), as required. We have now reduced further to

the case where maxS ≤ maxM. By (c) in Definition 4.10, noting that

|ψ−| = |κ−|, we now have (4.3). It now follows from the definition of the
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`−-signed dominance order in Definition 4.1, as in the previous paragraph,

that (κ−, κ+) 6� (ψ−, ψ+). This completes the proof. �

Remark 4.14. We remark that the converse to this lemma also holds:

ifM is a maximal semistandard signed tableau family such that either (4.2)

or (4.3) holds when M is compared with a maximal semistandard signed

tableau family S then all tableaux in M have the same sign and are `−-

negative greatest; given this, provided M has the type specified by (b), we

have (b) and (4.3) implies that (c) holds. This gives an equivalent definition

of ‘strongly maximal’; in this paper we prefer Definition 4.10 since, while

it has a technical flavour, examples can easily be given straight from the

definition, rather than via the argument of Lemma 4.13 and this remark.

If (κ−, κ+) is a strongly maximal signed weight then κ− and κ+ are par-

titions. This is implicitly assumed in the statement of Theorem 1.2 because

we have only defined the adjoining operation ⊕ for partitions. To prove

this fact we use the Bender–Knuth involution on semistandard tableaux, of

general skew shape, but having only positive entries. (For a textbook pre-

sentation of the method see the proof of Theorem 7.10.2 in [22].) We remark

that the proof of the following lemma generalizes — but with much more

work — to show that any maximal signed weight is a pair of partitions.

Lemma 4.15. If (κ−, κ+) is a strongly maximal signed weight then κ−

and κ+ are partitions.

Proof. Set `− = `(κ−). Suppose that (κ−, κ+) has shape µ/µ? and size R.

LetM be the unique strongly maximal semistandard signed tableau family

of signed weight (κ−, κ+). By Lemma 4.4, ω`−(µ/µ?)
− is a partition. By (a)

in Definition 4.10 we have κ− = Rω`−(µ/µ?)
−, and so κ− is a partition.

Fix i < `(κ+). Let t+(1) . . . , t
+

(R) be the subtableaux of skew shape defined

by taking the positive entries of each tableau in M. By (a) and (b) in

Definition 4.10, t+(1), . . . , t
+

(R) are distinct semistandard tableaux of the same

shape. Applying the Bender–Knuth involution swapping i and i + 1 to

each t+(k) gives distinct semistandard tableaux u+

(1), . . . , u
+

(R). Let U be the

semistandard signed tableau family obtained by replacing the subtableau t+(k)
with u+

(k) in each inner tableau in M. Observe that U has signed weight

(κ−, λ+) where

λ+

k =


κ+

i+1 if k = i

κ+

i if k = i+ 1

κ+

k if k 6= i, i+ 1.

By the ‘moreover’ part of Lemma 4.13, (κ−, κ+) is a maximal signed weight

in the `−-signed dominance order. Comparing it with (κ−, λ+), we see that

either κ+

i = κ+

i+1 and so κ+

i = λ+

i = κ+

i+1, or κ+ 6� λ+ and so κ+

i > κ+

i+1.

This completes the proof. �

We use this lemma later to prove Proposition 6.5 and then in the proof

of Corollary 12.24 and in Lemma 13.2.
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Remark 4.16. Definition 4.10 is deliberately asymmetric with respect to

positive and negative entries. The effect of this is seen most obviously in

Example 4.12(2) and in Definition 6.6 below. This asymmetry ultimately

reflects our decision in Definition 4.1 to order the negative part of signed

weights first. For this reason, while applying the ω-involution to Theorem 1.1

gives no new results, as we show in Example 7.6, this is not the case for

Theorem 1.2.

4.4. Further examples of strongly maximal signed weights. This sec-

tion is not logically essential: it is included to show that Definition 4.10 is not

overly restrictive, and so there is a rich supply of strongly maximal signed

weights to which Theorem 1.2 may be applied. (Many more illustrative

examples are shown in Table 4.23 in §4.5.) We begin with singleton semis-

tandard signed tableau families, generalizing the small example immediately

after Definition 4.8.

Lemma 4.17. Let τ/τ? be a skew partition. The maximal singleton semi-

standard signed tableau families are precisely {t`−(τ/τ?)} for 0 ≤ `− ≤
max{τi − τ?i : 1 ≤ i ≤ `(τ)}. If c+ is the greatest positive entry of t`−(τ/τ?)

then {t`−(τ/τ?)} is strongly c+-maximal.

Proof. It is obvious that (a) holds in Definition 4.10 and we stipulate that

the singleton family has row-type or column-type according to the sign of

t`−(τ/τ?) so that (b) holds. Finally, by Lemma 4.4, if t is a τ/τ?-tableau of

signed weight swt(t) with negative entries from {−1, . . . ,−`−} then

∣∣swt(t)−
∣∣+

c+∑
i=1

swt(t)+i ≤
∣∣ω`−(τ/τ?)

∣∣+
c+∑
i=1

ω`−(τ/τ?)i

so we have (c). �

In particular, when τ? = ∅, by taking `− = 0 we find that (∅, τ) is

strongly `(τ)-maximal and by taking `− = a(τ) that (τ ′,∅) is strongly 0-

maximal. This gives the strongly maximal signed weights mentioned in the

introduction.

Example 4.18. Let m ∈ N and let 0 ≤ d ≤ m. The greatest tableau

td
(
(m)

)
is

1 2 . . . d 1 . . . 1 .

It has signed weight ωd
(
(m)

)
=
(
(1d), (m− d)

)
.

(i) By Lemma 4.17,
{
td
(
(m)

)}
is a strongly 1-maximal semistandard signed

tableau family. (To satisfy (b) in Definition 4.10 we stipulate that

it has row-type if d is odd and column-type if d is even.) This can

also be seen directly from Definition 4.10: since td
(
(m)

)
has left-

most d boxes 1 2 . . . d it is d-negative greatest, and clearly it

has the greatest possible number of 1s of all such tableaux. There-

fore
(
(1d), (m − d)

)
is a strongly 1-maximal signed weight. Note this

holds even when d = 0. By Theorem 1.2, if ν and λ are any parti-

tions, then 〈sν(M) ◦ s(m), sλt (dM )+M(m−d)〉 is ultimately constant where
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ν(M) = ν + (M) if d is even and ν(M) = ν t (1M ) if d is odd, prov-

ing (1.3) and (1.4) in §1.7; as discussed earlier, these results were first

proved in [14]. See Proposition 14.6 for explicit bounds deduced from

our Theorem 13.7, together with a sufficient condition for the constant

value of the plethysm coefficient to be zero.

(ii) Suppose that d < m. For h ∈ N, let u(h) be the (m)-tableau obtained

from td
(
(m)

)
by changing the rightmost 1 to h. Thus t = u(1). Fix

R ∈ N. We claim that the tableau family

{u(1), . . . , u(R)}

of shape (m) and size R is strongly 1-maximal, of row-type if d is

odd and column-type if d is even. Clearly it satisfies conditions (a)

and (b) in Definition 4.10. For (c), we observe that the family has

the maximum possible number of entries of 1 of all families of size R

formed from d-negative greatest tableaux. The corresponding strongly

1-maximal signed weight of shape (m) and size R is(
(Rd), ((m− d)R− (R− 1), 1R−1)

)
.

By Theorem 1.2, if ν and λ are any partitions then

〈sν(M) ◦ s(m), sλ⊕M((Rd),((m−d)R−(R−1),1R−1))〉

is ultimately constant, where ν(M) = ν+ (MR) if d is even and ν(M) =

ν t (RM ) if d is odd.

After Corollary 13.9 we give some notable special cases of (i) and (ii)

above in which the plethysm coefficient is constant for all M ∈ N0. See

also Example 14.7 for some explicit stability bounds obtained using Propo-

sition 14.6.

Example 4.19. The plethystic semistandard signed tableau shown in the

margin of shape
(
(1, 1, 1), (2, 2)

)
has entries from the semistandard signed 1 1

1 2

1 1
1 3

1 1
1 4

(2, 2)-tableau family

M =

{
1 1
1 2

, 1 1
1 3

, 1 1
1 4

}
of size 3, sign +1 and signed weight

(
(6), (3, 1, 1, 1)

)
. Suppose that T is a

column-type semistandard signed tableau family of size 3, shape (2, 2) in

which each member of T is 1-negative greatest. Then each (2, 2)-tableau

in T has two entries of −1 in its first column and since box (2, 2) cannot

contain either −1 or 1, the inequality τ+

1 ≤ κ+

1 = 3 required by Defini-

tion 4.10(c) when c+ = 1 holds. Moreover, we have equality if and only if

every (2, 2)-tableau in T has the form shown in the margin, and in this case

it is easy to see that T is the familyM. ThereforeM is strongly 1-maximal 1 1
1 ?

and
(
(6), (3, 1, 1, 1)

)
is a strongly maximal signed weight of shape (2, 2),

size 3 and sign +1. By Theorem 1.2, 〈sν+(M,M,M) ◦ s(2,2), sλ⊕M((6),(3,1,1,1))〉
is ultimately constant for any partitions ν and λ.
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The special case µ? = ∅ of the following lemma was used in §1.7 to show

that (1.1), taken from [5, (9)], is a special case of Theorem 1.2.

Lemma 4.20. Let µ/µ? be a skew partition. Fix ` ∈ N and letM be the set

of all semistandard µ/µ?-tableaux having entries from {1, . . . , `}. The signed

weight ofM is
(
∅, (q`)

)
where q = |M||µ/µ?|/`; it is a strongly c+-maximal

signed weight of sign +1 for all c+ ∈ {1, . . . , `}.

Proof. Clearly each t ∈ M is 0-negative greatest and M has column-type

since its entries are distinct. Hence (a) and (b) in Definition 4.10 hold. Let

R = |M|. If T is another tableau family of shape µ/µ? and size R then T
contains a µ/µ?-tableau with maximum entry strictly greater than `. Hence

maxM < max T , and condition (c) holds vacuously for any permitted c+.

Since the skew Schur function sµ/µ? is symmetric, each element of {1, . . . , `}
appears equally often as an entry in a tableau t ∈ M, and so the signed

weight of T is
(
∅, (q`)

)
for some q ∈ N. Since each tableau has |µ/µ?|

entries, the common multiplicity q is |M||µ/µ?|/`, as claimed. �

The following example shows the usefulness of skew partitions in Theo-

rem 1.2.

Example 4.21. Take µ/µ? = (2, 1)/(1). By Definition 4.10, or alternatively

by Lemma 4.17, the signed weight
(
∅, (2)

)
of the tableau shown in the

margin is strongly 1-maximal. Since it is defined by a single semistandard

signed tableau of sign +1, the size is 1 and the sign is +1. It therefore follows1
1

from Theorem 1.2 that 〈sν+(M) ◦ s(2,1)/(1), sλ+(2M)〉 is ultimately constant,

for all partitions ν and λ such that 2|ν| = |λ|; using s(2,1)/(1) = s(2) +s(1,1) =

s2
(1) an equivalent formulation is that 〈sν+(M) ◦ s2

(1), sλ+(2M)〉 is ultimately

constant. Since the plethysm product is not distributive over addition in

its second component, this result is already non-trivial to prove by other

methods.

The final example in this subsection is included to give an idea of the rich

behaviour of maximal signed weights of large size. It is instructive but not

logically essential, and so we omit far more details than usual.

Example 4.22. As seen earlier in Example 4.9, the column-type semistan-

dard signed tableau families of shape (2) and size 3, namely{
1 1 , 1 2 , 1 3

}
,
{

1 1 , 1 2 , 2 2
}
,

are maximal, of signed weights
(
∅, (4, 1, 1)

)
and

(
∅, (3, 3)

)
respectively. Cor-

respondingly s(13) ◦ s(2) has maximal constituents s(4,1,1) and s(3,3), and in

fact s(13) ◦ s(2) = s(4,1,1) + s(3,3). More generally, one can show (see for in-

stance [16, page 138, Example 6] or [18, §8.5]) that s(1n) ◦ s(2) =
∑

λ s2[λ]

where the sum is over all partitions of n having distinct parts and 2[λ] is

the partition whose main diagonal hook lengths are 2λ1, . . . , 2λ`(λ) and such

that 2[λ]i = λi + i for 1 ≤ i ≤ `(λ). For each such partition 2[λ] there

is a unique maximal column-type semistandard tableau family of shape (2)

and size R and signed weight (∅, 2[λ]). In particular, any two partitions

2[λ] are either equal or incomparable in the dominance order, and so every
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constituent of the plethysm s(1n) ◦ s(2) is both maximal and minimal. Two

examples have already been given and the tableau in the margin indicates

how {
1 1 , 1 2 , 1 3

}
∪
{

2 2 , 2 3
}

is constructed from 2[(3, 2)] (shown below in the margin) by forming the

three (2)-tableaux in the first set of total signed weight
(
∅, (4, 1, 1)

)
from

the entries {1, 1, 1, 1, 2, 3} in the hook on the box (1, 1) and two tableaux in

the second set of total signed weight
(
∅, (0, 3, 1)

)
from the entries {2, 2, 2, 3}

in the hook on the box (2, 2) on the main diagonal boxes. Summing (4, 1, 1)

and (0, 3, 1) we obtain a maximal semistandard tableau family of shape

(2) and size 5 and signed weight
(
∅, (4, 4, 2)

)
, corresponding to the parti-

tion 2[(3, 2)]. We invite the reader to check that if α is a partition of n having

1 1 1 1
2 2 2 2
3 3

6
4

distinct parts then the maximal signed weight (∅, 2[α]) of shape (2), size n

and column-type is strongly 1-maximal if and only if α ∈ {(n), (n−1, 1), (n−
2, 2), (3, 2, 1)} and strongly 2-maximal if and only if α = (k + 1, k − 1) or

α = (k+1, k) where k = bn/2c, according to the parity of n. If α is the least

distinct parts partition in the lexicographic order on partitions of n then

α = (`, `− 1, . . . , b+ 2, b, . . . , 1) for some b and one can show that the corre-

sponding maximal semistandard tableau family has strongly (`−1)-maximal

signed weight (∅, 2[α]). (It may also be strongly c+-maximal for other c+: for

instance if b = ` so that α is (`, `−1, . . . , 1) then 2[α] = (`+1, `. . ., `+1) and

the maximal semistandard tableau family is the initial segment of the colex-

icographic order ending at ` ` and Lemma 4.20 applies.) These remarks

imply that if n ≤ 7 then all maximal signed weights of shape (2), size n and

sign +1 are strongly maximal. When n = 8, we have 2[5, 2, 1] = (6, 4, 4, 1, 1)

and
(
∅, (6, 4, 4, 1, 1)

)
is maximal, but comparison with the signed weights

from 2[5, 3] = (6, 5, 2, 2, 1) and 2[4, 3, 1] = (5, 5, 4, 2) show that it is not

strongly c+-maximal for any value of c+.

4.5. Tables of strongly maximal signed weights. Table 4.23 overleaf

shows column-type strongly maximal signed weights of shape µ/µ? and

size R with 2 ≤ R ≤ 5. (Singleton strongly maximal signed weights of

size 1 are classified in Lemma 4.17.) The entries in the column c+ show

all the values for which the weight is strongly c+-maximal. The ‘unsigned’

weights with `− = 0 may be used in Corollary 14.9 as well as Theorem 1.2,

or its sharp version Theorem 13.7.

Many further strongly maximal signed weights, including those of row-

type, can be found using the Haskell software [25] mentioned in the intro-

duction: see the module MaximalTableauFamily.hs for instructions.

4.6. Why maximal weights are not sufficient. In this subsection we

show that, while Theorem 1.2 certainly requires maximal signed weights, this

is not a sufficient hypothesis for this theorem, and so some stronger notion,

such as the strongly maximal signed weights in Definition 4.10 is certainly
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µ/µ? `− R (κ−, κ+) c+

(3) 0 2
(
∅, (5, 1)

)
1

3
(
∅, (6, 3)

)
1, 2(

∅, (7, 1, 1)
)

1

4
(
∅, (6, 6)

)
1, 2(

∅, (8, 3, 1)
)

1(
∅, (9, 1, 1, 1)

)
1

5
(
∅, (8, 6, 1)

)
2(

∅, (9, 4, 2)
)

1(
∅, (10, 3, 1, 1)

)
1(

∅, (11, 1, 1, 1, 1)
)

1

2 R
(
(2R), (1R)

)
1, . . . , R

(2,1) 0 2
(
∅, (3, 3)

)
1, 2(

∅, (4, 1, 1)
)

1

3
(
∅, (5, 3, 1)

)
1(

∅, (6, 1, 1, 1)
)

1

4
(
∅, (7, 3, 1, 1)

)
1(

∅, (8, 1, 1, 1, 1)
)

1

5
(
∅, (7, 5, 3)

)
1(

∅, (9, 3, 1, 1, 1)
)

1

1 R
(
(2R), (1R)

)
1, . . . , R

µ/µ? `− R (κ−, κ+) c+

(4) 0 2
(
∅, (7, 1)

)
1, 2

3
(
∅, (9, 3)

)
1, 2(

∅, (10, 1, 1)
)

1

4
(
∅, (10, 6)

)
1, 2(

∅, (12, 3, 1)
)

1(
∅, (13, 1, 1, 1)

)
1

5
(
∅, (10, 10)

)
1, 2(

∅, (14, 4, 2)
)

1(
∅, (15, 3, 1, 1)

)
1(

∅, (16, 1, 1, 1, 1)
)

1

2 2
(
(2, 2), (3, 1)

)
1, 2

3
(
(3, 3), (3, 3)

)
1, 2(

(3, 3), (4, 1, 1)
)

1

4
(
(4, 4), (4, 3, 1)

)
1, 2, 3(

(4, 4), (5, 1, 1, 1)
)

1

5
(
(5, 5), (4, 4, 2)

)
1, 2, 3(

(5, 5), (5, 3, 1, 1)
)

1(
(5, 5), (6, 1, 1, 1, 1)

)
1

µ/µ? `− R (κ−, κ+) c+

(3,1) 0 2
(
∅, (5, 3)

)
1, 2(

∅, (6, 1, 1)
)

1, 2

3
(
∅, (8, 3, 1)

)
1(

∅, (9, 1, 1, 1)
)

1

4
(
∅, (11, 3, 1, 1)

)
1, 2(

∅, (12, 1, 1, 1, 1)
)

1, 2, 3

5
(
∅, (12, 5, 3)

)
1(

∅, (14, 3, 1, 1, 1)
)

1

1 2
(
(4), (3, 1)

)
1, 2

3
(
(6), (3, 3)

)
1, 2, 3(

(6), (4, 1, 1)
)

1

4
(
(8), (4, 3, 1)

)
1, 2, 3(

(8), (5, 1, 1, 1)
)

1

5
(
(10), (4, 4, 2)

)
1, 2, 3, 4(

(10), (5, 3, 1, 1)
)

1(
(10), (6, 1, 1, 1, 1)

)
1

(2,2) 0 2
(
∅, (4, 3, 1)

)
1, 2, 3

3
(
∅, (6, 3, 3)

)
1(

∅, (5, 5, 2)
)

1

4
(
∅, (7, 5, 4)

)
1, 2(

∅, (8, 4, 3, 1)
)

1(
∅, (7, 6, 2, 1)

)
2(

∅, (7, 5, 3)
)

3

µ/µ? `− R (κ−, κ+) c+

(2,2) 0 5
(
∅, (8, 6, 6)

)
1, 2, 3(

∅, (10, 4, 4, 2)
)

1(
∅, (8, 8, 2, 2)

)
2

(2,2) 1 2
(
(4), (2, 1, 1)

)
1, 2, 3

3
(
(6), (2, 2, 2)

)
1, 2, 3(

(6), (3, 1, 1, 1)
)

1

4
(
(8), (3, 2, 2, 1)

)
1, 2, 3, 4(

(8), (4, 1, 1, 1, 1)
)

1

5
(
(10), (3, 3, 2, 2)

)
1, 2, 3, 4(

(10), (4, 2, 2, 1, 1)
)

1

(3,2)/(1) 0 2
(
∅, (6, 1, 1)

)
1

3
(
∅, (7, 5)

)
1, 2(

∅, (9, 1, 1, 1)
)

1

4
(
∅, (8, 8)

)
1, 2(

∅, (12, 1, 1, 1, 1)
)

1

5 none

1 2 none

3
(
(6), (4, 2)

)
1, 2

4
(
(8), (4, 4)

)
1, 2

5
(
(10), (6, 2, 2)

)
1

Table 4.23 Column-type strongly c+-maximal signed weights for certain

shapes µ/µ? and sizes R with 2 ≤ R ≤ 5.
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required. Again this section is not logically necessary, but we believe it

is important to explain what we cannot hope to prove. In the following

example we shall need to use Proposition 5.6.

Example 4.24. Taking µ/µ? = (2, 1)/(1) as in Example 4.21, suppose

instead we take the non-maximal signed weight
(
(1), (1)

)
, dominated in the

1-signed dominance order (see Definition 4.1) by
(
(2),∅

)
, and, to give the

simplest possible example, ν = (1) and λ = (2). Since this signed weight has

sign−1 and (2)⊕(N−1)
(
(1), (1)

)
=
(
(2)t(1N−1)

)
+(N−1) = (N+1, 1N−1),

the prediction of Theorem 1.2 — wrongly applied with a weight that is not

even maximal — is that 〈s(1N )◦s(2,1)/(1), s(N+1,1N−1)〉 is ultimately constant.

To see this is false, let t+−, t−+ and t++ be the three semistandard signed

tableaux of shape (2, 1)/(1) shown below

1
1

, 1
1

, 1
1

.

(Again 1 stands for −1.) For each N ∈ N0 and L ∈ {0, . . . , N − 1} there

is a unique plethystic semistandard signed tableau of outer shape (1N )

and inner shape (2, 1)/(1) which has L inner tableaux t+−, N − 1 − L

inner tableaux t−+ and a final inner tableau t++. (Note that only in-

ner tableaux of negative sign are repeated.) These are all the plethystic

semistandard signed tableaux of signed weight
(
(N + 1), (N − 1)

)
and so∣∣PSSYT

(
(1N ), (2, 1)/(1)

)
(N−1),(N+1)

∣∣ = N . By Proposition 5.6 (Plethystic

Signed Kostka Numbers) it follows that

〈s(1N ) ◦ s(2,1)/(1), e(N−1)h(N+1)〉 = N.

Thus condition (ii) in the Signed Weight Lemma (Lemma 7.3) does not

hold when the lemma is applied (as is usual in this paper) with the twisted

symmetric functions defined in Definition 6.11; this is the first point where

the proof can be seen to fail. Moreover, by a very similar enumeration of

plethystic tableaux one can show that 〈s(1N ) ◦ s(2,1)/(1), e(N−d)h(N+d〉 = 0

for each d > 1 and N ≥ d; it now follows from the identity

s(N+1,1N−1) = e(N−1)h(N+1) − e(N−2)h(N+2) + · · ·+ (−1)N−1h(2N)

that 〈s(1N ) ◦ s(2,1)/(1), s(N+1,1N−1)〉 = N for all N ∈ N0, showing that in fact

the plethysm coefficient is not stable.

The non-uniqueness seen in Example 4.24 is completely typical of the

non-maximal case, and always leads to a similar obstruction to our proof

strategy; indeed in most such cases, there is no stability result to be proved.

But as the following example shows, mere maximality is not enough.

Example 4.25. The two tableau families of shape (2, 1), size 4 and signed

weight
(
∅, (6, 4, 2)

)
are

S =

{
1 1
2

, 1 1
3

, 1 2
2

, 1 2
3

}
T =

{
1 1
2

, 1 1
3

, 1 2
2

, 1 3
2

}
.
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Each of S and T is the set of entries of a unique plethystic semistan-

dard signed tableau of outer shape (14) and inner shape (2, 1), and so∣∣PSSYT
(
(14), (2, 1)

)
(∅,(6,4,2))

∣∣ = 2. Moreover, there is no tableau family of

shape (2, 1) and size 4 with signed weight strictly dominating
(
∅, (6, 4, 2)

)
.

(Note that such a family has only positive entries.) But, by the uniqueness

part of Lemma 4.11, the signed weight
(
∅, (6, 4, 2)

)
is not strongly maximal.

Theorem 1.2 is therefore inapplicable. If, ignoring that one of the hypotheses

fails to hold, we nonetheless take ν = ∅, µ = (2, 1) and λ = ∅, we wrongly

conclude that 〈s(M,M,M,M) ◦ s(2,1), s(6M,4M,2M)〉 is ultimately constant.

To see this is false, first note, analogously to Example 4.24, that given

0 ≤ L ≤ M , there is a unique plethystic semistandard tableau TL of outer

shape (M,M,M,M) whose first L columns have entries S and whose final

M − L columns have entries T ; the families occur in this order because, as

seen after Definition 3.8, we have

1 2
3

< 1 3
2

in the signed colexicographic order. The maximal tableau families of shape

(2, 1), size 4 and sign +1 have weights, in the usual sense for unsigned

tableaux, as defined after Definition 3.4, (8, 1, 1, 1, 1), (7, 3, 1, 1) and (6, 4, 2).

Since (6, 4, 2) has the least number of parts, it need not be compared with

(8, 1, 1, 1, 1) or (7, 3, 1, 1) in Definition 4.10(c), and so the only reason why(
∅, (6, 4, 2)

)
fails to be a strongly maximal signed weight is that S and T

have the same weight. Since the signed weight
(
∅, (6, 4, 2)

)
is maximal, any

tableau family of shape (2, 1), size 4, sign +1 and entries from {1, 2, 3} has

weight dominated by
(
∅, (6, 4, 2)

)
. Hence

PSSYT
(
(14), (2, 1)

)
(6M,4M,2M)

= {TL : 0 ≤ L ≤M} (4.4)

and PSSYT
(
(14), (2, 1)

)
π

= ∅ if π � (6M, 4M, 2M). By the basic result

on Kostka numbers mentioned before Lemma 5.3 we have s(6M,4M,2M) =

h(6M,4M,2M) + f where f is a linear combination of complete homogeneous

symmetric functions hπ with π � (6M, 4M, 2M). Hence

〈s(M,M,M,M)◦s(2,1), s(6M,4M,2M)〉 = 〈s(M,M,M,M) ◦ s(2,1), h(6M,4M,2M)〉
=
∣∣PSSYT

(
(M,M,M,M), (2, 1)

)
(∅,(6M,4M,2M))

∣∣ = M + 1.

In particular, the multiplicity is unbounded.

The previous paragraph also indicates where the proof of Theorem 1.2

breaks down. Applying Definition 12.10 with respect to the signed weight(
∅, (6, 4, 2)

)
— which according to this definition is illegitimate as the signed

weight is not strongly maximal — each non-exceptional column of a plethys-

tic semistandard tableau T ∈ PSSYT
(
(M,M,M,M), (2, 1)

)
may be either

S or T . Thus there is no canonical tableau family that can be inserted as

the entries in a new column of height 4 to define a bijection between the sets

of plethystic semistandard signed tableaux for M and M +1 and the key re-

sult Lemma 12.14(i) fails in this attempt to adapt the proof of Theorem 1.2

in §13.5.
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We remark that an alternative way to see that the conclusion of The-

orem 1.2 is false in the previous example uses the highest-weight vector

methods in [9]. Let ∇γ denote the Schur functor for the partition γ, let E

be a 3-dimensional vector space, let TL be as defined in the previous ex-

ample, and let F (TL) be as defined in Definition 2.3 of [9]. Generalizing

Example 7.5 in [9], for each L, the vector

F (TL) ∈ ∇(M,M,M,M)
(
∇(2,1)(E)

)
is highest weight of weight (6M, 4M, 2M). The vectors F (TL) for 0 ≤ L ≤
M are linearly independent because the multisets of semistandard (2, 1)-

tableau entries of each TL are distinct. It again follows that 〈s(M,M,M,M) ◦
s(2,1), s(6M,4M,2M)〉 ≥M + 1 for each M ∈ N0.

Example 4.26. In the previous example the problem was that there were

two semistandard signed tableau families of the same maximal weight. The

other potential problem solved by Definition 4.10 is seen only in relatively

large examples, such as the following. Take µ = (3). There are three

maximal semistandard signed tableau families of shape (3) and size 17 having

only positive entries, each obtained from

1 1 1 , 1 1 2 , 1 2 2 , 2 2 2 , 1 1 3 , 1 2 3 , 2 2 3 , 1 3 3 , 2 3 3

by taking the union with the eight tableaux shown in the table below.

Signed weight Extend by(
∅, (17, 16, 11, 4, 3)

) 3 3 3 , 1 1 4 , 1 2 4 , 2 2 4 ,

1 3 4 , 1 1 5 , 1 2 5 , 2 2 5(
∅, (18, 15, 10, 5, 3)

) 1 1 4 , 1 2 4 , 2 2 4 , 1 3 4 ,

2 3 4 , 1 1 5 , 1 2 5 , 1 3 5(
∅, (19, 14, 9, 6, 3)

) 1 1 4 , 1 2 4 , 2 2 4 , 1 3 4 ,

1 4 4 , 1 1 5 , 1 2 5 , 1 3 5

That these families are maximal can be checked by hand, or more quickly, us-

ing the Haskell software [25] mentioned in the introduction using display $

maximalTableauFamilies ColType Closed 17 (ssyts 5 [3]). Let T , U

and V be the plethystic semistandard signed tableaux of outer shape (117)

and inner shape 3 having as their entries the three families above. From the

table above which lists the (3)-tableau entries in the signed colexicographic

order from Definition 3.8, one can see that any plethystic tableau of the

form

T · · · T U · · · U V · · · V (4.5)

is semistandard. (Here there is a mild abuse of notation: the columns, each

of length 17 are T , U and V ; these plethystic semistandard tableaux are not

themselves entries in boxes.) Observe that

2(18, 15, 10, 5, 3) = (19, 14, 9, 6, 3) + (17, 16, 11, 4, 3).
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Thus any two of the 2N columns U U of length 17 in a plethystic semistan-

dard signed tableau of outer shape (2N, 17. . ., 2N) and inner shape (3) may be

replaced with two columns T V without changing the weight. (The columns

must then be reordered as in (4.5) to respect the semistandard condition).

Hence there are at least (N + 1) plethystic semistandard signed tableaux of

outer shape (2N, 17. . ., 2N) whose signed weight is 2(18N, 15N, 10N, 5N, 3N).

Similar arguments to the previous Example 4.25 now show the plethysm co-

efficients 〈s(M17) ◦ s(3), s(18M,15M,10M,5M,3M)〉 for even M do not stabilise,

even though the relevant signed weight is maximal.

We remark that each tableau family in the previous example is a downset

for the majorization partial order � defined by comparing tableaux entry

by entry; this is a necessary, but not in general sufficient, condition for

maximality. For instance the family of weight (17, 16, 11, 4, 3) is 2 2 5
� ∪

1 3 4
� ∪ 3 3 3

� with three incomparable maximals in the dominance

order. This leads to an efficient algorithm implemented in [25] for finding

maximal, and so strongly maximal, tableau families.

5. Symmetric functions and plethystic semistandard signed

tableaux

5.1. Basic results. We refer the reader to Stanley’s textbook [22, Ch. 7]

for an introduction to the Hopf algebra Λ of symmetric functions and to [15]

for a careful development of plethysm and the formalism of plethystic sub-

stitutions. We define the elementary and homogeneous symmetric functions

eπ and hπ for arbitrary weights π ∈ W (as defined at the start of §3) while

Schur functions sλ are labelled by partitions as usual. Beyond very basic

results, the minimum we require is:

• Young’s rule (horizontal strip addition) and Pieri’s rule (vertical strip

addition) as stated in (7.65) and after Example 7.15.8 in [22];

• the coproduct ∆ on Λ satisfies ∆sλ/λ? =
∑

τ sτ/λ? ⊗ sλ/τ and is com-

patible with the inner product on Λ (see the proof of Lemma 5.3);

• the formal definition of substitution by an alphabet with mixed signs,

namely

f [−x1,−x2, . . . , y1, y2, . . .] =
∑
i

f−i [−x1,−x2, . . .]f
+

i [y1, y2, . . .] (5.1)

where ∆f =
∑

i f
−
i ⊗f

+

i (this follows from the equation for sλ/ν [A−B]

on page 177 of [15], using the result on the coproduct just mentioned,

and that the Schur functions sλ are a basis for Λ);

• the negation rule

sλ[−x1,−x2, . . .] = (−1)|λ|sλ′ [x1, x2, . . .] (5.2)

which is a special case of [15, Theorem 6];

• the rule for a general plethystic substitution into a Schur function given

in [15, Theorem 10].
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We shall not state the final rule here, since it is lengthy and we only need

it once, in the proof of Lemma 5.5; the reader may then either refer to [15],

or take it on trust that it has the effect we claim.

Remark 5.1. Let ν/ν? be a skew partition. By the adjointness relation in

Corollary 7.15.4 of [22] we have sν/ν? =
∑

σ〈sν , sν?sσ〉sσ where the sum is

over all partitions σ of |ν/ν?|. Since the plethysm product is linear in its

first component, i.e. (f + g) ◦ h = f ◦ h+ g ◦ h for all f, g, h ∈ Λ, it follows

that for any skew partition µ/µ?,

sν/ν? ◦ sµ/µ? =
∑
σ

〈sν , sν?sσ〉sσ ◦ sµ/µ?

with the same condition on the sum. This reduces an arbitrary plethysm

of skew Schur functions to the case dealt with in this paper. On the other

hand, since the plethysm product is not linear in its second component (this

is already clear from the negation rule) there is no further reduction to

plethysm products where both factors are Schur functions.

The following definition is standard.

Definition 5.2. Given a symmetric function f expressed in the Schur basis

as
∑

λ cλsλ we define the support of f by supp(f) = {λ ∈ Par : cλ 6= 0}.

For example by (2.2), we have supp(e(2)h(5,1)) =
{

(6, 2), (7, 1), (6, 1, 1),

(5, 2, 1), (5, 1, 1, 1)
}

.

5.2. Enumerating semistandard signed tableaux. Our first result is

the twisted generalization of the basic result, see for instance [22, (7.30),

(7.36)] that 〈sβ/β? , hλ〉 is the number of semistandard tableaux of shape

β/β? and weight λ. When β? = ∅, this quantity may also be familiar as the

Kostka number Kβλ. In our signed weight notation it is | SSYT(β/β?)(∅,λ)|.
(Semistandard signed Young tableaux are defined in Definition 3.7 and their

signed weights in Definition 3.5.)

Lemma 5.3 (Twisted Kostka numbers for skew shapes). Let β/β? be a skew

partition and let (γ−, γ+) be a signed weight of size |β/β?|. Then

〈sβ/β? , eγ−hγ+〉 = |SSYT(β/β?)(γ−,γ+)|.

In particular β ∈ supp(eγ−hγ+) if and only if SSYT(β)(γ−,γ+) is non-empty.

Proof. The inner product on Λ ⊗ Λ is defined in the natural way by linear

extension of 〈f ⊗ f ′, g ⊗ g′〉 = 〈f, g〉〈f ′, g′〉. In the following two steps

we use subscripts to indicate the relevant inner product. By the identity

〈f, gh〉Λ = 〈∆f, g ⊗ h〉Λ⊗Λ we have

〈sβ/β? , eγ−hγ+〉Λ = 〈∆sβ/β? , eγ−⊗hγ+〉Λ⊗Λ =
∑
τ

〈sτ/β?⊗sβ/τ , eγ−⊗hγ+〉Λ⊗Λ

where the sum is over all partitions τ of |β?| + |γ−|. The right-hand side

is
∑

τ 〈sτ/β? , eγ−〉Λ〈sβ/τ , hγ+〉Λ. By the remark before the proof, the sec-

ond factor is |SSYT(β/τ)(∅,γ+)|. Applying the omega-involution (see [22,
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Theorem 7.14.5]) to the first factor gives

〈sτ/β? , eγ−〉 = 〈sτ ′/β′? , hγ−〉.

The right-hand side is the number of semistandard tableaux of shape τ ′/β′?
with positive entries of weight γ−, and so equal to |SSYT(τ/β?)(γ−,∅)| by

the obvious bijection conjugating tableaux and switching signs of the integer

entries. Since negative entries always precede positive entries in the order

in Definition 3.7, the pairs of tableaux enumerated by the two factors are

in bijection with SSYT(β/β?)(γ−,γ+). The final claim is now immediately

obvious on taking β? = ∅. �

In the following two lemmas we use the standard notation yγ for yγ11 . . . y
γ`(γ)
`(γ)

and (−x)γ for (−x1)γ1 . . . (−x`(γ))
`(γ), where γ is a composition.

Lemma 5.4. Let f be a symmetric function and let (α−, α+) be a signed

weight of size deg f where α−, α+ are partitions. Then 〈f, eα−hα+〉 is the

coefficient of (−x)α
−
yα

+
in f [−x1,−x2, . . . , y1, y2, . . .].

Proof. Let ∆(f) =
∑

i f
−
i ⊗ f+

i . Since f is a symmetric function, so are

each f−i and f+

i . By [22, (7.30)], the complete homogeneous and monomial

symmetric functions are dual bases of Λ. Hence the coefficient of yα
+

in

f+

i [y1, y2, . . .] is 〈f+

i , hα+〉. Similarly, now also using the negation rule (5.2),

the coefficient of (−x)α
−

in f−i [−x1,−x2, . . .] is 〈f−i , eα−〉. The lemma now

follows by applying (5.1). �

5.3. Enumerating plethystic semistandard signed tableaux. We can

now extend Lemma 5.3 (Twisted Kostka Numbers) to plethystic signed

tableaux.

Lemma 5.5. Let ν be a partition and let µ/µ? be a skew partition. Then

(sν ◦ sµ/µ?)[−x1,−x2, . . . , y1, y2, . . .]

=
∑

(α−,α+)

|PSSYT(ν, µ/µ?)(α−,α+)| (−x)α
−
yα

+

where the sum is over all signed weights (α−, α+) of size |ν||µ/µ?|. Moreover,∣∣PSSYT
(
ν, µ/µ?

)
(α−,α+)

∣∣ =
∣∣PSSYT∓

(
ν, µ/µ?

)
(α−,α+)

∣∣.
Proof. By Lemma 5.3 (Twisted Kostka Numbers) and Lemma 5.4 we have

sµ/µ? [−x1,−x2, . . . , y1, y2, . . .] =
∑

(α−,α+)

|SSYT(µ/µ?)(α−,α+)| (−x)α
−
yα

+

where the sum is over all signed weights (α−, α+) of size |µ/µ?|. Therefore

(sν ◦ sµ/µ?)[−x1,−x2, . . . , y1, y2, . . .] = sν [A] where the plethystic alpha-

bet A is all semistandard tableaux of shape µ/µ? having entries from Z\{0}
ordered by the signed colexicographic order in Definition 3.8. Note this al-

phabet has formal symbols (i.e. tableaux) of both positive and negative sign

and that the sign of a semistandard signed µ/µ?-tableau of weight (α−, α+)

from the displayed equation above, namely (−1)|α
−|, agrees with the sign

defined by Definition 3.6. Moreover, negative tableaux are less than positive
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tableaux. Therefore, by the definition of general plethystic substitution [15,

Theorem 8], taking D to be the negative tableaux in A and E to be the

positive tableaux in A, Sν [A] is the generating function enumerating, by

their signed weight, the ν-tableau T having entries from A, such that for

some subpartition β of ν,

(i) the negative entries in T form a subtableau of shape β and are strictly

increasing along rows and weakly increasing down columns;

(ii) the positive entries in T form a subtableau of skew shape ν/β and are

weakly increasing along rows and strictly increasing down columns.

Since (i) implies that all negative entries of T are in boxes above or left of

the positive entries of T , it follows that T is a plethystic semistandard signed

tableau of outer shape ν and inner shape µ/µ?, as defined in Definition 3.10.

Moreover, since the weight of a plethystic tableau is, by Definition 3.11, the

sum of the weights of its µ/µ?-tableau entries, the sign attached to each

plethystic tableau in PSSYT(ν, µ/µ?)(α−,α+) is (−1)|α
−|. This completes the

proof of the displayed equation in the statement of the lemma. For the sec-

ond claim, observe that we could instead order A by the sign-reversed colex-

icographic order, and take D to be the positive tableaux in A and E to be

the negative tableaux in A. We then obtain the displayed equation, modified

by replacing
∣∣PSSYT

(
ν, µ/µ?

)
(α−,α+)

∣∣ with
∣∣PSSYT∓

(
ν, µ/µ?

)
(α−,α+)

∣∣. �

Proposition 5.6 (Plethystic Signed Kostka Numbers). Let ν be a partition

and let µ/µ? be a skew partition. Let (α−, α+) be a signed weight of size

|ν||µ/µ?|.

〈sν ◦ sµ/µ? , eα−hα+〉 = |PSSYT(ν, µ/µ?)(α−,α+)|.

Proof. This is immediate from Lemma 5.5 and Lemma 5.4. �

The special case ν = (1) of the proposition just proved recovers Lemma 5.3.

Note also that, by the final part of Lemma 5.5, Proposition 5.6 implies that

〈sν◦sµ/µ? , eα−hα+〉=
∣∣PSSYT∓

(
ν, µ/µ?

)
(α−,α+)

∣∣. For example, the three el-

ements of PSSYT
(
(2, 2), (3)

)
((3),(7,2)) were seen after Definition 3.10; these

may be compared with the three elements of PSSYT∓
(
(2, 2), (3)

)
((3),(7,2))

shown below in the sign-reversed colexicographic order

1 1 2 1 1 1

1 1 1 1 1 2
,

1 1 1 1 1 2

1 1 1 1 1 2
,

1 1 1 1 1 1

1 1 1 1 2 2
.

Remark 5.7. The only property of the signed colexicographic order we

used in the proof of Lemma 5.5 was that negative tableaux are always less

than positive tableaux. We are therefore free to use any other order �
that has this property, obtaining plethystic semistandard signed tableaux

defined as in Definition 3.10, but whose inner tableaux are instead semis-

tandard with respect to �. An analogous remark holds for the sign-reversed

colexicographic order. We use this freedom in the proof of Theorem 1.2 (see

Definition 12.2).
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We end this section with an immediate application.

5.4. A generalized Cayley–Sylvester formula. By Proposition 5.6, us-

ing that s(k−`,`) = h(k−`,`) − h(k−`+1,`−1), for any ` with 1 ≤ ` ≤ k/2, we

have

〈sν ◦ sµ/µ? , s(mn−`,`)〉
= |PSSYT(ν, µ/µ?)(∅,(mn−`,`))| − |PSSYT(ν, µ/µ?)(∅,(mn−`+1,`−1))|

(5.3)

for 1 ≤ ` ≤ mn/2. Special cases of (5.3) have appeared throughout the lit-

erature on plethysms, especially in the context of representations of SL2(C).

The most important case occurs when ν = (n) and µ = (m). Observe that

an element of PSSYT
(
(n), (m)

)
(∅,(mn−`,`)) is determined by the number of

2s in each of its n (m)-tableau entries. The corresponding non-negative se-

quence of length n may be interpreted as a partition of ` having at most n

parts, each part having size at most m. For example when n = 4 and m = 4,

1 1 1 1 1 1 2 2 1 1 2 2 1 2 2 2  ! (3, 2, 2).

This bijection shows that 〈s(n) ◦ s(m), s(mn−`,`)〉 is the number of partitions

of ` contained in an m × n-box minus the number of partitions of `− 1

contained in an m×n box. This is one form of the Cayley–Sylvester identity.

The bijective proof just given is similar to that in [12], where it is derived

using symmetric group methods. When m and n are large, and so ` ≤
min(m,n), this simplifies to the number of partitions of ` having no parts

of size 1: see [3, Proposition 8.4] for an earlier proof of this fact. For many

further applications of (5.3), and related results such as Stanley’s Hook

Content Formula, see [20].

6. Twisted dominance order and twisted symmetric functions

In this section we define the `−-twisted dominance order and twisted

symmetric functions. Twisted symmetric functions interpolate between the

homogeneous and elementary symmetric functions, in an analogous way

(see Remark 6.8) to the way the `−-twisted dominance orders interpolate

between the dominance order and its opposite order. This is made precise

by Lemma 6.12. The 1-twisted dominance order was seen informally in the

overview in §2.

6.1. `−-decomposition. The following definition and notation is shown di-

agrammatically in Figure 6.1.

Definition 6.1. Fix `− ∈ N0. Given a partition σ, we set σ− = (σ′1, . . . , σ
′
`−)

and σ+ = σ − σ−′. We say that the ordered pair 〈σ−, σ+〉 is the `−-

decomposition of σ and write σ↔〈σ−, σ+〉.

The relevant `− will always be clear from context. The `−-decomposition

of a partition may be used as a signed weight (see Definition 3.4), but since

this is not always the case, we use angled brackets to make a visual distinc-

tion. For example, the 0-, 1-, 2-, 3- and 4-decompositions of (4, 3, 3, 2, 1)
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σ−′

σ+
. . .

...

`−

Figure 6.1. The partitions in the `−-decomposition 〈σ−, σ+〉 of σ ∈ Par.

Note that σ− has at most `− parts and that σ−
`− ≥ `(σ

+), so σ is
(
`(σ−) +

1, `(σ+)
)
-large in the sense of Definition 3.1, having

(
`(σ+), `(σ−) + 1

)
as

the shaded box. In particular σ is
(
`(σ−), `(σ+)

)
-large.

are
〈
∅, (4, 3, 3, 2, 1)

〉
,
〈
(5), (3, 2, 2, 1)

〉
,
〈
(5, 4), (2, 1, 1)

〉
,
〈
(5, 4, 3), (1)

〉
and〈

(5, 4, 3, 1),∅
〉
; the 2-decomposition is shown in the margin, with the rele-

vant part lengths marked.

5 4

2
1
1

Remark 6.2. Not all ordered pairs of partitions are `−-decompositions:

in fact (σ−, σ+) is the `−-decomposition of a partition σ if and only if

`(σ−) ≤ `− and σ−
`− ≥ `(σ+). Note that, by (3.1), if these conditions hold

then ∅⊕ (σ−, σ+) = σ; this explains our preference for joining first in the ⊕
operation. Note also that if these conditions hold then the partition σ such

that σ↔ 〈σ−, σ+〉 is
(
`(σ−) + 1, `(σ+)

)
-large in the sense of Definition 3.1,

and hence, as is sometimes all we need,
(
`(σ−), `(σ+)

)
-large. This is clear

from Figure 6.1.

Example 6.3. Let µ be a partition. Following Definition 4.2, t− is the

tableau of shape µ−′ having in row i the first min(`−, µi) entries from

−1, . . . ,−`−. We then obtain t`−(µ) from t− by putting µ′j entries from

1, 2, . . . into column j for each j > `−. Therefore row i of t`−(µ) has the

first µi entries from the sequence −1, . . . ,−`−, i, i, . . . ending with infinitely

1 2 1 1 1 1
1 2 2 2
1 2 3 3
1

many is. This can be seen in the first tableau in Example 4.5 (repeated in

the margin) in the case when `− = 2 and µ = (6, 4, 4, 1) and so µ− = (4, 3).

The greatest semistandard signed tableau t`−(µ) therefore has signed weight(
ω`−(µ)−, ω`−(µ)+

)
= (µ−, µ+). (6.1)

In particular, if `− = 0 then we have ω`−(µ) = µ; this is the well-known fact

that the greatest weight of a semistandard µ-tableau is µ.

Note that in the previous example, 〈µ−, µ+〉 is the `−-decomposition of the

partition µ. More generally, we have the following lemma which is critical

in §9; its generalization in Proposition 6.5 is important in §12.

Lemma 6.4. Let τ/τ? be a skew partition. Then the signed weight(
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
)

is the `−-decomposition of a partition.



38 ROWENA PAGET AND MARK WILDON

Proof. The greatest semistandard signed tableau t`−(τ/τ?) of signed weight(
ω`−(τ/τ?), ω`+(τ/τ?)

)
is defined in Definition 4.2. Let d be the length of

the partition ω`−(τ/τ?)
+. If d = 0 then the result is immediate, so we may

suppose that d ∈ N. Thus d is the greatest positive entry of t`−(τ/τ?).

Choose the leftmost box of t`−(τ/τ?) containing d, in position (i, j) say. By

the construction of t`−(τ/τ?) in Definition 4.2, t`−(τ/τ?) has entries 1, . . . , d

in positions (i − d + 1, j), . . . , (i, j). In particular, each such row has a

positive entry. By the construction of t`−(τ/τ?) in which negative entries

from −1, . . . , `− are placed before positive entries, each of the rows i− d +

1, . . . , i of t`−(τ/τ?) begins, after skipping any boxes not considered in [τ ]

because they are in [τ?], with 1 2 . . . `̀̀−−− . Hence ω`−(τ/τ?)
−
`− , which

counts the number of entries of −`− in t(τ/τ?), is at least d. Equivalently,

ω`−(τ/τ?)
−
`− ≥ `

(
ω`−(τ/τ?)

+
)
. The lemma follows. �

We have already seen in Lemma 4.15 that if (κ−, κ+) is a strongly maxi-

mal signed weight then κ− and κ+ are partitions. We now build on this to

show that one potentially nasty technicality does not arise: in fact 〈κ−, κ+〉
is an `(κ−)-decomposition. This result generalizes Lemma 6.4 since, by

Lemma 4.17,
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

is the strongly maximal signed weight

of the singleton strongly maximal signed tableau family {t`−(µ/µ?)}. We

use this result in the proof of Lemma 12.23, part of the proof of Theorem 1.2.

Proposition 6.5. Let (κ−, κ+) be a strongly maximal signed weight. Then

〈κ−, κ+〉 is a well-defined `(κ−)-decomposition of an
(
`(κ−) + 1, `(κ+)

)
-large

partition.

Proof. Set `− = `(κ−). If `− = 0 then κ− = ∅ and the result holds trivially.

Similarly if there are no positive entries then κ+ = ∅ and the result is

obvious. Therefore we may assume that κ+ 6= ∅. As we noted before this

proposition, by Lemma 4.15, κ− and κ+ are partitions.

Let µ/µ? be the shape and let R be the size of (κ−, κ+). By (a) in

Definition 4.10 we have κ− = Rω`−(µ/µ?)
−. Let d = `

(
ω`−(µ/µ?)

+
)

and let

e = `(κ+); note that d is the greatest positive entry in t`−(µ/µ?) and e is the

greatest positive entry in the unique tableau family of shape µ/µ?, size R

and signed weight (κ−, κ+). Denote this tableau family T .

By maximality (Lemma 4.13), t`−(µ/µ?) is an element of T . Again by

maximality, there is a tableau in T containing d+1 obtained by incrementing

the entry in a single box of t`−(µ/µ?). Repeating this argument, we see that

there exist distinct tableaux t(d), t(d+1), . . . , t(e) ∈ T such that, for each

k ∈ {d+ 1, . . . , e}, the tableau t(k) has k as an entry. (For instance this can

be seen in Example 4.18(ii), by considering the entries in the box (1,m).)

Therefore R ≥ e − d + 1. By Lemma 6.4, every tableau in T agrees with

t`−(µ/µ?) in its negative entries. Hence the number of entries of tableaux

in T equal to `− is Rω`−(µ/µ?)`− . Using this for the first equality below,

and recalling that by definition d = `
(
ω`−(µ/µ?)

+
)
, we obtain

κ−
`− =Rω`−(µ/µ?)`− ≥R`(ω`−(µ/µ?)

+) =Rd ≥ d+(R−1) ≥ d+(e−d) = e.
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Hence κ−
`− ≥ `(κ+) and by Remark 6.2, 〈κ−, κ+〉 is a well-defined `(κ−)-

decomposition of an
(
`(κ−) + 1, `(κ+)

)
-large partition. �

6.2. The `−-twisted dominance order. The sets used in applications

of the critical Signed Weight Lemma (see Lemma 7.3 below) are subsets of

intervals for a partial order on partitions defined using the `−-decomposition

in Definition 6.1 and the `−-signed dominance order in Definition 4.1.

Definition 6.6 (`−-twisted dominance order). Fix `− ∈ N0. The `−-twisted

dominance order is the partial order defined on partitions of the same size by

π�· σ if and only if 〈π−, π+〉� 〈σ−, σ+〉, where � is the `−-signed dominance

order on the set W`− ×W.

The value of `− will always be clear from context. An example is given

following Remark 6.8 below. In practice we shall often use the following

lemma to work with the `−-twisted dominance order. Recall that �� denotes

the dominance order on partitions of arbitrary size.

Lemma 6.7 (Characterization of the `−-twisted dominance order). Let π

and σ be partitions of the same size. We have π�· σ in the `−-twisted dom-

inance order if and only if both

(a) π−�� σ− and

(b) |π+| ≥ |σ+| and π+ � σ+ + (|π+| − |σ+|).

Proof. From the equation

`−∑
i=1

σ−i −
`−∑
i=1

π−i = |σ−| − |π−| = (|σ| − |σ+|)− (|π| − |π+|) = |π+| − |σ+|

we have
∑`−

i=1 π
−
i +

∑k
i=1 π

+

i ≤
∑`−

i=1 σ
−
i +

∑k
i=1 σ

+

i if and only if
∑k

i=1 π
+

i ≤
(|π+| − |σ+|) +

∑k
i=1 σ

+

i . The lemma now follows from the definition of the

dominance order and the `−-signed dominance order. �

Remark 6.8. It is obvious from Definition 6.6 that the 0-twisted domi-

nance order is the ordinary dominance order. If `− ≥ p then the `−-twisted

dominance order on partitions of size p is the reverse of the usual dominance

order. Whenever `− ≥ 1, the greatest partition in the `−-signed dominance

order is (1p).

Example 6.9. In the 1-twisted dominance order on partitions of 8, the neg-

ative component σ− of each partition σ has exactly one part. Let σ− = (b)

where 1 ≤ b ≤ 8. By Lemma 6.7, σ�· (6, 2) if and only if (b) �� (2) and

σ+ + (6 − |σ+|) � (5, 1). If b ≤ 6 then σ+ ∈ {(8 − b), (7 − b, 1)}; if b = 7

then σ+ = (1) and if b = 8 then σ+ = ∅. The up-set of (6, 2) is therefore as

claimed in (2.5) in the overview in §2. It is shown in the Hasse diagram in

Figure 6.2. See §7.4 for a continuation to the ‘cut’ up-set used in §2.5.

For a further example of the twisted dominance order see Example 6.13.

In practice, we find the following informal interpretation, using the standing

notation shown in Figure 6.1 is helpful: the partitions larger than π in the `−-

signed dominance order are exactly those obtained from π by a combination
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(6,2)
〈(2),(5,1)〉

(5,2,1)
〈(3),(4,1)〉 (7,1)

〈(2),(6)〉

(4,2,1,1)
〈(4),(3,1)〉 (6,1,1)

〈(3),(5)〉

(3,2,1,1,1)
〈(5),(2,1)〉 (5,1,1,1)

〈(4),(4)〉

(2,2,1,1,1,1)
〈(6),(1,1)〉 (4,1,1,1,1)

〈(5),(3)〉

(3,1,1,1,1,1)
〈(6),(2)〉

(2,1,1,1,1,1,1)
〈(7),(1)〉

(1,1,1,1,1,1,1,1)
〈(8),∅〉


(1

8
)

(2
,1

6
)

(3
,1

5
)

(2
,2
,1

4
)

(4
,1

4
)

(3
,2
,1
,1
,1

)

(5
,1
,1
,1

)

(4
,2
,1
,1

)

(6
,1
,1

)

(5
,2
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〈(8),∅〉 1 · · · · · · · · · · ·
〈(7),(1)〉 1 1 · · · · · · · · · ·
〈(6),(2)〉 0 1 1 · · · · · · · · ·
〈(6),(1,1)〉 1 2 1 1 · · · · · · · ·
〈(5),(3)〉 0 0 1 0 1 · · · · · · ·
〈(5),(2,1)〉 0 1 2 1 1 1 · · · · · ·
〈(4),(4)〉 0 0 0 0 1 0 1 · · · · ·
〈(4),(3,1)〉 0 0 1 2 0 1 1 1 · · · ·
〈(3),(5)〉 0 0 0 0 0 0 1 0 1 · · ·
〈(3),(4,1)〉 0 0 0 0 1 0 2 1 1 1 · ·
〈(2),(6)〉 0 0 0 0 0 0 0 0 1 0 1 ·
〈(2),(5,1)〉 0 0 0 0 0 0 1 0 2 1 1 1



Figure 6.2. Hasse diagram of the up-set (6, 2)�· in the 1-twisted domi-

nance order on Par(8), as seen in (2.5) in the overview of the proof in §2.

By Remark 6.8, this up-set is also the interval [(6, 2), (18)]�· . The total

order ≤· refining �· is indicated by vertical height. The matrix with en-

tries |SSYT(σ)(π−,π+)| for π, σ ∈ (6, 2)�· relevant to condition (b) in the

definition of a stable partition system (Definition 7.1) is shown to the right,

with row and column labels ordered by the total order in Definition 6.14.

It is lower unitriangular by Lemma 6.12. We use · to show a zero implied

by this lemma.

of box moves that are either: down and left within π−, up and right within π+,

or from π+ to π−. The final possibility is responsible for the equalization of

sizes in condition (b) in Lemma 6.7.

In particular we have the analogue of the well-known property of the

normal dominance order that α� β implies `(α) ≥ `(β).

Lemma 6.10. Let α and β be partitions. If α�· β in the `−-twisted domi-

nance order then `(α+) ≥ `(β+).

Proof. By Lemma 6.7(b) we have α+ � β+ + (|α+| − |β+|). Hence by the

property of the dominance order just mentioned, `(α+) ≥ `(β+). �

6.3. Twisted symmetric functions and twisted Kostka numbers.

Definition 6.11 (`−-twisted symmetric function). Fix `− ∈ N0. We define

the `−-twisted symmetric function gπ for a partition π by gπ = eπ−hπ+ .

For example if `− = 0 then gπ = hπ+ , or equivalently, gπ = hπ, and if

`− ≥ a(π) then gπ = eπ− , or equivalently, gπ = eπ′ . Thus as claimed at the
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start of this section, the `−-twisted symmetric functions interpolate between

the homogeneous and elementary symmetric functions.

The following lemma is vital when verifying condition (i) in the Signed

Weight Lemma (Lemma 7.3). Example 6.13 following illustrates the iterative

part of the proof. We require Young’s rule and Pieri’s rule: see references

in §5.1. The support of a symmetric function is defined in Definition 5.2.

Lemma 6.12 (Twisted Kostka matrix). Let π ∈ Par(n) have `−-decomposi-

tion 〈π−, π+〉 where `(π−) = `−. If σ ∈ supp(eπ−hπ+) then σ�· π. Moreover

we have 〈eπ−hπ+ , sπ〉 = 1.

Proof. We describe the summands of eπ−hπ+ combinatorially. By Pieri’s

rule, if sβ ∈ supp(eπ−) then β � π−′ , or equivalently, β′ � π−. Since β′ has

at most `− parts, we have β− = β′ and hence β− � π−. Set k = `(π+). The

product sβhπ+ may be computed by repeated applications of Young’s rule:

starting with γ(0) = β, let sγ(i+1) be a chosen Schur function summand of

sγ(i)hπ+
i

for each i such that 0 ≤ i < k. To find the possible γ(i+ 1), we fix

b−i and b+i ∈ N0 with b−i + b+i = π+

i , then

• add a horizontal strip of length b−i to [γ(i)−′ ] to obtain [γ(i+ 1)−′ ];

• add a horizontal strip of length b+i to [γ(i)]\[γ(i+ 1)−′ ].

Let σ = γ(k) be the Schur function obtained after iteratively applying this

procedure to all parts of π+. Since β− � π−, and subsequent steps add

boxes to each [γ(i)−′ ], we have σ−�� π− and condition (a) in Lemma 6.7

holds. The horizontal additions to each successive [γ(i)−′ ] in this sequence

used in total |π+| − |σ+| boxes. Moreover, at step i, the b+i boxes added

to [γ(i)]\[γ(i)−′ ] lie in rows 1 up to i of [γ(i)]\[γ(i)−′ ]. It follows that σ+

satisfies σ+ + (|π+| − |σ+|) � π+. This gives (b) in Lemma 6.7. Hence, by

this lemma, σ�· π. Finally, if σ = π then β = π− and γ(i) = (π+

1 , . . . , π
+

i ) for

each i. Since the sequence γ(0), . . . , γ(k) is uniquely determined, we have

〈eπ−hπ+ , sπ〉 = 1, as required. �

Example 6.13. Take `− = 2 and let π = (4, 4, 4) with 2-decomposition

〈π−, π+〉 =
〈
(3, 3), (2, 2, 2)

〉
.

The Schur function summands of eπ− are all sβ such that β�(3, 3)′. For this

example we take β = (2, 2, 1, 1). The partition π+ specifies three Young’s

rule additions of two boxes . The sequence of partitions γ(0), γ(1),

γ(2), γ(3) in the proof is, for one particular choice of Young’s rule additions,

(2, 2, 1, 1), (4, 2, 1, 1), (4, 3, 2, 1), (5, 3, 3, 1). The final partition σ = γ(3) has

2-decomposition
〈
(4, 3), (3, 1, 1)

〉
.

7−!

1 1

7−!

1 1

2

2
7−!

1 1 3

2

2 3

At step 2 we added one box to [γ(1)−
′
] and one box to [γ(1)+], taking

b−2 = b+2 = 1; in the other two steps b−1 = b−3 = 0. As expected, conditions (a)
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and (b) in Lemma 6.7 hold, with (3, 3)�� (4, 3) and (2, 2, 2) � (3, 1, 1) + (1).

Moreover, 〈
(4, 3), (3, 1, 1)

〉
↔(5, 3, 3, 1) �· π↔

〈
(3, 3), (2, 2, 2)

〉
as expected from the conclusion of Lemma 6.12. If instead we had chosen

β = (16) then a possible sequence ending with σ = (4, 3, 2, 1, 1, 1) is

7−!

1 1

7−!

1 1 2

2
7−!

1 1 2

2 3

3

in which b−1 = b−2 = b−3 = 1 (since column 2 grows by one box in each addi-

tion) and correspondingly |π+| − |σ+| = 3. Again conditions (a) and (b) in

Lemma 6.7 hold, now with (3, 3)�� (6, 3) and (2, 2, 2)�(2, 1)+(3) and again

the conclusion of Lemma 6.12 holds since
〈
(6, 3), (2, 1)

〉
↔(4, 3, 2, 1, 1, 1)�· π.

Figure 6.2 has an example of the matrix 〈eπ−hπ+ , sσ〉 in Lemma 6.12.

It is an instructive exercise to show that the many zeros in this matrix

correspond to pairs of partitions incomparable in the 1-twisted dominance

order. For a further example of the conclusion of Lemma 6.12, calculation

shows that, cut to partitions of length at most 3, e(3,3)h(3,3) and e(3,3)h(4,1,1)

have supports

{(5, 5, 2), (6, 4, 2), (7, 3, 2), (8, 2, 2)},
{(6, 3, 3), (6, 4, 2), (7, 3, 2), (8, 2, 2)}

respectively, corresponding to the part of the up-sets seen in Figure 7.1 lying

above (5, 5, 2) and (6, 3, 3), respectively.

6.4. Twisted total order. While not logically essential, it is useful to have

a total order that makes the twisted Kostka matrix seen in Figure 6.2 lower-

triangular. These matrices are used in (ii) in the critical Signed Weight

Lemma (Lemma 7.3).

Definition 6.14. Fix `− ∈ N0. We define the `−-twisted total order by

π≤·σ if and only if (π−, π+) ≤ (σ−, σ+) where ≤ is the lexicographic order

on compositions.

Equivalently, π≤·σ if and only if π− < σ− or π− = σ− and π+ ≤ σ+,

where < and ≤ are the lexicographic order on partitions (now possibly of

different sizes). It is easily seen that ≤· is a total order refining the `−-

twisted dominance order. For example, in the total order on compositions

we have〈
(3, 3), (3, 2, 1)

〉
<
〈
(3, 3), (3, 3)

〉
<
〈
(3, 3), (4, 1, 1)

〉
<
〈
(3, 3), (4, 2)

〉
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and hence in the 2-twisted total order we have (5, 4, 3)<· (5, 5, 2)<· (6, 3, 3)

<· (6, 4, 2). (See Figure 7.1 for the relevant Hasse diagram.) Moreover〈
(3, 3), (4, 2)

〉
≤
〈
(4, 2), π+

〉
≤
〈
(4, 3), σ+

〉
and hence (6, 4, 2)<· (2, 2, 1, 1) + π+<· (2, 2, 2, 1) + σ+ for any partitions π+

of 6 and σ+ of 5 with `(π+) ≤ 2 and `(σ+) ≤ 3.

6.5. Up-sets and twisted intervals. For a fixed `− ∈ N0, and partitions

γ, δ of the same size we define the twisted interval [γ, δ]�· by

[γ, δ]�· = {σ ∈ Par(p) : γ�· σ�· δ}.

where �· is the `−-twisted dominance order. We define the up-set of a

partition λ of size p by

λ�· = {σ ∈ Par(p) : σ�· λ}.

As ever, the value of `− will be clear from context. Equivalently, by Re-

mark 6.8, λ�· = [λ, (p)]� when `− = 0 and λ�· = [λ, (1p)]�· when `− ≥ 1.

Example 6.15 (Length bound recast as an interval). In the overview in §2

we used (without giving full details) the stable partition system (P(M))M∈N0

defined using the 1-twisted dominance order by

P(M) =
{
σ ∈ Par(8 + 2M) : σ�· (6 +M, 2, 1M ), `(σ) ≤ 4 +M

}
.

Let σ ∈ Par(8 + 2M). Observe that

`(σ) ≤ 4 +M ⇐⇒ σ−�� (4 +M) ⇐⇒ σ�· (5 +M, 13+M ),

where the final implication holds since (5 +M, 13+M )↔
〈
(4 +M), (4 +M)

〉
is the greatest partition in the 1-twisted dominance order with negative part

(4 +M). Therefore an equivalent definition of P(M) is

P(M) = [(6 +M, 2, 1M ), (5 +M, 13+M )]�·

= [(6, 2)⊕M
(
(1), (1)

)
, (5, 1, 1, 1)⊕M

(
(1), (1)

)
]�·

where �· is the 1-twisted dominance order, as claimed in §2.6.

It is a special feature of the 1-twisted dominance order that the only

restriction imposed by the comparison on negative parts is a bound on the

length of the partition. See §7.5 for an extended example more typical of

the general case.

7. Signed Weight Lemma

In this section we prove the critical Signed Weight Lemma (Lemma 7.3)

and give the related results and definitions needed to apply it to prove our

main theorems. We end with an extended example.
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7.1. Stable partition systems. We isolate the two more technical hy-

potheses of the Signed Weight Lemma in the following definition.

Definition 7.1. A partition system is a sequence (P(M))M∈N0 of sets of

partitions such that all partitions in each P(M) have the same size, together

with a function F : Par! Par such that F (P(M)) ⊆ P(M+1) for all M ∈ N0.

For each π ∈ Par, let gπ be a symmetric function of degree |π|. We say the

partition system is stable with respect to the family gπ if

(a) F : P(M) ! P(M+1) is a bijection for all M sufficiently large;

(b) ifM is sufficiently large then 〈gπ, sσ〉=〈gF (π), sF (σ)〉 for all π, σ ∈ P(M)

and moreover, the matrix K(M) with rows and columns labelled by

P(M) and entries K(M)πσ = 〈gπ, sσ〉 is invertible.

If (a) and (b) hold for M ≥ L then we say the system is stable for M ≥ L.

Given k ∈ N, the k-subsystem of (P(M))M∈N0 is (P(kM))M∈N0 with function

F k, i.e. the k-fold composition of F .

Note in particular that the conditions imply that the matrix K(M) is

constant for M sufficiently large. It is routine to check that a k-subsystem

of a stable partition system for the family gπ is a stable partition system,

again for the family gπ. The general results we need on stable partition

systems are in §8.

Example 7.2. Let gπ = hπ for all π ∈ Par and let F : Par! Par be defined

by F (σ) = σ + (1). Fix a partition λ and let

P(M) =
{
σ ∈ Par(|λ|+M) : σ � λ+ (M)

}
.

We claim that the sets P(M) form a stable partition system. First note that,

provided M is sufficiently large, every partition µ such that µ�λ+ (M + 1)

satisfies µ1 > µ2 and so is in the image of the map F . (Explicitly, it suffices

to take M ≥ |λ|− 2a(λ) where as usual a(λ) is the first part of λ; this is the

bound L from Corollary 8.20; we explain why it applies after this example.)

Hence (a) holds. By a special case of Lemma 5.3 (Twisted Kostka Numbers),

the matrix K(M) in condition (b) is the matrix of Kostka numbers:

K(M)πσ = 〈hπ, sσ〉 = | SSYT(σ)(∅,π)|

for σ, π ∈ P(M). Provided M is sufficiently large, we have Kπ+(1)σ+(1) =

Kπσ; the relevant semistandard tableaux have the form shown below with

1s in the shaded region, and so are in bijection by removing the hatched box

and shifting the boxes right of it one position left. Hence (b) holds.

1 1 1· · · > 1

> 1

The argument for (b) is seen in more generality and detail in the extended

example in §7.3. The proof of Proposition 8.19 shows that for (b) the same

bound L ≥ |λ| − 2a(λ) as (a) suffices.
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We leave it as an instructive exercise to use the Signed Weight Lemma

with the stable partition system in Example 7.2 to prove the stability of the

plethysm coefficients 〈s(n+M) ◦ s(m), sλ+mM 〉 and 〈s(n) ◦ s(m+M), sλ+nM 〉 in

Foulkes’ Conjecture. Of course this also follows from our main theorems;

in the context of their proofs, one should think of
{
σ ∈ Par(mn + M) :

σ � λ + (M)
}

as the interval [λ + (M), (|λ| + M)]� for the 0-dominance

order. With this interpretation the stability of the partition system follows

from Corollary 8.20 applied with κ+ = (1), κ− = ∅ and ω = (|λ|), giving

the bound M ≥ L
(
[λ, (|λ|)], (1)

)
= |λ| − 2a(λ). (This is the first bound in

the corollary; the remaining three impose no restriction, as is generally the

case when `(κ−) = 0. Alternatively since the interval is ‘unsigned’ one can

use Proposition 8.3.) See §7.5 for a related example where we reinterpret a

stable partition system as a sequence of intervals.

7.2. Signed weight lemma. The following key lemma specifies the overall

strategy of the proofs of Theorem 1.1 and 1.2. In this lemma 〈π−, π+〉 is the

`−-decomposition of the partition π as defined in Definition 6.1.

Lemma 7.3 (Signed Weight Lemma). Let ν(M) be a sequence of partitions

and let µ/µ?
(M) be a sequence of skew partitions, indexed by M ∈ N0. Fix

`− ∈ N. Set gπ = eπ−hπ+ for each π ∈ Par. Let P(M) be a stable partition

system for M ≥ L with respect to the symmetric functions gπ and the func-

tion F : Par ! Par, such that the common size of all partitions in P(M) is

|ν(M)||µ/µ?(M)|. Suppose that

(i) if M is sufficiently large and π ∈ P(M) then

supp(gπ) ∩ supp(sν(M) ◦ sµ/µ?(M)) ⊆ P(M),

(ii) if M is sufficiently large then, for all π ∈ P(M),∣∣PSSYT
(
ν(M), µ/µ?

(M)
)
(π−,π+)

∣∣= ∣∣PSSYT
(
ν(M+1), µ/µ?

(M+1)
)
(F (π)−,F (π)+)

∣∣.
Then, provided M ≥ L and M meets the bounds required by (i) and (ii),

〈sν(M) ◦ sµ/µ?(M) , sσ〉 = 〈sν(M+1) ◦ sµ/µ?(M+1) , sF (σ)〉

for all σ ∈ P(M).

We hope to convince the reader, both by the proofs of our main theorems,

and the extended examples in §7.3, §7.4 and §7.5 below that Lemma 7.3 is

both powerful and practical, and not as technical as it appears at first sight.

In particular we note that by Lemma 6.12, if σ ∈ supp(eπ−hπ+) then σ�· π
in the `−-twisted dominance order, and so condition (i) can be tested in

practice when, as usual, gπ is the twisted symmetric function eπ−hπ+ in

Definition 6.11.

Proof of Lemma 7.3. To simplify notation we set p(M) = sν(M) ◦ sµ/µ?(M) for

M ∈ N0. Let M ≥ L be given and let π ∈ P(M). Recall the matrix K(M)

from Definition 7.1(b). By hypothesis (i), we have

gπ =
∑

τ∈P(M)

K(M)πτsτ +Gπ
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where the symmetric function Gπ satisfies 〈p(M), Gπ〉 = 0. By Defini-

tion 7.1(b) K(M) is invertible, hence for σ ∈ P(M) we have∑
π∈P(M)

K(M)−1
σπgπ = sσ +

∑
π∈P(M)

K(M)−1
σπGπ.

Substituting gπ = eπ−hπ+ we obtain sσ =
∑

π∈P(M) K(M)−1
σπ eπ−hπ+ + Eσ

where, since Eσ is a linear combination of the Gπ, we have 〈p(M), Eσ〉 = 0.

By this equation for sσ and Proposition 5.6 we get

〈p(M), sσ〉 =
∑

π∈P(M)

K(M)−1
σπ

∣∣PSSYT
(
ν(M), µ/µ?

(M)
)
(π−,π+)

∣∣. (7.1)

The same argument applies with M replaced with M + 1 and σ ∈ P(M)

replaced with F (σ) ∈ P(M+1). Hence we also have

〈p(M ′), sF (σ)〉 =
∑

ρ∈P(M′)

K(M ′)−1
F (σ)ρ

∣∣PSSYT
(
ν(M ′), µ/µ?

(M ′)
)
(ρ−,ρ+)

∣∣. (7.2)

(Here we reduce clutter by writing M ′ for M + 1.) By Definition 7.1(a),

the set P(M) labelling the rows and columns of K(M) and the set P(M ′)

labelling the rows and columns of K(M ′) are in bijection by F . Therefore

we may take (7.2) and replace each ρ with F (π) and the sum over ρ ∈
P(M ′) with a sum over π ∈ P(M). By Definition 7.1(b) we have K(M)σπ =

K(M ′)F (σ)F (π), and so K(M)−1
σπ = K(M ′)−1

F (σ)F (π) for all π, σ ∈ P(M). This

matches up the first factors after the sums in the right-hand sides of (7.1)

and (7.2), and hypothesis (ii) immediately implies the second factors are

equal. Therefore the right-hand sides agree. Comparing the left-hand sides

gives the Signed Weight Lemma. �

7.3. A stable partition system defined by a length bound. We con-

tinue in the setting of Example 6.13, so `− = 2. In this subsection we

illustrate Definition 7.1 by show that the partition system

P(M) =
{
σ ∈ Par(12 + 4M) : σ�· (4 + 2M, 4, 4, 2M ), `(σ) ≤ 3 +M

}
(7.3)

is stable with respect to the injective map F : Par! Par defined by

λ
F
7−! λ⊕

(
(12), (2)

)
= λ t (2) + (2).

Stability is not immediate. Indeed, from the Hasse diagrams in Figure 7.1

we see that F is not surjective when M = 0: for example, the partition

(6, 6, 2, 2) is not in its image. Suppose thatN ≥ 2 and take σ ∈ Par(12+4N).

By hypothesis

σ�· (4 + 2N, 4, 4, 2N )↔
〈
(3 +N, 3 +N), (2 + 2N, 2, 2)

〉
.

Since σ−�� (3+N, 3+N) and, by definition of P(M), we have `(σ) ≤ 3+N ,

we have `(σ) = 3 + N . By definition of the 2-twisted dominance order, we

have σ− = (3 + N, 3 + N) and hence σ+ � (2 + 2N, 2, 2). Since N ≥ 2, it

follows that σ+

1 − σ
+

2 ≥ 2. Therefore every partition in P(N) is of the form

λ ⊕
(
(12), (2)

)
and so F is bijective for M ≥ 1. This verifies condition (a)

in the definition of a stable partition system (Definition 7.1).
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(8,2,2)
〈(3,3),(6)〉

(7,3,2)
〈(3,3),(5,1)〉

(6,4,2)
〈(3,3),(4,2)〉

(5,5,2)
〈(3,3),(3,3)〉

(6,3,3)
〈(3,3),(4,1,1)〉

(5,4,3)
〈(3,3),(3,2,1)〉

(4,4,4)
〈(3,3),(2,2,2)〉

(10,2,2,2)
〈(4,4),(8)〉

(9,3,2,2)
〈(4,4),(7,1)〉

(8,4,2,2)
〈(4,4),(6,2)〉

(6,6,2,2)
〈(4,4),(4,4)〉

(7,5,2,2)
〈(4,4),(5,3)〉

(8,3,3,2)
〈(4,4),(6,1,1)〉

(7,4,3,2)
〈(4,4),(5,2,1)〉

(6,5,3,2)
〈(4,4),(4,3,1)〉

(6,4,4,2)
〈(4,4),(4,2,2)〉

(8+2M,2,2,2M )
〈(M ′,M ′),(6+2M)〉

(7+2M,3,2,2M )
〈(M ′,M ′),(5+2M,1)〉

(6+2M,4,2,2M )
〈(M ′,M ′),(4+2M,2)〉

(4+2M,6,2,2M )
〈(M ′,M ′),(2+2M,4)〉

(5+2M,5,2,2M )
〈(M ′,M ′),(3+2M,3)〉

(6+2M,3,3,2M )
〈(M ′,M ′),(4+2M,1,1)〉

(5+2M,4,3,2M )
〈(M ′,M ′),(3+2M,2,1)〉

(4+2M,5,3,2M )
〈(M ′,M ′),(2+2M,3,1)〉

(4+2M,4,4,2M )
〈(M ′,M ′),(2+2M,2,2)〉

Figure 7.1. Hasse diagrams of up-sets in the 2-twisted dominance order.

The total order ≤· refining �· defined in Definition 6.14 is indicated by

vertical height. On the left is the up-set of (4, 4, 4) ↔
〈
(3, 3), (2, 2, 2)

〉
restricted to partitions of length at most 3. (This is part of the up-set

relevant to Example 6.13 and the following remark.) This poset maps

under λ 7! λ ⊕
(
(1, 1), (2)

)
into the up-set of (6, 4, 4, 2)↔

〈
(4, 4), (4, 2, 2)

〉
restricted to partitions of length at most 4, shown in the middle; the two

partitions not in the image of the map are highlighted. In turn, for each

M ≥ 1, the middle poset is in bijection, by iterating this map, with the

up-set of (4, 4, 4)⊕M
(
(12), (2)) = (4+2M, 4, 4, 2M )↔

〈
(3+M, 3+M), (2+

2M, 2, 2)
〉

cut to partitions of length at most M + 3, as shown on the right.

(To save space we write M ′ for M + 3.)

Continuing we now check condition (b) in this definition. We have gπ =

eπ−hπ+ , where 〈π−, π+〉 is the `−-decomposition of π from Definition 6.1.

The key result we need is Lemma 5.3 (Twisted Kostka Numbers). By

this lemma, for π, σ ∈ Par, we have 〈gπ, sσ〉 = | SSYT(σ)(π−,π+)|. Since

K(M)πσ = 〈gπ, sσ〉 by definition, the matrix K(M) is invertible for all M

by Lemma 6.12, and it only remains to show, if M ≥ 1, then there is a

bijection

SSYT(σ)(π−,π+) ! SSYT
(
F (σ)

)
(F (π)−,F (π)+)

(7.4)

for each pair σ, π ∈ P(M).

Example 7.4. To illustrate why there is a natural bijection for (7.4), we

continue with the stable partition system in (7.3) and take M = 1 and σ =

(7, 5, 2, 2) and π = (6, 4, 4, 2). Figure 7.2 shows the two elements of each of

SSYT
(
(7, 5, 2, 2)

)
((4,4),(4,2,2))

and SSYT
(
(9, 5, 2, 2, 2)

)
((5,5),(6,2,2))

. For (7.4),
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1 2 1 1 1 1 3

1 2 2 2 3

1 2

1 2

1 2 1 1 1 1 2

1 2 2 3 3

1 2

1 2

1 2 1 1 1 1 1 1 3

1 2 2 2 3

1 2

1 2

1 2

1 2 1 1 1 1 1 1 2

1 2 2 3 3

1 2

1 2

1 2

Figure 7.2. The two semistandard signed tableaux in the sets

SSYT
(
(7, 5, 2, 2)

)
((4,4),(4,2,2))

and SSYT
(
(9, 5, 2, 2, 2)

)
((5,5),(6,2,2))

. The

hatched boxes are inserted by the F insertion map.

we want a bijection

SSYT
(
(7, 5, 2, 2)

)
((4,4),(4,2,2))

! SSYT
(
(9, 5, 2, 2, 2)

)
((5,5),(6,2,2))

.

Observe that, when M = 2, the two tableaux of shape (9, 5, 2, 2, 2) each have

a removable 1 2 in positions (3, 1) and (3, 2) and two adjacent boxes 1 1
in positions (1, 6) and (1, 7) in its top row. Removing these boxes and shift-

ing the remaining boxes in the first column strictly below row 3 up by one

row and the remaining boxes in the top row strictly right of column 5 left by

two columns pairs up the sets of tableaux. (We admit it might be more nat-

ural here to define the bijection by removing 1 2 from positions (3+M, 1)

and (3 + M, 2); we choose the complicated specification to agree with the

proof of Proposition 8.19 (Tableau Stability) using Lemma 8.16(ii).) Note

also that the two tableaux forM = 1 have 1 3 and 1 2 in boxes (1, 6) and

(1, 7), so removing the four boxes from the positions (3, 1), (3, 2), (1, 6), (1, 7)

hatched in the lower part of Figure 7.2 gives tableaux of signed weight(
(3, 3), (3, 2, 1)

)
and

(
(3, 3), (3, 1, 2)

)
, not

(
(3, 3), (2, 2, 2)

)
as required. Cor-

respondingly, the unique element of SSYT
(
5, 5, 2)

)
((3,3),(2,2,2))

is as shown in

the margin, so when σ = (5, 5, 2) and π = (4, 4, 4) the insertion map is a

1 2 1 1 2
1 2 2 3 3
1 2

canonical injection

SSYT
(
(5, 5, 2)

)
((3,3),(2,2,2))

! SSYT
(
(7, 5, 2, 2)

)
((4,4),(4,2,2))

that is not a bijection.

To generalize this example to arbitraryM it is most convenient to consider

the inverse map. Fix N ≥ 2, let σ, π ∈ P(N) and let t ∈ SSYT(σ)(π−,π+).

We know that σ− = π− = (3 +N, 3 +N). Hence t has 3 +N entries of −1

and 3 + N entries of −2 which, since negative entries cannot be repeated

in a row, must form the first two columns of t. Therefore position (1, 2) t

contains 2. Moreover, by Definition 7.1(a), σ satisfies σ1−σ2 ≥ 1 and since

π− = (4 + 2N, 4, 4, 2N )−, it is immediate from Definition 6.6 that

π+ � (4 + 2N, 4, 4, 2N )+ = (2 + 2N, 2, 2).
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
(1

0
,2
,2
,2

)

(9
,3
,2
,2

)

(8
,4
,2
,2

)

(8
,3
,3
,2

)

(7
,5
,2
,2

)

(7
,4
,3
,2

)

(6
,6
,2
,2

)

(6
,5
,3
,2

)

(6
,4
,4
,2

)

〈(4,4),(8)〉 1 · · · · · · · ·
〈(4,4),(7,1)〉 1 1 · · · · · · ·
〈(4,4),(6,2)〉 1 1 1 · · · · · ·
〈(4,4),(6,1,1)〉 1 2 1 1 · · · · ·
〈(4,4),(5,3)〉 1 1 1 0 1 · · · ·
〈(4,4),(5,2,1)〉 1 2 2 1 1 1 · · ·
〈(4,4),(4,4)〉 1 1 1 0 1 0 1 · ·
〈(4,4),(4,3,1)〉 1 2 2 1 2 1 1 1 ·
〈(4,4),(4,2,2)〉 1 2 3 1 2 2 1 1 1


Figure 7.3. The stable transition matrix K(1) in Example 7.5 with entries

K(1)πσ = |SSYT(σ)(π−,π+)|. Columns are labelled by the partition σ, rows

by the 2-decomposition (see Definition 6.1) of π and are ordered by the total

order ≤· (see Definition 6.14) refining the 2-twisted dominance order �· (see

Definition 6.6). We use · to denote a zero entry implied by Lemma 6.12.

The entry highlighted in bold counting SSYT
(
(7, 5, 2, 2)

)
((4,4),(4,2,2))

is used

in Example 7.4.

and so π+

1 ≥ 2 + 2N . Therefore t has at least 2 + 2N entries of 1, necessarily

in its first row, and we see that boxes (1, 6) and (1, 7) of t both contain 1.

Removing this 1 1 and deleting 1 2 from positions (3, 1) and (3, 2) and

then shifting boxes left or up (as seen when N = 2) defines a bijection

SSYT(σ)(π−,π+) ! SSYT(f−1(σ))(f−1(π)−,f−1(π)+).

Example 7.5. The stable transition matrix K(1) is shown in Figure 7.3

below. It was computed using the Magma code available as part of the arXiv

submission of this paper using TwistedIntervalMatrix(2, [6,4,4,2] :

q := [10,2,2,2]);. The entry relevant to Example 7.4 is highlighted in

bold in the bottom row. As remarked at the end of §6.3 it is instructive to

check that the entries of 0 correspond to pairs of partitions incomparable in

the 2-twisted dominance order.

To finish this example, note that the greatest partition in the 2-twisted

dominance order (see Definition 6.6) of 12 + 4M having first two columns

of length M + 3 is (8 + 2M, 2, 2, 2M ). By the definition in (7.3), the least

element of P(M) is (4 + 2M, 4, 4, 2M ). Therefore for each M ∈ N0 we have

P(M) =
[
(4 + 2M, 4, 4, 2M ), (8 + 2M, 2, 2, 2M )

]
�·

and each P(M) is an interval for the 2-twisted dominance order. The stability

of P(M) is therefore a special case of Corollary 8.20. See §7.5 for a related

example.

7.4. Cut up-sets and the plethysm 〈s(3)+(M) ◦ s(4), s(4,4,4)⊕M((12),(2)〉.
The special case of Theorem 1.2 for the strongly maximal signed weights
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(1d), (m− d)

)
seen in Example 4.18(i) asserts that, if d is even, then the

plethysm coefficients 〈sν+(M) ◦ s(m), sλ⊕M((1d),(m−d))〉 are ultimately con-

stant. To prove this using the Signed Weight Lemma, we need a stable

partition system (P(M))M∈N0 such that λ ⊕M
(
(1d), (m − d)

)
∈ P(M) for

each M ∈ N0. As we saw in the overview in §2, we cannot expect to define

P(M) to be the up-set
(
λ⊕M(κ−, κ+)

)�· , where �· is the d-twisted domi-

nance order, because typically the sizes of the up-sets grow, ruling out any

bijection between them. In this subsection we shall see this problem in the

particular case of the plethysm coefficients

〈s(3)+(M) ◦ s(4), s(4,4,4)⊕M((12),(2)〉 (7.5)

and resolve it using the stable partition system constructed in §7.3.

Up-sets are not stable. We take `− = 2 in the Signed Weight Lemma. The 2-

decomposition of a partition π (see Definition 6.1) is defined by π− = (π′1, π
′
2)

and π+ = (π1 − 2, π2 − 2, . . . , πr − 2), where r is maximal such that πr > 2.

For example, if π = (4 + 2M, 4, 4, 2M ) then π− = (M + 3,M + 3) and π+ =

(2 + 2M, 2, 2). By Lemma 6.12, if sσ is a summand of eπ−hπ+ then σ�· π.

Therefore, taking gπ = eπ−hπ+ , the up-set of (4 + 2M, 4, 4, 2M ) in the 2-

twisted dominance order satisfies condition (i) in the Signed Weight Lemma.

We cannot take the up-sets (4 + 2M, 4, 4, 2M )�· as our partition system

because, they are not stable. Indeed, since π↔
〈
(3+M, 3+M), (2+2M, 2, 2)

〉
and (23+b+M , 16−2b+2M )↔

〈
(9− b+ 3M, 3 + b+M),∅

〉
we have

π�· (23+b+M , 19−2b+2M )

for all b ≤ 6 + 2M and hence
∣∣(4 + 2M, 4, 4, 2M )�·

∣∣ ≥ 6 + 2M and the sizes

of the up-sets tend to infinity with M . This behaviour, that some ‘cut’ is

necessary before a sequence of up-sets becomes stable, is typical.

Cut up-sets are stable. To get around the problem we use that condition (i)

in the Signed Weight Lemma (Lemma 7.3) does not require that supp(gπ) ⊆
P(M) for all π ∈ P(M) but instead, since ν = (3) and µ/µ? = (4), only the

weaker condition that supp(gπ)∩supp(s(3+M)◦s(4)) ⊆ P(M) for all π ∈ P(M).

Since the support of the plethysm s(3+M) ◦ s(4) is contained in the support

of s(4)× 3+M. . . ×s(4), each partition in supp(s(3+M) ◦ s(4)) has at most 3 +M

parts. We therefore only need to consider partitions such as (4+2M, 4, 4, 2M )

for which `(σ) ≤ 3 +M . This motivates the definition

P(M) = (4 + 2M, 4, 4, 2M )�· ∩ {σ ∈ Par(12 + 4M) : `(σ) ≤ 3 +M}
already given in (7.3) in an obviously equivalent form. We saw in §7.3

that (P(M))M∈N0 is a stable partition system for M ≥ 1 with respect to

F : P(M) ! P(M+1) defined by F (λ) = λ⊕
(
(1, 1), (2)

)
= λ t (2) + (2) and

the symmetric functions gπ.

Proof that 〈s(3)+(M) ◦ s(4), s(4,4,4)⊕M((12),(2)〉 is ultimately constant. We shall

check conditions (i) and (ii) in the Signed Weight Lemma (Lemma 7.3). Let

π ∈ P(M). As we saw in §7.3 we have π− = (3 +M, 3 +M). Hence

supp(gπ) ∩ supp(s(3+M) ◦ s(4))
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⊆ π�· ∩ {σ ∈ Par(12 + 4M) : `(σ) ≤ 3 +M}

⊆ {σ ∈ (4 + 2M, 4, 4, 2M )�· : `(σ) ≤ 3 +M}
= P(M)

where the second line uses Lemma 6.12 on supp(gπ) and the length bound

in the previous paragraph on partitions in supp(s(3+M) ◦s(4)), and the third

line follows from π�· (4 + 2M, 4, 4, 2M ). Hence (i) holds for all M ∈ N0.

Now fix M ∈ N0 with M ≥ 1 (so meeting the stability bound) and

π ∈ P(M). For (ii), it suffices to define a bijection

H : PSSYT
(
(3 +M), (4)

)
((3+M,3+M),π+)

! PSSYT
(
(3 +M + 1), (4)

)
((3+M+1,3+M+1),π++(2)).

Let T be in the codomain of H. Observe that T has 3+M+1 integer entries

of −1. necessarily lying in distinct (4)-tableau entries. A similar argument

considering −2 now shows that each inner (4)-tableau in T is of the form

1 2 x y where 1 ≤ x ≤ y. Since π ∈ P(M) we have π�· (4 + 2M, 4, 4, 2M )

and hence π+ +(2)�(2+2M+2, 2, 2). Therefore a(π+ +(2)) ≥ 4+2M and,

of the 8 + 2M positions in the (4)-tableau entries of T containing a positive

entry, all but four positions contain 1. In particular, since M ≥ 1, the

leftmost (4)-tableau in T is 1 2 1 1 . Hence we may define H by inserting

this inner (4)-tableau as a new leftmost inner tableau in a given plethystic

semistandard signed tableau in PSSYT
(
(3 +M), (4)

)
((3+M,3+M),π+).

We have now checked conditions (i) and (ii) in the Signed Weight Lemma

(Lemma 7.3). We conclude that 〈s(3)+(M)◦s(4), s(4,4,4)⊕M((1,1),(2)〉 is constant

for M ≥ 1. �

Computation shows that the stable multiplicity is in fact 1. The stability

of this plethysm is a special case of Theorem 1.2 and the map H is as in

the proof of condition (ii) of the Signed Weight Lemma in the proof of

Theorem 13.7.

Example 7.6. Applying the ω-involution to the result just proved, we ob-

tain that 〈s(3+M) ◦ s(14), s(3,3,3,3)⊕M((2),(1,1))〉 is constant for M ≥ 1. This

is not an instance of Theorem 1.2 since, according to Definition 4.10, the

singleton strongly maximal signed tableau families of shape (14) have as

their unique elements the tableaux shown in the margin of signed weights(
(4),∅

)
and

(
∅, (14)

)
respectively. Therefore

(
(2), (1, 1)

)
is not the signed

1
1
1
1

1
2
3
4

weight of a strongly maximal signed tableau family of shape (14) and size

1. This illustrates Remark 4.16.

7.5. Stable partition systems as intervals. A special feature of the sta-

ble partition system P(M) in our running example is that all the partitions

π ∈ P(M) have the same negative part in their 2-decomposition, namely

(3 + M, 3 + M). This was a deliberate choice in order to give a system

that was not immediately stable, but still of manageable size and useful for

proving stability results. To give a more typical example we suppose that
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instead of the plethysm coefficients 〈s(3)+(M)◦s(4), s(4,4,4)⊕M((12),(2)〉 in (7.5),

we want to prove that

〈s(4)+(M) ◦ s(4), s(6,6,4)⊕M((12),(2))〉

is ultimately constant. Since the Schur functions constituents of s(4+M)◦s(4)

have at most 4 +M parts we must relax the length bound in P(M), and so

we now define

R(M) =
{
σ ∈ Par(16 + 4M) : σ�· (6 + 2M, 6, 4, 2M ), `(σ) ≤ 4 +M

}
still working with the 2-twisted dominance order. Observe thatR(0) contains

(6, 6, 4), (7, 7, 1, 1), (6, 5, 4, 1), (5, 5, 4, 2) with increasing negative parts (3, 3),

(4, 2), (4, 3) and (4, 4) respectively. To show that (R(M))M∈N0 is stable we

reinterpret each set R(M) as an interval for the 2-twisted dominance order

using the idea seen in Example 6.15. Observe that `(σ) ≤ 4+M if and only if

σ−�(4+M, 4+M). Since (10+2M, 2, 2, 2, 2M )↔
〈
(4+M, 4+M), (8+2M)

〉
is

the greatest partition of 16+4M in the 2-twisted dominance order satisfying

this condition, we have

R(M) =
[
(6 + 2M, 6, 4, 2M ), (10 + 2M, 2, 2, 2, 2M )

]
�· .

The stability of (R(M))M∈N0 is then a special case of Corollary 8.20. The

four bounds in this corollary are M ≥ −2, M ≥ 1, M ≥ 2 and M ≥ 1,

respectively, so the stability bound is M ≥ 2. By this corollary, this bound is

a sufficient condition for F : R(M) ! R(M+1) to be a bijection; computation

using the Magma code mentioned after Definition 8.14 shows that this bound

is also necessary: |R(M)| = 40, 57, 60, 60 for 0 ≤M ≤ 3.

8. Stable partition systems defined by twisted intervals

In this section we prove the technical result, Corollary 8.20, that suitable

sequences of intervals in the `−-twisted dominance order define stable par-

tition systems. These are the stable partition systems we use in the Signed

Weight Lemma (Lemma 7.3) to prove Theorems 1.1 and 1.2.

8.1. Unsigned intervals. Recall from §3 that we write �� for the dom-

inance order extended to partitions possibly of different sizes. Given par-

titions γ and δ each with at most p parts, we define the unsigned interval

[γ, δ]
(p)
�� by

[γ, δ]
(p)
�� = {σ ∈ Par : γ�� σ�� δ and `(σ) ≤ p}.

Note that unless |γ| ≤ |δ| the interval is empty.

Remark 8.1. If |γ| = |δ| and `(γ) ≤ p then [γ, δ]
(p)
�� = {σ ∈ Par : γ � σ � δ}

since any partition σ such that γ � σ satisfies `(σ) ≤ `(γ); thus in this case

we have [γ, δ]
(p)
�� = [γ, δ]� and there is no ambiguity in using this simpler

notation.
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In our applications, whenever |γ| < |δ|, we shall take p = `− where `−

is the length of the negative part of the relevant signed weight, and so the

partitions in the unsigned interval [γ, δ]
(p)
�� all have at most `− parts, as in

the `−-decomposition (see Definition 6.1).

Definition 8.2. Given partitions λ and ω with λ�� ω and a non-empty

partition κ, each having at most p parts, let ` = `(κ) and set

Lk =
2
∑k−1

i=1 ωi + ωk + ωk+1 − 2
∑k

i=1 λi
κk − κk+1

for k such that 1 ≤ k ≤ ` and κk > κk+1. Set Lk = 0 if κk = κk+1. Define

L
(
[λ, ω]

(p)
�� , κ

)
to be the maximum of L1, . . . , L` if p > ` and the maximum

of L1, . . . , L`−1 and (|ω| − |λ| − ω`)/κ` if p = `. Set L
(
[λ, ω]

(p)
�� ,∅

)
= 0.

We remark that if `(λ) ≤ ` and `(ω) ≤ ` then L` = (2|ω| − 2|λ| − ω`)/κ`.
Thus the bound in Definition 8.2 may in this case be strictly less than the

maximum of L1, . . . , L`.

Let κ be a partition with `(κ) ≤ p. Since α�� β implies α + κ �� β + κ

for any partitions α, β, adding κ defines an injective map from [γ, δ]
(p)
�� to

[γ + κ, δ + κ]
(p)
�� .

Proposition 8.3. Let λ and ω be partitions and let κ be a non-empty

partition, each having at most p parts. Let F : Par ! Par be defined by

F (σ) = σ + κ. Let M ∈ N0. The injective map

F : [λ+Mκ,ω +Mκ]
(p)
�� ↪−! [λ+ (M + 1)κ, ω + (M + 1)κ]

(p)
��

is bijective provided M ≥ L
(
[λ, ω]

(p)
�� , κ

)
.

Proof. Let ` = `(κ) and let N = M + 1. Let τ ∈ [λ + Nκ, ω + Nκ]
(p)
�� .

Observe that τ is of the form σ + κ for a partition σ if and only if all `

inequalities in the chain

τ1 − κ1 ≥ τ2 − κ2 ≥ . . . ≥ τ` − κ` ≥ τ`+1 (8.1)

hold. (For instance if τk < κk for some k then since τk − κk < 0 ≤ τ`+1,

at least one inequality fails to hold.) Fix k ≤ `. Using the hypotheses

τ �� λ+Nκ and τ �� ω +Nκ we have

k−1∑
i=1

τi ≤
k−1∑
i=1

ωi +N

k−1∑
i=1

κi, (8.2)

k∑
i=1

τi ≥
k∑
i=1

λi +N

k∑
i=1

κi, (8.3)

k+1∑
i=1

τi ≤
k+1∑
i=1

ωi +N

k+1∑
i=1

κi. (8.4)

Subtracting (8.2) from (8.3) we get τk ≥ −
∑k−1

i=1 ωi +
∑k

i=1 λi + Nκk and

subtracting (8.3) from (8.4) we get τk+1 ≤
∑k+1

i=1 ωi −
∑k

i=1 λi + Nκk+1.
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Subtracting these two equations in turn, to form the linear combination

−(8.4) + 2(8.3)− (8.2), we get

τk − τk+1 ≥ −2
k−1∑
i=1

ωi − ωk − ωk+1 + 2
k∑
i=1

λi +N(κk − κk+1). (8.5)

Recalling that M = N − 1, we deduce that

(τk − κk)− (τk+1 − κk+1) ≥ Bk +M(κk − κk+1) (8.6)

where Bk = −2
∑k−1

i=1 ωi − ωk − ωk+1 + 2
∑k

i=1 λi. Note that if κk = κk+1,

the inequality τk − κk ≥ τk+1 − κk+1 holds simply because τ is a partition.

Therefore by taking M ≥ −Bk/(κk − κk+1) for each k such that κk > κk+1,

we deduce from (8.6) that every inequality in the chain (8.1) holds. Hence,

provided M ≥ L1, . . . , L`, we may define σ = τ − κ, knowing that σ is a

well-defined partition.

If p = ` then rather than M ≥ L`, we have only the weaker hypothesis

that M ≥ (|ω| − |λ| − ω`)/κ`. However, in this case `(λ) ≤ `, `(τ) ≤ ` and

`(ω) ≤ ` and

τ` =
∑̀
i=1

τi −
`−1∑
i=1

τi ≥
(∑̀
i=1

λi +
∑̀
i=1

Nκi
)
−
(`−1∑
i=1

ωi +

`−1∑
i=1

Nκi
)

=
∑̀
i=1

λi −
`−1∑
i=1

ωi +Nκ` = |λ| − |ω|+ ω` +Nκ`.

Hence τ` ≥ κ`, as we require, provided (N − 1)κ` ≥ |ω|− |λ|−ω`. Therefore

in the case p = ` we may replace L` with the weaker bound (|ω|−|λ|−ω`)/κ`,
and again σ is a well-defined partition.

It remains to show that σ ∈ [λ+Mκ,ω +Mκ]
(p)
�� . Since τ �� λ+(M+1)κ

we have
∑k

i=1 τi ≥
∑k

i=1 λi + (M + 1)
∑k

i=1 κi for each k ∈ N. Therefore∑k
i=1 σi ≥

∑k
i=1 λi+M

∑k
i=1 κi for each k ∈ N, and hence σ�� λ+Mκ. Very

similarly one shows that σ�� ω+Mκ. Finally since τ ∈ [λ+Nκ, ω +Nκ]
(p)
��

we have `(τ) ≤ p, and since `(κ) = ` ≤ p, it follows that `(σ) ≤ p. Therefore

σ ∈ [λ+Mκ,ω +Mκ]
(p)
�� is a preimage of τ under F and since F is injective,

it follows that F is bijective for M ≥ L
(
[λ, ω]

(p)
�� , κ

)
. �

We give one of the smallest examples in which the bound in Definition 8.2

and Proposition 8.3 is 2: see Examples 8.13 and 8.15 for cases where two

parts of κ agree.

Example 8.4. We take λ = (1, 1, 1), ω = (3) and κ = (3, 2, 1). Routine cal-

culations show that the unsigned intervals [(1, 1, 1), (3)]�, [(4, 3, 2), (6, 2, 1)]�,

[(7, 5, 3), (9, 4, 2)]� and [(10, 7, 4), (12, 6, 3)]� are as shown below


(3)

(2, 1)

(1, 1, 1)

 ↪!


(6, 2, 1)

(5, 3, 1)

(5,2,2)

(4,4,1)

(4, 3, 2)

 ↪!



(9, 4, 2)

(9,3,3)

(8, 5, 2)

(8, 4, 3)

(7, 6, 2)

(7, 5, 3)


↪!



(12, 6, 3)

(12, 5, 4)

(11, 7, 3)

(11, 6, 4)

(10, 8, 3)

(10, 7, 4)


.
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The elements not in the image of the map σ
F
7−! σ + (3, 2, 1) are high-

lighted. Setting P(M) = [(1, 1, 1) + M(3, 2, 1), (3) + M(3, 2, 1)]� we see

that F : P(2) ! P(3) is a bijection. Correspondingly, by Proposition 8.3,

F : P(M) ! P(M+1) is bijective provided M ≥ L
(
[(1, 1, 1), (3)]�, (3, 2, 1)

)
and the right-hand side is the maximum of max{3−2

3−2 ,
6−4
2−1} = max{1, 2} = 2

and 3−3−0
1−0 = 0.

8.2. Twisted intervals. We now extend Proposition 8.3 to the twisted

case. Recall from §6.5 that for fixed `− ∈ N0, and partitions γ, δ of the

same size we defined the twisted interval [γ, δ]�· = {σ ∈ Par(p) : γ�· σ�· δ},
where �· is the `−-twisted dominance order. It is obvious that addition of

partitions preserves the dominance order. By conjugating partitions, the

same result holds for joining. Despite this, addition does not preserve the

`−-twisted dominance order. For instance, taking `− = 1 we have〈
(1), (1)

〉
↔(2) �· (1, 1)↔

〈
(2),∅

〉
,

whereas after adding (1, 1),〈
(2), (2)

〉
↔(3, 1) �· (2, 2)↔

〈
(2), (1, 1)

〉
.

The problem does not arise for addition of δ when the partitions involved

are
(
`−, `(δ)

)
-large, in the sense of Definition 3.1. Moreover, joining is better

behaved. We establish this in a series of easy lemmas.

Lemma 8.5. Fix `− ∈ N0. Let α, γ and δ be partitions.

(i) If α is
(
`−, `(δ)

)
-large then (α+ δ)− = α− and (α+ δ)+ = α+ + δ.

(ii) If `(γ) ≤ `− then (α t γ′)− = α− + γ− and (α t γ′)+ = α+.

Proof. The most transparent proof uses Young diagrams. By hypothesis [α]

contains the boxes (i, j) for 1 ≤ i ≤ `(δ) and 1 ≤ j ≤ `−. Hence addition

of δ creates no new boxes in the first `− columns of α. Similarly joining γ′

creates no new boxes outside the first `− columns of α. �

Lemma 8.6. Let κ− and κ+ be partitions. If α is a
(
`(κ−), `(κ+)

)
-large par-

tition then in the `(κ−)-decomposition of α⊕ (κ−, κ+) we have
(
α⊕ (κ−, κ+)

)−
= α− + κ− and

(
α⊕ (κ−, κ+)

)+
= α+ + κ+. Moreover, adding and joining

to α are commuting operations.

Proof. This is immediate from Lemma 8.5. �

In particular, if C ∈ N and α is a
(
`(κ−), `(κ+)

)
-large partition then

α⊕ (C − 1)(α−, α+) is a partition having `−-decomposition C〈α−, α+〉. We

use this remark in the proof of Lemma 12.23.

Lemma 8.7 (Twisted dominance order on large partitions is preserved by

adjoining). Let κ−, κ+ be partitions. Set `− = `(κ−). Suppose that α and β

are
(
`(κ−), `(κ+)

)
large. Then, working in the `−-twisted dominance order,

α�· β if and only if α⊕ (κ−, κ+)�· β ⊕ (κ−, κ+).

Proof. By Lemma 8.6 we have(
λ⊕ (κ−, κ+)

)−
= λ− + κ−, (8.7)
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λ⊕ (κ−, κ+)

)+
= λ+ + κ+. (8.8)

Therefore it is equivalent to show that 〈α−, α+〉 � 〈β−, β+〉 if and only if

〈α− + κ−, α+ + κ+〉� 〈β− + κ−, β+ + κ+〉, which is obvious. �

Lemma 8.8. Fix `− ∈ N0 and let `+ ∈ N0. Let ω be a (`− + 1, `+)-large

partition. If π �· ω then π is (`− + 1, `+)-large.

Proof. By Remark 6.2, a partition α is (`− + 1, `+)-large if and only if

`(α+) ≥ `+. Therefore `(ω+) ≥ `+ and since π �· ω, Lemma 6.10 implies

that `(π+) ≥ `+. �

Lemma 8.9. Fix `− ∈ N0 and let `+ ∈ N0. Let λ and ω be partitions

such that ω is (`− + 1, `+)-large. If π ∈ [λ, ω]�· then π is (`−, `+)-large. In

particular λ is (`−, `+)-large.

Proof. This is immediate from Lemma 8.8 since, as used in Remark 6.2, if

a partition is (`− + 1, `+)-large then it is (`−, `+)-large. �

When `− 6= 0, the hypothesis in the previous lemma cannot be weak-

ened to the apparently more natural condition that ω is (`−, `+)-large. For

example, taking `− = 2, both (3, 2) and (2, 2, 1) are (2, 2)-large, but since

(3, 2)↔
〈
(2, 2), (1)

〉
, (3, 1, 1)↔

〈
(3, 1), (1)

〉
, (2, 2, 1)↔

〈
(3, 2),∅

〉
,

the twisted interval [(3, 2), (2, 2, 1)]�· for the 2-twisted dominance order con-

tains (3, 1, 1) which is not (2, 2)-large. See Remark 6.2 for one sign that the

hypothesis in Lemma 8.9 is in fact the correct one when `− 6= 0. By Re-

mark 3.2, when `− 6= 0, any partition can be made
(
`(κ−) + 1, `(κ+)

)
-large

by sufficiently many applications of the adjoining map λ 7! λ⊕ (κ−, κ+) so,

as usual, any ‘largeness’ assumption are made without loss of generality.

The L bounds in the following proposition are defined in Definition 8.2.

Remark 8.1 explains the different notations for intervals in the dominance

order in the first two bounds in the lemma.

Proposition 8.10 (Partition Stability). Let κ− and κ+ be partitions. Fix

`− = `(κ−) and `+ = `(κ+). Let ω be a partition and let λ �· ω in the `−-

twisted dominance order. If `− 6= 0 then suppose that ω is
(
`−+ 1, `+

)
-large.

For each M ∈ N0, there is an injective map of intervals for the `−-twisted

dominance order

F :
[
λ ⊕M(κ−, κ+), ω ⊕ M(κ−, κ+)

]
�·

↪!
[
λ ⊕ (M + 1)(κ−, κ+), ω ⊕ (M + 1)(κ−, κ+)

]
�·

defined, using the `−-decomposition, by F (σ) = σ ⊕ (κ−, κ+). This map is

bijective provided M ≥ L where L is the maximum of

• L
(
[λ−, ω−](`

−)

�� , κ−
)
,

• L
(
[λ+, ω+ + (|λ+| − |ω+|)]�, κ+

)
,

•
(
ω+

1 + ω+

2 − 2λ+

1 + 2|λ+| − 2|ω+|
)
/(κ+

1 − κ
+

2 ),

•
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/κ−

`−

where the third is omitted if κ+

1 = κ+

2 and the fourth is omitted if κ− = ∅.
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Proof. If `− 6= 0 then, by hypothesis the partitions ω ⊕ M(κ−, κ+) and

ω ⊕ (M + 1)(κ−, κ+) are
(
`− + 1, `+

)
-large. Hence, by Lemma 8.9, every

partition in each twisted interval
(
`−, `+

)
-large. If `− = 0 then any partition

is
(
0, `+

)
large. By the ‘only if’ direction of Lemma 8.7 it now follows that the

map F on these twisted intervals preserves the `−-twisted dominance order.

Hence the image of the left-hand twisted interval under F is contained in the

right-hand twisted interval. Set N = M + 1 and suppose that M satisfies

the inequalities in the proposition. By Lemma 8.6 and Lemma 6.7 we have

τ ∈
[
λ ⊕ N(κ−, κ+), ω ⊕ N(κ−, κ+)

]
�· if and only if

(a) λ− +Nκ−�� τ−�� ω− +Nκ−;

(b)(i) λ+ +Nκ+ � τ+ +
(
|λ+|+N |κ+| − |τ+|

)
and |τ+| ≤ |λ+|+N |κ+|;

(b)(ii) τ+ � ω+ +Nκ+ +
(
|τ+| − |ω+| −N |κ+|

)
and |ω+|+N |κ+| ≤ |τ+|.

It is easily seen that (b)(i) and (b)(ii) are equivalent to the two conditions

λ+ +Nκ+ � τ+ +
(
|λ+|+N |κ+| − |τ+|

)
� ω+ +Nκ+ +

(
|λ+| − |ω+|

)
and

|ω+|+N |κ+| ≤ |τ+| ≤ |λ+|+N |κ+|. (8.9)

Note that by definition of the `−-decomposition (see Definition 6.1), λ−

and ω− have at most `− parts, where `− = `(κ−). Thus (a), (b)(i) and

(b)(ii) hold if and only if (8.9) holds and

τ− ∈ [λ− +Nκ−, ω− +Nκ−](`
−)

��

and

τ+ +
(
|λ+|+N |κ+| − |τ+|

)
∈
[
λ+ +Nκ+, ω+ +Nκ+ + (|λ+| − |ω+|)

]
�.

By Proposition 8.3, the map

[λ− + (N − 1)κ−, ω− + (N − 1)κ−](`
−)

�� ! [λ− +Nκ−, ω− +Nκ−](`
−)

��

defined by adding κ− is bijective if N − 1 ≥ L
(
[λ−, ω−](`

−)

�� , κ−
)
, as we have

assumed. Similarly, the map

[λ+ + (N − 1)κ+,ω+ + (N − 1)κ+ + (|λ+| − |ω+|)]�
! [λ+ +Nκ+, ω+ +Nκ+ + (|λ+| − |ω+|)]�

defined by adding κ+ is bijective if N − 1 ≥ L
(
[λ+, ω+ + (|λ+|− |ω+|)]�, κ+

)
,

again as we have assumed. Hence there exist unique partitions

σ− ∈ [λ− + (N − 1)κ−, ω− + (N − 1)κ−](`
−)

�� (8.10)

such that τ− = σ− + κ− and

ϑ ∈ [λ+ + (N − 1)κ+, ω+ + (N − 1)κ+ + (|λ+| − |ω+|)
]
� (8.11)

such that

τ+ + (|λ+|+N |κ+| − |τ+|) = ϑ+ κ+. (8.12)

The unique integer sequence σ+ such that σ+ + κ+ = τ+ is

σ+ = ϑ− (|λ+|+N |κ+| − |τ+|). (8.13)

We shall show that σ+ is a partition, provided N is sufficiently large. Sup-

pose first of all that κ+

1 = κ+

2 . Then by (8.12), ϑ1−ϑ2 = τ+

1 +(|λ+|+N |κ+|−
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|τ+|)− τ+

2 ≥ |λ+|+N |κ+| − |τ+| and hence by (8.13), σ+

1 − σ
+

2 ≥ 0, with no

condition on N . Now suppose that κ+

1 > κ+

2 . By (8.11), we have

ϑ1 − ϑ2 = 2ϑ1 − (ϑ1 + ϑ2)

≥ 2
(
λ+

1 + (N − 1)κ+

1

)
−
(
ω+

1 + ω+

2 + (N − 1)(κ+

1 + κ+

2 ) + (|λ+| − |ω+|)
)

= 2λ+

1 − ω
+

1 − ω
+

2 + (N − 1)(κ+

1 − κ
+

2 )− |λ+|+ |ω+|

By (8.13),

σ+

1 − σ
+

2 = ϑ1 − ϑ2 − |λ+| −N |κ+|+ |τ+|
≥ ϑ1 − ϑ2 − |λ+|+ |ω+|
≥ 2λ+

1 − ω
+

1 − ω
+

2 + (N − 1)(κ+

1 − κ
+

2 )− 2|λ+|+ 2|ω+|

where the middle line follows from the first inequality in (8.9) that |ω+| +
N |κ+| ≤ |τ+| and the third line by substituting the expression for ϑ1 − ϑ2

just found. Hence it suffices if

N − 1 ≥ ω+

1 + ω+

2 − 2λ+

1 + 2|λ+| − 2|ω+|
κ+

1 − κ
+

2

which, setting M = N − 1, is the third condition.

We have now defined partitions σ− and σ+ such that, provided 〈σ−, σ+〉
is a well-defined `−-decomposition, the partition σ defined by σ↔ 〈σ−, σ+〉
satisfies σ ⊕ (κ−, κ+) = τ . If `− = 0 (or equivalently, κ− = ∅) this is

immediate, and similarly it is immediate if κ+ = ∅. We may therefore

assume that `− ≥ 1 and κ+ 6= ∅. We then require σ−
`− ≥ `(σ+). By (8.10)

we have σ−�� ω− + (N − 1)κ−. Define an integer sequence ψ by ψj =

σ−j for 1 ≤ j < `− and ψ`− = σ−
`− + |ω−| + (N − 1)|κ−| − |σ−|. Since

σ−�� ω−+ (N − 1)κ− by (8.10), σ− is a weight, having non-negative entries.

Moreover, after this equalization of sizes, we have ψ � ω− + (N − 1)κ−.

Since each side has at most `− parts, it follows from the dominance order

that ψ`− ≥ ω−
`− + (N − 1)κ−

`− . Now using that |ω−|+ (N − 1)|κ−| − |σ−| =
|ω−| + N |κ−| − |τ−| ≤

(
|ω−| + N |κ−|

)
−
(
|λ−| + N |κ−|

)
= |ω−| − |λ−| we

obtain

σ−
`− ≥ ω

−
`− + (N − 1)κ−

`− − (|ω−| − |λ−|).
By (8.11) we have ϑ� λ+ + (N − 1)κ+, and since `(κ+) = `+ we have

`(σ+) = `(ϑ) ≤ max(`(λ+), `+).

Therefore, comparing the two previous displayed equations, a sufficient con-

dition for σ to be well-defined is

ω−
`− + (N − 1)κ−

`− − (|ω−| − |λ−|) ≥ max(`(λ+), `+).

Rearranging and, as before, setting M = N − 1, this becomes the fourth

condition. �

This shows that twisted intervals for the `−-twisted dominance order,

defined for suitable large partitions, satisfy condition (i) in the definition of

a stable partition system (Definition 7.1) for the map F in Proposition 8.10
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(Partition Stability). We remark that the example in §7.5 shows one case

where the third bound, required in the middle part of the proof, is the only

bound that is tight and Example 8.13 below shows that the most technical

fourth bound may also be the only bound that is tight.

8.3. Positions for tableau stability. We must now verify condition (b)

in the definition of a stable partition system (Definition 7.1). The critical

positions in tableaux are defined below. In this section, only the case where

µ? = ∅ is needed: the definition is used in full generality in §10.5 below.

Recall that a(λ) denotes the first part of a partition λ.

Definition 8.11. Let µ/µ? be a skew partition. Let κ− and κ+ be parti-

tions. Fix `− = `(κ−) and let `+ = `(κ+). For 1 ≤ r− ≤ `− and 1 ≤ r+ ≤ `+,

(a) the r−-top position of µ/µ? is
(
max(`(µ?), `(µ

+), `+, µ−
r−+1

), r−),

(b) the r−-bottom position of µ/µ? is (k+ κ−
r− − κ

−
r−+1

, r−) where (k, r−)

is the r−-top position of µ/µ?.

(c) the r+-left position of µ/µ? is
(
r+, `− + max(a(µ?), µ

+

r++1
)
)
,

(d) the r+-right position of µ/µ? is (r+, k+ κ+

r+
− κ+

r++1
) where (r+, k) is

the r+-left position of µ/µ?.

Note that if µr+ < `− then µ+

r++1
= 0 and so the r+-left position of µ/µ?

is (r+, `− + a(µ?)) and is not contained in [µ]. Similarly, if µ? = ∅ and

µ+ = ∅ and κ+ = ∅ then since µ− has at most `− parts, the `−-top position

is (0, `−). We therefore refer to ‘positions’ rather than ‘boxes’.

Example 8.12. Take κ− = (1, 1) and κ+ = (2). The map F : Par! Par in

Proposition 8.10 is defined by F (σ) = σ ⊕
(
(1, 1), (2)

)
= σ t (2) + (2). The

numbers in the diagrams below show the 1-top, 2-top and 1-left positions

in the partitions obtained from (2) and (1, 1) by adjoining according to F .

Following our usual convention, top positions, relevant to the insertion of

negative entries, are marked by bold numbers. For instance the 2-top po-

sition is (1, 2) in every partition. The 2-bottom and 1-right positions are

indicated by shading;

1 1/2

1

1/2 1/2

1

1 1/2

1

1/2

1

1/2

Since κ−1 = κ−2 the 1-top and 1-bottom positions coincide in every case. (We

shall see in Definition 8.14 that this makes them irrelevant to our appli-

cation.) Since κ−2 − κ
−
3 = 1 − 0 = 1, the 2-bottom position is always one
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position below the 2-top position and since κ+

1 −κ
+

2 = 2− 0 = 2, the 1-right

position is always two positions right of the 1-left position.

For a further example in the general skew case, also showing the behaviour

when `(µ+) > `(κ+), see Example 10.5.

8.4. The F insertion map on tableaux. We now show how these posi-

tions can be used to define a bijection between semistandard signed tableaux.

We admit the following results are technical, and so we give two substantial

examples. See also Example 7.2 and the end of §7.3; the bijections in these

examples can now be seen to be instances of F and its inverse.

Example 8.13. Consider the twisted intervals

P(M) =
[
(4, 2) t (2M ) + (2M), (3, 2, 1) t (2M ) + (2M)

]
�· .

for the 2-twisted dominance order. By Proposition 8.10 (Partition Stability),

the map F : P(M) ! P(M+1) defined by λ 7! λ ⊕
(
(1, 1), (2)

)
is bijective

for M ≥ 0. (Note that (3, 2, 1) is (3, 1)-large; the four bounds on M are

respectively M ≥ −1, M ≥ −1, M ≥ −1
2 and M ≥ 0.) This gives a bijection

between the row and column labels of the matrices K(M) in condition (b)

of a stable partition system (Definition 7.1), as indicated below. We include

the set P(−1), defined to be [(2), (1, 1)]�· below: even though (2) is not (3, 1)-

large, the proof of Proposition 8.10 still applies; the bounds on M are now

M ≥ 0, M ≥ 0, M ≥ 0 and M ≥ 1, so the necessary restriction on M comes

from the technical final paragraph of the proof.

( (1
,1

)

(2
)

〈(2),∅〉 1 ·
〈(1,1),∅〉 1 1

) 

(3
,2
,1

)

(4
,1
,1

)

(4
,2

)

〈(3,2),(1)〉 1 · ·
〈(3,1),(2)〉 1 1 ·
〈(2,2),(2)〉 2 1 1

 

(5
,2
,2
,1

)

(6
,2
,1
,1

)

(6
,2
,2

)

〈(4,3),(3)〉 1 · ·
〈(4,2),(4)〉 1 1 ·
〈(3,3),(4)〉 2 1 1


The tableaux enumerated by the bottom left matrix entries of 1, 2 and 2

are shown below.

1

2

1 2 1

1 2

1

1 2 1

1 1

2

F
7−!

F
7−!

1 2 1

1 2

1

1 1

1 2

1 2 1

1 1

2

1 1

1 2

We saw in Example 8.12 that the 2-top and 1-left positions of (3, 2, 1) are

both (1, 2); these positions are shaded dark grey in all tableaux. Insertion

of 1 2 in the two positions (2, 1), (2, 2) below the 2-top position, moving

each box in columns 1 and 2 one row down, gives a semistandard tableau.

Similarly insertion of 1 1 into the positions (1, 3), (1, 4), right of the
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1-left position, moving each box in row 1 two columns right, again gives

a semistandard tableau. These operations commute. The inverse map is

defined by deleting 1 2 and 1 1 from the 2-bottom and 1-right positions

in the (5, 2, 2, 1)-tableau; these positions are again shaded and the newly

inserted boxes which should be deleted are hatched. We therefore have a

bijection

SSYT
(
(3, 2, 1)

)
((2,2),(2))

F
−! SSYT

(
(5, 2, 2, 1)

)
((3,3),(4))

.

This bijection establishes, via Lemma 5.3 (Twisted Kostka Numbers), that

the bottom-left entries 〈e(2,2)h(2), s(3,2,1)〉 and 〈e(3,3)h(4), s(5,2,2,1)〉 of the final

two matrices above are equal. This bijection is generalized in Definition 8.14:

in general κ−r −κ−r+1 rows of length r and κ+
r −κ+

r+1 columns of length r are

inserted/deleted. This feature may be seen in this example: for instance,

since κ−1 = κ−2 , there was no need to consider the 1-top and 1-bottom posi-

tions.

Generalizing this example, we now define the insertion map F in the

general skew case; this generality is needed later in the proof of Proposi-

tion 10.14. Note that when σ? = ∅ then the only hypothesis needed is

that σ is
(
`(κ−), `(κ+)

)
-large. Recall from Definition 3.3 that YT

(
σ/σ?) is

the set of signed tableaux of shape σ/σ?; note the tableaux in YT
(
σ/σ?

)
are not necessarily semistandard.

Definition 8.14. Let κ− and κ+ be partitions. Let σ/σ? be a
(
`(κ−) +

a(σ?), `(κ
+)
)
-large and

(
`(κ−), `(µ?)

)
-large skew partition. Define

F : SSYT(σ/σ?)! YT
(
σ/σ? ⊕ (κ−, κ+)

)
by performing (1) then (2) below:

(1) starting with r− = 1 and finishing with r− = `(κ−), insert κ−
r− −

κ−
r−+1

new rows each with entries −1, . . . ,−r−, each with their right-

most box immediately below the r−-top position of σ;

(2) starting with r+ = 1 and finishing with r+ = `(κ+), insert κ+

r+
−κ+

r++1
new columns each with entries 1, . . . , r+, each with their bottom box

immediate right of the r+-left position of σ.

If κ−
r− = κ−

r−+1
or κ+

r+
= κ+

r++1
then there is nothing to do in that step.

The partitions κ− and κ+ will always be clear from context. It has to be

checked that F is well-defined (meaning that the insertions give a tableau

of skew partition shape), but as we shall see in Lemma 8.18, this is not hard

to prove. Our aim, achieved in Proposition 8.19, is to show that

F : SSYT
(
σ
)
(π−,π+) ! SSYT

(
σ ⊕ (κ−, κ+)

)
(π−+κ−,π++κ+).

is a well-defined bijection for σ and π suitable elements of a twisted interval

for the `(κ−)-twisted dominance order. Example 8.13 shows the special case

where σ = (3, 2, 1) and π =
〈
(2, 2), (2)

〉
↔(4, 2).
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To help guide the reader through the remaining technicalities we give a

further ‘unsigned’ example below. This example, like many others in this pa-

per, was created with the help of the Magma code mentioned in the introduc-

tion using TwistedIntervalInjectionM( [], [3,3,1], [2,1,1] : q :=

[4], NSteps := 2); varying the parameters to [1,1], [2], [4,2], q :=

[3,2,1] gives the bijection in Example 8.13.

Example 8.15. Take κ− = ∅, κ+ = (3, 3, 1) so `− = 0 and `+ = 3. By Defi-

nition 8.2, L
(
[(2, 1, 1), (4)]�, (3, 3, 1)

)
= 1; the only strictly positive quantity

comes from the case k = 2. (Note that we disregard the case k = 1 because

κ1 = κ2.) Therefore, by Proposition 8.3, the F map adding (3, 3, 1) is an

injection

[(2, 1, 1), (4)]�
+(3,3,1)−−−! [(5, 4, 2), (7, 3, 1)]�

+(3,3,1)−−−! [(8, 7, 3), (10, 6, 2)]�

and the second map is a bijection. (We remark that Proposition 8.10 could

also be used; the intervals are then interpreted for the 0-twisted dominance

order, which by Remark 6.8 is the usual dominance order on partitions, and

the additional bounds are, as expected, irrelevant.) Figure 8.1 shows the

Kostka matrices 〈hπ, sσ〉 for π, σ in each interval; and several features of

the F bijection

SSYT
(
(7, 3, 1)

)
(∅,(5,4,2))

F
−! SSYT

(
(10, 6, 2)

)
(∅,(8,7,3))

establishing the equality 〈h(5,4,2), s(7,3,1)〉 = 〈h(8,7,3), s(10,6,2〉 of the bottom-

left matrix entries of 2.

8.5. Technical lemmas on positions. In the following lemma we use the

bounds L
(
[λ, ω]

(p)
�� , κ

)
and L

([
λ+, ω+ + (|λ+| − |ω+|)

]
, κ+
)
�, defined in Defi-

nition 8.2. (See Remark 8.1 for the difference in notation.) We remark that

the bounds in the following lemma are the first, second and fourth from

Proposition 8.10 (Partition Stability), so whenever the conditions for this

proposition hold, so do the conditions for this lemma.

Lemma 8.16. Let κ− and κ+ be partitions. Fix `− = `(κ−) and `+ =

`(κ+). Let λ and ω be (`−, `+)-large partitions and let λ�· ω in the `−-twisted

dominance order. Let L be the maximum of the twisted interval bounds

• L
(
[λ−, ω−](`

−)

�� , κ−
)
,

• L
([
λ+, ω+ + (|λ+| − |ω+|)

]
�, κ

+
)

•
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/κ−

`−

omitting the third if κ− = ∅. Let σ and π be partitions in the interval

[λ ⊕ M(κ−, κ+), ω ⊕ M(κ−, κ+)
]
�·

for the `−-twisted dominance order such that σ is (`−, `+)-large. Let t ∈
SSYT(σ)(π−,π+). If M − 1 ≥ L then

(i) the r−-bottom position of t contains −r− if r− < `− and κ−
r− > κ−

r−+1
;

(ii) if κ− 6= ∅ then the `−-bottom position of t contains −`−;

(iii) if κ− 6= ∅ and κ+ 6= ∅ then the box (`+, `−) of t contains −`−;

(iv) the r+-right position of t contains r+ if r+ < `+ and κ+

r+
> κ+

r++1
.
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

(4
)

(3
,1

)

(2
,2

)

(2
,1
,1

)

1 · · ·
1 1 · ·
1 1 1 ·
1 2 1 1




(7
,3
,1

)

(7
,2
,2

)

(6
,4
,1

)

(6
,3
,2

)

(5
,5
,1

)

(5
,4
,2

)

1 · · · · ·
1 1 · · · ·
1 0 1 · · ·
2 1 1 1 · ·
1 0 1 0 1 ·
2 1 2 1 1 1





(1
0
,6
,2

)

(1
0
,5
,3

)

(9
,7
,2

)

(9
,6
,3

)

(8
,8
,2

)

(8
,7
,3

)

1 · · · · ·
1 1 · · · ·
1 0 1 · · ·
2 1 1 1 · ·
1 0 1 0 1 ·
2 1 2 1 1 1


1

2

3

1

2

3

1

2

3

1 11 1 1 1 2 3/2

2 2 2/3

3

1 11 1 1 1 1 1 1 2 3/2

2 2 2 2 2 2/3

3 3

Figure 8.1. Kostka matrices for the intervals [(2, 1, 1), (4)]�,

[(5, 4, 2), (7, 3, 1)]�, [(8, 7, 3), (10, 6, 2)]� showing the bijection F (see Propo-

sition 8.10) between the two larger intervals defined by adding (3, 3, 1).

Observe that while (7, 3, 1) = (4)+(3, 3, 1) and (5, 4, 2) = (2, 1, 1)+(3, 3, 1),

we have |SSYT
(
(4)
)
(∅,(2,2,1))| = 1 but |SSYT

(
(7, 3, 1)

)
(∅,(5,4,2))

∣∣ = 2 so in

the step from the first interval to the second we do not have tableau stability,

in the sense of Proposition 8.19, even if we consider only those partitions in

the image of the addition map. Below the matrices we show the 1-, 2- and

3-left and 1-, 2- and 3-right position for the partitions (4), (7, 3, 1), (10, 6, 2);

note the 1-left and 1-right positions coincide. At the bottom we show

the bijection F : SSYT
(
(7, 3, 1)

)
(∅,(5,4,2))

F
−! SSYT

(
(10, 6, 2)

)
(∅,(8,7,3))

defined by inserting two columns of length 2 immediately right of the

2-left position (2, 1) and a single column of height 3 immediately right of

the 3-left position (3, 0), using 2/3 and 3/2 to indicate the two boxes that

have a choice of entry. The shading and hatching conventions are as in

Example 8.13. This gives a bijective proof of the equality of the bottom

left entries of 2 in the two larger matrices marked in bold.

(v) the `+-right position of t contains `+.

Moreover if M ≥ L then the same results hold replacing ‘bottom’ with ‘top’

and ‘right’ with ‘left’, except that

(ii) if σ+ = ∅ and κ+ = ∅ then the `−-top position is (0, `−);

(iv) and (v) if σr++1 ≤ `−, and so the r+-left position is (r+, `−), then it

contains a negative entry.

Proof. First note that, by Lemma 8.6, we have
(
λ ⊕M(κ−, κ+)

)−
= λ− +

Mκ− and three further analogous equations replacing − with + or λ with ω.

We also record a key observation on where negative entries lie in t:

(−) The negative entries of t lie in the boxes in [α] where α is a subpar-

tition of σ such that a(α) ≤ `− and |α| = |π−|.
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For (i), there is nothing to prove if κ− = ∅. Let r− < `−. Since σ

is (`−, `+)-large, we have σ−
r−+1

≥ `+. Hence the r−-top position of t is

(σ−
r−+1

, r−). Suppose for a contradiction that this position has either a

positive entry, or some −s with −s � −r− in the order in Definition 3.7,

meaning that s > r. In either case, (−) implies that the total number of

entries of t in the set {−1, . . . ,−r−} is at most σ−1 + · · ·+σ−
r−−1

+σ−
r−+1

−1.

(At this point we suggest that the reader refers to Figure 8.2 to see (−)

graphically: it is also helpful to note that σ−j = σ′j for 1 ≤ j ≤ `−. See

Figure 6.1 for a reminder of this notation.) On the other hand, t has exactly

π−1 + · · ·+ π−
r−−1

+ π−
r− such entries. Hence

r−−1∑
j=1

σ−j + σ−
r−+1

>
r−∑
j=1

π−j . (8.14)

Using π �· λ⊕M(κ−, κ+) and so, by Lemma 6.7(a), π−�� λ− + Mκ− we

have
∑r−

j=1 π
−
j ≥

∑r−

j=1 λ
−
j +M

∑r−

j=1 κ
−
j . Hence

r−−1∑
j=1

σ−j + σ−
r−+1

>
r−∑
j=1

λ−j +M
r−∑
j=1

κ−j . (8.15)

Since σ ∈ [λ ⊕ M(κ−, κ+), ω ⊕ M(κ−, κ+)
]
�· we have σ �· ω ⊕ M(κ−, κ+)

and so by Lemma 6.7(a), σ−�� ω− +Mκ−, we also have for each k,

k∑
j=1

λ−j +M
k∑
j=1

κ−j ≤
k∑
j=1

σ−j ≤
k∑
j=1

ω−j +M
k∑
j=1

κ−j . (8.16)

Take k = r− in the left-hand inequality in (8.16) and k = r−+1 in the right-

hand inequality in (8.16) and subtract to get σ−r+1 ≤
∑r−+1

j=1 ω−j −
∑r−

j=1 λ
−
j +

Mκ−
r−+1

. Hence by another use of the right-hand inequality in (8.16) taking

k = r− − 1,

r−−1∑
j=1

σ−j +σ−
r−+1

≤ 2

r−−1∑
j=1

ω−j +ω−
r−+ω−

r−+1
−

r−∑
j=1

λ−j +M

r−−1∑
j=1

κ−j +Mκ−
r−+1

.

Now (8.15) and the previous inequality imply

2
r−−1∑
j=1

ω−j + ω−
r− + ω−

r−+1
− 2

r−∑
j=1

λ−j > M(κ−
r− − κ

−
r−+1

). (8.17)

Taking k = r− in the definition of L
(
[λ−, ω−](`

−)

�� , κ−
)

in Definition 8.2 we

get 2
∑r−−1

j=1 ω−j + ω−k + ω−k+1 − 2
∑r−

j=1 λ
−
j ≤M(κr− − κr−+1). This contra-

dicts (8.17). Hence, provided we have the first condition on M that M ≥
L
(
[λ−, ω−](`

−)

�� , κ−
)
, (i) holds for top positions.

The r−-bottom position lies κ−
r−−κ

−
r−+1

boxes below the r−-top position.

Supposing similarly that it does not contain r− we deduce that the total

number of entries of t in the set {−1, . . . ,−r−} is at most κ−
r− − κ

−
r−+1

plus

the left-hand side of (8.14). Running the same argument, using the same

inequalities (8.15) and (8.16), we obtain (8.17) with κ−
r− −κ

−
r−+1

subtracted
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from the right hand side, which is therefore (M − 1)(κ−
r− −κ

−
r−+1

). We then

get a contradiction as before from M − 1 ≥ L
(
[λ−, ω−](`

−)

�� , κ−
)
.

For (ii), we may assume that κ− 6= ∅; then by Definition 8.11, the `−-top

position of t is
(
max(`(σ+), `+

)
, `−). If σ+ = ∅ then we are in the exceptional

case at the end of the statement of the lemma; otherwise, since σ is (`−, `+)-

large, this is a box of t. Suppose for a contradiction that this box does not

contain −`−. The analogue of (8.15) is

`−−1∑
j=1

σ−j + max(`(σ+), `+) >
`−∑
j=1

λ−j +M
`−∑
j=1

κ−j = |λ−|+M |κ−|.

By

`−−1∑
j=1

σ−j ≤
`−−1∑
j=1

ω−j +M

`−−1∑
j=1

κ−j = |ω−| − ω−
`− +M |κ−| −Mκ−

`− (8.18)

obtained from the upper bound in (8.16) we deduce |λ−|−max(`(σ+), `+) <

|ω−| − ω−
`− −Mκ−

`− . By Lemma 6.10, since σ �· λ ⊕M(κ−, κ+), we have

`(σ+) ≤ `(λ+). Therefore

Mκ−
`− < |ω

−| − |λ−| − ω−
`− + max(`(λ+), `+). (8.19)

This contradicts the third bound in the statement of this lemma, namely

M ≥
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/κ−

`− . This proves (ii) for the

top position. The modifications for the `−-bottom position are precisely

analogous to (i), leading to (8.18) with κ−
`− subtracted from the right-hand

side, and (8.19) with M replaced by M − 1, as required.

Part (iii) follows from (ii) because the `−-top position is (k, `−) where

k ≥ `+, and since this position contains −`−, so does position (`+, `−). This

argument is indicated in the caption to Figure 8.2.

For (iv) and (v), we first note that if κ+ = ∅ then there is nothing to

prove. Suppose that κ+ 6= ∅. By (iii) we have

(+) The positive entries of t in {1, 2, . . . , `+} lie either in boxes in the

first `− columns of t in rows strictly below row `+, or in boxes (i, j)

with i ≤ `+ and j > `−.

This restrictions from (−) and (+) are shown diagrammatically in Figure 8.2.

By (+), there are exactly |σ−|−|π−| positive entries in the first `− columns

of t. Let r+ ≤ `+ and suppose, as we may, that κr+ > κr++1. The r+-

left position of t is (r+, `− + σ+

r++1
). If σ+

r++1
= 0 then (iii) implies that

this position contains a negative entry, as required in the exceptional cases

for left-positions. We may therefore assume that σ+

r++1
> 0, so the r+-left

position is not in the first `− columns of t. Suppose, for a contradiction, that

this position does not contain r+. The total number of entries of t lying in

the set {1, . . . , r+} is then at most |σ−| − |π−|+ σ+

1 + · · ·+ σ+

r+
+ σ+

r++1
− 1.

On the other hand t has exactly π+

1 + · · ·+ π+

r+−1
+ π+

r+
such entries. Hence

|σ−| − |π−|+
r+−1∑
i=1

σ+

i + σ+

r++1
>

r+∑
i=1

π+

i . (8.20)
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+

+

+

. . .

. . .

...
...

. .
.

. .
.

. .
.

. .
.

•

1 `̀̀−−− 1

1 `̀̀−−−

`+

`−

Figure 8.2. Entries in a tableau t ∈ SSYT(σ)(π−,π+) when σ is (`−, `+)-

large showing the conditions (−) and (+) in the proof of Lemma 8.16. The

positive entries not in the first `+ rows lie in the regions marked +. Note

that by (iii) in Lemma 8.16 the box in position (`−, `+) contains −`−.

We have shown the case where `(σ+) > `+, and so the `−-top position is(
`(σ+), `−) marked •. By part (ii) of the lemma, when M is sufficiently

large, this position also contains −`−, and so the first `(σ+) rows of t are

equal in their first `− columns. The `−-bottom position is κ−
`− rows below

the `−-top position. Observe that since the `−-top position is in row `(σ+),

deleting a row of length `− strictly below the `−-top position and weakly

above the `−-bottom position preserves partition shape: this is relevant to

the bijection F defined in Definition 8.14.

Now using π�· λ ⊕ M(κ−, κ+) and so, by Lemma 6.7(b), π+ +
(
(|λ+| +

M |κ+|)− |π+|
)
� λ+ +Mκ+, we have

r+∑
i=1

π+

i ≥
r+∑
i=1

λ+

i +M

r+∑
i=1

κ+

i − |λ
+| −M |κ+|+ |π+|. (8.21)

In exactly the same way, since σ�· λ⊕M(κ−, κ+), we have, for each k ≥ 1,

k∑
i=1

σ+

i ≥
k∑
i=1

λ+

i +M
k∑
i=1

κ+

i − |λ
+| −M |κ+|+ |σ+| (8.22)

and using σ�· ω⊕M(κ−, κ+) and so σ+�ω+ +
(
|σ+|−|ω+|−M |κ+|)+Mκ+,

we have

k∑
i=1

σ+

i ≤
k∑
i=1

ω+

i +M
k∑
i=1

κ+

i + |σ+| − |ω+| −M |κ+| (8.23)
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for each k. Taking k = r+ in (8.22) and k = r+ +1 in (8.23) and subtracting

(as before for the negative case) we get

σ+

r++1
≤

r++1∑
i=1

ω+

i −
r+∑
i=1

λ+

i +Mκr++1 + |λ+| − |ω+|.

Hence

r+−1∑
i=1

σ+

i + σ+

r++1
≤

r+−1∑
i=1

ω+

i +M
r+−1∑
i=1

κ+

i + |σ+| − |ω+| −M |κ+|

+

r++1∑
i=1

ω+

i −
r+∑
i=1

λ+

i +Mκ+

r++1
+ |λ+| − |ω+|

= 2
r+−1∑
i=1

ω+

i +ω+

r+
+ω+

r++1
−

r+∑
i=1

λ+

i +M
r+−1∑
i=1

κ+

i +Mκ+

r++1

+ |σ+|+ |λ+| − 2|ω+| −M |κ+|

and so, writing A for the right-hand side above, (8.20) and (8.21) imply

|π−| − |σ−|+
r+∑
i=1

λ+

i +M
r+∑
i=1

κ+

i − |λ
+| −M |κ+|+ |π+| < A.

We now rearrange and simplify using |σ−|+ |σ+| = |π−|+ |π+| to get

M(κ+

r+
− κ+

r++1
) < 2

r+−1∑
i=1

ω+

i + ω+

r+
+ ω+

r++1
− 2

r+∑
i=1

λ+

i

+ |σ+|+ 2|λ+| − 2|ω+| − |π−|+ |σ−| − |π+|

= 2

r+−1∑
i=1

ω+

i + ω+

r+
+ ω+

r++1
− 2

r+∑
i=1

λ+

i + 2|λ+| − 2|ω+|.

(8.24)

But from the hypothesis M ≥ L
(
[λ+, ω+ + (|λ+| − |ω+|)]�, κ+

)
we have

M ≥
2
∑r+−1

i=1 ω+

i + ω+

r+
+ ω+

r++1
− 2

∑r+

i=1 λ
+

i + 2|λ+| − 2|ω+|
κ+

r+
− κ+

r++1

. (8.25)

Comparing with the previous inequality we get a contradiction. This proves

(iv) and (v) for left positions. The modifications for (iv) and (v) for right po-

sitions are precisely analogous to the negative case; the relevant quantity to

subtract from the left-hand side of (8.24) is κ+

r+
−κ+

r++1
, so we obtain (8.25)

with M replaced by M − 1, as already seen twice before. This completes

the proof. �

For later use in the proof of Lemma 10.7 we give the following lemma in

the general skew case.
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Lemma 8.17. Let κ− and κ+ be partitions. Set `− = `(κ−) and `+ = `(κ+).

Let σ/σ? be an
(
`− + a(σ?), `

+
)
-large and

(
`−, `(σ?)

)
-large skew partition.

The r−-top position of σ/σ? is{(
σ′r−+1, r

−
)

if r− < `−(
max(`(σ?), `

+, `(σ+)), `−
)

if r− = `−

and the r+-left position of σ is{(
r+, σr++1

)
if r+ < `+(

`+,max(`− + a(σ?), σ`++1)
)

if r+ = `+

Either σ? = ∅ and σ+ = ∅ and `+ = 0 or all top positions are in row

max(`(σ?), `(σ
+), `+) of σ or further below. All left positions are in column

`− + a(σ?) of σ or further right.

Proof. Since σ/σ? is
(
`−, `(σ?)

)
-large, we have σ−

`− ≥ `(σ?). Since σ/σ? is(
`−+a(σ?), `

+
)
-large we have σ−

`− ≥ `
+ and `−+σ+

`+
≥ `−+a(σ?). Moreover,

by Remark 6.2, we have σ−
`− ≥ `(σ

+). Summarising

σ−
`− ≥ max(`(σ?), `(σ

+), `+), (8.26)

σ+

`+
≥ a(σ?). (8.27)

By Definition 8.11, the r−-top position of σ/σ? is(
max(`(σ?), `(σ

+), `+, σ−
r−+1

), r−
)

for each r− ≤ `−. The claim on the `−-top position is now immediate. If

r− < `−, then by (8.26), the maximum defining the row is at least σ−
`− , and

so the position is (σ−
r−+1

, r−), as required. This also proves the claim on

the rows of these positions. Again by Definition 8.11, the r+-left position of

σ/σ? is (
r+, `− + max(a(σ?), σ

+

r++1
)
)

for r+ ≤ `+. If r+ < `+, then by (8.27), the maximum is at least σ+

`+
and so

the position is
(
r+, `− + σ+

r++1

)
, which is as required. If σ+

`++1
= 0 then the

column of the `+-left position is `− + a(σ?), as claimed, while if σ+

`++1
> 0

then σ`++1 = `− + σ+

`++1
and so

`− + max(a(σ?), σ
+

`++1
) = max(`− + a(σ?), σ`++1

)
as required. This also proves the claim on the columns of these positions. �

Recall from Definitions 3.3 and 3.7 that YT(µ/µ?) is the set of signed

tableaux of shape µ/µ? and SSYT±(µ/µ?) is the subset of signed semistan-

dard tableaux of shape µ/µ?.

Lemma 8.18. Let κ− and κ+ be partitions. Let σ/σ? be a
(
`(κ−) + a(σ?),

`(κ+)
)
-large and

(
`(κ−), `(σ?)

)
-large skew partition.

(i) The map F : SSYT±(σ/σ?)! YT
(
σ/σ? ⊕ (κ−, κ+)

)
is well-defined.

(ii) If t ∈ SSYT±(σ/σ?) has signed weight (π−, π+) then F(t) has signed

weight (π− + κ−, π+ + κ+).
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Proof. For (i) we must check that the insertions preserve partition shape.

By Lemma 8.17, each r−-top position is immediately above a row of length

at most r− not meeting [σ?]. (Note particularly that this holds when r− = `−

because the `−-top position lies in row max(`(σ?), `(σ
+), `+), as remarked

on in the caption to Figure 8.2.) The definition of F in Definition 8.14

specifies that insertions are performed working from bottom to top and top

positions used for later insertions in (1) are not changed by earlier insertions

in (1). Therefore the row insertions are well-defined. By the claim on the

rows of the top positions in the lemma, the left positions are not changed by

these insertions. Therefore the collumn insertions in (2) commute with the

row insertions in (1), and a similar argument shows that the row insertions

in (2) are well-defined. Hence F is well-defined as required in (i). Part (ii)

is obvious from the definition of F . �

8.6. Tableau stability. We now show that F is bijective in the case rel-

evant to our stable partition system. We later quote the main part of this

proof of the following lemma in the proof of the extension to the skew case in

Proposition 10.14. (See Remark 10.12 for the recapped version.) Since this

extension has other details that are somewhat fiddly, we do not attempt

to continue the unified exposition. We remark that, by Lemma 8.8, the

hypothesis that ω is
(
`− + 1, `+

)
-large implies the same condition on λ.

Proposition 8.19 (Tableau Stability). Let κ− and κ+ be partitions. Fix

`− = `(κ−) and `+ = `(κ+). Let ω be a partition and let λ �· ω in the `−-

twisted dominance order. If `− 6= 0 then suppose that ω is
(
`−+ 1, `+

)
-large.

Let σ and π be partitions in the twisted interval[
λ ⊕ M(κ−, κ+), ω ⊕ M(κ−, κ+)

]
�·

for the `−-twisted dominance order. Provided M is at least the maximum of

• L
(
[λ−, ω−](`

−)

�� , κ−
)

• L
([
λ+, ω+ + (|λ+| − |ω+|)

]
�, κ

+
)

•
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/κ−

`−

the map F is a well-defined bijection

F : SSYT
(
σ
)
(π−,π+) ! SSYT

(
σ ⊕ (κ−, κ+)

)
(π−+κ−,π++κ+).

Proof. Suppose that `− 6= 0. Then, by Lemma 8.8 the partitions λ and σ

are both (`−+1, `+)-large and so (`−, `+)-large. If `− = 0 then any partition

is
(
0, `+

)
large. Hence, by Lemma 8.18(i), the map F is well-defined when

defined with codomain YT
(
σ/σ? ⊕ (κ−, κ+).

Fix a semistandard signed tableau t ∈ SSYT
(
σ
)
(π−,π+). By hypothesis

the three bounds on M required to apply Lemma 8.16 all hold, and we

have just seen the required largeness conditions hold. Therefore we have

properties (i), (ii), (iii), (iv) and (v) in this lemma for top and left position

in any t ∈ SSYT
(
σ
)
(π−,π+).

By (i) and (ii) for top positions, when we apply the insertion map F , each

of the κ−r − κ−r+1 new rows of length r− ≤ `− with entries −1, . . . ,−r− are

inserted below a row of t having −r− in column r− and so have the same
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entries in their first r− positions. These row insertions therefore preserve

the semistandard condition for columns.

By (iv) and (v) for left positions, each new column of height r+ ≤ `+ with

entries 1, . . . , r+ is inserted to the right of a column having r+ in row r+

and so having the same entries as the inserted column in its first r+ po-

sitions, or as a new column `− + 1, immediately to the right of a column

having only negative entries. These column insertions therefore preserve the

semistandard condition for rows.

It is clear that the overall effect of these insertions is to change the signed

weight of t from (π−, π+) to (π− + κ−, π+ + κ+). Hence F has image in the

set SSYT
(
σ ⊕ (κ−, κ+)

)
(π−+κ−,π++κ+)) as claimed, and so is well-defined.

The map F is defined by inserting certain rows and columns into fixed

positions in a tableau, so is clearly injective.

To see that F is surjective, let u ∈ SSYT
(
σ ⊕ (κ−, κ+)

)
(π−+κ−,π++κ+).

Suppose that κ−
r− > κ−

r−+1
. Then, by definition of the r−-top position, the

row containing the r−-bottom position of u, and each of the κ−
r− − κ

−
r−+1

rows weakly above it (including the row itself) has length r−. By (i) and (ii)

for bottom positions, the r−-bottom position in u contains −r−; since boxes

in column r− contain entries at least −r− in the order in Definition 3.7, all

entries in this column are −r−. Therefore all κ−
r− − κ

−
r−+1

rows have the

form −1, . . . ,−r−. Deleting these rows and shifting the remaining boxes in

lower rows up gives a signed semistandard tableau because (as remarked

at the start of the proof of Lemma 8.18), by Lemma 8.17, each r−-top

position is immediately above a row of length at most r− not meeting [σ?].

Therefore this deletion undoes the insertion map in (1). Our assumption

that κ−
r− > κ−

r−+1
is now seen to be without loss of generality, since if equality

holds then no rows were inserted. The argument for right positions and

column deletion is very similar: if κ+

r+
> κ+

r++1
then the column containing

the r+-right position of u and each of the κ+

r+
−κ+

r++1
columns weakly left of

it (including the column itself) has length r+ and entries 1, . . . , r+. Deleting

these columns undoes the insertion map in (2). (Here it is obvious that

deletion preserves the signed semistandard condition.) Hence F is surjective

and so bijective. �

8.7. Stable partition systems from twisted intervals. We summarise

this section in the following corollary. Recall that the first two bounds are

defined in Definition 8.2. We remark that (as seen at the start of proof of

Proposition 8.10), the hypotheses below imply, via Lemma 6.10, that λ is

(`−+ 1, `+)-large; thus adjoining to λ behaves as expected from Lemma 8.6,

and we do no need an explicit hypothesis that λ is suitably large.

Corollary 8.20. Let κ−, κ+ be partitions. Fix `− = `(κ−) and `+ = `(κ+).

Let gπ = eπ−hπ+ for each π ∈ Par. Let ω be a partition and let λ �· ω in the

`−-twisted dominance order. If `− 6= 0 then suppose that ω is
(
`− + 1, `+

)
-

large. Let L be the maximum of the quantities

• L
(
[λ−, ω−](`

−)

�� , κ−
)
,
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• L
(
[λ+, ω+ + (|λ+| − |ω+|)]�, κ+

)
,

•
(
ω+

1 + ω+

2 − 2λ+

1 + 2|λ+| − 2|ω+|
)
/(κ+

1 − κ
+

2 ),

•
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/κ−

`−

omitting the third if κ+

1 = κ+

2 and the fourth if κ− = ∅. Let

P(M) =
[
λ⊕M(κ−, κ+), ω ⊕M(κ−, κ+)

]
�·

for each M ∈ N0. Then (P(M))M∈N0 is a stable partition system with respect

to the map F : Par ! Par defined by F (σ) = σ ⊕ (κ−, κ+) and the twisted

symmetric functions gπ. The system is stable for M ≥ L.

Proof. We check the two conditions in the definition of a stable partition sys-

tem in Definition 7.1. The four bounds above give the hypotheses required

in Proposition 8.10 (Partition Stability). Therefore condition (a) holds for

M ≥ K. The hypotheses on M in Proposition 8.19 (Tableau Stability) are

the first two bounds above and M ≥
(
|ω−| − ω−

`− + `+ − |λ−|
)
/κ−

`− , which is

implied by the fourth bound above. The condition that ω is (`−+1, `+)-large

holds by assumption. Hence |SSYT(σ)(π−,π+)| = |SSYT(F (σ))(F (π)−,F (π)+)|
for all π, σ ∈ P(M) provided M ≥ L. By Lemma 5.3 (Twisted Kostka Num-

bers) it follows that 〈eπ−hπ+ , sσ〉 = 〈eF (π)−hF (π)+ , sF (σ)〉 for all π, σ ∈ P(M)

provided M ≥ L. Therefore condition (b) holds for M ≥ L. �

9. Twisted weight bound for Theorem 1.1

To apply Corollary 8.20 in the proofs of our two main theorems we need

an upper bound in the `−-twisted dominance order on the constituents of

an arbitrary plethysm. For instance, in the overview in §2, we implicitly

used (see Example 6.15) the 1-twisted dominance order with the twisted

intervals
[
(6, 2)⊕M

(
(1), (1)

)
, (5, 1, 1, 1)⊕M

(
(1), (1)

)]
�· , arguing that if sλ

is a constituent in s(3,1,1M ) ◦ s(2) then λ �· (5, 1, 1, 1) ⊕ M
(
(1), (1)

)
. The

aim of this section is to prove Corollary 9.10 which gives the upper bound

we use for Theorem 1.1. En route we obtain Proposition 9.7 which is of

independent interest. We show in Example 9.8 that, in the case of the

plethysm s(3,1,1M ) ◦ s(2), Proposition 9.7 specializes to give the upper bound

obtained earlier by ad-hoc arguments; Example 9.9 shows the connection

between our upper bound and the extended example in §7.4.

9.1. Weight large skew partitions. There is an analogous technicality

to that pointed out before Definition 3.1 about adjoining to partitions.

Recall from Definition 4.3 and Lemma 4.4 that t`−(τ/τ?) is the semistan-

dard tableau of shape τ/τ? of greatest signed weight in the `−-signed domi-

nance order. By Lemma 6.4 the signed weight
(
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
)

of

t`−(τ/τ?) is the `−-decomposition of a partition.

Definition 9.1. Fix `− ∈ N0. Let τ/τ? be a skew partition and let σ be the

partition with `−-decomposition
〈
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
〉
. Let a ∈ N0. We

say τ/τ? is

(a) (a, `+)-weight large for `− if σ is (a, `+)-large,

(b) (`−, `+)-weight large if σ is (`−, `+)-large.
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We state the definition in this form to emphasise the connection with

Definition 3.1. When `− ≥ 1, the paragraph after this earlier definition

implies that the skew partition τ/τ? is (`−, `+)-weight large if and only if

part `− of ω`−(τ/τ?)
− is at least `+, or equivalently, if and only if t`−(τ/τ?)

has at least `+ entries of −`−. This is the interpretation we need most often.

Example 9.2. From Example 4.5, where `− = 2, we see that (6, 4, 4, 1),

(6, 4, 4, 1)/(1, 1) and (6, 4, 4, 1)/(2, 1) are (2, `+)-weight large if and only if

`+ ≤ 3 and (6, 4, 4, 1)/(3, 3) is (2, `+)-weight large if and only if `+ ≤ 2. This

is most easily seen using the final characterisation just mentioned: for exam-

ple the tableau t2
(
(6, 4, 4, 1)/(2, 1)

)
shown in the margin evidently has three

entries of −2. It is easily checked from the other tableaux in Example 4.5

1 2 1 1
1 2 1

1 2 1 2
1

that (6, 4, 4, 1) and (6, 4, 4, 1)/(1, 1) are (3, 3)-weight large for 2 because the

relevant partitions σ in Definition 9.1 have (3, 3) as a box (or equivalently

the greatest tableaux both have 3 as an entry) but (6, 4, 4, 1)/(2, 1) is not,

because, as the marginal tableau shows, 3 is not an entry. Working directly

from Definition 9.1, we would instead compute〈
ω`−((6, 4, 4, 1)/(2, 1))−, ω`−((6, 4, 4, 1)/(2, 1))+

〉
=
〈
(4, 3), (4, 1)

〉
↔(6, 3, 2, 1)

and note that (6, 3, 2, 1) does not have a box in position (3, 3). Thus

(6, 4, 4, 1)/(2, 1) is (2, 3)-weight large and (3, 2)-weight large for 2 but not

(3, 3)-weight large. Note also that while (6, 4, 4, 1)/(3, 3) is not (2, 3)-weight

large, it is (2, 3)-large, since (6, 4, 4, 1)3 = 4 ≥ 2.

We have just seen that ‘(`−, `+)-large’ does not imply ‘(`−, `+)-weight

large’. The following lemma gives the complete picture.

Lemma 9.3. Let τ/τ? be a skew partition.

(i) If τ/τ? is (`−+ a(τ?), `
+)-large then τ/τ? is (`−, `+)-weight large.

(ii) If τ/τ? is (`−, `+)-weight large then τ/τ? is (`−, `+)-large

Moreover, if τ? = ∅ then the converses also hold.

Proof. For (i), by hypothesis [τ ]\[τ?] contains all the boxes (i, a(τ/τ?) + j)

for 1 ≤ i ≤ `+ and 1 ≤ j ≤ `−. As in the proof of Lemma 6.4, rows

1, 2, . . . , `+ of t`−(τ/τ?) begin 1 2 . . . `̀̀−−− . (These boxes form part of

the heavy marked region [α] in Figure 10.1.) Hence t`−(τ/τ?) has at least `+

entries of −`− and so τ/τ? is (`−, `+)-weight large. For (ii), we have just seen

that t`−(τ/τ?) has at least `+ entries equal to −`−. Hence there are at least

`+ rows of the Young diagram of τ/τ? having at least `− boxes. It easily

follows that (`+, `−) ∈ [τ ] and so τ/τ? is (`−, `+)-large. Finally, if τ? = ∅
then a(τ?) = 0 and so (i) and (ii) are opposite directions of the required

implication. �

We also have the following remark, analogous to Remark 3.2.

Remark 9.4. Fix partitions κ− and κ+ and let `− = `(κ−) and `+ = `(κ+).

When κ− 6= ∅, each application of the map τ/τ? 7! τ/τ? ⊕ (κ−, κ+) inserts

κ−
`− new parts of length `−, and so increases the number of parts of length at

least `− by at least κ−
`− . Therefore after d`(τ?)/κ−`−e steps, the skew partition
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obtained has (`(τ?), `
−) as a box. On each subsequent step we insert κ−

`− new

boxes in column `− which in the greatest tableau all contain −`−. Therefore

the original skew partition τ/τ? becomes (`−, `+)-weight large after at most

d`(τ?)/κ−`−e + d`+/κ−
`−e steps. Each further step creates at least κ+

`+
new

boxes containing `+. Therefore, when κ+ 6= ∅, for any a ∈ N, the original

skew partition τ/τ? becomes (`−+a, `+)-weight large, meaning that (`+, `−+

a) is a box of the partition corresponding to the signed weight of t`−
(
τ/τ?⊕

M(κ−, κ+)
)
, after at most M = d`(τ?)/κ−`−e+ d`+/κ−

`−e+ da/κ+

`+
e steps.

By this remark, there is no loss of generality in assuming in all the results

below that the partitions involved are suitably weight large.

For example, take κ− = (2, 1, 1), κ+ = (1, 1) and τ/τ? = (1, 1, 1)/(1, 1, 1),

so that `− = 3 and `+ = 2. The tableaux in Figure 9.1 show that three

applications of the adjoining map τ/τ? 7! τ/τ? ⊕
(
(2, 1, 1), (1, 1)

)
are neces-

sary and sufficient to obtain a (3, 2)-weight large skew partition; this skew

partition is also (3, 3)-weight large. One further application gives a (3, 4)-

weight large skew partition. As is typically the case, this beats the bound

in Remark 9.4, which specifies d3/1e+ d2/1e = 5 adjoinings.

〈∅,∅〉
∅

7!

(3,1,1,1)

〈(4,1,1),∅〉

1

1

2 3

1

1

7!

(4,3,15)

〈(7,2,2),(1)〉

1

1

2

1

1

3

1

2

2

3 1

1

1

7!

(5,4,2,2,15)

〈(9,4,2),(2,1)〉

1

1

1

2

1

1

2

2

2

3

1

2
...

1

2

3

1 1

2
7!

(6,5,3,2,2,16)

〈(11,5,3),(3,2)〉

1

1

1

2

1

1

1

2

3

2

2

2

3

1

1

3
...

1

2

2

3

1 1 1

2

Figure 9.1. The map τ/τ? 7! τ/τ? ⊕
(
(2, 1, 1), (1, 1)

)
applied repeatedly

to the skew partition (1, 1, 1)/(1, 1, 1), showing the tableaux t3
(
(1, 1, 1) ⊕

M
(
(2, 1, 1), (1, 1)

))
for M ∈ {0, 1, 2, 3, 4}. The corresponding ‘weight’ par-

titions ω3

(
(1, 1, 1) ⊕ M

(
(2, 1, 1), (1, 1)

))
and their 3-decompositions are

shown above the tableaux. In each subsequent step the weight partition

grows by ⊕
(
(2, 1, 1), (1, 1)

)
; note that this is not the case until the weight

partition becomes (3, 2)-large, which is first the case when it is (5, 4, 2, 2, 15),

thus the technical nature of Remark 9.4.

Finally we have the expected analogue of Lemma 8.6.

Lemma 9.5. Let κ− and κ+ be partitions. Fix `− = `(κ−). If τ/τ? is an(
`(κ−), `(κ+)

)
-weight large skew partition then, in the `−-decomposition of

ω`−
(
τ/τ? ⊕ (κ−, κ+)

)
we have

ω`−
(
τ/τ? ⊕ (κ−, κ+)

)−
= ω`−(τ/τ?)

− + κ−

ω`−
(
τ/τ? ⊕ (κ−, κ+)

)+
= ω`−(τ/τ?)

+ + κ+.
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Proof. By Lemma 9.3(ii), τ/τ? is
(
`(κ−), `(κ+)

)
-large. Hence by Lemma 8.6

we have
(
τ ⊕ (κ−, κ+)

)−
= τ− + κ− and

(
τ ⊕ (κ−, κ+)

)+
= τ+ + κ+. This

implies the two equations. �

9.2. Bounding plethysms by greatest weights. If 〈α−, α+〉 is an `−-

decomposition then so is 〈nα−, nα+〉 for any n ∈ N. Therefore, by Lemma 6.4,

the following definition is well posed.

Definition 9.6. Let `− ∈ N0 and let n ∈ N0. Given a skew partition τ/τ?

we define ω
(n)
`− (τ/τ?) to be the unique partition whose `−-decomposition is

n
〈
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
〉
.

We give examples after the next proposition, which is the main result in

this section, giving an upper bound in the `−-twisted dominance order (see

Definition 6.6) on the constituents of an arbitrary plethysm.

Proposition 9.7. Let `− ∈ N0. Let ρ be a partition of n and let τ/τ? be a

skew partition. If sπ is a constituent of sρ ◦ sτ/τ? then π�· ω(n)
`− (τ/τ?) in the

`−-twisted dominance order.

Proof. By Lemma 6.12, sπ is a summand of eπ−hπ+ with multiplicity 1.

Hence, using Proposition 5.6 (Plethystic Signed Kostka Numbers) for the

first equality below, we have

|PSSYT(ρ, τ/τ?)(π−,π+)

∣∣ = 〈eπ−hπ+ , sρ ◦ sτ/τ?〉 ≥ 〈sπ, sρ ◦ sτ/τ?〉 ≥ 1.

Let T ∈ PSSYT
(
ρ, τ/τ?

)
(π−,π+) and let t be an inner τ/τ?-tableau in T . By

Lemma 4.4
(
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
)

is the greatest weight (in the `−-signed

dominance order onW`−×W defined in Definition 4.1) of all signed weights

of τ/τ?-tableaux. Thus, writing swt(t) for the signed weight of t, we have(
swt(t)−, swt(t)+

)
�
〈
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
〉

where we regard either side as a composition, as in the definition of the `−-

twisted dominance order in Definition 6.6. Hence, summing over all inner

τ/τ?-tableaux in T , we have〈
π−, π+

〉
�
〈
nω`−(τ/τ?)

−, nω`−(τ/τ?)
+
〉
.

(Note that 〈π−, π+〉 is an `−-decomposition simply because π is a partition.)

By definition of the `−-twisted dominance order this inequality holds if and

only if π�· ω(n)
`− (τ/τ?), as required. �

By Remark 12.25, Proposition 9.7 also follows from a special case of Corol-

lary 12.24; this alternative proof brings in many technicalities irrelevant to

Theorem 1.1, and so we much prefer the proof above which is self-contained

to this section. We pause to give two examples.

Example 9.8. Fix `− = 1. Take ρ = (3, 1, 1M ) and τ/τ? = (2). Then

t1
(
(2)
)

= 1 1 , and so ω1

(
(2)
)

=
(
(1), (1)

)
. Hence

ω
(4+M)
1

(
(2)
)
↔(4 +M)

〈
1, 1
〉

=
〈
(4 +M), (4 +M)

〉
↔(5 +M, 13+M ).
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and ω
(4+M)
1

(
(2)
)

= (5 + M, 13+M ). Note, as claimed at the start of this

section, that the right-hand side is the partition used as the upper bound in

§2.6 (see Example 6.15).

Example 9.9. Fix `− = 2. Taking ρ = (3 +M) and τ/τ? = (4) in Proposi-

tion 9.7 we obtain

supp s(3+M) ◦ s(4) ⊆
{
λ ∈ Par(12 + 4M) : λ�· ω(3+M)

2 (4)
}

where �· is the 2-twisted dominance order. Since t2
(
(4)
)

= 1 2 1 1 has

signed weight
(
(12), (2)

)
we have

ω
(3+M)
2

(
(3 +M)

)
↔(3 +M)

〈
(12), (2)

〉
=
〈
(3 +M, 3 +M), (6 + 2M)

〉
↔(8 + 2M, 22+M )

and so ω
(3+M)
2

(
(3 + M)

)
= (8 + 2M, 22+M ) is an upper bound in the 2-

twisted dominance order for the constituents of the plethysm s(3+M) ◦ s(4).

In particular, if sσ appears in s(3+M) ◦ s(4) then `(σ) ≤ 3 + M , as used

earlier in §7.4. Correspondingly, (8 + 2M, 22+M ) is the upper bound in the

twisted interval defining the stable partition system P(M) used in §7.4: see

§7.5 for the interpretation of this stable partition system using intervals for

the 2-twisted dominance order.

The following corollary is used in Lemma 10.3 to verify condition (i) in

the Signed Weight Lemma (Lemma 7.3).

Corollary 9.10 (Inner Twisted Weight Bound). Let ρ be a partition of n.

Let κ− and κ+ be partitions. Fix `− = `(κ−) and let `+ = `(κ+). Let µ/µ? be

an (`−, `+)-weight large skew partition. If sσ is a constituent of the plethysm

sρ ◦ sµ/µ?⊕M(κ−,κ+) then

σ�· ω(n)
`− (µ/µ?)⊕ nM(κ−, κ+).

Proof. By Proposition 9.7 taking τ/τ? = µ/µ? ⊕M(κ−, κ+) we have

σ�· ω(n)
`−

(
µ/µ? ⊕M(κ−, κ+)

)
(9.1)

Since µ/µ? is (`−, `+)-weight large, by Lemma 9.5 we have

ω`−
(
µ/µ? ⊕M(κ−, κ+)

)
=
(
ω`−(µ/µ?)

− +Mκ−, ω`−(µ/µ?)
+ +Mκ+

)
and so

ω
(n)
`−

(
µ/µ? ⊕M(κ−, κ+)

)
= ω

(n)
`−

(
µ/µ?)⊕ nM(κ−, κ+).

Therefore (9.1) is equivalent to σ�· ω(n)
`− (µ/µ?)⊕ nM(κ−, κ+). �

This result should be compared to Corollary 12.24, which gives a more

sophisticated bound used in the proof of Theorem 1.2.
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10. Proof of Theorem 1.1

We begin in §10.1 by proving the second part of this theorem where

the stable multiplicity is zero. We then use the Signed Weight Lemma

(Lemma 7.3) to prove the remaining part of the theorem. In §10.2 we con-

struct a suitable stable partition system. In §10.5 we construct a bijection

satisfying (ii) in the Signed Weight Lemma. Finally in §10.6 we put together

all the pieces proving Theorem 10.16 which restates Theorem 1.1 with an

explicit bound.

10.1. The vanishing case of Theorem 1.1. We require the following

statistic. Recall that
〈
λ−, λ+

〉
denotes the `−-decomposition of a partition λ,

as defined in Definition 6.1.

Definition 10.1. Let λ and ω be partitions of the same size. Let (κ−, κ+)

and (η−, η+) be signed weights. Fix `− = max(`(η−), `(κ−)). We define

LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
to be the minimum of the quantities

•
∑k

i=1 ω
−
i −

∑k
i=1 λ

−
i∑k

i=1 η
−
i −

∑k
i=1 κ

−
i

.

•
|ω−|+

∑k
i=1 ω

+

i − |λ−| −
∑k

i=1 λ
+

i

|η−|+
∑k

i=1 η
+

i − |κ−| −
∑k

i=1 κ
+

i

taken in each case over those k for which the denominator is strictly positive;

if there are no such k, we leave LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
undefined.

If, as in the first case of Theorem 1.1, we have (η−, η+) 6� (κ−, κ+) in the

`−-signed dominance order (see Definition 4.1), then it immediately follows

from the definition of this order that LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
is defined

for any partitions λ and ω.

In the following proposition we prove a generalization of the final part of

Theorem 1.1, with an explicit bound from Definition 10.1. Recall from Def-

inition 9.6 that ω
(n)
`− (µ/µ?) is the unique partition whose `−-decomposition

is n
〈
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
〉
, where

〈
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
〉

is the signed

weight of the `−-greatest tableau: see Definition 4.3 and Lemma 4.4. See

Definitions 3.1 and 9.1 for the definitions of ‘large’ and ‘weight large’.

Proposition 10.2. For each M ∈ N0, let ν(M) be a partition of n ∈ N.

Let κ− and κ+ be partitions. Let `− = `(κ−). Let η− and η+ be partitions

with `(η−) ≤ `− and |η−|+|η+| = |κ−|+|κ+|. Let `+ = max(`(κ+), `(η+)) and

let µ/µ? be an (`−, `+)-weight large skew partition. Let λ be a (`−, `+)-large

partition. If (η−, η+) 6� (κ−, κ+) then〈
sν(M) ◦ sµ/µ?⊕M(κ−,κ+), sλ⊕nM(η−,η+)

〉
= 0

for all

M > LZ
(
[λ, ω

(n)
`− (µ/µ?)]�· , (κ

−, κ+), (η−, η+)
)/
n.

Proof. By Corollary 9.10, applied with ρ = ν(M), if sσ is a constituent

of the plethysm sν(M) ◦ sµ/µ?⊕M(κ−,κ+) then σ�· ω(n)
`− (µ/µ?)⊕ nM(κ−, κ+).
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Therefore, by Definition 9.6 and the definition of the `−-twisted dominance

order (see Definition 6.6) we have

(σ−, σ+) � n
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+ nM(κ−, κ+) (10.1)

in the `−-signed dominance order (see Definition 4.1). Since λ is (`−, `+)-

large and `(η−) ≤ `− and `(η+) ≤ `+ by hypothesis, we may apply Lemma 8.6

to get that the `−-decomposition of λ ⊕ nM(η−, η+) is 〈λ− + nMη−, λ+ +

nMη+〉. We now substitute (λ−, λ+) + nM(η−, η+) for (σ−, σ+) in (10.1) to

obtain the inequality

(λ−, λ+) + nM(η−, η+)� n
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+ nM(κ−, κ+) (10.2)

Thus, by Lemma 6.7(a), we have, for each k ≤ `−,

k∑
i=1

λ−i + nM

k∑
i=1

η−i ≤
k∑
i=1

nω`−(µ/µ?)
−
i + nM

k∑
i=1

κ−i

and so

nM
( k∑
i=1

η−i −
k∑
i=1

κ−i

)
≤

k∑
i=1

nω`−(µ/µ?)
−
i −

k∑
i=1

λ−i .

Hence, if
∑k

i=1 η
−
i >

∑k
i=1 κ

−
i then nM is at most the relevant bound from

the first case of Definition 10.1. The proof for the second family of bounds

is very closely analogous: by (10.2) and Lemma 6.7(b) we obtain

|λ−|+
k∑
i=1

λ+

i + nM
k∑
i=1

η+

i

≤ n|ω`−(µ/µ?)
−|+

k∑
i=1

nω`−(µ/µ?)
+

i + nM
k∑
i=1

κ+

i + nM
(
|η+| − |κ+|

)
and so using |η+| − |κ+| = −|η−|+ |κ−| we have

nM
( k∑
i=1

η+

i −
k∑
i=1

κ+

i + |η−| − |κ−|
)

≤ n|ω`−(µ/µ?)
−|+

k∑
i=1

nω`−(µ/µ?)
+

i − |λ
−| −

k∑
i=1

λ+

i

showing that nM is at most the relevant bound from the second case of

Definition 10.1. �

10.2. Stable partition system for Theorem 1.1. The stable partition

system we require to prove the main part of Theorem 1.1 again comes from

Corollary 9.10.

Lemma 10.3. Let ρ be a partition of n ∈ N. Let κ− and κ+ be partitions.

Fix `− = `(κ−) and `+ = `(κ+). Let µ/µ? be a skew partition; if `− 6= 0 then

suppose that µ/µ? is (`− + 1, `+)-weight large for `−. Let λ be a partition
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of n|µ/µ?| such that λ �· ω(n)
`− (µ/µ?), where �· is the `−-twisted dominance

order. Let

P(M) = [λ⊕ nM(κ−, κ+), ω
(n)
`− (µ/µ?)⊕ nM(κ−, κ+)]�· .

Then (P(M))M∈N0 is a stable partition system for the symmetric functions

gπ = eπ−hπ+. Moreover, if π ∈ P(M) and sσ is a summand of eπ−hπ+

appearing in the plethysm sρ ◦ sµ/µ?⊕M(κ−,κ+) then σ ∈ P(M).

Proof. Suppose that `− 6= 0. Then, by the hypothesis that µ/µ? is (`− +

1, `+)-weight large for `−, the partition ω`−(µ/µ?) is (`− + 1, `+)-large (see

Definition 9.1) and so ω
(n)
`− (µ/µ?) is also (`− + 1, `+)-large. We therefore

may apply Corollary 8.20 to deduce that the partition system is stable.

For the final claim, by Lemma 6.12, we have σ�· π, and so, since π�· λ ⊕
nM(κ−, κ+), we have σ�· λ ⊕ nM(κ−, κ+). By Corollary 9.10, we have

σ�· ω(n)
`− (µ/µ?)⊕ nM(κ−, κ+). Hence σ ∈ P(M). �

10.3. Positions for plethystic tableaux: motivating example. The

aim in the next three subsections is to prove Proposition 10.14, the plethys-

tic analogue of Proposition 8.19 (Tableau Stability), using the map G on

plethystic semistandard signed tableaux defined in Definition 10.9. We be-

gin with a motivating example that gives a good idea how to define G using

the earlier map F on semistandard tableaux from Definition 8.14. We use

this example throughout this section.

Example 10.4. The special case of Theorem 1.1 taking ν = (2), µ = (2, 2),

µ? = ∅, (κ−, κ+) =
(
(1, 1), (1)

)
and λ = (8− b, b) with b ∈ {2, 3, 4} is that

〈s(2) ◦ s(2+M,2,2M ), s(8−b+2M,b,22M )〉 (10.3)

is ultimately constant. In our proof using the Signed Weight Lemma (Lemma

7.3) we must verify condition (ii), that∣∣PSSYT
(
(2), (2 +M, 2, 2M )((2+2M,2+2M),(6−b+2M,b−2))

∣∣ (10.4)

is constant for all M sufficiently large. (Here
(
(2 + 2M, 2 + 2M), (6 − b +

2M, b − 2)
)

is the 2-decomposition of (8 − b, b) ⊕ 2M
(
(1, 1), (1)

)
: see Defi-

nition 6.1.) In any plethystic semistandard tableau s t of signed weight(
(2 + 2M, 2 + 2M), (6 − b + 2M, b − 2)

)
, the inner tableaux s and t have

2 + 2M entries of −1 and −2 and 6 − b + 2M entries of 1 between them.

By the signed semistandard condition in Definition 3.10, the entries of −1

and −2 lie in the first two columns. Thus when M is large, both s and t

have the form
1 2 1 1 . . . 1 1, 2

1 2

1 2
...

1 2

1,2

1, 2
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where the two shaded regions in the bottom 2 rows and rightmost 2 columns

are marked with the possible entries. (As ever negative entries may be re-

peated in a column, and positive entries repeated in row.) Clearly, almost

all the entries of s and t are determined by their weight. In particular both s

and t are obtained from a tableau for the case M −1 by inserting 1 2 as a

new complete second row and 1 as a new complete third column. By Def-

inition 8.11, the 2-top and 1-left positions of (2 +M, 2, 2M ) are both (1, 2).

Thus these insertions are exactly as specified by the map F from Defini-

tion 8.14. We have shown that provided M is sufficiently large, the map

from PSSYT
(
(2), (2 +M − 1, 2, 2M−1)((2+2(M−1),2+2(M−1)),(6−b+2(M−1),b−2))

to PSSYT
(
(2), (2 +M, 2, 2M )((2+2M,2+2M),(6−b+2M,b−2)) defined by

s t 7−! F(s) F(t)

is surjective (with inverse defined by deleting the hatched boxes and per-

forming suitable shifts) and so the cardinality in (10.4) is ultimately con-

stant. In fact F(s) and F(t) are semistandard provided that the 2-top

positions of both s and t both contain −2. As we show in Example 10.8,

using Lemma 10.7 in the following subsection, this holds provided M ≥
max(3, b+ 2),

10.4. Lemma on positions for plethystic tableaux. The critical posi-

tions are defined in Definition 8.11 and were seen in the non-skew case in

the previous subsection. To remind the reader of the general definition we

begin with an example in the skew case.

Example 10.5. Let µ/µ? = (7, 6, 3, 1)/(4, 3, 1). We take κ− = (2, 1)

and κ+ = (1, 1) so `− = `+ = 2. The diagrams below show the 1-left,

2-left, 1-top and 2-top positions in the partitions µ/µ? ⊕ M(κ−, κ+) for

M ∈ {0, 1, 2}. Following our usual convention, top positions, relevant to the

insertion of negative entries, are marked by bold numbers. The skew parti-

tion µ/µ? is (a(µ?) + `−, `+)-large as it contains (2, 6), and (`−, `(µ?))-large

as it contains (3, 2); all these positions are contained within [µ]. More-

over, also as promised by Lemma 8.17, the top positions are no higher

than row max(`(µ?), `(µ
+), `+) and left positions are no further left than

column `− + a(µ?). The relevant boxes (2, 6) and (3, 2) are hatched, as in

Figure 10.1.

1 2

1

2

1

2

1

2

1

2

1

2

We remark that if we changed µ? = (4, 3, 1) to (a) with a ∈ {0, 1, 2, 3, 4}
then the 1-top and 2-top positions remain unchanged, because they always
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lie in rows weakly below max(`(µ?), `
+, `(µ+)), and this statistic remains 3

since µ+ = (5, 4, 1). The 1-left position is also unchanged, but the 2-left

position is now
(
2, `− + max(a, µ+

3 )
)

=
(
2, 2 + max(a, 1)

)
which is (2, 3) if

and only if a ≤ 1. Note that if a ≤ 1 then it is possible to insert a column

of height 2 immediately right of column 3, and the entries of this column

must be positive.

Definition 10.6. Let κ, µ and λ be partitions. Let A ∈ N0. We define

LP
(
n, µ : λ, κ : A) to be 0 if κ = ∅ and otherwise to be the maximum of

n
∑k

i=1 µi −
∑k

i=1 λi − µk + max(A,µk+1)

κk − κk+1
.

for 1 ≤ k ≤ `(κ), omitting any expressions with zero denominator.

The following lemma is the analogue of Lemma 8.16. The statement,

apart from the change of bounds, is very similar, but the proof is somewhat

easier, apart from some technicalities arising from the skew case, because the

shape is known to be µ/µ? ⊕M(κ−, κ+), rather than an arbitrary partition

in an interval for the `−-twisted dominance order. The relevant positions

are defined in Definition 8.11.

Lemma 10.7. Let κ−, κ+ be partitions. Fix `− = `(κ−) and `+ = `(κ+).

Let µ/µ? be an
(
`− + a(µ?), `

+
)
-large and

(
`−, `(µ?)

)
-large skew partition.

Let λ and ω be (`−, `+)-large partitions of n|µ/µ?|. Let

π ∈
[
λ⊕ nM(κ−, κ+), ω ⊕ nM(κ−, κ+)

]
�· .

Let T ∈ PSSYT
(
ρ, µ/µ?⊕M(κ−, κ+)

)
(π−,π+) and let t be a µ/µ?⊕M(κ−, κ+)-

inner tableau of T . Let L be the maximum of

• LP
(
n, µ′ : λ−, κ− : max(`(µ?), `(µ

+), `+
)
)

• LP
(
n, µ : λ+, κ+ : a(µ?) + `−

)
+ |λ+| − |ω+|.

If M − 1 ≥ L then

(i) the r−-bottom position of t contains −r− if r− < `− and κ−
r− > κ−

r−+1
;

(ii) the `−-bottom position of t contains −`−;

(iii) if κ− 6= ∅ and either κ+ 6= ∅ or µ? 6= ∅ or µ+ 6= ∅ then the box(
max(`(µ?), `(µ

+), `+), `−
)

of t contains a negative entry;

(iv) the r+-right position of t contains r+ if r+ < `+ and κ+

r+
> κ+

r++1
;

(v) the `+-right position of t contains `+.

Moreover if M ≥ L then the same results hold replacing ‘bottom’ with ‘top’

and ‘right’ with ‘left’, except that

(ii) if µ? = ∅ and κ+ = ∅ and µ+ = ∅ then the `−-top position is (0, `−);

(iv) and (v) if µr++1 ≤ `− + a(µ?) and so the r+-left-position is
(
r+, `− +

a(µ?)
)
, then it may contain −`−.

Proof. Since µ is
(
`− + a(µ?), `

+
)
-large, it is (`−, `+)-large. Therefore, by

Lemma 8.6, we have
(
µ⊕M(κ−, κ+)

)−
= µ−+Mκ− and

(
µ⊕M(κ−, κ+)

)+
=

µ+ + Mκ+. For use throughout the proof we define a subpartition α of

µ ⊕ M(κ−, κ+) containing µ? by

αi = min(µ?i + `−, µi) for 1 ≤ i ≤ `(µ) +Ma(κ−). (10.5)
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`+

`(µ?)

a(µ?) `−
`−

`−

+

+

•

[α/µ?]

[τ/µ?]

r−

Figure 10.1. Entries in a tableau t ∈ SSYT
(
µ/µ? ⊕M(κ, κ+)

)
(π−,π+)

when µ/µ? is (`− + a(µ/µ?), `
+)-large and (`−, `(µ?))-large, and so con-

tains the hatched boxes. The case `(µ?) > `(µ+) > `+, in which the

skew part of the partition is most important in determining the quan-

tity max(`(µ?), `(µ
+), `+) defining the row of the `−-top position is shown.

The heavy lines show the region [α/µ?] defined in (10.5) that contains all

negative entries of t in the proof of Lemma 10.7(i). It contains the region

[τ/µ?] shaded in blue which contains all entries of {−1, . . . ,−r−}, under

the assumption in this part of the proof that the r−-top position marked •
does not contain −r−. In the figure we have taken r− = 2.

Thus [α/µ?] consists of the first `− boxes in each row of µ/µ?⊕M(κ−, κ+), or

the whole row if it has fewer than `− boxes. We show [α/µ?] in Figure 10.1.

As a final preliminary, for ease of reference, we record the following imme-

diate corollary of Lemma 8.17: the r−-top position of µ/µ? ⊕ M(κ−, κ+)

is {(
µ′r−+1 +Mκ−

r−+1
, r−
)

if r− < `−(
max(`(µ?), `(µ

+), `+
)
, `−) if r− = `−.

(10.6)

and the r+-left position of µ/µ? ⊕M(κ−, κ+) is{(
r+, µr++1 +Mκ+

r++1

)
if r+ < `+(

`+,max(`− + a(µ?), µ`++1)
)

if r+ = `+.
(10.7)

For (i), we have r− < `− so may suppose κ− 6= ∅. If s is an arbitrary

µ/µ?⊕M(κ−, κ+)-inner tableau in T then the total number of entries of s in
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the set {−1, . . . ,−r−} is at most
∑r−

j=1 µ
′
j + M

∑r−

j=1 κ
−
j . To simplify some

arithmetic steps later, we write this quantity as D− + µ′r− +Mκ−
r− where

D− =

r−−1∑
j=1

µ′j +M

r−−1∑
j=1

κ−j (10.8)

is (as we have just seen) an upper bound on the number of entries of s

in {−1, . . . ,−(r− − 1)}. By (10.6) the r−-top position of s is
(
µ′r−+1 +

Mκ−
r−+1

, r−
)
. We assume, for a contradiction, that, in some tableau t in T ,

this position has either a positive entry, or some −q with −q � −r− in the

order in Definition 3.7, meaning that q > r−. Define a subpartition τ of α

by

τi =

{
min(µ?i + r−, µi) if 1 ≤ i < µ′r−+1 +Mκ−

r−+1

min(µ?i + r− − 1, µi) if i ≥ µ′r−+1 +Mκ−
r−+1

.
(10.9)

Thus [τ/µ?] consists of the first r− boxes in each row of µ/µ?⊕M(κ−, κ+), or

the whole row if it has fewer than r− boxes, except that the boxes of µ/µ? at

or below the r−-top position known, by our assumption, not to contain −r−,

are excluded. By construction τ contains µ? and, by our assumption, all the

entries of t in {−1, . . . ,−r−} are contained in [τ ]. (This is the blue shaded

region in Figure 10.1.) Hence using (10.8), the total number of entries of t in

the set {−1, . . . ,−r−} is strictly less than D−+µ′r−+1 +Mκ−
r−+1

. The n−1

tableaux other than t forming T have at most (n − 1)D− + (n − 1)
(
µ′r− +

Mκ−
r−

)
entries in {−1, . . . ,−r−}. Therefore T has strictly less than

(n− 1)D− + (n− 1)
(
µ′r− +Mκ−

r−

)
+D− + µ′r−+1 +Mκ−

r−+1

= n
r−∑
j=1

µ′j − µ′r− + nM
r−∑
j=1

κ−j −Mκ−
r− + µ′r−+1 +Mκ−

r−+1
(10.10)

entries in the set {−1, . . . ,−r−}. On the other hand, as π�· λ⊕ nM(κ−, κ+),

and λ is (`−, `+) large, it follows from Lemma 6.7(a) and Lemma 8.6 that

there are at least
r−∑
j=1

λ−j + nM
r−∑
j=1

κ−j (10.11)

entries of T in {−1, . . . ,−r−}. From (10.10) and (10.11) we obtain

n

r−∑
j=1

µ′j − µ′r− + µ′r−+1 −
r−∑
j=1

λ−j > M(κ−
r− − κ

−
r−+1

). (10.12)

This contradicts the first bound. Therefore (i) holds for top positions. For

bottom positions we mimic the proof of Lemma 8.16, and run the same ar-

gument, replacing each µ′r−+1 with µ′r−+1 + κ−
r−−κ

−
r−+1

, and obtain (10.12)

with κ−
r− − κ

−
r−+1

subtracted from the right-hand side, which therefore be-

comes (M − 1)(κ−
r− − κ

−
r−+1

). We then get a contradiction as before from

the first bound.
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For (ii), we may again suppose κ− 6= ∅; then by (10.6) the `−-top position

of t is
(
max(`(µ?), `(µ

+), `+
)
, `−). We may suppose that either µ? 6= ∅ or

κ− 6= ∅ or µ+ 6= ∅, so that this is a box of µ/µ?. The proof is then almost

identical to (i) using (10.6) to replace every appearance of µ′r−+1 in the

argument for (i) with max(`(µ?), `(µ
+), `+). This also proves (iii), since the

hypotheses for (iii) imply that
(
max(`(µ?), `(µ

+), `+
)
, `−) is a box of µ/µ?.

Comparing (10.6) and (10.7) for r− < `− and r+ < `+, we see that they

are symmetric with respect to conjugation. While a further non-symmetric

change is necessary later on, this indicates the most conceptual way to

prove (iv). Read the proof of (i), replacing µ′ with µ and κ− with κ+.

Thus the subpartition τ is now defined by

τ ′j =

{
min(µ?

′
j + r+, µj) if 1 ≤ j < µ′r++1 +Mκ+

r++1

min(µ?
′
j + r+ − 1, µ′j) if j ≥ µ′r++1 +Mκ+

r++1

and the analogue of (10.10) is that there are strictly less than

n
r+∑
i=1

µj − µr+ + nM
r+∑
i=1

κ+

j −Mκ+

r+
+ µr++1 +Mκ+

r++1
(10.13)

entries of T in {1, . . . , r+}. The only non-symmetric change is that from

π�· λ⊕ nM(κ−, κ+) and Lemma 6.7(b) we now get

π+ +
(
|λ+|+ nM |κ+| − |π+|

)
� λ+ + nMκ+

where |π+| ≤ |λ+| + nM |κ+|. We must therefore bring in the upper bound

π�· ω ⊕ nM(κ−, κ+) to get, again by Lemma 6.7(b), |π+| ≥ |ω+|+ nM |κ+|.
Hence

|λ+|+ nM |κ+| − |π+| ≤
(
|λ+|+ nM |κ+|

)
−
(
|ω+|+ nM |κ+|

)
= |λ+| − |ω+|.

The replacement for (10.11) is therefore that there are at least

r+∑
i=1

λ+

i + nM
r+∑
i=1

κ+

i − |λ
+|+ |ω+| (10.14)

entries of T in {1, . . . , r+}. From (10.13) and (10.14) we get

n

r+∑
i=1

µi − µr+ + µr++1 −
r+∑
i=1

λ+

i + |λ+| − |ω+| > M(κ+

r+
− κ+

r++1
). (10.15)

This contradicts the second bound. The modifications for right positions are

precisely analogous to the negative case; the relevant quantity to subtract

from the right-hand side of (10.15) is κ+

r+
− κ+

r++1
, and as before we get a

contradiction from the second bound.

For (v) we first note that, by (10.7), the `+-left position of t is
(
`+,max(`−+

a(µ?), µ`++1)
)
. Since µ is

(
`− + a(µ?), `

+
)
-large, we have (µ − µ?)`+ ≥

`− + a(µ?) − µ?`+ ≥ `−. Therefore if this position contains a negative en-

try, equality holds and the entry is −`−. In the remaining case, and for

the `+-right position, the proof of (iv) adapts routinely. This completes the

proof. �
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Example 10.8. Take µ = (2, 2), µ? = ∅, (κ−, κ+) =
(
(1, 1), (1)

)
and

λ = (8 − b, b)↔
〈
(2, 2), (6 − b, b − 2)

〉
with b ∈ {2, 3, 4} and n = 2 as in

Example 10.4. Since ω2

(
(2, 2)

)
=
(
(2, 2),∅

)
is the signed weight of the

2-greatest semistandard signed tableau t2
(
(2, 2)

)
shown in the margin, we

1 2
1 2

have

ω
(2)
2

(
(2, 2)

)
↔2

〈
(2, 2),∅

〉
=
〈
(4, 4),∅

〉
and so we take ω = (2, 2, 2, 2). Since κ−1 = κ−2 , the important cases of

Lemma 10.7 are (ii) and (v). We saw in Example 10.4 that the 2-top posi-

tion and 1-left position are both (1, 2), and so the 2-bottom position is (2, 2)

and the 1-right position is (1, 3). From (ii) we get that the 2-bottom posi-

tion (1, 2) contains −2 in every (2 +M, 2, 2M )-tableau entry in a plethystic

semistandard signed tableau of outer shape (2) provided

M − 1 ≥ LP(2, (2, 2) : (2, 2), (1, 1) : 1) =
2(2+2)−(2+2)−2+max(1, 0)

1− 0
= 3.

(Note that (ii) was proved using only the first bound in the statement of

Lemma 10.7.) From (v), using that |λ+| = 4 and |ω+| = 0, we get that the

1-right position (1, 3) contains 1 in every (2 + 2M, 2, 2M )-tableau entry in a

plethystic semistandard signed tableau of outer shape (2) provided

M − 1 ≥ LP(2, (2, 2) : (6− b, b− 2), (1) : 2) + 4− 0

=
2.2− (6− b)− 2 + max(2, 2)

1
+ 4 =

b− 2

1
+ 4 = b+ 2.

(Again note that (v) was proved using only the second bound in the state-

ment of Lemma 10.7.) We now take ν = (2). From these bounds it follows

that, provided M − 1 ≥ max(3, b+ 2), the hatched boxes in the diagram in

Example 10.4 contain 1 2 and 1 and the insertion map

PSSYT
(
(2), (2 +M, 2, 2M )

)
((2+2M,2+2M),(6−b+2M,b−2))

! PSSYT
(
(2), (2 +M + 1, 2, 2M+1)

)
((2+2(M+1),2+2(M+1)),(6−b+2(M+1),b−2))

is surjective for M ≥ max(3, b + 2), as stated in Example 10.4. The table

below shows the number of plethystic semistandard signed tableaux in the

domain above and the stable values of 〈s(2) ◦ s(2+M,2,2M ), s(8−b+2M,b,22M )〉 as

in (10.3), for each 0 ≤M ≤ 3 and b ∈ {2, 3, 4}.

b M = 0 M = 1 M = 2 M = 3 (10.3) b+ 2 (LP,LP′)

2 1 1 1 1 0 4 (3, 4)

3 4 5 5 5 0 5 (3, 5)

4 10 19 20 20 1 6 (3, 6)

By Proposition 10.14 below, the values are constant for the step from M to

M + 1 provided M is at least each of the bounds from Lemma 10.7 denoted

LP and LP′ in the table above; we have seen the first is 3 for M ≥ 2 and

the second is b+ 2. Therefore each row is constant for M ≥ max(3, b + 2).

To show a case where the constant value is not yet reached, note from the

column for M = 2 above that there are 20 plethystic semistandard signed

tableaux in PSSYT
(
(2), (4, 2, 2, 2)

)
((6,6),(6,2)). The plethystic semistandard

1 2 1 1
1 2
1 2
1 1

1 2 2 2
1 2
1 2
1 1
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signed tableau in the margin is the unique one having 2 in the 1-right box

(1, 3) of its rightmost inner (4, 2, 2, 2)-tableau entry, and so this plethystic

semistandard signed tableau is the unique one not in the image of the in-

sertion map from the 19 plethystic tableaux for M = 1 to the 20 plethystic

tableaux for M = 2. The insertion map is then surjective at each subse-

quent step. The final column in the table above is relevant to Example 10.15

below.

10.5. The G insertion map on plethystic tableaux. We now define

the plethystic extension of the insertion map F in Definition 8.14. Recall

from after Definition 3.9 that PYT(ρ, µ/µ?) denotes the set of plethystic

signed tableaux of shape ρ having entries from the set YT(µ/µ?) of all

signed tableaux of shape µ/µ?. Given a plethystic signed tableau T ∈
PYT(ρ, µ/µ?), we define its conjugate T ′ ∈ PYT(ρ′, µ/µ?) by T ′(i, j) =

T (j, i) for (i, j) ∈ [ρ]. Note that the conjugation is defined with respect

to the outer Young diagram [ρ]; it does not change the shape of the inner

tableaux of T .

Definition 10.9. Let ρ be a partition. Let κ− and κ+ be partitions. Let

µ/µ? be an
(
`(κ−) + a(µ?), `(κ

+)
)
-large and

(
`(κ−), `(µ?)

)
-large skew parti-

tion. Let ρ† = ρ if |κ−| is even and let ρ† = ρ′ if |κ−| is odd. We define

G : PSSYT(ρ, µ/µ?)! PYT
(
ρ†, µ/µ? ⊕ (κ−, κ+)

)
by applying F to each inner µ/µ?-tableau entry of T ∈ PSSYT(ρ, µ/µ?)

to obtain U ∈ PYT
(
ρ, µ/µ? ⊕ (κ−, κ+)

)
. If |κ−| is even then we define

G(T ) = U ; if |κ−| is odd then we define G(T ) = U ′.

By Lemma 8.18(i), using the largeness hypotheses on µ/µ?, the map G is

well-defined.

The following example is relevant to the special case of Theorem 1.1, tak-

ing ν = (n), µ = (m), (κ−, κ+) =
(
(1),∅

)
, that 〈s(n)(M) ◦ s(m,1M ), sλt (1nM )〉

is ultimately constant for any partition λ of mn, where (n)(M) = (n) if M

is even and (n)(M) = (1n) if M is odd. In fact, as we mentioned in the

discussion of Theorem 1.1 in [9] in §1.7, provided `(λ) ≥ n, the plethysm

coefficient is constant for all M ∈ N0. Correspondingly, one can check that

G : PSSYT
(
(n), (m, 1M )

)
(λ−,λ+) ! PYT

(
(1n), (m, 1M+1)

)
is a bijection onto

PSSYT
(
(1n), (m, 1M+1)

)
(λ−+(n),λ+).

Example 10.10. We take ρ = (13), µ = (4) and λ = (8, 3, 1). Take

`− = 1 and note that λ has 1-decomposition
〈
(3), (7, 2)

〉
. The map G :

PSSYT
(
(13), (4)

)
! PSSYT

(
(3), (4, 1)

)
in Definition 10.9 for (κ−, κ+) =(

(1),∅
)

is shown below on both elements of PSSYT
(
(13), (4)

)
((3),(7,2)):

1 1 1 1

1 1 1 2

1 1 1 2

G
7−! 1 1 1 1

1
1 1 2 2
1

1 1 1 2
1
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1 1 1 1

1 1 1 1

1 1 2 2

G
7−! 1 1 1 1

1
1 1 1 1
1

1 1 2 2
1

.

As expected from the fact that G is a bijection onto PSSYT
(
(3), (4, 1)

)
,

the image is PSSYT
(
(3), (4, 1)

)
((6),(7,2)). Note that the conjugation in the

outer shape is essential: in each plethystic tableau there is a repeated inner

tableau, and this is permitted because each has sign −1 in the plethystic

tableau of outer shape (13) and each has sign +1 in the plethystic tableaux

of outer shape (3). Moreover, the example

1 1 1 1

1 1 1 2

1 2 1 1

G
7−! 1 1 1 1

1
1 1 2 2
1

1 2 1 1
1

shows that the convention that, in the right-hand plethystic semistandard

signed tableau, negative inner tableaux are greater than positive inner tabl-

eaux, is essential to make the plethystic tableau semistandard.

The following two lemmas and proposition generalize Example 10.10 and

show that G respects the semistandard condition on inner tableaux in differ-

ent positions in a plethystic semistandard signed tableau, up to the technical

order reversal required in Lemma 10.13(iii). The signed colexicographic or-

der < is defined in Definition 3.8.

Lemma 10.11. Let τ/τ? be a skew partition and let s and t be semistandard

signed tableaux of shape τ/τ? and the same sign such that s < t in the signed

colexicographic order.

(i) Let s̃ and t̃ be the signed tableaux of shape τ t (r−)/τ? obtained from s

and t by inserting a single new row with entries −1, . . . ,−r− into each. If s̃

and t̃ are semistandard then s̃ < t̃.

(ii) Let s̃ and t̃ be the signed tableaux of shape τ+(1r
+

)/τ? obtained from s

and t by inserting a single new column with entries 1, 2, . . . , r+. If s̃ and t̃

are semistandard then s̃ < t̃.

Proof. Let m be the rightmost column in which the multisets of entries in s

and t differ. For (i), since a single new entry of −k is added to column k for

each k ≤ r− in both s and t, it is clear that m is again the rightmost column

in which the multisets of entries in s̃ and t̃ differ. Since s̃ and t̃ have the

same sign, the relative order of s̃ and t̃ is determined by the multisets C(s)

and C(t) of entries of s and t in column m. If m > r− then C(s̃) = C(s)

and C(t̃) = C(t) and hence the greatest entry (taken with multiplicity)

still lies in t̃, and hence s̃ < t̃. If m ≤ r− then C(s̃) = C(s) ∪ {−m}
and C(t̃) = C(t) ∪ {−m}, and again s̃ < t̃. For (ii), suppose that the

new column with entries 1, 2, . . . , r+ was inserted as column c, moving the

existing columns c, c + 1, . . . one box to the right. Thus if m ≥ c then we

compare s̃ and t̃ on column m+ 1 and get s̃ < t̃. Otherwise m < c and since
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the inserted column c is equal in s̃ and t̃, we still compare on column m and

again get s̃ < t̃. �

As mentioned earlier, the following lemma re-uses a large part of the proof

of Proposition 8.19 (Tableau Stability) which we recap at a high level in the

following remark.

Remark 10.12. In the proofs of Proposition 8.19 above and Lemma 10.13

and Proposition 10.14 below we have sets of tableaux parametrised by M ∈
N0 and a map from objects for M to objects for M + 1. There is a bound L

such that the map is well-defined provided M ≥ L; this requires control

of top- and left-positions. The map is then clearly injective. The map is

surjective onto objects for N provided N − 1 ≥ L; this requires control of

right- and bottom-positions. Thus the map is bijective from objects for M

to objects for M + 1 is bijective provided M ≥ L.

Again we use the signed colexicographic order < from Definition 3.8.

Lemma 10.13. Let κ− and κ+ be partitions. Let µ/µ? be an
(
`(κ−) +

a(µ?), `(κ
+)
)
-large and

(
`(κ−), `(µ?)

)
-large skew partition. Let λ and ω be(

`(κ−), `(κ+)
)
-large partitions of n|µ/µ?|. Let

π ∈
[
λ⊕ nM(κ−, κ+), ω ⊕ nM(κ−, κ+)

]
�· .

Let T ∈ PSSYT
(
ρ, µ/µ? ⊕ M(κ−, κ+)

)
(π−,π+) and let s and t be µ/µ? ⊕

M(κ−, κ+)-inner tableaux of T such that s < t. Suppose that M is at least

the maximum of

• LP
(
n, µ′ : λ−, κ− : max(`(µ?), `(µ

+), `(κ+)
)
)

• LP
(
n, µ : λ+, κ+ : a(µ?) + `(κ−)

)
+ |λ+| − |ω+|.

Then

(i) We have F(s), F(t) ∈ SSYT
(
µ/µ? ⊕ (M + 1)(κ−, κ+)

)
.

(ii) If |κ−| is even then F(s) and F(t) have the same sign and F(s) < F(t).

(iii) If |κ−| is odd and s and t have the same sign then F(s) and F(t) have

the same sign and F(s) < F(t). Otherwise s is negative, t is positive, F(s)

is positive, F(t) is negative, and F(s) > F(t).

Proof. We have all the hypotheses for Lemma 10.7. Using the results on left

and top positions from this lemma, the proof of Proposition 8.19 generalizes

to show that F(s) and F(t) are semistandard µ/µ? ⊕ (M + 1)(κ−, κ+)-

tableaux. The only extra points to note are that, by Lemma 8.17, each

top position is in row `(µ?) or lower, and each left position is in column

`(κ−) + a(µ?) or further right, and hence the inserted columns do not meet

µ?, and, by (iii) in the lemma, setting `− = `(κ−), inserting or deleting a

new row with entries −1, . . . ,−`− immediately below the `−-top position

gives a well-defined semistandard signed tableau. (This is where we need

that this position is in row `(µ+) or lower, as remarked on in the caption to

Figure 8.2 and seen in the proof of the earlier lemma.) This proves (i).

Suppose that s and t have the same sign. Then, by Lemma 10.11, applied

to each row and column insertion in turn, we have F(s) < F(t). To prove
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(ii) and (iii) in the remaining case where s and t have opposite sign, observe

that since s < t, it follows immediately from Definition 3.8 that s is negative

and t is positive. If |κ−| is even then, by Lemma 8.18(ii), F is sign preserving,

and so F(s) is negative and F(t) is positive, and F(s) < F(t), proving (ii).

Finally for (iii), when |κ−| is odd then, again by Lemma 8.18(ii), F is sign

reversing, and so F(s) is positive and F(t) is negative, and F(s) > F(t). �

We are now ready to prove the analogue of Proposition 8.19 (Tableau Sta-

bility). Again we re-use part of its proof. This is the point where we need

the sign-reversed colexicographic order on semistandard signed tableaux, de-

fined in Definition 3.8 and the corresponding set PSSYT∓ of sign-reversed

plethystic semistandard signed tableaux defined in Definition 3.10 and moti-

vated in Example 10.10. Recall, as seen in this example, in PSSYT∓, nega-

tive inner tableaux are greater than positive inner tableaux. The LP bounds

are defined in Definition 10.6. The map G is defined in Definition 10.9.

Proposition 10.14 (Inner stability for plethystic tableaux). Let ρ be a

partition of n ∈ N. Let κ− and κ+ be partitions. Let µ/µ? be an
(
`(κ−) +

a(µ?), `(κ
+)
)
-large and

(
`(κ−), `(µ?)

)
-large skew partition. Let ρ† = ρ if |κ−|

is even and let ρ† = ρ′ if |κ−| is odd. Let ω be a (`(κ−), `(κ+))-large partition

and let λ �· ω in the `(κ−)-twisted dominance order. Let π be a partition in

the interval [
λ⊕ nM(κ−, κ+), ω ⊕ nM(κ−, κ+)

]
�·

for the `(κ−)-twisted dominance order. If M is at least

• LP
(
n, µ′ : λ−, κ− : max(`(µ?), `(µ

+), `(κ+)
)
)

• LP
(
n, µ : λ+, κ+ : a(µ?) + `(κ−)

)
+ |λ+| − |ω+|.

then the map G is a well-defined bijection

G : PSSYT
(
ρ, µ/µ? ⊕M(κ−, κ+)

)
(π−,π+)

−!

{
PSSYT

(
ρ†, µ/µ?⊕(M+1)(κ−, κ+)

)
(π−+nκ−,π++nκ+)

if |κ−| is even

PSSYT∓
(
ρ†, µ/µ?⊕(M+1)(κ−, κ+)

)
(π−+nκ−,π++nκ+)

if |κ−| is odd.

Proof. Note that we have all the hypotheses for Lemma 10.13. Let T ∈
PSSYT

(
ρ, µ/µ? ⊕ M(κ−, κ+)

)
(π−,π+). By this lemma, after applying F

to each inner µ/µ? ⊕M(κ−, κ+)-tableau in T we have a plethystic signed

tableau U of shape ρ having well-defined entries from SSYT±
(
µ/µ?⊕ (M +

1)(κ−, κ+)
)
. By Lemma 10.13(i), U has signed weight (π−+nκ−, π+ +nκ+),

as required.

Suppose that |κ−| is even. Then G(T ) = U . Since, by Lemma 10.13(ii),

F preserves strict equality in the signed colexicographic order, we have U ∈
PSSYT

(
ρ, µ/µ? ⊕M(κ−, κ+)

)
(π−+nκ−,π++nκ+), as required.

Suppose that |κ−| is odd. Then G(T ) = U ′. Since, by Lemma 10.13(iii),

F preserves strict inequality in the signed colexicographic order on inner

tableaux of the same sign, the conjugate plethystic signed tableau U ′ is

semistandard with respect to inner µ/µ? ⊕ (M + 1)(κ−, κ+)-tableaux of the

same sign. Moreover, since in T , equal positive inner tableaux are repeated

only in the same row, and equal negative inner tableaux are repeated only
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in the same column, the same holds in U , swapping ‘row’ and ‘column’. Let

β be the subpartition of ρ such that the negative µ/µ?⊕M(κ−, κ+)-tableau

entries in T lie in [β]. In U , since F is sign reversing, the positive inner

µ/µ? ⊕ (M + 1)(κ−, κ+)-tableaux are in the boxes in [β] and the negative

inner µ/µ? ⊕ (M + 1)(κ−, κ+)-tableaux are in the boxes in [ρ/β]. Therefore

the conjugate plethystic signed tableau U ′ is semistandard with respect to

the sign-reversed colexicographic order; that is U ′ ∈ PSSYT∓
(
ρ†, µ/µ?⊕

(M+1)(κ−, κ+)
)

(π−+nκ−,π++nκ+)
as required.

We have now shown that the image G(T ) is in the set specified in the

proposition. Let t be an inner µ/µ?⊕(M+1)(κ−, κ+)-tableau entry of G(T ).

Using the results on right and bottom positions from Lemma 10.7, and

noting that the removed rows are strictly below row `(µ?) and the removed

columns are strictly to the right of column `(κ−) +a(µ?), it follows as in the

proof of Proposition 8.19 that t is in the image of F . Hence the map G is

surjective. �

We remark that the bounds in Proposition 10.14 are typically not optimal.

Example 10.15. We continue Example 10.8 to show how the general bounds

coming ultimately from Lemma 10.7 can be sharpened by considering neg-

ative and positive entries together. In this example we got the bound

M ≥ max(3, b + 2). From the diagram in Example 10.4 we see that the

entries of 1 in the two semistandard tableaux s and t forming

T ∈ PSSYT
(
(2), (2 +M, 2, 2M )

)
((2+2M,2+2M),(6−b+2M,b−2))

lie either in the bottom two rows of their first two columns, or in the M

boxes ending their first rows. At most two 1s can be in the first two columns

of each. Therefore each of s and t has at most 2 + M entries of 1, and if

the 1-right position (1, 3) in either s or t does not contain 1 then the total

number of entries of 1 in T is at most (2 + M) + 2 = 4 + M . Therefore

4 +N ≥ 6− b+ 2N and we deduce that N ≤ b− 2. Hence if M ≥ b− 1 then

the 1-right position (1, 3) in both tableaux s and t contains 1. Therefore,

provided M ≥ b− 1, and M ≥ 3 (as we needed from Lemma 10.7 to ensure

that the 2-bottom position (1, 2) contains −2), insertion of 1 and 1 2
defines a surjective map

PSSYT
(
(2), (2 +M − 1, 2, 2M−1)

)
((2+2(M−1),2+2(M−1)),(6−b+2(M−1),b−2))

−! PSSYT
(
(2), (2 +M, 2, 2M )

)
((2+2M,2+2M),(6−b+2M,b−2))

.

This gives the improved bound max(3, b − 1). Note that the bound from

Proposition 8.19 is M ≥ 2, so this bound still holds; this bound is relevant

in the proof of Theorem 1.1 following.

10.6. Proof of Theorem 1.1. We prove Theorem 1.1 with an explicit

stability bound. By Remarks 3.2 and 9.4 there is no loss of generality in the

‘largeness’ hypotheses in the theorem. The L and LP bounds are defined

in Definitions 8.2 and 10.6, respectively. (Remark 8.1 explains the small

difference in notation for the intervals in the first two bounds.) As long
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promised, we use the Signed Weight Lemma (Lemma 7.3) for the main part

of the proof. An example of the six bounds, proving (1.2) in §1.7, is given

after the proof.

Theorem 10.16 (Signed inner stability with bound). Let ν be a partition

of n ∈ N. Let κ− and κ+ be partitions. Fix `− = `(κ−) and `+ = `(κ+).

Let µ/µ? be an
(
`− + a(µ?), `

+
)
-large and

(
`−, `(µ?)

)
-large skew partition.

If `− 6= 0 then suppose also that µ/µ? is
(
`− + 1, `+

)
-weight large for `(κ−).

Let ω be the partition ω
(n)
`− (µ/µ?) of n|µ/µ?| defined in Definition 9.6. Let λ

be an (`−, `+)-large partition. Let L be the maximum of

• L
(
[λ−, ω−](`

−)

�� , κ−
)
/n,

• L
(
[λ+, ω+ + (|λ+| − |ω+|)]�, κ+

)
/n

•
(
ω+

1 + ω+

2 − 2λ+

1 + 2|λ+| − 2|ω+|
)
/n(κ+

1 − κ
+

2 ),

•
(
max(`(λ+), `+) + |ω−| − |λ−| − ω−

`−

)
/nκ−

`(κ−)
.

• LP
(
n, µ′ : λ−, κ− : max(`(µ?), `(µ

+), `(κ+)
)

• LP
(
n, µ : λ+, κ+ : a(µ?) + `(κ−)

)
+ |λ+| − |ω+|

omitting the third if κ+

1 = κ+

2 and the fourth if κ− = ∅. Then〈
sν(M) ◦ sµ/µ?⊕M(κ−,κ+), sλ⊕nM(κ−,κ+)

〉
is constant for M ≥ L, where if |κ−| is even then ν(M) = ν for all M and if

|κ−| is odd then ν(M) = ν if M is even and ν(M) = ν ′ if M is odd. Moreover

if λ 6�· ω in the `−-twisted dominance order then the plethysm coefficient is 0

for all M ∈ N0.

Proof. We apply the Signed Weight Lemma (Lemma 7.3). For M ∈ N0 set

P(M) =
[
λ⊕M(κ−, κ+), ω

(n)
`− (µ/µ?)⊕M(κ−, κ+)

]
�· .

If λ 6�· ω(n)
`− (µ/µ?) then Lemma 8.6 implies that

λ⊕M(κ−, κ+) 6�· ω(n)
`− (µ/µ?)⊕M(κ−, κ+)

for all M ∈ N0 and hence, by Proposition 9.7, 〈sν(M) ◦ sµ/µ?⊕M(κ−,κ+),

sλ⊕nM(κ−,κ+)〉 = 0 for all M ∈ N0. Thus all the plethysm coefficients are

zero, as claimed in the final part of the statement.

We may therefore assume that λ�· ω(n)
`− (µ/µ?). If `− 6= 0 then by the

hypothesis that µ/µ? is (`−+ 1, `+)-weight large, the partition ω
(n)
`− (µ/µ?) is

(`− + 1, `+)-large, which is the other hypothesis required in Corollary 8.20.

Hence, by this corollary, (P(M))M∈N0 is a stable partition system with re-

spect to the map π 7! π ⊕ (κ−, κ+) and the twisted symmetric functions

gπ = eπ−hπ+ . We take the subsystem (Q(M))M∈N0 where Q(M) = P(nM).

Up to the factor 1/n, the first four bounds in our hypotheses are those in

Corollary 8.20. Therefore Q(M) is stable for M ≥ L.

We are now ready to verify the conditions in the Signed Weight Lemma

(Lemma 7.3) taking ν(M) as already defined, µ/µ?
(M) = µ/µ? ⊕M(κ−, κ+),

and Q(M) as our stable partition system. Since λ ⊕ nM(κ−, κ+) ∈ Q(M),

this implies the theorem.
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Condition (i) in the Signed Weight Lemma. By Lemma 10.3 the stable

partition system Q(M) satisfies condition (i) of the Signed Weight Lemma

(Lemma 7.3) for the plethysms sν(M) ◦ sµ/µ?⊕M(κ−,κ+).

Condition (ii) in the Signed Weight Lemma. We must verify that∣∣PSSYT
(
ν(M), µ/µ?

(M)
)
(π−,π+)

∣∣
=
∣∣PSSYT

(
ν(M+1), µ/µ?

(M+1)
)
(π−+nκ−,π++nκ+)

∣∣ (10.16)

for all M ∈ N0. By hypothesis µ/µ? is
(
`(κ−) + a(µ?), `(κ

+)
)
-large and(

`(κ−), `(µ?)
)
-large as required in Proposition 10.14. The final two bounds

on M in the statement are those required by Proposition 10.14. Fix M ∈ N
at least these bounds and let ρ = ν(M). By this proposition we have∣∣PSSYT

(
ρ, µ/µ? ⊕ M(κ−, κ+

)
(π−,π+)

∣∣
=

{∣∣PSSYT
(
ρ†, µ/µ? ⊕ (M+1)(κ−, κ+)

)
(π−+nκ−,π++nκ+)

∣∣ if |κ−| is even∣∣PSSYT∓
(
ρ†, µ/µ? ⊕ (M+1)(κ−, κ+)

)
(π−+nκ−,π++nκ+)

∣∣ if |κ−| is odd

for all π ∈ Q(M). If |κ−| is even then ν(M+1) = ρ† = ρ = ν(M) and we

have (10.16). Otherwise we use the final part of Lemma 5.5 to obtain∣∣PSSYT∓
(
ρ′, µ/µ? ⊕ (M + 1)(κ−, κ+

)
(π−+nκ−,π++nκ+)

∣∣
=
∣∣PSSYT

(
ρ′, µ/µ? ⊕ (M + 1)(κ−, κ+

)
(π−+nκ−,π++nκ+)

∣∣,
and since ρ′ = ν(M+1) and ρ = ν(M), we again get (10.16). Therefore the

stable partition system Q(M) satisfies condition (ii) of the Signed Weight

Lemma. �

Example 10.17. We use Theorem 10.16 to show that the plethysm coeffi-

cients 〈sν† ◦ sµ′t (1M )+(1`(µ
′)), sλ′t (1nM )+(1n`(µ

′))〉 in (1.2) relevant to [9, The-

orem 1.1] are constant for all M ≥ 0. (All we need concerning ν† is that

it is a partition of n.) Take κ− = (1) and κ+ = ∅ in Theorem 10.16 and

replace ν in the theorem with ν† and µ in the theorem with µ′ + (1`(µ
′)).

Since `− = 1, the negative part of a partition α is simply (`(α)) and the

1-decomposition is 〈
(`(α)), (α1 − 1, . . . , αk − 1)

〉
(10.17)

where k is greatest such that αk ≥ 2. Therefore the negative part of λ′ +

(1n`(µ
′)) is max(`(λ′), n`(µ′)). Denote this quantity P . Since the greatest

signed tableau t1(µ′+ (1`(µ
′))) of shape µ′+ (1`(µ

′)) defined in Definition 4.2

has `(µ′) entries of −1, we have ω− = (n`(µ′)). Therefore the first bound in

Theorem 10.16 is

 L
(
[(P ), n`(µ′)]

(1)
�� , (1)

)
=
n`(µ′)− P − n`(µ′)

n
= −P

n
< 0.

(Note that the exceptional case in Definition 8.2 applies, giving a smaller

bound than that obtained by using L1.) Since κ+ = ∅, the second and third

bounds vanish. Now observe that, by (10.17), if `(λ′) < n`(µ′) then the

positive part of λ′ + (1n`(µ
′)) is λ′, while if `(λ′) ≥ n`(µ′) then the positive
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part has length at most `(λ′). Therefore `(λ+) ≤ `(λ′) and the fourth bound

is at most

max(`(λ′), 0) + n`(µ′)− P − n`(µ′)
n

≤ `(λ′)− P
n

≤ 0.

Since the positive part of µ′ + (1`(µ
′)) is µ′, the fifth bound is

LP
(
n, (µ′ + (1`(µ

′)))′ : (P ), (1) : max(0, `(µ′), 0)
)

=
n`(µ′)− P − `(µ′) + max(`(µ′), `(µ′), 0)

1− 0
≤ 0.

Since κ+ = ∅, the sixth bound vanishes. Hence, as claimed earlier in §1.7,

the plethysm coefficient is constant for all M ∈ N0. Finally, note that a

semistandard signed tableau of shape µ′ + (1`(µ
′)) can have at most `(µ′)

entries of −1. Therefore if `(λ′) > n`(µ′), and so P > n`(µ′), the set

PSSYT
(
ν†, µ+(1`(µ

′))
)
((`(λ′)),π+) is empty for any partition π+. Correspond-

ingly, since `(λ′) > n`(µ′) implies that λ 6�· ω in the 1-twisted dominance

order, it follows from the final part of Theorem 10.16 that the plethysm

coefficient vanishes when M = 0. Since this is its constant value, it vanishes

for all M ∈ N0.

We end this section with a generalization of the final part of the example

above. Observe that when µ? = ∅, the greatest signed weight ω`−(µ) is sim-

ply the `−-decomposition of µ and so it is immediate from Definition 9.6 that

the partition ω
(n)
`− (µ) has `−-decomposition n〈µ−, µ+〉. Hence, by the defini-

tion of the `-twisted dominance order in Definition 6.6 we have λ�· ω(n)
`− (µ)

if and only if (λ−, λ+)�n(µ−, µ+), where � is the `-signed dominance order

of Definition 4.1. Therefore, the final part of Theorem 10.16 implies that,

unless (λ−, λ+) � n(µ−, µ+),

〈sν ◦ sµ⊕M(κ−,κ+), sλ⊕nM(κ−,κ+)〉 = 0

for all M ∈ N0. This justifies the remark after Theorem 1.1 in the introduc-

tion.

11. The positive case of Theorem 1.1

In this section we state the case of Theorem 10.16 when κ− = ∅, and then

the still more special case where µ? = ∅; as we saw in the survey in §1.7,

this special case implies many of the stability results on plethysm coefficients

in the literature. Moreover, as we mentioned in Remark 4.16, by applying

the ω involution, these special cases easily imply the analogous special cases

where κ+ = ∅. The L and LP bounds are defined in Definitions 8.2 and 10.6,

respectively. By Definition 3.5, wt(t) is the positive part of the signed weight

of a tableau having only positive integer entries.

Corollary 11.1. Let ν be a partition of n ∈ N. Let κ be a partition and let

µ/µ? be a
(
a(µ?), `(κ)

)
-large skew partition. Let λ be a partition of n|µ/µ?|

with `(λ) ≥ `(κ). Let t be the semistandard tableau of shape µ/µ? having 1,
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2, . . . , µ′j−µ′?j as its entries in column j, for each j ≤ a(µ). Set ω = nwt(t).

Then 〈sν ◦ sµ?+Mκ, sλ+nMκ〉 is constant for

M ≥ max
(L
(
[λ, ω]�, κ

)
n

,LP
(
n, µ : λ, κ : a(µ?)

))
If λ 6� ω then the plethysm coefficient is 0 for all M ∈ N0. Moreover if η 6� κ

then 〈sν ◦ sµ/µ?+Mκ, sλ+nMη〉 = 0 for all M > L where L is the minimum of∑k
i=1 ωi −

∑k
i=1 λi

n
(∑k

i=1 ηi −
∑k

i=1 κi
)

taken over those k such that the denominator is strictly positive.

Proof. The final part is immediate from Proposition 10.2 applied with κ− =

η− = ∅ and κ+ = κ, η+ = η. For the main part we apply Theorem 10.16

with κ− = ∅ and κ+ = κ. Note that nwt(t) = ω
(n)
0 (µ/µ?) is the parti-

tion ω in Theorem 10.16. Since `− = 0, the only largeness condition in

the theorem that has any force is that µ/µ? is (a(µ?), `(κ))-large. Of the

six bounds, the first is 0, the second simplifies to L([λ, ω]�, κ), the third to

(ω1 + ω2 − 2λ1)/n(κ1 − κ2) which is either one of the bounds contributing

to L([λ, ω]�, κ), or ignored because κ1 = κ2, the fourth and fifth bounds are

0 and the sixth simplifies to LP
(
n, µ : λ, κ : a(µ?)

)
. �

Corollary 11.2. Let ν be a partition of n ∈ N. Let κ be a partition and let µ

be a partition of m and let λ be a partition of mn. Then 〈sν◦sµ+Mκ, sλ+nMκ〉
is constant for M at least the maximum of

n
∑r

i=1 µi −
∑r

i=1 λi − µr + µr+1

κr − κr+1

for 1 ≤ r ≤ `(κ), where any terms with zero denominator are ignored. If

λ 6� nµ then the plethysm coefficient is 0 for all M ∈ N0. Moreover if η 6� κ

then 〈sν ◦ sµ+Mκ, sλ+nMη〉 = 0 for all M > L where L is the minimum of

n
∑k

i=1 µi −
∑k

i=1 λi

n
(∑k

i=1 ηi −
∑k

i=1 κi
)

taken over those k such that the denominator is strictly positive.

Proof. We apply Corollary 11.1. By Lemma 9.3, since µ? = ∅, the only

largeness condition in this corollary holds trivially. Note that, again since

µ? = ∅, we have wt(t) = µ and so the partition ω in the corollary is simply

nµ, and so by part of the corollary, if λ 6� nµ then the plethysm coefficients

are zero. If n = 1 then the plethysm coefficient is 〈sµ+Mκ, sλ+Mκ〉, which is

obviously constant. When n ≥ 2, the bound M ≥ LP
(
n, µ : λ, κ : 0

)
(see

Definition 10.6) is equivalent to

M(κk − κk+1) ≥ n
k∑
i=1

µi −
k∑
i=1

λi − µk + µk+1
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for each 1 ≤ k ≤ `(κ). Using that ω = nµ, the bound we require, namely

that M ≥ L([λ, ω]�, κ)/n is equivalent to

M(κk − κk+1) ≥ 1

n

(
2

k−1∑
i=1

nµi + nµk + nµk+1 − 2

k∑
i=1

λi

)
again for each 1 ≤ k ≤ `(κ). Fixing k, the difference of the two right-hand

sides is

(n− 2)

k−1∑
i=1

µi + (n− 2)µk −
n− 2

n

k∑
i=1

λi =
n− 2

n

k∑
i=1

(nµi − λi)

which is non-negative because nµ � λ. Therefore the hypotheses of this

corollary imply thatM ≥ L([λ, ω]�, κ)/n, as required to apply Corollary 11.1.

The final claim of this corollary is immediate from Corollary 11.1. �

We remark that if κ = (1R) then by one further specialization we obtain

that 〈sν ◦ sµ+(MR), sλ+n(MR)〉 is constant for M ≥ n
∑R

i=1 µi −
∑R

i=1 λi −
µR + µR+1. This recovers Theorem 1.2 in [9].

12. Twisted weight bound for Theorem 1.2

This section is the analogue of §9, culminating in Corollary 12.24, the

analogue of Corollary 9.10, giving an upper bound (in a sense made precise

in the corollary) on the constituents sσ of the plethysm sν(M) ◦ sµ/µ? such

that σ�· λ ⊕ M(κ−, κ+) in the `(κ−)-twisted dominance order. Here, as

in Theorem 1.2, ν(M) = ν + (MR) if the strongly maximal signed weight

(κ−, κ+) has sign +1 and ν(M) = ν t (RM ) if the strongly maximal signed

weight (κ−, κ+) has sign −1. We outline the strategy of the proof in §12.2

after the essential preliminaries in the following subsection.

12.1. Adapted signed colexicographic order for a strongly maximal

signed weight. By Lemma 4.11, if (κ−, κ+) is a strongly maximal signed

weight then there is a unique semistandard signed tableau family of signed

weight (κ−, κ+) of the same shape, size and type as (κ−, κ+). By Defini-

tion 4.10 the sign of (κ−, κ+) is the common sign of the tableaux in this

family; in the sense of Definition 4.7, the family has row-type if the common

sign is −1 and column-type if the common sign is +1. Recall that plethystic

semistandard signed tableaux were defined in Definition 3.10; in this defini-

tion the inner tableaux are ordered by the signed colexicographic order (see

Definition 3.8).

Definition 12.1. Let (κ−, κ+) be a strongly maximal signed weight of sign ε.

Let M(κ−,κ+) be the unique semistandard signed tableau family of signed

weight (κ−, κ+). Let T(κ−,κ+) be the unique plethystic semistandard tableau

of outer shape ρ and inner shape µ/µ? having as its entries the elements of

M(κ−,κ+), where ρ = (1R) if ε = +1 and ρ = (R) if ε = −1.

As we mentioned in Remark 5.7, in this section we use the freedom in

Lemma 5.5 to define plethystic semistandard signed tableaux using an order
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on their inner tableaux adapted to the relevant strongly maximal semistan-

dard signed tableau family.

Definition 12.2 (Adapted colexicographic order). Let (κ−, κ+) be a strongly

maximal signed weight of sign ε. Let ≤ be the signed colexicographic order if

ε = −1 and the sign-reversed colexicographic order if ε = +1. The (κ−, κ+)-

adapted colexicographic order, denoted ≤κ, is the total order on semistan-

dard signed tableaux of shape µ/µ? defined by s ≤κ t if s ∈ M(κ−,κ+) and

t 6∈ M(κ−,κ+); in the remaining cases where either both or neither of s and t

are in M(κ−,κ+), we set s ≤κ t if and only if s ≤ t.

Thus the elements in M(κ−,κ+) always come first in the adapted colexi-

cographic order for (κ−, κ+), and thanks to the choice of the signed colexi-

cographic order when (κ−, κ+) has sign −1 (and so the elements ofM(κ−,κ+)

are all negative) and the sign-reversed colexicographic order when the (κ−, κ+)

has sign +1 (and so the elements of M(κ−,κ+) are all positive), the next

greatest elements are the remaining semistandard signed µ/µ?-tableaux of

the same sign as those in M(κ−,κ+).

Remark 12.3. The plethystic semistandard signed tableau T(κ−,κ+) defined

in Definition 12.1 (in which the signed colexicographic order is used to or-

der inner tableau entries) is (κ−, κ+)-adapted; in fact, since all its inner

tableau entries have the same sign, it is semistandard for any of our orders

on semistandard signed tableaux.

These observations can easily be verified in following two examples.

Example 12.4. Let (κ−, κ+) =
(
∅, (4, 1, 1)

)
of shape (2), size 3 and sign

+1. This is the strongly maximal signed weight seen in Example 4.12,

for which the unique semistandard signed tableau family is M(κ−,κ+) ={
1 1 , 1 2 , 1 3

}
of column-type. In the adapted colexicographic or-

der for κ we have

1 1 <κ 1 2 <κ 1 3 <κ 2 2 <κ 2 3 <κ . . . <κ 1 1 <κ 1 2 <κ . . .

whereas in the sign-reversed colexicographic order, we have

1 1 < 1 2 < 2 2 < 1 3 < 2 3 < . . .< 1 1 < 1 2 < . . . .

Example 12.5. By Lemma 4.17, if (κ−, κ+) is the signed weight of a

strongly c+-maximal singleton semistandard signed tableau family of shape

µ/µ? then the family is {t`(κ−)(µ/µ?)}; since by Remark 4.6, t`(κ−)(µ/µ?) is

the unique least semistandard signed tableau in the signed colexicographic

order if ε = −1 and in the sign-reversed colexicographic order if ε = +1, in

this special case the adapted order agrees with the usual order.

Definition 12.6. Given a strongly maximal signed weight (κ−, κ+), let

PSSYTκ(ρ, µ/µ?) be the set of all plethystic semistandard of outer shape ρ

and inner shape µ/µ? with negative entries from
{
−1, . . . ,−`(κ−)

}
, defined

as in Definition 3.10, but using the (κ−, κ+)-adapted colexicographic order

to order the inner µ/µ?-tableaux. We say that such plethystic semistandard
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signed tableaux are (κ−, κ+)-adapted. We write PSSYTκ(ρ, µ/µ?)(π−,π+) for

the adapted plethystic semistandard signed tableaux in PSSYTκ(ρ, µ/µ?)

whose signed weight is (π−, π+).

This is the obvious extension of the notation in Definitions 3.9 and 3.11.

12.2. Overview and running example. Fix a strongly maximal signed

weight (κ−, κ+). We shall substantially simplify the exposition in this section

and from §12.4 onwards by stating and proving all results only in the case

when (κ−, κ+) has sign +1. The modifications for sign −1 are routine and

are given briefly in §12.7 at the end of this section.

Remark 12.7. The underlying principle in this section and the next is pro-

vided M is sufficiently large, every (κ−, κ+)-adapted plethystic semistandard

signed tableau in PSSYTκ

(
ν + M(1R), µ/µ?

)
(λ−+Mκ−,λ++Mκ+) has the ele-

ments ofM(κ−,κ+), which form the inner tableaux of the plethystic semistan-

dard signed tableau T(κ−,κ+), in the top R positions of almost all its columns.

In Definition 12.10 we say that such columns are ‘typical’. In particular, as

we make precise in Corollary 12.19, the number of columns whose top R

positions contain semistandard signed tableaux whose total signed weight

is not dominated in the `−-signed dominance order by (κ−, κ+) is bounded

independently of M .

We see this principle in the first running example begun below, proving

the special case of Theorem 1.2 that 〈s(2,1)+M(1,1,1) ◦ s(2), s(4,2)+M(4,1,1)〉 is

ultimately constant.

Example 12.8. Let (κ−, κ+) =
(
∅, (4, 1, 1)

)
be the strongly maximal signed

weight of the column-type tableau family
{

1 1 , 1 2 , 1 3
}

in Exam-

ple 12.4 of shape (2), size 3 and sign +1. To apply the Signed Weight Lemma

(Lemma 7.3) to prove that 〈s(2,1)+M(1,1,1) ◦ s(2), s(4,2)+M(4,1,1)〉 is ultimately

constant, it is natural to look for a stable partition system
(
P(M))M∈N0 such

that (4, 2) +M(4, 1, 1) ∈ P(M) for each M ∈ N0 and, for condition (ii), such

that

|PSSYT(∅,(4,1,1))

(
(2, 1) +M(1, 1, 1), (2)

)
(∅,π)|

is ultimately constant for all π ∈ P(M). Note that here the first sub-

script refers to adapted plethystic semistandard signed tableaux (in the

sense of Definition 12.6), whose inner (2)-tableaux are ordered according to

the
(
∅, (4, 1, 1)

)
-sign-reversed colexicographic order. In this case however,

since there are no negative entries, the distinction between the sign-reversed

colexicographic order and the usual colexicographic order is irrelevant.

In the special case where π = (4, 2) +M(4, 1, 1) the
(
∅, (4, 1, 1)

)
-adapted

plethystic semistandard signed tableaux in this set are, when M = 0,

1 1 1 1

2 2
,

1 1 1 2

1 2
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and, when M = 1,

1 1 1 1 1 1

1 2 1 2

2 3

,

1 1 1 1 1 1

1 2 1 3

2 2

,

1 1 1 1 1 1

1 2 2 2

1 3

,

1 1 1 1 1 2

1 2 1 2

1 3

.

There are four plethystic semistandard signed tableaux when M = 2. They

are obtained by inserting the tableau T(κ−,κ+) shown in the margin as a new

first column into each of the four plethystic semistandard signed tableaux

for M = 1. Note that since 1 3 <κ 2 2 in the
(
∅, (4, 1, 1)

)
-adapted

colexicographic order, this preserves the semistandard condition even when

we insert into the second plethystic semistandard tableau for M = 1.

1 1

1 2

1 3

In the previous example we saw that inserting T(κ−,κ+) as a new column

of height R in a (κ−, κ+)-adapted plethystic semistandard signed tableau

of weight λ ⊕M(κ−, κ+) give a bijection establishing hypothesis (ii) in the

Signed Weight Lemma (Lemma 7.3). But still it is not obvious how to

choose P(M), or that the same bijection will work when λ ⊕M(κ−, κ+) is

replaced with an arbitrary π in the relevant P(M). We continue the example

to show one difficulty, circumvented using the final result of this section (see

Corollary 12.24).

Example 12.9. Since the greatest partition (6) in the dominance order is

obviously an upper bound for the constituents of s(2,1) ◦ s(2), Example 12.8

suggests we might apply the Signed Weight Lemma (Lemma 7.3) with the

stable partition system[
(4, 2) +M(4, 1, 1), (6) +M(4, 1, 1)

]
�

=
{

(4, 2) +M(4, 1, 1), (5, 1) +M(4, 1, 1), (6) +M(4, 1, 1)
}
.

for M ∈ N0. (Here � is the usual dominance order: by Remark 6.8, this

is the 0-twisted dominance order, so we have `− = 0 and the symmetric

functions in the lemma are hπ for π ∈ Par.) However condition (i) in the

Signed Weight Lemma fails when M = 1: we have (8, 3, 1) ∈ [(4, 2) +

(4, 1, 1), (6) + (4, 1, 1)]� and since (8, 4) � (8, 3, 1) and s(8,4) is a constituent

of s(3,2,1) ◦ s(2) — for instance, this follows from the generalized Cayley–

Sylvester formula (5.3) in §5.4 — we have

s(8,4) ∈ supp(h(8,3,1)) ∩ supp(s(3,2,1) ◦ s(2)).

But (8, 4) 6∈ [(4, 2) + (4, 1, 1), (6) + (4, 1, 1)]� since (8, 4) and (10, 1, 1) are

incomparable. It might seem that the problem is that our chosen upper

bounds (6)+M(4, 1, 1) are too small to contain all partitions in the support

of s(2,1)+M(1,1,1) ◦ s(2). However, one can show using Theorem 1.5 of [9] that

the maximal constituents of s(2,1)+M(1,1,1) ◦ s(2) are precisely the partitions{
(5, 1) + (M − a)(4, 1, 1) + a(3, 3) : 0 ≤ a ≤M

}
(12.1)

and since (4, 1, 1) and (3, 3) are incomparable in the dominance order, there

is no stable partition system of intervals

[λ+ (M − S)(4, 1, 1), ω + (M − S)(4, 1, 1)]� (12.2)
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with λ and ω partitions of 6S that contains all the maximal constituents

of s(2,1)+M(1,1,1) ◦ s(2) for all M ≥ S, or even for all M sufficiently large.

(Beginning with partition of 6S gives ample freedom to avoid technical issues

to do with ‘largeness’, in the sense of Definition 3.1 and Definition 9.1, so this

is not the problem.) Perhaps surprisingly, we conclude that it is essential

to use the lower bound as well. And because a plethystic semistandard

signed tableau of shape (2, 1) + M(1, 1, 1) and signed weight
(
∅, (4, 2) +

M(4, 1, 1)
)

may have an exceptional column in the sense of Definition 12.10

(see Example 12.20), the stable partition system we define has to start with

partitions of 12. (This corresponds to taking S = 1 in (12.2).) Since (4, 2)+

(4, 1, 1) = (8, 3, 1) we therefore consider the intervals[
(8, 3, 1) +N(4, 1, 1), (12) +N(4, 1, 1)

]
� (12.3)

for N ∈ N0. If π ∈
[
(8, 3, 1) +N(4, 1, 1), (12) +N(4, 1, 1)

]
� and

σ ∈ supp(hπ) ∩ supp(s(2,1)+(N+1)(1,1,1) ◦ s(2))

then, by Lemma 6.12 applied to supp(hπ) we have

σ � π � (8, 3, 1) +N(4, 1, 1) (12.4)

and, by (12.1), we have

σ � (9, 2, 1) + (N − a)(4, 1, 1) + a(3, 3)

= (9− a, 2 + 2a, 1− a) +N(4, 1, 1) (12.5)

for some a with 0 ≤ a ≤ N . If a = 0 then, by (12.5), σ � (9, 2, 1) +

N(4, 1, 1)� (12) +N(4, 1, 1). Similarly if a = 1 then σ� (8, 4) +N(4, 1, 1)�
(12) + N(4, 1, 1), and, despite involving the problematic partition (8, 4),

thanks to our choice in (12.3), σ is in the interval for all N ∈ N0. Finally if

a ≥ 2 then we must have N ≥ 1 and we get σ1 ≤ 9−a+4N which, using the

lower bound on the intervals in (12.3) — justified by (12.4) obtained using

Lemma 6.12 — that σ� (8, 3, 1) +N(4, 1, 1), contradicts that σ1 ≥ 8 + 4N .

Therefore condition (i) in the Signed Weight Lemma (Lemma 7.3) holds for

all N ∈ N0. We note that this contradiction was obtained by comparing in

the dominance order just on the first part, and correspondingly, (4, 1, 1) is

a strongly 1-maximal signed weight.

We continue this example in Example 12.12.

12.3. Exceptional columns and rows. We define the signed weight of a

subset B of the boxes of a plethystic semistandard tableau to be the sum

of the weights of the inner tableaux in B. In the following definition we use

the `−-signed dominance order on the setW`−×W defined in Definition 4.1

to compare (φ−, φ+) and (κ−, κ+). Adapted plethystic semistandard signed

tableaux are defined in Definition 12.6.

Definition 12.10. Let (κ−, κ+) be a strongly c+-maximal signed weight of

shape µ/µ? and size R. Let T be a (κ−, κ+)-adapted plethystic semistandard

signed tableau of inner shape µ/µ?. When (κ−, κ+) has sign +1, we say

that a column of T of height at least R whose top R boxes have signed
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weight (φ−, φ+) is small if (φ−, φ+) � (κ−, κ+), typical if the top R boxes

in the column form the plethystic semistandard signed tableau T(κ−,κ+) and

exceptional if (φ−, φ+) 6� (κ−, κ+). In the latter case we say the column is

(a) large-exceptional if `(φ+) > `(κ+);

(b) negative-exceptional if |φ−| < |κ−|;
(c) positive-exceptional if |φ−|+

∑c+

i=1 φ
+

i < |κ−|+
∑c+

i=1 κ
+

i .

When (κ−, κ+) has sign −1 we make the analogous definitions replacing

‘column’ with ‘row’, now considering the leftmost R boxes in the row.

The relevant strongly maximal signed weight (κ−, κ+) in this definition

will always be clear from the context. We shall prove in Lemma 12.14(i) that

a column is either small, typical or exceptional, and in Lemma 12.14(ii) that

an exceptional column is either large-exceptional, negative-exceptional or

positive-exceptional. Note the latter three cases are not mutually exclusive:

in fact any combination of them may hold.

Remark 12.11. If R = 1 then, by Lemma 4.17, the unique strongly max-

imal semistandard signed tableau family of shape µ/µ? is {t`−(µ/µ?)}. By

Lemma 4.4, {t`−(µ/µ?)} has the greatest signed weight, in the `−-signed

dominance order on all µ/µ?-tableaux with entries from {−1, . . . ,−`−}∪N.

Therefore in the notation of Definition 12.10, we always have (φ−, φ+) �
(κ−, κ+) where (κ−, κ+) =

(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

is the signed weight of

t`−(µ/µ?), and so there are no exceptional columns or rows. It is instructive

to see how the remaining results in this section specialize to easy corollaries

1 1 1 1 1 1

1 2 1 2

2 3

small

1 1 1 1 1 1

1 2 1 3

2 2

positive-e

1 1 1 1 1 1

1 2 2 2

1 3

typical

1 1 1 1 1 2

1 2 1 2

1 3

typical

of Lemma 4.4 in this case: we summarise the situation in Remark 12.25 at

the end of this section.

Example 12.12. Take the strongly 1-maximal signed weight
(
∅, (4, 1, 1)

)
.

Of the four (∅, (4, 1, 1))-adapted plethystic semistandard signed tableaux

in the set PSSYT(∅,(4,1,1))

(
(3, 2, 1), (2)

)
(∅,(8,3,1) shown at the end of Exam-

ple 12.8, and repeated in the margin for ease of reference, the first column

of the first tableau has signed weight
(
∅, (3, 2, 1)

)
� (∅, (4, 1, 1)

)
so is small.

The first column of the second has signed weight
(
∅, (3, 3)

)
, which is incom-

parable with
(
∅, (4, 1, 1)

)
; this column is therefore exceptional and since the

sums on the left- and right-sides of (c) are 3 and 4 respectively it is positive-

exceptional. The final two tableaux each have first column T(∅,(4,1,1)) of

signed weight
(
∅, (4, 1, 1)

)
; these two columns are typical. The boxes not in

the column of height 3 are not classified by Definition 12.10.

This example is continued in Example 12.20. We now give a further

example to show the full generality of Definition 12.10.

Example 12.13. Let (κ−, κ+) =
(
(2, 2), (3, 1)

)
. By Example 4.18(ii), this is

the strongly 1-maximal weight of the column-type tableau familyM((2,2),(3,1))

of shape (4), size 2 and sign +1 shown below{
1 2 1 1 , 1 2 1 2

}
.

The special case ν = (2, 1) and µ/µ? = (4)/∅ of Theorem 1.2 is that

the plethysm coefficients 〈s(2,1)+(M,M) ◦ s(4), sλt (2M )+M(3,1)〉 are ultimately
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constant for all partitions λ of 12. First we take λ = (8, 3, 1) with 2-

decomposition
〈
(3, 2), (6, 1)

〉
. There are three ((2, 2), (3, 1))-adapted plethys-

tic semistandard tableaux in PSSYT((2,2),(3,1))

(
(2, 1), (4)

)
((3,2),(6,1)), namely

1 2 1 1 1 2 1 1

1 1 1 2

small

, 1 2 1 1 1 2 1 2

1 1 1 1

negative-e

, 1 2 1 1 1 1 1 1

1 2 1 2

typical

.

The first column of the first has signed weight
(
(2, 1), (4, 1)

)
which is dom-

inated in the signed dominance order by ((2, 2), (3, 1)). Therefore it is

small. The first column of the second has signed weight
(
(2, 1), (5)

)
so

is not small, but instead is negative-exceptional, being deficient in nega-

tive entries. In the third the first column is typical. Since the second

columns are singleton, they are not classified by Definition 12.10. Grow-

ing by ν 7! ν + (1, 1) and λ 7! λ ⊕
(
(2, 2), (3, 1)

)
as in Theorem 1.2,

we find that the four plethystic semistandard signed tableaux in the set

PSSYT((2,2),(3,1)

(
(3, 2), (4)

)
((5,4),(9,2)) are

1 2 1 1 1 2 1 1 1 2 1 1

1 2 1 2 1 1 1 2

typical small

, 1 2 1 1 1 2 1 1 1 2 1 2

1 2 1 2 1 1 1 1

typical negative-e

, 1 2 1 1 1 2 1 1 1 2 1 1

1 2 2 2 1 1 1 1

small negative-e

, 1 2 1 1 1 2 1 1 1 1 1 1

1 2 1 2 1 2 1 2

typical typical

.

We remark that in fact

|PSSYT((2,2),(3,1)

(
(2, 1) +M(1, 1), (4)

)
((3+2M,2+2M),(6+3M,1+M))| = 4

for all M ≥ 1; a bijective proof is given by insertion of the plethystic semi-

standard signed tableau shown in the margin corresponding toM((2,2),(3,1))

as a new first column; this is the H map in the proof of Theorem 13.7. (In

1 2 1 1

1 2 1 2

this case, unlike Example 12.8, the
(
(2, 2), (3, 1)

)
-adapted colexicographic

order defined in Definition 12.2 coincides with the usual sign-reversed colex-

icographic order of Definition 3.8, and so using either order, the insertion

map preserves semistandardness.) Computation by computer algebra shows

that the constant value of the plethysm coefficient is 2.

In this case there are no large-exceptional columns because the maximum

positive entry permitted by the signed weight
(
(3+2M, 2+2M), (6+3M, 1+

M)
)
, namely 2, is also the length of the positive part of the strongly maximal

weight, namely `
(
(3, 1)

)
= 2.

We now extend M((2,2),(3,1)) to the strongly 1- and 2-maximal tableau

family still of shape (4) and sign +1 but now of size 3 and signed weight(
(3, 3), (3, 3)

)
shown below.{

1 2 1 1 , 1 2 1 2 , 1 2 2 2
}
.

Its weight appears in the bottom right column of Table 4.23 for `− = 2. In

order to show the large-exceptional case in an example of manageable size,

we choose to regard this weight as strongly 1-maximal. The three plethystic

semistandard signed tableaux in PSSYT((4,4),(5,2,1))

(
(3, 3), (3, 3)

)
((2,1,1),(4))
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are

1 2 1 1 1 2 1 1

1 2 2 2

1 2 1 3

small

,

1 2 1 1 1 2 1 1

1 2 1 2

1 2 2 3

small

,

1 2 1 1 1 2 1 2

1 2 1 2

1 2 1 3

large-e

.

The final plethystic semistandard signed tableau has first column of signed

weight
(
(3, 3), (4, 1, 1)

)
. This signed weight is not dominated by

(
(3, 3), (3, 3)

)
so it is not small, and since the negative parts agree it is not negative-

exceptional. Since |(3, 3)|+4 6< |(3, 3)|+3 it is not positive-exceptional (this

is the relevant comparison because of our choice that c+ = 1). But since it

has an entry of 3, it is large-exceptional. We remark that since the nega-

tive part of the signed weight ((4, 4), (5, 2, 1)) is (4, 4), every inner tableau

has the form 1 2 · · ; this explains the absence of negative-exceptional

columns in this case.

12.4. Exceptional column bound. The aim of this subsection is to prove

Lemma 12.17, making the underlying principle in Remark 12.7 precise. As

promised earlier, to simplify the exposition, from now on we assume that the

strongly maximal signed weight has sign +1. See §12.7 for the modifications

for sign −1.

In the next lemma it is important to note that while the strongly maxi-

mal signed weights defined in Definition 4.10 are of tableau families having

all elements of the same sign (by (b) the sign is +1 for column-type and

−1 for row-type), the comparison in Definition 4.8 is with all families of

the relevant shape and size, with negative entries from the prescribed set{
−1, . . . ,−`(κ−)

}
— see the italicised end to the paragraph after Defini-

tion 4.8. We remind the reader that, by Remark 12.3, T(κ−,κ+) is semistan-

dard in the (κ−, κ+)-adapted colexicographic order.

Lemma 12.14. Let (κ−, κ+) be a strongly maximal signed weight of shape

µ/µ?, size R and sign +1. Let T be a (κ−, κ+)-adapted plethystic semistan-

dard signed tableau of inner shape µ/µ?. Let (φ−, φ+) be the signed weight

of the top R boxes in a column of T .

(i) If (φ−, φ+) = (κ−, κ+) then the top R boxes in the column form the

plethystic semistandard signed tableau T(κ−,κ+).

(ii) If (φ−, φ+) 6� (κ−, κ+), then the column is large-exceptional, negative-

exceptional or positive-exceptional.

Proof. Part (i) follows from the uniqueness of the plethystic semistandard

signed tableau family corresponding to a strongly maximal signed weight,

proved in Lemma 4.11. For (ii) let (φ−, φ+) 6� (κ−, κ+) and suppose that the

column is not large-exceptional. Thus `(φ+) ≤ `(κ+). Let (ψ−, ψ+) be a

maximal signed weight in the dominance order on W`(κ−)×W of a column-

type semistandard signed tableau family of shape µ/µ? and size R such that

(φ−, φ+)�(ψ−, ψ+), as in Definition 4.8. By hypothesis, (ψ−, ψ+) 6= (κ−, κ+).

Since the column is not large-exceptional, by Lemma 4.13, either (4.2) holds
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and we have

|φ−| ≤ |ψ−| < |κ−|

and the column is negative-exceptional or (4.3) holds and

|φ−|+
∑c+

i=1 φ
+

i ≤ |ψ−|+
∑c+

i=1 ψ
+

i < |κ−|+
∑c+

i=1 κ
+

i

and the column is positive-exceptional. �

To state our bound on the number of exceptional columns we need the

statistics on partitions in the following two definitions.

Definition 12.15. Given a partition ν and R ∈ N, we define BR(ν) =

|ν| −RνR.

In the general setting of §12.7 this statistic is B+

R(ν), and B−R(ν) is the

row version of Definition 12.15 needed when (κ−, κ+) has sign −1.

Equivalently BR(ν) is the number of boxes (i, j) of [ν] such that either

i > R or ν ′j < R; these are precisely the boxes not in the top R positions of

a column of height at least R. We shall use many times below that

BR
(
ν +M(1R)

)
= BR(ν) (12.6)

for all M ∈ N0, as can be seen from Figure 12.1.
. .
.

. .
.

...

...

R

νR M

Figure 12.1. The partition ν + M(1R) with the boxes not in the top R

positions of a column of height at least R shaded. These are the boxes

counted byBR
(
ν+M(1R)

)
. The diagram also shows thatBR

(
ν+M(1R)

)
=

BR(ν) and that we can visualize the boxes added by the summand M(1R)

as lying in columns νR + 1, . . . , νR +M .

Note also that if T is a plethystic semistandard signed tableau of outer

shape ν and inner shape µ/µ? then, by Lemma 4.4, the contribution from

the boxes counted by BR(ν) in this tableau to the signed weight of T is at

most

BR(ν)
(
ω`−(τ/τ?)

−, ω`−(τ/τ?)
+
)

(12.7)

where
(
ω−` (µ/µ?), ω

+

` (µ/µ?)
)

is the greatest signed weight of Definition 4.3.

Definition 12.16. Given a skew partition µ/µ? and `− ∈ N0 and c+ ∈
N0, we define A−(µ/µ?) = |ω`−(µ/µ?)

−| and A+(µ/µ?) = |ω`−(µ/µ?)
−| +∑c+

i=1 ω`−(µ/µ?)
+

i .
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Note that A−(µ/µ?) is the number of negative entries in the `−-negative

greatest tableau t`−(µ/µ?) of signed weight
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
; as

we saw in Lemma 4.4 this is the greatest signed weight in the `−-signed

dominance order (see Definition 4.1) of a semistandard signed tableau of

shape µ/µ?. In particular, no semistandard signed tableau of shape µ/µ?
with entries from

{
−1, . . . ,−`−

}
can have more than A−(µ/µ?) negative

entries. The set PSSYTκ

(
ν + M(1R), µ/µ?

)
(π−,π+) in the following lemma

is defined in Definition 12.6.

Lemma 12.17 (Bound on exceptional columns). Let ν be a partition. Let

(κ−, κ+) be a strongly c+-maximal signed weight of shape µ/µ?, size R and

sign +1. Fix `− = `(κ−). Let (λ−, λ+) and (π−, π+) ∈ W`− ×W be signed

weights. Let

T ∈ PSSYTκ

(
ν +M(1R), µ/µ?

)
(π−,π+).

If (π−, π+) � (λ−, λ+) +M(κ−, κ+) then T has at most

(i)
∑`(λ+)

i=`(κ+)+1
λ+

i large-exceptional columns;

(ii) BR(ν)A−(µ/µ?) + νR|κ−| − |λ−| negative-exceptional columns;

(iii) BR(ν)A+(µ/µ?) + νR
(
|κ−| +

∑c+

i=1 κ
+

i

)
−
(
|λ−| +

∑c+

i=1 λ
+

i

)
positive-

exceptional columns that each are neither large-exceptional nor negative-

exceptional.

Proof. Consider the integer entries of the inner µ/µ?-tableaux in T . Ex-

actly
∑`(λ+)

i=`(κ+)+1
π+

i of these entries are strictly greater than `(κ+). Since

(π−, π+) � (λ−, λ+) +M(κ−, κ+), we have

`(λ+)∑
i=`(κ+)+1

π+

i ≤
`(λ+)∑

i=`(κ+)+1

λ+

i .

Therefore there at most
∑`(λ+)

i=`(κ+)+1
λ+

i such entries. Now (i) follows since, by

Definition 12.10(a), each large-exceptional column has at least one of them.

By Lemma 12.14, each remaining exceptional column is either positive-

exceptional or negative-exceptional.

To prove (ii) and (iii), we consider the integer entries of T in the sets

{−1, . . . ,−`−} and {−1, . . . ,−`−, 1, . . . , c+}, respectively, and the inner µ/µ?-

tableaux in which they lie. There are BR(ν) such entries not lying in the

top R boxes of a column having at least R boxes. By the remark immediately

before this lemma, the µ/µ?-tableaux in these boxes have between them, at

most BR(ν)A−(µ/µ?) entries in {−1, . . . ,−`−}. Moreover, by Lemma 4.4,

each such µ/µ?-tableau has signed weight bounded above (in the `−-signed

dominance order in Definition 4.1) by
(
ω`(κ−)(µ/µ?)

−, ω`(κ−)(µ/µ?)
+
)
, and

so there are at most BR(ν)A+(µ/µ?) entries in {−1, . . . ,−`−, 1, . . . , c+} in

these µ/µ?-tableaux. Each remaining µ/µ?-tableau entry lies in the top R

boxes of a column of T having at least R boxes. As can be seen from

Figure 12.1, there are νR +M such columns.

For (ii), suppose that E−(T ) of these columns are negative-exceptional. In

a non-negative-exceptional column whose top R entries have signed weight
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(φ−, φ+), we have, by Definition 12.10(b), |φ−| = |κ−|. Hence the µ/µ?-

tableaux in the top R rows of the non-negative-exceptional columns have,

between them, exactly
(
νR +M − E−(T )

)
|κ−| entries in {−1, . . . ,−`−}. By

(4.2) in Lemma 4.13, in each negative-exceptional column there are at most

|κ−| − 1 entries in {−1, . . . ,−`−}. Summing these bounds gives

`−∑
i=1

π−i ≤ BR(ν)A−(µ/µ?) +
(
νR +M − E−(T )

)
|κ−|+ E−(T )

(
|κ−| − 1

)
= BR(ν)A−(µ/µ?) + (νR +M)|κ−| − E−(T ).

On the other hand, since (π−, π+) � (λ−, λ+) +M(κ−, κ+) we have

|π−| ≥ |λ−|+M |κ−|.
Combining the two displayed inequalities and cancelling M |κ−| we get

E−(T ) ≤ BR(ν)A−(µ/µ?) + νR|κ−| − |λ−|
as required.

For (iii), suppose there are E+(T ) exceptional columns of T of height

at least R that are not large-exceptional and not negative-exceptional. By

Lemma 12.14(ii) these columns are positive-exceptional. Let (φ−, φ+) be

the signed weight of such a column. Using (4.3) in Lemma 4.13 and Defi-

nition 12.10(c), we have |φ−| +
∑c+

i=1 φ
+

i < |κ−| +
∑c+

i=1 κ
+

i . The analogous

inequalities are therefore

|π−|+
c+∑
i=1

π+

i ≤ BR(ν)A+(µ/µ?) + (νR +M)
(
|κ−|+

c+∑
i=1

κ+

i

)
− E+(T )

and

|π−|+
c+∑
i=1

π+

i ≥ |λ
−|+

c+∑
i=1

λ+

i +M
(
|κ−|+

c+∑
i=1

κ+

i

)
.

Combining these two inequalities and cancelling M
(
|κ−|+

∑c+

i=1 κ
+

i

)
we get

E+(T ) ≤ BR(ν)A+(µ/µ?) + νR
(
|κ−|+

c+∑
i=1

κ+

i

)
− |λ−| −

c+∑
i=1

λ+

i

again as required. �

Motivated by this result we make the following definition. The statistics

BR(ν), A−(µ/µ?) and A+(µ/µ?) are defined in Definitions 12.15 and 12.16.

Definition 12.18. Let ν be a non-empty partition. Let (κ−, κ+) be a

strongly c+-maximal signed weight of shape µ/µ?, size R and sign +1. Let

λ be a partition of |ν||µ/µ?|. Fix `− = `(κ−). Define

E− = BR(ν)A−(µ/µ?) + νR|κ−| − |λ−|,

E+ = BR(ν)A+(µ/µ?) + νR
(
|κ−|+

∑c+

i=1 κ
+

i

)
−
(
|λ−|+

∑c+

i=1 λ
+

i

)
and if R ≥ 2,

Ec+,(κ−,κ+)(ν, µ/µ? : λ) = max
(
E− + E+ +

∑`(λ+)
i=`(κ+)+1

λ+

i , 0
)
.
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If R = 1 we instead define Ec+,(κ−,κ+)(ν, µ/µ? : λ) = 0.

Note that since R = (|κ−| + |κ+|)/|µ/µ?|, there is no need to state R

explicitly in the definition of Ec+,(κ−,κ+)(ν, µ/µ? : λ).

Corollary 12.19. Let ν be a partition. Let (κ−, κ+) be a strongly c+-

maximal signed weight of shape µ/µ?, size R and sign +1. Let λ be an(
`(κ−), `(κ+)

)
-large partition. Suppose that π�· λ⊕M(κ−, κ+) in the `(κ−)-

twisted dominance order. If T ∈ PSSYTκ(ν + M(1R), µ/µ?)(π−,π+) then T

has at most Ec+,(κ−,κ+)(ν, µ/µ? : λ) exceptional columns.

Proof. By Lemma 8.6 the `(κ−)-decomposition of λ is 〈λ−+Mκ−, λ++Mκ+〉.
Therefore π�· λ ⊕M(κ−, κ+) is equivalent, by the definition of the `(κ−)-

twisted dominance order in Definition 6.6, to (π−, π+) � (λ− + Mκ−, λ+ +

Mκ+). If R ≥ 2 the corollary is now immediate from Lemma 12.17, given

the definition of Ec+,(κ−,κ+)(ν, µ/µ? : λ) in Definition 12.18. When R = 1 it

follows from Remark 12.11. �

See Example 12.22 for the bound in this corollary in the running example

of the ‘signed’ case begun in Example 12.13.

Example 12.20. Continuing our running ‘unsigned’ example (see Exam-

ples 12.8, 12.9 and 12.12), let (κ−, κ+) be the strongly 1-maximal signed

weight
(
∅, (4, 1, 1)

)
of shape (2), size 3 and sign +1. (Note that this size

can be computed directly from
(
∅, (4, 1, 1)

)
knowing the shape using the

remark immediately after Definition 12.18.) Thus µ/µ? = (2)/∅ and R = 3.

We have `− = 0 and c+ = 1. Generalizing slightly, to show more clearly the

effect of columns of height at least R in ν, let ν = (2, 1) + C(1, 1, 1). The

relevant statistics are B3

(
(2, 1) + C(1, 1, 1)

)
= 3, and, since ω0

(
(2)
)

= (2)

corresponding to the greatest tableau 1 1 , we have A−(µ/µ?) = 0 and

A+(µ/µ?) = 2. The quantities E− and E+ in Definition 12.18 are

E− = 0,

E+ = 3× 2 + 4C − 0− λ1 = 6 + 4C − λ1

and so E1,(∅,(4,1,1))

(
(2, 1), (2) : λ

)
= 0 + 6 + 4C − λ1 + λ4 + · · · for any

partition λ of 6 + 4C. Taking C = 0 and λ = (4, 2) as earlier we have

E1,(∅,(4,1,1))

(
(2, 1), (2) : (4, 2)

)
= 2 and so, by Lemma 12.17, a

(
∅, (4, 1, 1)

)
-

adapted plethystic semistandard signed tableaux lying in the set

PSSYT(∅,(4,1,1))

(
(2, 1) +M(1, 1, 1), (2)

)
(∅,π+)

where π+ � (4, 2) +M(4, 1, 1) may have at most two exceptional columns.

For a general C, we note that if λ = (4, 2) +C(4, 1, 1) then λ1 = 4C+ 4 and

so

E1,(∅,(4,1,1))

(
(2, 1) + C(1, 1, 1), (2):(4, 2) + C(4, 1, 1)

)
= 2

giving the same bound; this is expected from the proof of Lemma 12.17,

because the contribution (4, 1, 1) to λ can only come from a typical column,

equal to the plethystic semistandard signed tableau shown in the margin.

Of course if C is large and λ is not of this special form then there may be

1 1

1 2

1 3
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many more exceptional columns.

We now show by a direct argument that if π+ � (4, 2) + M(4, 1, 1) and

T ∈ PSSYT(∅,(4,1,1))

(
(2, 1) + M(1, 1, 1), (2)

)
(∅,π+)

then T has at most one

exceptional column. Thus as is usually the case, the bound from Corol-

lary 12.19 is not optimal. The key observation is that each typical column

contain four 1s as entries of its inner (2)-tableaux, and since the maximum

positive entry is 3 and there are no negative entries, a column that is not typ-

ical, i.e. not equal to the plethystic semistandard signed tableau T(∅,(4,1,1))

shown earlier in the margin, has at most three 1s. The three boxes in T not

in columns of length 3 contribute at most five 1s. (This can easily be seen

from the tableaux in Example 12.8.) Therefore if there are N non-typical

columns, T has at most 4M −N + 5 entries of 1. On the other hand, since

π+�(4, 2)+M(4, 1, 1), we have π+

1 ≥ 4+4M . Therefore 4M−N+5 ≥ 4+4M

and so N ≤ 1. Since exceptional columns are non-typical, this implies there

is at most one exceptional column, as claimed, and moreover, this excep-

tional column is positive-exceptional. Since the signed weight of the column

is not dominated by (∅, (4, 1, 1)
)
, it is necessarily equal to the plethystic

semistandard signed tableau T(∅,(3,3)) shown in the margin, defined by the

1 1

1 2

2 2

strongly 2-maximal semistandard signed tableau family of signed weight(
∅, (3, 3)

)
. We continue this line of argument in Example 12.26.

We finish this example in Example 12.26 below.

12.5. Signed weight bound in the `−-signed dominance order. We

now turn the bound on the number of exceptional columns in Lemma 12.17

into an upper bound on signed weights in the `−-signed dominance order

in Definition 4.1. We continue to simplify the exposition by assuming

the strongly maximal signed weight has sign +1. See §12.7 for the mod-

ifications for sign −1. Recall from Definition 4.3 and Lemma 4.4 that(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

is the greatest signed weight in the `−-signed

dominance order of a semistandard signed tableau of shape µ/µ?. The

set PSSYTκ

(
ν + M(1R), µ/µ?

)
(π−,π+) is defined in Definition 12.6. Small

columns were defined in Definition 12.10 and the statistic BR(ν) in Defini-

tion 12.15. An example is given after the proposition.

Proposition 12.21. Let ν be a partition Let (κ−, κ+) be a strongly c+-

maximal signed weight of shape µ/µ?, size R and sign +1. Fix `− = `(κ−).

Let µ/µ? be a skew partition. Set E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). Let M ∈ N0.

Suppose that T ∈ PSSYTκ

(
ν +M(1R), µ/µ?

)
(π−,π+) where

(π−, π+) � (λ−, λ+) +M(κ−, κ+)

in the `−-signed dominance order. Suppose that T has d small columns

and that their top R boxes have signed weights (φ−1 , φ
+

1 ), . . . , (φ−d , φ
+

d ). If

M ≥ −νR + d+ E,

(π−, π+) �
(
BR(ν) + ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+ (φ−1 , φ
+

1 ) + · · ·+ (φ−d , φ
+

d ) +
(
νR − d− E +M

)
(κ−, κ+).
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and if M ≥ E − νR, the weaker bound

(π−, π+) �
(
BR(ν)+ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
+
(
νR−E +M

)
(κ−, κ+)

also holds.

Proof. The second bound on (π−, π+) follows easily from the first since, by

the definition of small in Definition 12.18, we have (φ−i , φ
+

i ) � (κ−, κ+) for

all i, and so the first bound is maximized when d = 0. It remains to prove

the first bound.

If R = 1 then by Remark 12.11, (κ−, κ+) =
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

and there are no exceptional columns. The claim is therefore that

(π−, π+) �
(
B1(ν) + ν1 − d+M

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+ (φ−1 , φ
+

1 ) + · · ·+ (φ−d , φ
+

d ).

By Lemma 4.4, each box that is not the topmost box in one of the d non-

small columns of T contributes at most
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

to the

signed weight of T . There are B1

(
ν + (M)

)
+ ν1− d+M such boxes. Since

by (12.6), we have B1

(
ν + (M)

)
= B1(ν), the first bound now follows.

Now suppose that R ≥ 2. Suppose that T has e exceptional columns, so T

has eR boxes in the top R rows of exceptional columns. By (12.6) and (12.7)

and Lemma 4.4, these boxes, together with the BR
(
ν + M(1R)

)
= BR(ν)

boxes not in the top R positions of a column of length R, contribute at most(
BR(ν) + eR

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

(12.8)

d

small exc.

e

typical

. .
.

. .
.

...

...

R

νR+M−e−d

Figure 12.2. A plethystic semistandard signed tableau of outer shape

ν + M(1R) showing the contributions to the signed weight identi-

fied in the proof of Proposition 12.21. Each of the BR(ν) + eR

shaded boxes has an inner µ/µ?-tableau whose contribution is bounded

by
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
. The hatched small columns contribute

(φ−j , φ
+
j ) for 1 ≤ j ≤ d. The white boxes are in typical columns, the top R

boxes in each contributing (κ−, κ+). (It is possible that some of the e excep-

tional columns appear to the left of the d small columns.) Note that as M

varies, all but a constant number of boxes are in typical columns and so

their signed weight (per column) is bounded by the stronger bound (κ−, κ+)

rather than the weaker bound (per box) from
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
.
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to the signed weight of T . Each of the νR − d − e + M columns of

height at least R that is both non-exceptional and non-small is typical (see

Lemma 12.14) and so contributes (κ−, κ+) to the signed weight of T . There

are also d small columns which contribute (φ−1 , φ
+

1 ) + · · ·+ (φ−d , φ
+

d ). Taken

together these columns therefore contribute(
νR +M − e− d

)
(κ−, κ+) + (φ−1 , φ

+

1 ) + · · ·+ (φ−d , φ
+

d ) (12.9)

to the signed weight of T . This is shown diagrammatically in Figure 12.2.

The sum of (12.8) and (12.9) is an upper bound on the signed weight

of T . Since (κ−, κ+) is the signed weight of a tableau of outer shape (1R)

and inner shape µ/µ?, it follows, again by Lemma 4.4, that

(κ−, κ+) �R
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
.

We conclude that (for fixed d), this upper bound is maximized in the `(κ−)-

signed dominance order when e is as large as possible. By Lemma 12.17 we

have e ≤ Ec+,(κ−,κ+)(ν, µ/µ? : λ). Therefore we obtain an upper bound on

(π−, π+) by substituting E for e in the sum of (12.8) and (12.9). (Note that

by hypothesis νR − d − E + M ≥ 0 so the right-hand side is a valid signed

weight, having non-negative entries.) This proves the first bound. �

Example 12.22. As in Example 12.13 we take the strongly 1-maximal

signed weight
(
(2, 2), (3, 1)

)
of shape (4), size 2 and sign +1, and take ν =

(2, 1). We have BR(ν) = B2

(
(2, 1)

)
= 1. Since

(
ω`−
(
(4)
)−
, ω`−

(
(4)
)+)

=(
(1, 1), (2)

)
, and from Definition 12.16 we have A−

(
(4)
)

= 2, A+
(
(4)
)

= 4

and hence Definition 12.18 gives

E− = 1.2 + 1.4− |λ−| = 6− |λ−|,
E+ = 1.4 + 1.(4 + 3)−

(
|λ−|+ λ+

1

)
= 11− |λ−| − λ+

1 .

Therefore if λ is a partition of 12 having exactly k parts of size at least 2,

E1,((2,2),(3,1))

(
(2, 1), (4) : λ

)
= 17− 2|λ−| − (λ1 − 2) + λ+

3 + · · ·
= 17− 2|λ−| − (λ1 − 2) + (λ3 − 2) + · · ·+ (λk − 2),

or 0 is this is negative. We denote this quantity by E as usual.

The plethystic semistandard signed tableaux relevant to the plethysm

coefficients 〈s(2,1)+M(1,1) ◦ s(4), sλ⊕M((2,2),(3,1)〉 for M ∈ N0 lie in the set

PSSYT((2,2),(3,1))

(
(2, 1) +M(13), (4)

)
(π−,π+). Since νR = ν2 = 1, the weaker

bound from Proposition 12.21 is that if M ≥ E−1 and (π−, π+)�(λ−, λ+)+

M
(
(2, 2), (3, 1)

)
then

(π−, π+) � (1 + 2E)
(
(1, 1), (2)

)
+ (1− E +M)

(
(2, 2), (3, 1)

)
in the 2-signed dominance order. In the first case in the earlier Exam-

ple 12.13 when λ = (8, 3, 1) with 2−-decomposition
〈
(3, 2), (6, 1)

〉
we have

Then E− = 1, E+ = 0 and E = 1 and so the upper bound in the 2-signed

dominance order is that if (π−, π+) �
(
(3, 2), (6, 1)

)
+M

(
(2, 2), (3, 1)

)
then

(π−, π+) � 3
(
(1, 1), (2)

)
+M

(
(2, 2), (3, 1)

)
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=
(
(3, 3), (6)

)
+M

(
(2, 2), (3, 1)

)
for M ≥ 0. If instead λ = (6, 3, 3) with 2−-decomposition

〈
(3, 3), (4, 1, 1)

〉
then E− = 0, E+ = 1 but because the proof of Lemma 12.17 allows, as it

must in general, one exceptional column for each integer entry in {3, 4, . . .},
of which there are λ+

3 = 1, we have E = 0 + 1 + 1 = 2 and the upper

bound in the 2-signed dominance order is that if (π−, π+)�
(
(3, 3), (4, 1, 1)

)
+

M
(
(2, 2), (3, 1)

)
then

(π−, π+) � (1 + 2.2)
(
(1, 1), (2)

)
+ (1− 2 +M)

(
(2, 2), (3, 1)

)
=
(
(3, 3), (7,−1)

)
+M

(
(2, 2), (3, 1)

)
for M ≥ 1, where just for this inequality, to facilitate comparison, we allow

a negative entry in what would normally be a signed weight. Note in each

case that the upper bound is conditional on the lower bound, as we saw is

necessary in Example 12.9.

We conclude this example in Example 13.6 in which small columns are

also relevant.

12.6. Signed weight bound in the `-twisted dominance order. We

are now almost ready to prove Corollary 12.24; it is the analogue of Proposi-

tion 9.7 and Corollary 9.10. First though we must address the technical point

that to apply Corollary 8.20 when `− 6= 0, we require an (`(κ−) + 1, `(κ+)
)
-

large partition as the upper bound.

Lemma 12.23. Let (κ−, κ+) be a strongly maximal signed weight. Fix `− =

`(κ−). Let µ/µ? be a skew partition. Given any C ∈ N and W ∈ N0, the

pair

C〈κ−, κ+〉+W
〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉

is the `−-decomposition of the (`− + 1, `(κ+)
)
-large partition

κ⊕ (C − 1)(κ−, κ+)⊕W
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
−
)

where κ is the partition with `−-decomposition 〈κ−, κ+〉.

Proof. Proposition 6.5 states that 〈κ−, κ+〉 is the `−-decomposition of an(
`− + 1, `(κ−)

)
-large partition and so κ is well-defined. By Remark 6.2, κ

is
(
`(κ−), `(κ+)

)
-large. Since the parts of

〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉

are

partitions by Lemma 4.4, the same holds for

C
〈
κ−, κ+

〉
+W

〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉
.

By Lemma 8.6 and the following remark, this pair is the `−-decomposition

of the partition κ ⊕ (W − 1)(κ−, κ+) ⊕W
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
−
)
. This

partition is
(
`− + 1, `(κ+)

)
-large because κ is. �

Since, by part of Remark 6.2 we have ∅⊕ (κ−, κ+) = κ, one could replace

κ⊕ (C − 1)〈κ−, κ+〉 in the statement of this lemma with ∅⊕C〈κ−, κ+〉; we

prefer the lemma as stated, since then it does not depend on the technical

point that we join first in the adjoin operation defined in (3.1).
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As some motivation for the definition of ω in the following corollary, we

recall from Example 12.9 that to get suitable upper bounds in a stable

partition system when λ = (4, 1, 1) and (κ−, κ+) =
(
∅, (4, 1, 1)

)
we had

to begin with λ ⊕ (κ−, κ+), rather than λ, because there could be a single

exceptional column. The partition κ is well defined by Proposition 6.5.

Corollary 12.24 (Outer Twisted Weight Bound). Let κ be a strongly c+-

maximal weight of shape µ/µ?, size R and sign +1. Fix `− = `(κ−). Let

ν be a partition and set ν(M) = ν + (MR) for M ∈ N0. Let λ be an(
`−, `(κ+)

)
-large partition of |µ/µ?||ν|. Let κ be the unique partition with

`−-decomposition 〈κ−, κ+〉. Set E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). Define

ω =

{
κ⊕ (BR(ν) + ER)

(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

κ⊕ (BR(ν) + ER)
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
⊕ (νR − E − 1)(κ−, κ+)

choosing the case according to whether E ≥ νR or E < νR. Then ω is an(
`− + 1, `(κ+)

)
-large partition of{

|λ|+ (E − νR + 1)Rm if E ≥ νR
|λ| if E < νR.

Suppose that σ�· λ⊕M
(
κ−, κ+

)
in the `−-twisted dominance order. If sσ is

a constituent of the plethysm sν(M) ◦ sµ/µ? then

σ�·
{
ω ⊕

(
−(E − νR + 1) +M

)
(κ−, κ+) if E ≥ νR

ω ⊕M(κ−, κ+) if E < νR

for all M ∈ N0 such that M > E − νR.

Proof. Let m = |µ/µ?| and let n = |ν|. By Definition 12.15 we have

BR(ν) + ER =

{
|ν|+ (E − νR)R if E ≥ νR
|ν| − (νR − E)R if E < νR.

Hence, using that |κ−|+ |κ+| = Rm and |ω`−(µ/µ?)
−|+ |ω`−(µ/µ?)

+| = m,

we obtain

|ω| =

{
Rm+ (|ν|+ (E − νR)R)m if E ≥ νR
Rm− (νR − E)Rm+mn+ (νR − E − 1)Rm = mn if E < νR

which, since |λ| = |ν|Rm, shows that the size of ω is as claimed. By

Lemma 12.23, ω is
(
`(κ−) + 1, `(κ+)

)
-large. Note that, by Lemma 12.23,

〈ω−, ω+〉 = κ+ C〈κ−, κ+〉
+ (BR(ν) + ER)

〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉 (12.10)

where C = 0 if E ≥ νR and C = νR −E − 1 otherwise. We now follow part

of the proof of Proposition 9.7. By Lemma 6.12, sσ is a direct summand of

eσ−hσ+ . Hence, by Proposition 5.6 we have

|PSSYT
(
ν +M(1R), µ/µ?

)
(σ−,σ+)

∣∣ = 〈eσ−hσ+ , sν+M(1R) ◦ sµ/µ?〉 ≥ 1.
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By hypothesis σ�· λ ⊕ M
(
κ−, κ+

)
. Hence, by the definition of the `−-

twisted dominance order in Definition 6.6, the largeness assumption on λ

and Lemma 8.6, we have

〈σ−, σ+〉� 〈λ−, λ+〉+M(κ−, κ+).

Suppose that E ≥ νR. Then applying the weaker second bound in Propo-

sition 12.21 to the hypothesis PSSYTκ

(
ν + M(1R), µ/µ?

)
(σ−,σ+) 6= ∅ we

obtain

(σ−, σ+) � (κ−, κ+) +
(
BR(ν) + ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+
(
νR − E +M − 1

)
(κ−, κ+)

= (ω−, ω+) +
(
νR − E +M − 1

)
(κ−, κ+)

for M > E − νR. By (12.10) this is equivalent to

σ �· ω ⊕
(
νR − E +M − 1

)
(κ−, κ+),

as required. The proof in the remaining case E < νR is entirely analogous,

now using Proposition 12.21 to get

(σ−, σ+) � (νR − E)(κ−, κ+) +
(
BR(ν) + ER

)〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉

+M(κ−, κ+)

where again, since we are in the case νR − E ≥ 1, the first two summands

are the `−-decomposition of the partition ω. �

Remark 12.25. If R = 1 then E = 0 and, as we show in §14.1, the

conclusion of Corollary 12.24 reduces to σ � ω
(n)
`− (µ/µ?) where ω

(n)
`− (µ/µ?)

is the partition with `−-decomposition n〈ω`−(µ/µ?)
−, ω`−(µ/µ?)

+〉 defined

in Definition 9.6. The special case of the corollary is therefore logically

equivalent to Proposition 9.7. This should be expected, because as seen in

Example 12.5 using Lemma 4.17, the unique strongly maximal signed weight

of shape µ/µ? and size 1 is the signed weight of the greatest semistandard

signed tableau t`−(µ/µ?), namely (ω`−(µ/µ?)
−, ω`−(µ/µ?)

+).

The upper bound in Corollary 12.24 is usually far from tight.

Example 12.26. We finish our first ‘unsigned’ running example (see Ex-

amples 12.8, 12.9, 12.12 and 12.20), with the strongly 1-maximal signed

weight
(
∅, (4, 1, 1)

)
of shape (2) and size 3, so µ/µ? = (2)/∅. As in Ex-

ample 12.20 we take ν = (2, 1) + C(1, 1, 1) and λ = (4, 2) + C(4, 1, 1).

We saw in this example that BR(ν) = B3

(
(2, 1) + C(1, 1, 1)

)
= 3 and

E1,(∅,(4,1,1))

(
(2, 1) + C(1, 1, 1), (2); (4, 2) + C(4, 1, 1)

)
= 2 for all C ∈ N0.

Since κ = κ+ = (4, 1, 1) we have `(κ−) = 0. Since ω0

(
(2)
)−

= ∅ and

ω0

(
(2)
)+

= (2), the partition ω in Corollary 12.24 is therefore

ω =

{
(4, 1, 1) + (3 + 2.3)(2)

(4, 1, 1) + (3 + 2.3)(2) + (C − 3)(4, 1, 1)

choosing the case according to whether 2 ≥ C or 2 < C. Remembering

that the 0-twisted dominance order is simply the usual dominance order,
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the conclusion of the corollary is that if σ � (4, 2) + C(4, 1, 1) + M(4, 1, 1)

and PSSYTκ

(
(2, 1) + (C +M)(1, 1, 1), (2)

)
(∅,σ)

6= ∅ then

σ �

{
(4, 1, 1) + 9(2) + (C − 3 +M)(4, 1, 1)

(4, 1, 1) + 9(2) + (C − 3)(4, 1, 1) +M(4, 1, 1)

= (22, 1, 1) + (C +M − 3)(4, 1, 1) (12.11)

for all M > 2 − C. (The unification of the two cases is expected for the

same reason mentioned in Example 12.20 that columns of signed weight(
∅, (4, 1, 1)

)
are typical.) We verify this bound directly when C = 0. Recall

from after Definition 3.5 that wt(t) is the positive part of the signed weight

of a tableau having only positive integer entries. We saw in Example 12.20

that if π+ � (4, 2) +M(4, 1, 1) then there is at most one non-typical column

in any T ∈ PSSYTκ

(
(2, 1)+(M,M,M), (2)

)
(∅,π+)

, and this column is large-

exceptional. Hence T has the form

1 1

1 2

1 3

. . .

1 1 1 1

1 2 1 2

1 3 t

1 1 u

v

where, by counting 1s as in Example 12.20, we require 4M + 1 + wt(t)1 +

wt(u)1 + wt(v)1 ≥ 4M + 4. Similarly, by counting entries in {1, 2} and

{1, 2, 3}, we obtain the necessary and sufficient condition wt(t) + wt(u) +

wt(v) � (3, 2, 1). If there is an exceptional column then t = 2 2 and

u = 1 1 and either v = 1 2 or v = 1 3 . If v = 1 2 then T has

weight (M − 1)(4, 1, 1) + (3, 3) + (5, 1) = (16, 6, 2) + (M − 3)(4, 1, 1) and

if v = 1 3 then, very similarly T has weight (16, 5, 3) + (M − 3)(4, 1, 1).

Otherwise there are two cases:

(a) t = 1 3 and either u = 1 2 , v = 1 2 or u = 1 1 , v = 2 2 ;

(b) t = 2 3 and u = 1 1 and v = 1 2 ;

in which, once again, T has weight (M − 1)(4, 1, 1) + (4, 1, 1) + (4, 2) =

(M − 1)(4, 1, 1) + (3, 2, 1) + (5, 1) = (16, 5, 3) + (M − 3)(4, 1, 1). Thus, as

expected from the remark before this example, the upper bound (12.11) is

easily met.

See Example 14.10 for the stable plethysm from the example above. For a

further ‘signed’ example of Corollary 12.24, used in the context of the proof

of Theorem 1.2, see Example 13.6, which continues the running example in

Examples 12.13 and 12.22.

12.7. Results for both signs. We now give the analogous definitions and a

combined final result applicable to strongly maximal signed weights of either

sign. We have already defined exceptional rows in Definition 12.10. In the

following definition B+

R(ν) is the same as BR(ν) defined in Definition 12.15.

Definition 12.15. (Both signs.) Given a partition ν, R ∈ N and a sign

±1, let B+

R(ν) be the number of boxes (i, j) of [ν] such that either i > R or
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ν ′j < R and let B−R(ν) be the number of boxes (i, j) of [ν] such that either

j > R or νi < R.

In the following definition Ec+,(κ−,κ+)(ν, µ/µ? : λ) is as already defined

in Definition 12.18 if (κ−, κ+) has sign +1. For ease of reference we recall

from Definition 12.16 that we have defined A−(µ/µ?) = |ω`−(µ/µ?)
−| and

A+(µ/µ?) = |ω`−(µ/µ?)
−| +

∑c+

i=1 ω`−(µ/µ?)
+

i .

Definition 12.18. (Both signs.) Let ν be a partition. Let (κ−, κ+) be a

strongly c+-maximal signed weight of shape µ/µ? and size R where R ≥ 2.

Let λ be a partition of |ν||µ/µ?|. Fix `− = `(κ−). Set ν+

R = νR and ν−R = ν ′R.

Define

E− = B±R(ν)A−(µ/µ?) + ν±R |κ−| − |λ−|,

E+ = B±R(ν)A+(µ/µ?) + ν±R
(
|κ−|+

∑c+

i=1 κ
+

i

)
− |λ−| −

∑c+

i=1 λ
+

i

where the sign in the four appearances of ± is the sign of (κ−, κ+). Define

Ec+,(κ−,κ+)(ν, µ/µ? : λ) = max
(
E− + E+ +

∑`(λ+)
i=`(κ+)+1

λ+

i , 0
)
.

If R = 1 we instead define Ec+,(κ−,κ+)(ν, µ/µ? : λ) = 0.

Again we remind the reader that the partition κ in the following corollary

is well-defined by Proposition 6.5.

Corollary 12.24 (Outer Twisted Weight Bound). (Both signs.) Let ν

be a partition. Let (κ−, κ+) be a strongly c+-maximal signed weight of shape

µ/µ? and size R. Fix `− = `(κ−). Let λ be an
(
`−, `(κ+)

)
-large partition of

|ν||µ/µ?|. Set ν+

R = νR and ν−R = ν ′R. Let

ν(M) =

{
ν +M(1R) if (κ−, κ+) has sign +1

ν t (RM ) if (κ−, κ+) has sign −1.

Set E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). Suppose that π�· λ⊕M(κ−, κ+) in the `−-

twisted dominance order and that T ∈ PSSYTκ(ν(M), µ/µ?)(π−,π+). Through-

out ± is the sign of (κ−, κ+).

(i) If (κ−, κ+) has sign +1 then T has at most E exceptional columns and

if (κ−, κ+) has sign −1 then T has at most E exceptional rows.

(ii) Let M ≥ −ν±R + E. If T has d small columns whose top R boxes

have signed weights (φ−1 , φ
+

1 ), . . . , (φ−d , φ
+

d ) (when (κ−, κ+) has sign +1) or d

small rows whose leftmost R boxes have signed weights (φ−1 , φ
+

1 ), . . . , (φ−d , φ
+

d )

(when (κ−, κ+) has sign −1) then

(π−, π+) �
(
B±R(ν) + ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+ (φ−1 , φ
+

1 ) + · · ·+ (φ−d , φ
+

d ) +
(
ν±R − d− E +M

)
(κ−, κ+)

in the `−-signed dominance order for M ≥ −ν±R + d + E and the weaker

bound

(π−, π+) �
(
B±R(ν) + ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

+
(
ν±R − E +M

)
(κ−, κ+)

for M ≥ −ν±R + E also holds.
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(iii) Let κ be the unique partition with `−-decomposition 〈κ−, κ+〉. Define

ω =

{
κ⊕ (B±R(ν) + ER)

(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

κ⊕ (B±R(ν) + ER)
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
⊕ (ν±R − E − 1)(κ−, κ+)

choosing the case according to whether E ≥ ν±R or E < ν±R . Then ω is an(
`− + 1, `(κ+)

)
-large partition of |λ|+ SR|µ/µ?| where

S =

{
E − ν±R + 1 if E ≥ ν±R
0 if E < ν±R .

Suppose that σ�· λ⊕M
(
κ−, κ+

)
in the `−-twisted dominance order. If sσ is

a constituent of the plethysm sν(M) ◦ sµ/µ? then

σ�·
{
ω ⊕

(
−(E − ν±R + 1) +M

)
(κ−, κ+) if E ≥ ν±R

ω ⊕M(κ−, κ+) if E < ν±R

for all M ∈ N0 such that M > E − ν±R .

Proof. In (iii) the size of ω and that ω is
(
`−+1, `(κ+)

)
-large follow exactly as

in Corollary 12.24; note that the sign of (κ−, κ+) is irrelevant to this first part

of the proof. Part (i) is proved in Corollary 12.19 when (κ−, κ+) has sign +1;

the proof is precisely analogous for sign −1, using the modified definitions

above and the obvious modifications of Lemma 12.17 and Remark 12.11.

When the sign is +1, (ii) is the stronger bound in Proposition 12.21, and (iii)

is Corollary 12.24. Again in all three cases the proof is precisely analogous

for sign −1. �

13. Proof of Theorem 1.2

In this section we prove Theorem 1.2 using the Signed Weight Lemma

(Lemma 7.3). We begin with the second part of the theorem where the

stable multiplicity is zero in §13.1. In §13.2 we construct a suitable stable

partition system. Then in §13.3 we prove a final preliminary lemma on the

length of signed weights, closely analogous to a well known result on the

length of vectors in the Type A root system. Then finally in §13.5 we prove

Theorem 13.7 which restates Theorem 1.2 with an explicit bound.

13.1. The vanishing case of Theorem 1.2. Recall from Definition 10.1

that LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
is defined whenever (η−, η+) 6� (κ−, κ+),

and so in particular, whenever (η−, η+) � (κ−, κ+). (Here � is the signed

dominance order of Definition 4.1). See Definition 12.18 in §12.7 for the

definition of Ec+,(κ−,κ+)(ν, µ/µ? : λ) in its ‘both signs’ version.

Proposition 13.1. Let ν be a partition. Let (κ−, κ+) be a strongly maximal

signed weight of size R, shape µ/µ? and sign ε. Fix `− = `(κ−). Let η−

and η+ be partitions with `(η−) ≤ `− and |η−| + |η+| = |κ−| + |κ+|. Let

`+ = max
(
`(κ+), `(η+)

)
. Let λ be an (`−, `+)-large partition of |ν||µ/µ?|.

Set ν(M) = ν + (MR) if (κ−, κ+) has sign +1 and ν(M) = ν t (RM ) if
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(κ−, κ+) has sign −1. Set ν+

R = νR and ν−R = ν ′R and let ± be the sign of

(κ−, κ+). Set E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). If (κ−, κ+) � (η−, η+) then〈
sν(M) ◦ sµ/µ? , sλ⊕M(η−,η+)

〉
= 0

for all

M >

{
LZ
(
[λ⊕ (E−ν±R+1)(η−, η+), ω]�· , (κ−, κ+), (η−, η+)

)
+(E−ν±R+1)

LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
choosing the case according to whether E ≥ ν±R or E < ν±R , where ω is the

relevant partition for the two cases taken from Corollary 12.24.

Proof. By Corollary 12.24(iii), if sσ is a constituent of sν(M) ◦sµ/µ? such that

σ�· λ⊕M(κ−, κ+) then

σ�·
{
ω ⊕

(
−(E − ν±R + 1) +M

)
(κ−, κ+) if E ≥ ν±R

ω ⊕M(κ−, κ+) if E < ν±R

for all M ∈ N0 such that M > −ν±R + E. Since (η−, η+) � (κ−, κ+) we

may apply this result taking σ = λ ⊕M(η−, η+). In the second case, when

E < ν±R , the proposition then follows by an argument very closely analogous

to the proof of Proposition 10.2; the analogue of (10.1) is that if σ↔〈σ−, σ+〉
then

(σ−, σ+) � (κ−, κ+) + (B±R(ν) + ER)(ω`−(µ/µ?)
−, ω`−(µ/µ?)

+)

+ (ν±R − E − 1)(κ−, κ+) +M(κ−, κ+)

and so, substituting (λ−, λ+) + M(η−, η+) for (σ−, σ+), as it justified by

Lemma 8.6 since (η−, η+) � (κ−, κ+), the analogue of (10.2) is

(λ−, λ+) +M(η−, η+)� (B±R(ν) + ER)(ω`−(µ/µ?)
−, ω`−(µ/µ?)

+)

+ (ν±R − E)(κ−, κ+) +M(κ−, κ+)

where since E < ν±R , we add M(κ−, κ+) to a well-defined signed weight. The

application of the inequalities is then exactly as before, giving a contradic-

tion whenever M > LZ
(
[λ, ω]�· , (κ−, κ+), (η−, η+)

)
. In the first case, when

E ≥ ν±R , we note that because of the shift in M , we now require

−(E − ν±R + 1) +M ≥ LZ
(
[λ⊕ (E − ν±R + 1)(η−, η+), ω]�· , (κ

−, κ+), (η−, η+)
)

where ω is now defined by the first case in Corollary 12.24. The argument

is otherwise the same. �

13.2. Stable partition system for Theorem 1.2. The following lemma

is the analogue of Lemma 10.3. Again we remind the reader that the statistic

statistic Ec+,(κ−,κ+)(ν, µ/µ? : λ) is defined in Definition 12.18. Here we also

use B±R(ν) from Definition 12.15; each definition is given in its ‘both signs’

versions in §12.7. The partition κ in the following lemma is well-defined by

Proposition 6.5.
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Lemma 13.2. Let ν be a partition. Let (κ−, κ+) be a strongly c+-maximal

signed weight of shape µ/µ? and size R. Fix `− = `(κ−). Let λ be an(
`−+ 1, `(κ+)

)
-large partition of |ν||µ/µ?|. Let ν±R = νR if (κ−, κ+) has sign

+1 and let ν±R = ν ′R if (κ−, κ+) has sign −1. Define

ν(M) =

{
ν +M(1R) if (κ−, κ+) has sign +1

ν t (RM ) if (κ−, κ+) has sign −1.

Set E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). Let κ be the unique partition with `−-

decomposition 〈κ−, κ+〉. Define

ω =

{
κ⊕ (B±R(ν) + ER)

(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

κ⊕ (B±R(ν) + ER)
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
⊕ (ν±R − E − 1)(κ−, κ+)

choosing the case according to whether E ≥ ν±R or E < ν±R . If E ≥ ν±R then

set S = −ν±R + E + 1 and set P(M) = ∅ for M < S and

P(M) =
[
λ⊕M(κ−, κ+), ω ⊕ (M − S)(κ−, κ+)

]
�·

if M ≥ S. If E < ν±R then set S = 0 and set

P(M) =
[
λ⊕M(κ−, κ+), ω ⊕M(κ−, κ+)

]
�·

for all M ∈ N0. Then (P(M))M∈N0 is a stable partition system with respect to

the map π 7! π⊕(κ−, κ+) and the twisted symmetric functions gπ = eπ−hπ+,

stable for M ≥ S +K where K is the maximum of

• L
(
[λ− + Sκ−, ω−]`

−
�� , κ

−
)
,

• L
(
[λ+ + Sκ+, ω+ + (|λ+|+ S|κ+| − |ω+|)]�, κ+

)
,

•
(
ω+

1 + ω+

2 − 2λ+

1 − 2Sκ+

1 + 2|λ+|+ 2S|κ+| − 2|ω+|
)
/(κ+

1 − κ
+

2 ),

•
(
max(`(λ+), `(κ+)) + |ω−| − |λ−| − S|κ−| − ω−

`−

)
/κ−

`−.

and zero. Moreover, if π ∈ P(M) and sσ is a summand of eπ−hπ+ appearing

in the plethysm sν(M) ◦ sµ/µ? then σ ∈ P(M).

Proof. By Corollary 12.24(iii) in its ‘both signs’ version in §12.7, ω is an(
`− + 1, `(κ+)

)
-large partition, of size |λ| + SR|µ/µ?|. If E < ν±R then it

is immediate from Corollary 8.20 applied with λ and ω that the partition

system (P(M))M∈N0 is stable, and since S = 0, the bounds above defining K

are exactly the bounds defined in the statement of this lemma. If E ≥ ν±R
then S = E − ν±R + 1 and we instead apply the corollary to the partitions

λ ⊕ S(κ−, κ+) and ω. Since, by Lemma 8.6 we have
(
λ ⊕ S(κ−, κ+)

)−
=

λ− ⊕ Sκ−, and so on, the result from Corollary 8.20 is that the partition

system (P(N+S))N∈N0 is stable for N ≥ K, where again K is as defined in the

statement of this lemma. Since K ≥ 0, it follows that (P(M))M∈N0 is stable

for M ≥ S + K. (The reader may easily check that Definition 7.1 permits

any finite number of the sets P(M) to be empty.) For the ‘moreover’ part

of the result, first note that by Lemma 6.12, σ�· π. By Corollary 12.24(iii)

we have σ�· ω ⊕ (M − S)(κ−, κ+). Hence σ ∈ P(M). This completes the

proof. �
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13.3. Box moving bound. Let V`−×V be the abelian group generated by

the setW`−×W of signed weights. Identifying
(
(α−1 , . . . , α

−
`−), (α+

1 , α
+

2 , . . .)
)

∈ V`−×V with
(
α−1 , . . . , α

−
`− , α

+

1 , α
+

2 , . . .) as in the definition of the `−-signed

dominance order on W`− ×W (see Definition 4.1) we define ε(j) ∈ V`− × V
for each j ∈ N by

ε
(j)
i =


1 if i = j

−1 if i = j + 1

0 otherwise.

For example if `− = 2 then ε(1) =
(
(1,−1),∅

)
, ε(2) =

(
(0, 1), (−1)

)
, ε(3) =(

(0, 0), (1,−1)
)
, and so on. Observe that the ε(j) for j ∈ N form a Z-basis for

the subgroup of V`−×V of elements of sum 0. We say that (γ−, γ+) ∈ V`−×V
is root-positive if, under this identification, it is a linear combination of the

ε(j) with non-negative coefficients. Given a root-positive element (β−, β+) ∈
V`− × V expressed uniquely in the ε(j) basis as

(β−, β+) =
∑
j∈N

bjε
(j),

we define the root-length of (β−, β+), denoted ||(β−, β+)||, by

||(β−, β+)|| =
∑
j

bj . (13.1)

Note the sum in (13.1) is a finite sum of non-negative integers. In practice,

it is more often helpful to think of each ε(j) as defining a single box move

as in the remark following Example 6.9.

Lemma 13.3. Fix `− ∈ N. Let π, σ and τ be partitions such that π�· σ�· τ .

Then τ−σ is root-positive and ||(τ−, τ+)−(σ−, σ+)|| ≤ ||(τ−, τ+)−(π−, π+)||.

Proof. By Definition 6.6 we have (σ−, σ+) � (τ−, τ+) in the `−-signed dom-

inance order on W`− × W. By Definition 4.1 this is the usual dominance

order on concatenated weights. Hence by a standard result on the domi-

nance order familiar from the Type A root system, which also follows from

the remark above about single box moves, (τ−−σ−, τ+−σ+) is root-positive.

Let

(σ− − π−, σ+ − π+) =
∑

j∈N bjε
(j)

(τ− − σ−, τ+ − σ+) =
∑

j∈N cjε
(j)

where bj , cj ≥ 0 for each j. Now (τ−−π−, τ+−π+) =
∑

j∈N(bj + cj)ε
(j) and

since bj + cj ≥ cj the remaining claim follows. �

The `−-signed dominance order on the setW`−×W of signed weights used

in the following lemma is defined in Definition 4.1.

Lemma 13.4. Let (φ−i , φ
+

i ) for 1 ≤ i ≤ d and (κ−, κ+) be signed weights

of the same size such that (φ−i , φ
+

i ) � (κ−, κ+) in the `−-signed dominance
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order for each i. Then d(κ−, κ+)−
∑d

i=1(φ−i , φ
+

i ) is root-positive and∣∣∣∣d(κ−, κ+)−
d∑
i=1

(φ−i , φ
+

i )
∣∣∣∣ ≥ d.

Proof. By Lemma 13.3, (κ−, κ+) − (φ−, φ+)i is root-positive. Write (κ− −
φ−i , κ

+ − φ+

i ) =
∑

j∈N bijε
(j) where bij ∈ N0 for all i and j. For each i, at

least one coefficient bij is non-zero, and so

d(κ−, κ+)−
d∑
i=1

(φ−i , φ
+

i ) =
∑
j∈N

d∑
i=1

bijε
(j)

where the sum of all the coefficients is at least d. �

13.4. Small columns and rows. Let (κ−, κ+) be a strongly c+-maximal

signed weight of shape µ/µ? and size R. We use ‘/’ to distinguish the cases

when (κ−, κ+) has sign +1/−1. Recall from Definition 12.10 that in each

non-exceptional column/row of a plethystic semistandard signed tableau T

of inner shape µ/µ? either the top/leftmost R boxes in the column/row form

the plethystic semistandard signed tableau T(κ−,κ+), or the column/row is

small having signed weight (φ−, φ+) such that (φ−, φ+) � (κ−, κ+) in the

`(κ−)-signed dominance order on set W`−× W defined in Definition 4.1.

The bound Ec+,(κ−,κ+)(ν, µ/µ? : λ) in the following lemma is defined in

Definition 12.18 and the statistic B±R(ν) is defined in Definition 12.15, each

in their ‘both signs’ version in §12.7.

Lemma 13.5. Let ν be a partition. Let (κ−, κ+) be a strongly c+-maximal

signed weight of shape µ/µ? and size R. Fix `− = `(κ−). Let λ be a(
`−, `(κ+)

)
-large partition of |µ/µ?||ν|. Let E = Ec+,(κ−,κ+)(ν, µ/µ? : λ). Let

ν±R = νR if (κ−, κ+) has sign +1 and let ν±R = ν ′R if (κ−, κ+) has sign −1.

Let M ∈ N0 and set

ν(M) =

{
ν +M(1R) if (κ−, κ+) has sign +1

ν t (RM ) if (κ−, κ+) has sign −1.

Let T ∈ PSSYTκ(ν(M), µ/µ?)(π−,π+) be a (κ−, κ+)-adapted plethystic semi-

standard signed tableau where (π−, π+) � (λ−, λ+) + M(κ−, κ+) in the `−-

signed dominance order on W`−×W. Set

D=
∣∣∣∣(B±R(ν)+ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
+(ν±R−E)(κ−, κ+)−(λ−, λ+)

∣∣∣∣
where in this equation the root-length is of a root-positive element. If M ∈ N0

and M ≥ D + E − ν±R then T has at most D small columns/rows.

Proof. For ease of notation set (ω−, ω+) =
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
. Sup-

pose that T has exactly d small columns/rows. The bound in the ‘both

signs’ version of Corollary 12.24(ii) states that, in the `−-signed dominance

order, (π−, π+) � (σ−, σ+) where

(σ−, σ+) =
(
B±R(ν)+ER

)
(ω−, ω+)+

d∑
i=1

(φ−i , φ
+

i )+(ν±R −E+M−d)(κ−, κ+)
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for M ≥ −ν±R + d + E and the weaker bound in the same result is that

(π−, π+) � (τ−, τ+) where

(τ−, τ+) =
(
B±R(ν) + ER

)
(ω−, ω+) + (ν±R − E +M)(κ−, κ+)

for M ≥ E − ν±R . Applying Lemma 13.3 to (π−, π+) � (σ−, σ+)(τ−, τ+) we

obtain ∣∣∣∣(τ−, τ+)− (π−, π+)
∣∣∣∣ ≥ ∣∣∣∣d(κ−, κ+)−

d∑
i=1

φi
∣∣∣∣ ≥ d. (13.2)

where the final inequality uses Lemma 13.4. On the other hand, applying

Lemma 13.3 to the chain of inequalities

(λ−, λ+) +M(κ−, κ+) � (π−, π+) � (τ−, τ+)

valid for M ∈ N0 with M ≥ −ν±R + d+ E we get∣∣∣∣(τ−, τ+)− (π−, π+)
∣∣∣∣

≤
∣∣∣∣(B±R(ν) + ER

)
(ω−, ω+) + (ν±R − E +M)(κ−, κ+)

−
(
(λ−, λ+) +M(κ−, κ+)

)∣∣∣∣
=
∣∣∣∣(B±R(ν) + ER

)
(ω−, ω+) + (ν±R − E)(κ−, κ+)− (λ−, λ+)

∣∣∣∣. (13.3)

By the same lemma, the right-hand side is the root-length of a root-positive

element. Combining (13.2) and (13.3) we obtain the required bound d ≤ D,

valid for all M ∈ N0 with M ≥ D + E − ν±R . �

Example 13.6. Continuing Examples 12.13 and 12.22 we take the strongly

1-maximal signed weight
(
(2, 2), (3, 1)

)
, defined by the maximal plethystic

semistandard tableau family
{

1 2 1 1 , 1 2 1 2
}

of size 2 and sign

+1, and consider the plethysm coefficients 〈s(2,1)+M(1,1)◦s(4), sλ⊕M((2,2),(3,1))〉
for M ∈ N0. The partition κ with 2-decomposition

〈
(2, 2), (3, 1)

〉
is (5, 3).

Let E = E1,((2,2),(3,1))

(
(2, 1), (4) : λ). Note that BR(ν) = B2

(
(2, 1)

)
= 1. If

E ≥ ν2 = 1 then the first case for ω in Corollary 12.24 and Lemma 13.2

applies and so the partition ω is

ω = (5, 3)⊕ (1 + 2E)
(
(1, 1), (2)

)
= (7 + 4E, 3, 21+2E).

If instead E = 0 then the second case for ω in these results applies, but now

ν±R − E − 1 = 1 − 0 − 1 = 0, and so the second case defines exactly the

same partition. Similarly, in either case, the statistic S in Lemma 13.2 is

−ν2 +E+ 1 = −1 +E+ 1 = E and so the stable partition system from this

lemma is

P(M) =
[
λ⊕M

(
(2, 2), (3, 1)

)
, ω ⊕ (M − E)

(
(2, 2), (3, 1)

)]
�·

for M ≥ E. As a small check, note that λ is a partition of 12 and ω is a

partition of 12+8E, and so the sizes of the partitions defining the interval for

the 2-twisted dominance order agree, as they must. In the remainder of this

example we take λ = (8, 3, 1), the first of the cases in the earlier examples;

note that λ is
(
`(κ−) + 1, `(κ+)

)
= (3, 2)-large as required by Lemma 13.2.

We show all the ideas in the proof of Theorem 13.7 by checking the conditions

for the Signed Weight Lemma (Lemma 7.3).
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The stable partition system for λ = (8, 3, 1) explicitly. We saw in Exam-

ple 12.22 that E = 1, and so ω = (11, 3, 23) = (8, 2, 2) ⊕
(
(2, 2), (3, 1)

)
. It

is routine to check using the definition of the 2-twisted dominance order in

Definition 6.6 that the partition system (P(M))M∈N0 is

P(M) =
{

(8, 3, 1), (9, 2, 1), (7, 3, 2), (8, 2, 2)
}
⊕M

(
(2, 2), (3, 1)

)
for M ≥ 1, where the notation indicates that M

(
(2, 2), (3, 1)

)
is adjoined

to all four partitions in the given set. The bounds in Lemma 13.2 are −2,

−1, −3 and −1 and so K = max(−2,−1,−3,−1, 0) = 0. The shift S in this

lemma is −ν±R + E + 1 = −1 + 1 + 1 = 1. Therefore, Lemma 13.2 states

that (P(M))M∈N0 is stable for M ≥ 1. Here the bound is tight, since, by the

definition in Lemma 13.2, we have P(0) = ∅.

Condition (ii) in the Signed Weight Lemma for λ = (8, 3, 1). We start

with (ii) because the calculations are helpful for (i). We saw in Exam-

ple 12.13 that∣∣PSSYT((2,2),(3,1)

(
(2, 1) +M(1, 1), (4)

)
((3+2M,2+2M),(6+3M,1+M))

∣∣ = 4

for allM ≥ 1, giving condition (ii) in the Signed Weight Lemma (Lemma 7.3)

for the partitions obtained by adjoining to (8, 3, 1)↔
〈
(3, 2), (6, 1)

〉
. It is rou-

tine to check by similar arguments using the 2-decompositions
〈
(3, 2), (7)

〉
,〈

(3, 3), (5, 1)
〉

and
〈
(3, 3), (6)

〉
of the three larger partitions in P(0) that the

corresponding sets of plethystic semistandard signed tableaux for these par-

titions have sizes 1, 1 and 0 for all M ≥ 0. However, rather than use this

ad-hoc argument, we take the opportunity to motivate the relevant part of

the proof of Theorem 13.7. Let 〈π−, π+〉 be the 2-decomposition of one of

the four partitions in P(M). Then the map defined by inserting the plethys-

tic semistandard signed tableau shown in the margin as a new typical first

1 2 1 1

1 2 1 2

column into a plethystic semistandard tableau in PSSYT((2,2),(3,1))

(
(2, 1) +

M(1, 1), (4)
)

(π−,π+)
is surjective, and so bijective, if and only if every plethys-

tic semistandard signed tableaux in PSSYT((2,2),(3,1))

(
(2, 1) + (M + 1)(2, 2),

(4)
)

(π−+(3,1),π++(2))
has at least one typical column, i.e. one equal to the

tableau in the margin. Since E = 1, each such T has at most one excep-

tional column. By Lemma 13.5, with (λ−, λ+) =
(
(3, 2), (6, 1)

)
, T has at

most ∣∣∣∣(1 + 2.1)
(
(1, 1), (2)

)
+ (1− 1)

(
(2, 2), (3, 1)

)
−
(
(3, 2), (6, 1)

)∣∣∣∣
=
∣∣∣∣((3, 3), (6)

)
−
(
(3, 2), (6, 1)

)∣∣∣∣
=
∣∣∣∣((0, 1), (0,−1)

)∣∣∣∣
=
∣∣∣∣ε(2) + ε(3)

∣∣∣∣
= 2

small columns. By Lemma 12.14, every column that is not small or excep-

tional is typical. Since E = 1, there is at most one exceptional column,

and so the insertion map is surjective for M ≥ 3. In fact, as seen in Exam-

ple 12.13 when (π−, π+) = (8, 3, 1) +M
(
(1, 1), (2)

)
, and as follows from the
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ad-hoc calculation earlier in this paragraph, the insertion map is surjective

for all M ≥ 1.

As a further illustration we remark that if instead λ = (6, 3, 3) then E = 2,

as seen in the second part of Example 12.22, and the bound on the number

of small columns from Lemma 13.5 becomes
∣∣∣∣(1 + 2.2)

(
(1, 1), (2)

)
+ (1 −

2)
(
(2, 2), (3, 1)

)
−
(
(3, 3), (4, 1, 1)

)∣∣∣∣ = ||(0, 0, 3,−2,−1)|| = 4.

Condition (i) in the Signed Weight Lemma for λ = (8, 3, 1). As promised

by the final claim in Lemma 13.2, if σ�· (8, 3, 1) ⊕M
(
(2, 2), (3, 1)

)
and sσ

appears in s(2,1)+M(1,1) ◦ s(4) then σ is one of the four partitions in P(M);

in fact, since there are no plethystic semistandard signed tableaux of signed

weight
(
(3, 3), (6)

)
+M

(
(1, 1), (2)

)
equal to the 2-decomposition of the upper

bound (8, 2, 2)⊕M
(
(2, 2), (3, 1)

)
, only the first three partitions listed in P(M)

appear.

Conclusion. Using computer algebra one may obtain the constant values of

〈s(2,1)+M(1,1) ◦ s(4), sσ⊕M((2,2),(3,1))〉 for σ ∈ P(0); they are 2, 1, 1 and 0,

attained for M ≥ 1 when σ = λ = (8, 3, 1) and M ≥ 0 when σ =

(9, 2, 1), (7, 3, 2) or (8, 2, 2). We shall see below in Example 13.8 that the

bound from Theorem 13.7 is M ≥ 2 for (8, 3, 1).

We mention that since the insertion map inserts a new column of height R,

it is a new first column if and only if `(ν) ≤ R, and otherwise it must become

a new column νR+1 +1. This is the main feature of the general positive sign

case not seen in the previous example; in the negative sign case we instead

insert a new row, and a similar remark applies.

13.5. Proof of Theorem 1.2. The ‘moreover’ part of Theorem 1.2 has

already been proved in Proposition 13.1. The next theorem proves the

main part of Theorem 1.2 with an explicit stability bound. Note that by

Remark 3.2 there is no loss of generality in the ‘largeness’ hypotheses in the

theorem. The greatest signed weight
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+) is defined

in Definition 4.3 and strongly c+-maximal signed weights are defined in

Definition 4.10. The L bounds are defined in Definition 8.2. (Remark 8.1

explains the small difference in notation for the intervals in the first two

bounds.) The statistics BR(ν) and Ec+,(κ−,κ+)(ν, µ/µ? : λ) are defined in

Definition 12.18 in its ‘both signs’ version in §12.7. The ‘shift’ S below was

first seen in Example 12.9 and then in the definition of ω in its continuation

in Example 12.26.

Theorem 13.7. Let (κ−, κ+) be a strongly c+-maximal signed weight of a

semistandard tableau family of shape µ/µ? and size R. Fix `− = `(κ−). Let ν

be a partition and let λ be an
(
`−, `(κ+)

)
-large partition of |ν||µ/µ?|. Set

ν+

R = νR and ν−R = ν ′R and let ± denote the sign of κ. Set ν(M) = ν t (RM )

if (κ−, κ+) has sign −1 and ν(M) = ν + (MR) if (κ−, κ+) has sign +1. Set

E = Ec+,(κ−,κ+)(ν, µ/µ? : λ) and

S =

{
E − ν±R + 1 if E ≥ ν±R
0 if E < ν±R .
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Set

D =
∣∣∣∣(B±R(ν)+ER

)(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
+(ν±R−E)(κ−, κ+)−(λ−, λ+)

∣∣∣∣.
Let κ be the unique partition with `−-decomposition 〈κ−, κ+〉. Define

ω =

{
κ⊕ (B±R(ν) + ER)

(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)

κ⊕ (B±R(ν) + ER)
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
⊕ (ν±R − E − 1)(κ−, κ+)

choosing the case according to whether E ≥ ν±R or E < ν±R . Let L be the

maximum of

• S + L
(
[λ− + Sκ−, ω−]`

−
�� , κ

−
)
,

• S + L
(
[λ+ + Sκ+, ω+ + (|λ+|+ S|κ+| − |ω+|)]�, κ+

)
,

• S +
(
ω+

1 + ω+

2 − 2λ+

1 − 2Sκ+

1 + 2|λ+|+ 2S|κ+| − 2|ω+|
)
/(κ+

1 − κ
+

2 ),

• S +
(
max(`(λ+), `(κ+)) + |ω−| − |λ−| − S|κ−| − ω−

`−

)
/κ−

`(κ−)
• D + E − ν±R + ν±R+1,

omitting the third if κ+

1 = κ+

2 and the fourth if κ− = ∅. Then〈
sν(M) ◦ sµ/µ? , sλ⊕M(κ−,κ+)

〉
is constant for M ≥ L. Moreover if λ ⊕ S(κ−, κ+) 6�· ω in the `−-twisted

dominance order then the plethysm coefficient is 0 for all M ∈ N0.

Proof. We apply the Signed Weight Lemma (Lemma 7.3) to the stable par-

tition system

P(M) =
[
λ⊕M(κ−, κ+), ω ⊕ (M − S)(κ−, κ+)

]
�·

defined in Lemma 13.2. The intervals are, as ever, for the `−-twisted dom-

inance order. By hypothesis λ is
(
`−, `(κ+)

)
-large. By Corollary 12.24, ω

is an
(
`(κ−) + 1, `(κ+)

)
-large partition of |λ| + SR|µ/µ?|. Again by this

corollary, if σ is a partition of |λ|+MR|µ/µ?|, such that σ�· λ⊕M(κ−, κ+)

such that sσ is a constituent of the plethysm sν(M) ◦ sµ/µ? then σ�· ω ⊕
(M − S)(κ−, κ+). But by Lemma 8.6 and the ‘if’ direction of Lemma 8.7, if

λ⊕ S(κ−, κ+) 6�· ω then, writing

λ⊕M(κ−, κ+) = λ⊕ S(κ−, κ+)⊕ (M − S)(κ−, κ+),

we have

λ⊕M(κ−, κ+) 6�· ω ⊕ (M − S)(κ−, κ+).

Hence if λ⊕S(κ−, κ+) 6�· ω then 〈sλ⊕ (κ−,κ+), sν(M)◦sµ/µ?〉 = 0 for allM ≥ S.

This proves the final claim in the theorem. Moreover, we may now assume

that, for all M ≥ S, the twisted interval P(M) is non-empty.

Condition (i) in the Signed Weight Lemma. By Lemma 13.2 the stable

partition system P(M) satisfies condition (i) of the Signed Weight Lemma

(Lemma 7.3) for the plethysms sν(M) ◦ sµ/µ? .
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Condition (ii) in the Signed Weight Lemma. Let M ∈ N0 and let π ∈ P(M).

Recall that PYT(ν, µ/µ?) denotes the set of plethystic signed tableaux of

shape ν having entries from the set YT(µ/µ?) of signed tableaux of shape

µ/µ?. Let ρ = (1R) if (κ−, κ+) has sign +1 and let ρ = (R) if (κ−, κ+) has

sign −1. Recall from Definition 12.1 that T(κ−,κ+) is the unique plethystic

semistandard signed tableau of size R, outer shape ρ, inner shape µ/µ? and

signed weight (κ−, κ+). By Remark 12.3, it remains semistandard in the

(κ−, κ+)-adapted colexicographic order. Define

H : PSSYTκ(ν(M), µ/µ?)! PYT(ν(M+1), µ/µ?)

on T ∈ PSSYTκ(ν(M), µ/µ?) by inserting T(κ−,κ+) as a new column imme-

diately after column νR of T when (κ−, κ+) has sign +1 and as a new row

immediately after row ν ′R of T when (κ−, κ+) has sign −1. Since T(κ−,κ+) has

semistandard entries, all µ/µ?-tableau entries in the image are semistandard.

Suppose that M ≥ D + E − ν±R + ν±R+1. (The reason for adding ν±R+1 to

the bound from Lemma 13.5 will be seen shortly.) By Corollary 12.24(i), T

has at most E exceptional columns/rows. By Lemma 13.5, using that λ ⊕
S(κ−, κ+)�· ω, the bound D is well-defined (i.e. we take the root-length of

a root-positive element) and T has at most D small columns/rows. By

Definition 12.10, a column/row is either exceptional, typical or small. Since

there are M + ν±R columns/rows of T of height at least R, there are at

least M + ν±R −D−E typical columns, in which the top/leftmost R entries

form the plethystic semistandard signed tableau T(κ−,κ+). (This requires our

use of the (κ−, κ+)-adapted colexicographic order to order the inner µ/µ?-

tableau entries of T : see Figure 12.2.) Therefore if M + ν±R − D − E ≥
ν±R+1, the map H inserts T(κ−,κ+) as a new column/row immediately to

the right/below an identical column/row. (Note that this condition implies

M ≥ −ν±R +D+E, and since D is an upper bound for the number of small

columns, the hypothesis on M in Corollary 12.24 is satisfied.) Hence H is a

well-defined bijection for M ≥ D + E − ν±R + ν±R+1. �

Example 13.8. In the final part of the running example in Examples 12.13,

12.22 and 13.6 using the strongly 1-maximal signed weight
(
(2, 2), (3, 1)

)
we saw that 〈s(2,1)+M(1,1) ◦ s(4), sλ⊕M((2,2),(3,1))〉 is ultimately constant for

each λ ∈
{

(8, 3, 1), (9, 2, 1), (7, 3, 2), (8, 2, 2)
}

. To illustrate Theorem 13.7

we find an explicit bound for (8, 3, 1). In this context we have R = 2,

B2

(
(2, 1)) = 1, E = 1 and

(
ω2

(
(4))+, ω2

(
(4))−

)
= ((1, 1), (2)) and we saw

that the bound D on the number of small columns is 2. The fifth bound

in Theorem 13.7 is therefore 1 + 2 − 1 + 0 = 2. We saw earlier that the

other bounds are respectively −2,−1,−3 and −1, and so the overall bound

is 2. We also saw that when λ = (8, 3, 1) the constant value is attained

for M = 1, so in this case the bound from Theorem 13.7 is not sharp. We

remark that if instead λ = (8, 2, 2)↔
〈
(3, 3), (6)

〉
then E = 0, S = 0 and

ω = (5, 3) ⊕
(
(1, 1), (2, 2)

)
= (7, 3, 2)↔

〈
(3, 3), (5, 1)

〉
and so we are in the

final case of the theorem where λ 6�· ω in the 2−-twisted dominance order (in

fact λ�· ω), and so the plethysm coefficient is 0 for all M ∈ N0.
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13.6. Extending Theorem 13.7 to the case ν = ∅. Unless `− = 0, this

theorem cannot be applied directly when ν = ∅ because of the hypothesis

that λ, which has size |µ/µ?||ν|, is (`−, `(κ+)-large. Since this is a case to

which we would want our methods to apply, we show how this restriction

may easily be circumvented.

Corollary 13.9. Let (κ−, κ+) be a strongly c+-maximal signed weight of

shape µ/µ? and size R. Fix `− = `(κ−) and let κ(N) be the unique partition

with `−-decomposition N〈κ−, κ+〉. If (κ−, κ+) has sign −1 then

〈s(RM ) ◦ sµ/µ? , sκ(N)〉 = 1

for all N ∈ N0 and if (κ−, κ+) has sign +1 then the same holds replacing

(RN ) with (NR).

Proof. We apply Theorem 13.7 with (κ−, κ+) and ν = (R) if (κ−, κ+) has

sign −1 and ν = (1R) if (κ−, κ+) has sign +1 and λ = κ. Note that,

by Remark 6.2, κ is
(
`(κ−) + 1, `(κ+)

)
-large, as required in this theorem.

In the notation of the theorem, ν(M) = (RM+1) if (κ−, κ+) has sign −1

and ν(M) = ((M + 1)R) if (κ−, κ+) has sign +1. Moreover λ(M) = κ ⊕
M(κ−, κ+) = κ(M−1). Therefore the theorem states that the plethysm

coefficients in the corollary are constant for all M at least the bound in

the theorem. Since κ = λ, and B±R(ν) = 0 we have E− = E+ = 0 and

hence E = 0 in Definition 12.18. Therefore the case E < ν±R applies and

S = 0. Again using that B±R(ν) = 0, we have ω = κ. It is now easily seen

that the first two in Theorem 13.7 are 0. The third, using that S = 0, is

(κ+

1 + κ+

2 − 2κ+

1 + 2|κ+| − 2|κ+|)/(κ+

1 − κ
+

2 ) = −1, unless κ+

1 = κ+

2 , in which

case this bound is disregard. The fourth is (`(κ+)− κ−
`−)/κ−

`− which is non-

positive because κ−
`− = κ′`− ≥ κ′`−+1 = `(κ+). The fifth is 0 since D is the

root-length of the zero weight. Therefore the constant value is attained for

M = 0, proving the corollary for N ∈ N. When κ has sign −1, since (κ−, κ+)

is a strongly maximal signed weight T(κ−,κ+) is the unique element of the set

PSSYT
(
(R), µ/µ?

)
(κ−,κ+)

)
, and so, Proposition 5.6 and Lemma 6.12, using

again that (κ−, κ+) is strongly maximal, we have

〈s(R) ◦ sµ/µ? , sκ〉 = 〈s(R) ◦ sµ/µ? , eκ−hκ+〉 =
∣∣PSSYT

(
(R), µ/µ?

)
(κ−,κ+)

∣∣ = 1.

Therefore the constant value is 1. Finally, since s∅ ◦ sµ/µ? = 1 (the unit ele-

ment in the ring of symmetric functions), the plethysm coefficient is constant

for all N ∈ N0. �

For example, we saw in Example 4.18(i) that
(
(1d), (m− d)

)
is a strongly

1-maximal signed weight of shape (m) and sign (−1)d. The unique partition

κ(M) with d-decomposition M
〈
(1d), (m− d)

〉
is (dM ) + (M(m− d)) and so

Corollary 13.9 implies that if d is odd then

〈s(1M ) ◦ s(m), s(dM )+M(m−d)〉 = 1

for all M ∈ N0 and the same holds replacing (1M ) with (M) if d is even. The

analogous stability result, which we believe is even less obvious, obtained
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from the case R = 2 of Example 4.18(ii) is that if d is odd then

〈s(2M ) ◦ s(m), s(d2M )+M(2m−2d−1,1)〉 = 1

for all M ∈ N0, and the same holds replacing (2M ) with (M,M) if d is

even. For an example of the corollary in the case of skew partitions see

Example 14.2.

14. Applications of Theorem 1.2

14.1. Theorem 1.2 for singleton strongly maximal signed weights.

We saw in Lemma 4.17 that the signed weight (ω`−(µ/µ?)
−, ω`−(µ/µ?)

+)

of the greatest semistandard signed tableau t`−(µ/µ?) in Definitions 4.2

and 4.3 is a strongly c+-maximal signed weight where c+ = `(ω`−(µ/µ?)
+)

is the greatest positive entry appearing in t`−(µ/µ?). In this subsection we

give the special case of Theorem 13.7 for such strongly maximal weights,

which we call singleton. The L bounds below are defined in Definition 8.2;

see Remark 8.1 for the reason for the difference in the notation for intervals

in the first two bounds below. Recall that a(λ) denotes the first part of a

partition λ.

Corollary 14.1. Let ν be a partition of n and let µ/µ? be a skew partition.

Fix `− ∈ N0 and set (κ−, κ+) =
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
)
. Let λ be an

(`−, `(κ+))-large partition of |ν||µ/µ?|. Let ν(M) = ν t (1M ) if |κ−| is odd

and ν(M) = ν + (M) if |κ−| is even. Then

〈sν(M) ◦ sµ/µ? , sλ⊕M(κ−,κ+)〉
is constant for all M ≥ L where L is the maximum of

• L
(
[λ−, nκ−](`

−)

�� , κ−
)
,

• L
(
[λ+, nκ+ + (|λ+| − n|κ+|)]�, κ+

)
,

•
(
nκ+

1 + nκ+

2 − 2λ+

1 + 2|λ+| − 2n|κ+|
)
/(κ+

1 − κ
+

2 ),

•
(
max(`(λ+), `(κ+)) + n|κ−| − |λ−| − nκ−

`(κ−)

)
/κ−

`(κ−)
,

•
∣∣∣∣n(κ−, κ+)− (λ−, λ+)

∣∣∣∣− ν±1 + ν±2 ,

omitting the third if κ+

1 = κ+

2 and the fourth if `− = 0 and so κ− = ∅.

Moreover if λ 6�· ω(n)(µ/µ?) then the plethysm coefficient is 0 for all M ∈ N0.

Proof. By Lemma 4.17,
(
κ−, κ+

)
is the strongly `

(
ω`−(µ/µ?)

+
)
-maximal

signed weight of the singleton tableau family {t`−(µ/µ?)} of shape µ/µ?.

(Note this holds even if t`−(µ/µ?) has only negative entries, in which case

the positive part of the signed weight is ∅.) Since t`−(µ/µ?) has |κ−| neg-

ative entries, its sign is (−1)|κ
−|. Since the tableau family has size R = 1,

Definition 12.18 states that E = 0. Therefore the case E < ν±R of Theo-

rem 13.7 applies. The partition κ in Theorem 13.7 is the unique partition

with `−-decomposition
〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉
. (This `−-decomposition

is well-defined by Lemma 6.4.) We have

B±R(ν) = n− a(ν±).

The upper bound partition ω in Theorem 13.7 is

κ⊕
(
n− a(ν±)

)
(κ−, κ+)⊕

(
a(ν±)− 0− 1

)
(κ−, κ+) = κ⊕ (n− 1)(κ−, κ+)
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with `−-decomposition n〈κ−, κ+〉 = n
〈
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+
〉
. Thus in all

cases ω is the partition ω
(n)
`− (µ/µ?) defined in Definition 9.6. Similarly, we

have

D =
∣∣∣∣(n− a(ν±)

)
(κ−, κ+) +

(
a(ν±)− 0)

)
(κ−, κ+)− (λ−, λ+)

∣∣∣∣
=
∣∣∣∣n(κ−, κ+)− (λ−, λ+)

∣∣∣∣.
Since we are in the case E < ν±R , we have S = 0. It is now very easily seen

that the five bounds in Theorem 13.7 simplify as claimed. The corollary,

including the final claim that if λ 6�· ω(n)(µ/µ?) then the plethysm coefficient

is 0 for all M ∈ N0, now follows from this theorem. �

Note that the condition for the plethysm coefficient to vanish is the same

as the one in Remark 12.25. The following example illustrates the skew

partition case of Corollary 14.1.

Example 14.2. Take `− = 2 and µ/µ? = (4, 2)/(1). The tableau t2
(
(4, 2)/(1)

)
is as shown in the margin and correspondingly

1 2 1
1 2 (

ω2

(
(4, 2)/(1)

)−
, ω2

(
(4, 2)/(1)

)+)
=
(
(2, 2), (1)

)
.

By Lemma 4.17, this is a strongly 1-maximal signed weight of shape (4, 2)/(1),

size 1 and sign +1. Let ν be a partition of n and let λ be a (2, 1)-large par-

tition of 5n. By Corollary 14.1 the plethysm coefficients

〈sν+(M) ◦ s(4,2)/(1), sλ⊕M((2,2),(1))〉

are constant for M at least the bound in this corollary, and the constant

value is 0 unless λ�· ω(n)
(
(4, 2)/(1)

)
= (n + 2, 22n−1) ↔

〈
(2n, 2n), (n)

〉
.

Note that s(4,2)/(1) = s(4,1) + s(3,2) is not a single Schur function, so, as

in Example 4.21, this result needs the generality of skew partitions. Taking

ν = (1, 1), the table below shows values for the inner product for vary-

ing partitions λ of 12 (shown decreasing in the 2-twisted dominance order),

together with the bound from the corollary.

λ 0 1 2 3 4 5 bound

(4, 2, 14) 0 0 0 0 0 0 0

(3, 3, 2, 2) 1 1 1 1 1 1 1

(4, 4, 2) 1 12 19 22 22 22 5

(8, 1, 1) 1 9 17 17 17 17 5

(8, 2) 0 7 15 16 16 16 6

In the first case (4, 2, 1, 1, 1)↔
〈
(5, 2), (2)

〉
is incomparable with (4, 2, 2, 2)↔〈

(4, 4), (2)
〉

in the 2-twisted dominance order, and so the constant multiplic-

ity is 0. In each remaining case, the fifth bound,
∣∣∣∣2((2, 2), (1))− (λ−, λ+)

∣∣∣∣
is the largest. For instance s(1+M,1) ◦ (s(4,1) + s(3,2)), s(4+M,4,22M+1)〉 = 22 for

all M ≥ 3. Similar calculations by computer algebra using the bound from

Corollary 14.1 show that

〈s(1+M,1) ◦ s(4,1), s(4+M,4,22M+1)〉 = 0 for all M ≥ 0

〈s(1+M,1) ◦ s(3,2), s(4+M,4,22M+1)〉 = 7 for all M ≥ 3;
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this illustrates the failure of the plethysm product to be distributive over

addition in its second component.

Remark 14.3. If µ? = ∅ then, by (6.1), we have
(
ω`−(µ)−, ω`−(µ)+) =

(µ−, µ+) and we may replace κ− with µ− and κ+ with µ+ in all the expressions

in Corollary 14.1.

We use this remark in §14.2 and §14.3 below. Combining Corollary 13.9

with Remark 14.3, it follows that, for any fixed `−-decomposition (µ−, µ+),

if |µ−| is odd then

〈s(1M ) ◦ sµ, sM(µ−,µ+)〉 = 1

for all M ∈ N0; if |µ−| is even then the same holds replacing (1M ) with M .

The following corollary is the case κ− = ∅. For ease of reference we recall

that the greatest tableau t`−(µ/µ?) is defined in Definition 4.2, the L bound

in Definition 8.2 and the root-length ||α|| in (13.1).

Corollary 14.4. Let ν be a partition of n, let µ/µ? be a skew partition,

and let λ be a partition of |ν||µ/µ?|. Let κ be the positive part of the signed

weight of the greatest tableau t0(µ/µ?). Then

〈sν+(M) ◦ sµ/µ? , sλ+Mκ〉
is constant for all M ∈ N0 such that M ≥ L, where L is the maximum of

L
(
[λ, nκ]�, κ

)
and ||nκ− λ|| − ν1 + ν2.

Proof. Apply Corollary 14.1 taking `− = 0. Thus
(
ω0(µ/µ?)

−, ω0(µ/µ?)
+
)

=

(∅, κ) and the first bound is ignored. The second is L
(
[λ, nκ]�, κ

)
, the third

is the case k = 1 in Definition 8.2, and so is implied by the second. The

fourth bound is again one that should be ignored, and the fifth becomes

||nκ− λ|| − ν1 + ν2. �

14.2. Explicit bounds for hook stability. By Lemma 4.17, if 1 ≤ d ≤ m
then

(
(d), (m − d)

)
is a strongly 1-maximal signed weight of shape (m −

d + 1, 1d−1), corresponding to the singleton tableau family
{
t1
(
(m − d +

1, 1d−1)
)}

. For instance t1
(
(3, 1, 1, 1)

)
is as shown in the margin.

1 1 1
1
1
1

Proposition 14.5. Let ν be a partition of n ∈ N and let 1 ≤ d ≤ m. Let

ν(M) = ν + (M) if d is even and let ν(M) = ν t (1M ) if d is odd. If λ is a

partition of mn with 1-decomposition
〈
(`(λ)), λ+

〉
then

〈sν(M) ◦ s(m−d+1,1d−1), sλt (1dM )+M(m−d)〉
is constant for all M ≥ L where L is the maximum of

•
(
|λ+| − 2λ+

1 )/(m− d),

•
(
2|λ+| − 2λ+

1 − n(m− d)
)
/(m− d),

•
∣∣∣∣((nd), (n(m− d))

)
−
(
(`(λ), λ+

)∣∣∣∣− ν1 + ν2.

Moreover if λ 6�· (1nd) + (n(m − d)) in the 1-twisted dominance order then

the plethysm coefficient is 0 for all M ∈ N0.

Proof. We take the singleton strongly maximal weight (κ−, κ+) =
(
(d), (m−

d)
)

in Corollary 14.1, together with µ/µ? = (m − d + 1, 1d−1) and `− =

1. Since λ is non-empty, it is (1, 1)-large, as required in this corollary.
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By Definition 6.1, the 1-decomposition of the partition λ is
〈
(`(λ)), (λ1 −

1, . . . , λb−1)
〉
, where b is maximal such that λb ≥ 2. Hence, by Definition 8.2,

the first bound in Theorem 13.7 is (nd− `(λ)−nd)/d, which is non-positive.

(Note the case where `(λ−) ≤ `− applies since λ− has at most one part.)

Similarly since `(κ+) = 1 the second bound is (n(m − d) + |λ+| − n(m −
d) − 2λ+

1 )/(m − d) which simplifies to the first bound above. (Again this

ignores a potentially stronger bound if `(λ+) ≤ 1.) The third and fifth

bounds in the corollary simplify to the final two bounds above. The fourth

bound is
(
max(`(λ+), 1) + nd − `(λ) − nd

)
/d =

(
max(`(λ+), 1) − `(λ)

)
/d

which, since λ+ has length b ≤ `(λ), is non-positive. Since the partition

ω(n)
(
(m− d+ 1, 1d−1) with 1-decomposition n〈κ−, κ+〉 = n

〈
(d), (m− d)

〉
is

(1nd) +
(
n(m− d)

)
, the result now follows from Corollary 14.1. �

For example, taking ν = (2, 1), m = 4 and d = 2 we find that

〈s(2+M,1) ◦ s(3,1), sλt (12M )+(2M)〉

is ultimately constant, and zero unless λ�· (7, 15) in the 1-twisted domi-

nance order. (This is equivalent to the condition `(λ) ≤ 6.) The case

λ = (4, 3, 3, 2), for which the sequence of plethysm coefficients is 2, 16, 31,

33, 33, . . . is illustrative. Here λ+ = (3, 2, 2, 1) and so the bounds from Propo-

sition 14.5 are (8−6)/(4−2) = 1,
(
2×8−2×3−3(4−2)

)
/(4−2) = 4/2 = 2

and finally 11− 2 + 1 = 10, since∣∣∣∣((6), (6)
)
−
(
(4), (3, 2, 2, 1)

)∣∣∣∣ =
∣∣∣∣((2), (3,−2−2,−1)

)∣∣∣∣ = 2+5+3+1 = 11.

Therefore 〈s(2+M,1) ◦ s(3,1), s(4+2M,3,3,2,12M )〉 = 33 for all M ≥ 10.

14.3. Explicit bounds for Law–Okitani stability. Using Corollary 14.1

and Remark 14.3, and very similar arguments to the proof of Proposi-

tion 14.5, we can give the first explicit bounds for the stability result dis-

cussed in §1.7 due to Law and Okitani [13], and a sufficient condition for the

stable plethysm coefficient to be zero. We exclude the case d = 0 because it

is a special case of Corollary 14.4, and the case d = m because it reduces to

the case d = 0 by applying the ω involution.

Proposition 14.6. Let ν be a partition of n and let 1 ≤ d < m. Let

ν(M) = ν + (M) if d is even and let ν(M) = ν t (1M ) if d is odd. If λ is a

partition of mn such that a(λ) ≥ d having d-decomposition 〈λ−, λ+〉, then

〈sν(M) ◦ s(m), sλt (dM )+M(m−d)〉

is constant for all M ≥ L where L is the maximum of

• n(d− 1)− |λ−|,
•
(
|λ+| − 2λ+

1

)
/(m− d),

•
(
2|λ+| − 2λ+

1 − n(m− d)
)
/(m− d),

• max(1, `(λ+)) + n(d− 1)− |λ−|,
•
∣∣∣∣((nd), (n(m− d))

)
− (λ−, λ+)

∣∣∣∣− ν1 + ν2.

Moreover if λ 6�· (dn) + (n(m−d)) in the d-twisted dominance order then the

plethysm coefficient is 0 for all M ∈ N0.
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Proof. By Example 4.18(i),
(
(1d), (m − d)

)
is a strongly 1-maximal signed

weight of shape (m), size 1 and sign (−1)d. We take this as (κ−, κ+) in

Corollary 14.1, together with µ/µ? = (m) and `− = d. The condition that

λ is (`−, `(κ+))-large is equivalent to a(λ) ≥ d. Observe that κ−k − κ−k+1

is non-zero only when k = d. Hence, by Definition 8.2, the first bound in

Theorem 13.7 is (nd− |λ−| − n)/1, which simplify to the first bound above.

(Note that the case where `(λ−) ≤ `− applies.) Similarly since `(κ+) = 1

the second bound is (n(m−d)+ |λ+|−n(m−d)−2λ+

1 )/(m−d) which again

simplifies as shown. (Again, as in the earlier proof of Proposition 14.5, this

ignores a potentially stronger bound if `(λ+) ≤ 1.) The third, fourth and

fifth bounds are routine specializations of the bounds in the corollary. Since

the partition ω(n)
(
(m)) with d-decomposition n〈κ−, κ+〉 = n〈(1d), (m − d)〉

is (dn) + n(m− d), the result now follows from Corollary 14.1. �

Example 14.7. We take m = 4, d = 3 and ν = (2, 1). The table below

shows values of 〈s(2,1M+1) ◦s(4), sλt (3M )+(M)〉 for small values of M for vary-

ing partitions λ of 12, shown decreasing in the 2-twisted dominance order,

together with the bound from the corollary.

λ 0 1 2 3 4 5 6 bound

(5, 3, 3, 1) 0 0 0 0 0 0 0 0

(6, 3, 3) 0 0 0 0 0 0 0 0

(7, 3, 2) 1 1 1 1 1 1 1 0

(7, 4, 1) 1 2 2 2 2 2 2 3

(7, 5) 1 4 5 6 6 6 6 7

(6, 6) 0 2 5 6 7 7 7 8

In the first case (5, 3, 3, 1)↔
〈
(4, 3, 3), (2)

〉
is greater than the upper bound

(6, 3, 3)↔
〈
(3, 3, 3), (3)

〉
in the 3-twisted dominance order, and so the con-

stant multiplicity is 0. For (7, 5) the constant multiplicity is indeed 6,

as can be checked by using computer algebra to compute the next three

values, or using the generalized Cayley–Sylvester formula in (5.3). Thus

〈s(2,1M+1) ◦ s(4), s(7+M,5,3M )〉 = 6 for M ≥ 3. It is worth noting that we

can obtain further information about the same plethysm s(2,1M+1) ◦ s(4)

by instead taking d = 1 in Proposition 14.6, now using the strongly 1-

maximal signed weight
(
(1), (3)

)
. For instance the proposition implies that

〈s(2,1M+1) ◦ s(4), s(7+3M,5,1M )〉 = 6 for M ≥ 4; in fact the constant value is

attained for M ≥ 3. Similarly 〈s(2,1M+1) ◦ s(4), s(6+3M,6,1M )〉 = 8 for M ≥ 5;

now the constant value is attained for M ≥ 4. These results and bounds

may be verified using the Magma code mentioned in the introduction.

14.4. The positive non-skew case of Theorem 1.2. In this section we

specialize Theorem 13.7 in two ways at once by assuming that κ− = ∅ and

µ? = ∅. (Taken separately, these specializations do not lead to simplifi-

cations significant enough to be worth recording.) We begin by giving the

special case of Definition 4.8 and Definition 4.10 since the latter simplifies
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greatly in this case. Recall that max T denotes the maximum integer entry

of a family of tableaux with integer entries.

Definition 14.8. Let µ be a non-empty partition and let R ∈ N. A family

M of R distinct semistandard µ-tableaux with entries from N of weight κ is

maximal if κ is maximal in the dominance order amongst all such families.

It is strongly c-maximal if whenever φ is the weight of a maximal family T
such that max T ≤ maxM then either T =M or

∑c
i=1 φi <

∑c
i=1 κi.

It is clear that κ is a strongly c-maximal weight if and only if (∅, κ) is a

strongly c-maximal signed weight in the sense of Definition 4.10. We give

examples in §14.5. In the following corollary, the L bound is defined in

Definition 8.2. The unsigned analogue of the LZ bound in Definition 10.1

is defined by specializing this definition: given partitions λ and ω of the

same size, and partitions η and κ, we define LZ
(
[λ, ω]�· , κ, η

)
to to be the

minimum of the quantities

•
∑k

i=1 ωi −
∑k

i=1 λi∑k
i=1 ηi −

∑k
i=1 κi

.

taking those k for which the denominator is strictly positive. In the corollary

κ� η so the minimum is well-defined.

Corollary 14.9. Let ν be a partition of n, let µ be a partition of m and

let λ be a partition of mn. Let κ be a strongly c-maximal weight of shape µ

and size R. Set E = 0 if R = 1 and otherwise set E to the maximum of

BR(ν)

c∑
i=1

µi + νR

c∑
i=1

κi −
c∑
i=1

λi +

`(λ)∑
i=`(κ)+1

λi

and zero. Set D =
∣∣∣∣(BR(ν)+ER)µ+(νR−E)κ−λ

∣∣∣∣. Let L be the maximum

of {
E − νR + L

(
[λ+ (E − νR)κ, (BR(ν) + ER)µ]�, κ

)
if E ≥ νR

L
(
[λ, (BR(ν) + ER)µ+ (νR − E)κ]�, κ

)
if E < νR

and D + E − νR + νR+1. Then 〈sν+(MR) ◦ sµ, sλ+Mκ〉 is constant for M ≥
L. Moreover if η is a partition of MR such that κ � η then 〈sν+(MR) ◦
sµ, sλ+Mη〉 = 0 for all

M >

{
E − νR + LZ

(
[λ+ (E − νR)η, (BR(ν) + ER)µ]�· , κ, η

)
if E ≥ νR

LZ
(
[λ, (BR(ν) + ER)µ+ (νR − E)κ]�· , κ, η

)
if E < νR.

Proof. We apply Theorem 13.7 with κ− = ∅ and κ+ = κ. Thus `− = 0

and
(
ω`−(µ/µ?)

−, ω`−(µ/µ?)
+) = (∅, µ) by (6.1) and the following remark.

The sign of (∅, κ+) is +1 so the definitions given in the main part of §12

apply and ν+ = ν in the statement of the theorem. It is easily seen from

Definition 12.18 that Ec,(∅,κ)(ν, µ : λ) is E as stated in the corollary and

similarly from Theorem 13.7 using that ω0(µ)− = ∅ and

ω =

{
(BR(ν) + ER)µ+ κ if E ≥ νR
(BR(ν) + ER)µ+ (νR − E)κ if E < νR
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that D is as stated. Since |λ| + SR|µ| = |λ+| + S|κ+| = |ω| = |ω+|, where

the second equality uses Corollary 12.24(iii) and that L
(
[∅,∅]�,∅

)
= 0,

the bounds defining L in this theorem simplify to S, S+ L
(
[λ+Sκ, ω]�, κ

)
,

S+(ω1 +ω2−2λ1−2Sκ1)/(κ1−κ2), 0, and D+E−νR+νR+1, respectively.

If κ1 = κ2 then the third quantity should be disregarded; otherwise it is one

of the lower bounds appearing in Definition 8.2 defining L
(
[λ + Sκ, ω], κ

)
.

Finally we slightly simplify L
(
[λ + Sκ, ω], κ

)
using the lemma that L

(
[α +

κ, β+κ]�, κ
)

= L
(
[α, β]�, κ

)
−1 to show that L is as claimed in the statement

of the corollary. The proof of the ‘moreover’ part is very similar, using the

bounds from Proposition 13.1 with the same specializations and the same

simplification of the LZ bound. �

We note that, again using Theorem 13.7, the plethysm coefficient is zero

if λ+ S(κ−, κ+) 6� ω, where S = E − νR + 1 if E ≥ νR and S = 0 otherwise,

and ω is as defined in the proof above.

14.5. Examples of Corollary 14.9. In Examples 4.9 and 4.12, we saw

that (4, 1, 1) and (3, 3) are the two strongly maximal weights of shape (2)

and size 3 and that the corresponding semistandard tableau families are{
1 1 , 1 2 , 1 3

}
,
{

1 1 , 1 2 , 2 2
}

respectively.

Example 14.10. In the running example using the strongly 1-maximal

weight (4, 1, 1) of shape (2), size 3 and sign +1 completed in Example 12.26

we saw that if ν = (2, 1) + C(1, 1, 1) and λ = (4, 2) + C(4, 1, 1) then E = 2;

this can now be computed more simply using the formula in Corollary 14.9.

The quantity D in this corollary is∣∣∣∣(3 + 2.3)(2) + (C − 2)(4, 1, 1)−
(
(4, 2) +C(4, 1, 1)

)∣∣∣∣ =
∣∣∣∣(6,−4,−2)

∣∣∣∣ = 8,

independent of the value of C. Exploiting similar cancellation we have, for

C = 0 or C = 1,

L
([

(4, 2) + C(4, 1, 1) + (2− C)(4, 1, 1), (3 + 2.3)(2)
]
�, (4, 1, 1)

)
= L

([
(12, 4, 2), (18)

]
�, (4, 1, 1)

)
= 0.

Now taking C = 0, Corollary 14.9 implies that

〈s(2,1)+M(1,1,1) ◦ s(2), s(4,2)+M(4,1,1)〉

is constant for M ≥ 10; the two bounds are respectively 2 and 10. In fact

it follows from the enumeration of plethystic semistandard tableaux in the

running example that the plethysm coefficient is constant for M ≥ 2; the

constant value is 2.

It is routine to give a similar example using the strongly 2-maximal weight

(3, 3). This gives a special case of Proposition 14.11 below. The proof of

this proposition is a good example of how stronger bounds than the generic

bounds in our main theorems can be obtained by ad-hoc reasoning. Note
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that the assumption `(µ) ≤ ` is without loss of generality, since this condi-

tion is necessary for there to be a semistandard µ-tableau with entries from

{1, . . . , `}.

Proposition 14.11. Fix ` ∈ N and let µ be a partition with `(µ) ≤ `.

Let R be the number of semistandard tableaux of shape µ with entries from

{1, . . . , `}. Set q = R|µ|/`. Then for any partitions ν and λ with `(ν) < R

and `(λ) ≤ `,

〈sν+M(1R) ◦ sµ, sλ+M(q`)〉

is constant for M ∈ N0.

Proof. Let T be the strongly maximal signed tableau family consisting of

all semistandard µ-tableaux with entries from {1, . . . , `}. (Thus there are

no negative entries.) By Lemma 4.20 its weight is the strongly `-maximal

weight (q`) of shape µ and size R. Since `(ν) < R we have BR(ν) = |ν|
and since `(λ) ≤ `, the exceptional column bound E in the corollary is

|ν||µ| − |λ| = 0. The bounds in Corollary 14.9 are therefore

L
(
[λ, |ν|µ]�, (q

`)
)

= (|ν||µ| − |λ| − |ν|µ`)/q − |ν|µ`/q < 0

and
∣∣∣∣ |ν|µ − λ ∣∣∣∣. Inspection of the proof of Theorem 13.7 shows that the

second bound is needed to ensure that the insertion map H, defined by

inserting a new column of height R into a plethystic semistandard tableau

with entries from the tableau family T , is surjective. But since T contains

all tableaux of shape µ, any column of height R in a plethystic semistandard

signed tableau having µ-tableau entries from {1, . . . , `} is of this special form.

Therefore the plethysm coefficient is immediately constant. �

Example 14.12. Take µ = (2, 1) and ` = 3 and the strongly maximal

semistandard tableau family of all (2, 1)-tableaux with entries from {1, 2, 3}
relevant to the famous eightfold way adjoint representation of SU3(C) (see

[11, page 179]), containing the 8 tableaux shown below

1 1
2

, 1 2
2

, 1 1
3

, 1 2
3

, 1 3
2

, 1 3
3

, 2 2
3

, 2 3
3

.

The corresponding 3-strongly maximal weight is (8, 8, 8). Applying Propo-

sition 14.11 we find that

〈sν+M(18) ◦ s(2,1), sλ+M(8,8,8)〉

is constant for M ∈ N0, whenever ν and λ are partitions with `(ν) < 8 and

`(λ) ≤ 3. For example, taking ν = (2) and λ = (3, 2, 1), the stable value of

the plethysm coefficient is 1.

Many further examples of non-obvious stability results can be given using

the strongly maximal weights found in Example 4.22 and Table 4.23 in §4.5.
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