NOTES ON THE WEYL CHARACTER FORMULA

The aim of these notes is to give a self-contained algebraic proof of the Weyl Character Formula. The necessary background results on modules for $\mathrm{sl}_{2}(\mathbf{C})$ and complex semisimple Lie algebras are outlined in the first two sections. Some technical details are left to the exercises at the end; solutions are provided when the exercise is needed for the proof.

1. Representations of $\mathrm{sl}_{2}(\mathbf{C})$

Define

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and note that $\langle h, e, f\rangle=\mathrm{sl}_{2}(\mathbf{C})$. Let u, v be the canonical basis of $E=\mathbf{C}^{2}$. Then each $\operatorname{Sym}^{d} E$ is irreducible with u^{d} spanning the highest-weight space of weight d and, up to isomorphism, $\operatorname{Sym}^{d} E$ is the unique irreducible $\mathrm{sl}_{2}(\mathbf{C})$ module with highest weight d. (See Exercises 1.1 and 1.2.) The diagram below shows the actions of h, e and f on the canonical basis of $\operatorname{Sym}^{d} E$: loops show the action of h, arrows to the right show the action of e, arrow to the left show the action of f.

In particular
(a) the eigenvalues of h on $\operatorname{Sym}^{d} E$ are $-d,-d+2, \ldots, d-2, d$ and each h-eigenspace is 1-dimensional,
(b) if $w \in \operatorname{Sym}^{d} E$ and $h \cdot w=(d-2 c) w$ then $f \cdot e \cdot w=c(d-c+1) w$. If V is an arbitrary $\mathrm{sl}_{2}(\mathbf{C})$-module then, by Weyl's Theorem (see [1, Appendix B] or $[3, \S 6.3])$, V decomposes as a direct sum of irreducible $\mathrm{sl}_{2}(\mathbf{C})$ submodules. Let $V_{r}=\{v \in V: h \cdot w=r v\}$ for $r \in \mathbf{Z}$. Then (a) implies
(c) if $r \geq 0$ then the number of irreducible summands of V with highest weight r is $\operatorname{dim} V_{r}-\operatorname{dim} V_{r+2}$.

2. Prerequisites on complex semisimple Lie algebras

In this section we recall the basic setup of a Cartan subalgebra H inside a complex semisimple Lie algebra L, a lattice of weights $\Lambda \subseteq H_{\mathbf{R}}^{\star}$ and a root system $\Phi \subseteq \Lambda$. The mathematically most interesting parts are that H is self-centralizing (which is left to Exercise 2.2 and the trick used to construct an $\mathrm{sl}_{2}(\mathbf{C})$-subalgebra corresponding to each root. For an example of all the theory below, see Exercise 2.7.

Cartan subalgebras. We define a Cartan subalgebra of L to be a Lie subalgebra H of L maximal subject to the condition that $\operatorname{ad} h: L \rightarrow L$ is diagonalizable for all $h \in H$. It is an interesting fact (see Exercise 2.1) that any Cartan subalgebra is abelian. We may therefore decompose L as a direct sum of simultaneous eigenspaces for the elements of H. To each simultaneous eigenspace V we associate the unique $\alpha \in H^{\star}$ such that $(\operatorname{ad} h) x=\alpha(h) x$ for all $h \in H$ and $x \in V$. For $\alpha \in H^{\star}$ let

$$
L_{\alpha}=\{x \in L:(\operatorname{ad} h) x=\alpha(h) x \text { for all } h \in H, x \in V\}
$$

and let Φ be the set of all non-zero $\alpha \in H^{\star}$ such that $L_{\alpha} \neq 0$. The elements of Φ are called roots and L_{α} is the root space corresponding to $\alpha \in \Phi$ and we have

$$
L=L_{0} \oplus\left(\bigoplus_{\alpha \in \Phi} L_{\alpha}\right)
$$

Note that L_{0} is the centralizer of H in L. It is an important and nonobvious fact (see Exercise 2.2) that $L_{0}=H$, so H is self-centralizing: An easy calculation shows that

$$
\begin{equation*}
\left[L_{\alpha}, L_{\beta}\right] \subseteq L_{\alpha+\beta} \quad \text { for all } \alpha, \beta \in \Phi_{0} \tag{1}
\end{equation*}
$$

Killing form. The Killing form on L is the bilinear form $\kappa(x, y)=\operatorname{Tr}(\operatorname{ad} x \circ$ ad y). By Cartan's Criterion κ is non-degenerate. It follows from (1) that if $x \in L_{\alpha}$ and $y \in L_{\beta}$ where $\alpha, \beta \in \Phi_{0}$, then $\operatorname{ad} x \circ \operatorname{ad} y$ is nilpotent, unless $\alpha+\beta=0$. Therefore if $\alpha, \beta \in \Phi_{0}$ then $L_{\alpha} \perp L_{\beta}$ unless $\beta=-\alpha$. Hence α is a root if and only if $-\alpha$ is a root and the restriction of κ to $L_{\alpha} \times L_{-\alpha}$ is nondegenerate. In particular, the restriction of κ to $H \times H$ is non-degenerate. For each $\alpha \in \Phi$, let $t_{\alpha} \in H$ be the unique element of H such that

$$
\kappa\left(t_{\alpha}, h\right)=\alpha(h) \quad \text { for all } h \in H
$$

sl_{2} subalgebras. Choose $e \in L_{\alpha}$ and $f \in L_{-\alpha}$ such that $\kappa(e, f) \neq 0$. By the associativity of the Killing form

$$
\kappa(h,[e, f])=\kappa([h, e], f)=\alpha(h) \kappa(e, f) \quad \text { for all } h \in H
$$

Since κ is non-degenerate on H, there exists $h \in H$ such that $\alpha(h)=$ $\kappa\left(t_{\alpha}, h\right) \neq 0$. Since $\kappa(e, f) \neq 0$, the previous equation then implies that $[e, f] \neq 0$. Consider the Lie subalgebra

$$
\langle e, f,[e, f]\rangle
$$

of L. Since $[e, f] \in\left[L_{\alpha}, L_{-\alpha}\right] \subseteq H$ we have $[[e, f], e]=\alpha([e, f]) e$ and $[[e, f], f]=-\alpha([e, f]) f$.

If $\alpha([e, f])=0$ then $[e, f]$ is central in $\langle e, f,[e, f]\rangle$. By Exercise 2.3 below $[e, f]$ is nilpotent. But $[e, f] \in H$ and all the elements of H are semisimple. So $[e, f]=0$, which contradicts the previous paragraph. Therefore $\alpha([e, f]) \neq 0$ and we can scale e so that $\alpha([e, f])=2$ and so $\langle e, f,[e, f]\rangle \cong$ $\mathrm{sl}_{2}(\mathbf{C})$.

For each $\alpha \in \Phi$ let $\left\langle e_{\alpha}, f_{\alpha}, h_{\alpha}\right\rangle$ be a subalgebra of L constructed as above so that

$$
\left.\left[e_{\alpha}, f_{\alpha}\right]=h_{\alpha}, \quad\left[h_{\alpha}, e_{\alpha}\right]=2 e_{\alpha}\right], \quad\left[h_{\alpha}, f_{\alpha}\right]=2 f_{\alpha} .
$$

We may suppose that these elements are chosen so that $e_{-\alpha}=f_{\alpha}$ and $f_{-\alpha}=e_{\alpha}$ for each $\alpha \in \Phi$.

Relationship between t_{α} and h_{α}. By choice of t_{α} we have $\kappa\left(t_{\alpha}, h\right)=\alpha(h)$ for all $h \in H$. By associativity of the Killing form we also have

$$
\kappa\left(\left[e_{\alpha}, f_{\alpha}\right], h\right)=\kappa\left(e_{\alpha},\left[f_{\alpha}, h\right]\right)=\kappa\left(e_{\alpha}, \alpha(h) f_{\alpha}\right)=\alpha(h) \kappa\left(e_{\alpha}, f_{\alpha}\right) .
$$

Hence

$$
\kappa\left(t_{\alpha}-\frac{\left[e_{\alpha}, f_{\alpha}\right]}{\kappa\left(e_{\alpha}, f_{\alpha}\right)}, h\right)=0 \quad \text { for all } h \in H .
$$

Since the restriction of κ to $H \times H$ is non-degenerate it follows that

$$
\begin{equation*}
t_{\alpha}=\frac{h_{\alpha}}{\kappa\left(e_{\alpha}, f_{\alpha}\right)} . \tag{2}
\end{equation*}
$$

Since $\kappa\left(t_{\alpha}, t_{\alpha}\right)=\alpha\left(t_{\alpha}\right)$, this implies the useful relations

$$
\begin{equation*}
2=\alpha\left(h_{\alpha}\right)=\kappa\left(t_{\alpha}, h_{\alpha}\right)=\frac{\kappa\left(h_{\alpha}, h_{\alpha}\right)}{\kappa\left(e_{\alpha}, f_{\alpha}\right)}=\kappa\left(e_{\alpha}, f_{\alpha}\right) \kappa\left(t_{\alpha}, t_{\alpha}\right) . \tag{3}
\end{equation*}
$$

Transport of the Killing form to $H_{\mathbf{R}}^{\star}$. We saw earlier that for all $\alpha \in \Phi$ there exists $h \in H$ such that $\alpha(h) \neq 0$. It follows that Φ spans H^{\star} and there is a unique bilinear form (,) on H^{\star} such that

$$
(\alpha, \beta)=\kappa\left(t_{\alpha}, t_{\beta}\right) \quad \text { for } \alpha, \beta \in \Phi .
$$

By (2) and (3) we have the fundamental formula

$$
\begin{equation*}
\frac{2(\alpha, \beta)}{(\beta, \beta)}=\kappa\left(t_{\alpha}, \frac{2 t_{\beta}}{\kappa\left(t_{\beta}, t_{\beta}\right)}\right)=\kappa\left(t_{\alpha}, h_{\beta}\right)=\alpha\left(h_{\beta}\right) . \tag{4}
\end{equation*}
$$

Note also that $\alpha\left(h_{\beta}\right)$ is an eigenvalue of h_{β} in the finite-dimensional sl(β)module L. It follows that (,) takes real values on the roots and from the
equation $\kappa(h, k)=\sum_{\alpha \in \Phi} \alpha(h) \alpha(k)$ for $h, k \in H$, we see that it is a realvalued inner-product on $H_{\mathbf{R}}^{\star}=\langle\alpha: \alpha \in \Phi\rangle_{\mathbf{R}}$. Exercise 2.4 shows that the angles between the roots are determined by (4). (In fact if L is a simple Lie algebra then Φ is a connected root system and (,) is completely determined by (4) and (α, α) for any single root $\alpha \in \Phi$.)

Angled brackets notation. It will be convenient to define

$$
\langle\lambda, \mu\rangle=\frac{2(\lambda, \mu)}{(\mu, \mu)}
$$

for $\lambda, \mu \in H_{\mathbf{R}}^{\star}$. Note that the form \langle,$\rangle is linear only in its first component.$ This notation will often be used when $\mu \in \Phi$, in which case (4) implies that $\langle\lambda, \beta\rangle=\lambda\left(h_{\beta}\right)$.

Fundamental dominant weights. Recall that $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ is a base for Φ if element of Φ can be written uniquely as either a non-negative or non-positive integral linear combination of the α_{i}. (For a proof that every root system has a basis, see [1, Theorem 11.10] or [3, Theorem 10.1].) Fix, once and for all, a base $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ for Φ and let Φ^{+}be the set of positive roots with respect to this basis. There exist unique $\omega_{1}, \ldots, \omega_{\ell} \in H^{\star}$ such that, for all $i, j \in\{1, \ldots, \ell\}$,

$$
\omega_{i}\left(h_{\alpha_{j}}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Let $\Lambda=\left\langle\omega_{1}, \ldots, \omega_{\ell}\right\rangle_{\mathbf{z}} \subseteq H^{\star}$.
Weight space decomposition. The elements of H act semisimply in any finitedimensional L-module (see [3, Corollary 6.3]). By Section 1, the eigenvalues of each $h_{\alpha_{j}}$ are integral. Hence if V is a finite-dimensional L-module then

$$
V \downarrow_{H}=\bigoplus_{\lambda \in \Lambda} V_{\lambda}
$$

where

$$
V_{\lambda}=\{v \in V: h \cdot v=\lambda(h) v \text { for all } h \in H\}
$$

(The root spaces defined earlier are weight spaces for the action of L on itself by the adjoint representation.) We shall say that an element of V lying in some non-zero V_{λ} is a weight vector. Starting with any weight vector, and then repeatedly applying the elements e_{α} for $\alpha \in \Phi^{+}$, it follows that V contains a weight vector v such that $e_{\alpha} \cdot v=0$ for all $\alpha \in \Phi^{+}$. Such a vector is said to be a highest-weight vector with respect to the base $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$. By Exercise 2.6, the submodule of V generated by a highest weight vector is irreducible.

3. Freudenthal's Formula

Let V be an irreducible L-module of highest weight $\mu \in \Lambda$. Let $n_{\nu}=$ $\operatorname{dim} V_{\nu}$ for each $\nu \in \Lambda$. The aim of this section is to prove Freudenthal's Formula, that if $\lambda \in \Lambda$ then

$$
\left(\|\mu+\delta\|^{2}-\|\lambda+\delta\|^{2}\right) n_{\lambda}=2 \sum_{\alpha \in \Phi^{+}} \sum_{m=1}^{\infty} n_{\lambda+m \alpha}(\lambda+m \alpha, \alpha)
$$

where $\delta=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$. The key idea in this proof (which is based on [5, VIII.2]) is to calculate the scalar by which a central element in the universal enveloping algebra $\mathcal{U}(L)$ acts on V, using the theory of $\mathrm{sl}_{2}(\mathbf{C})$-modules in Section 1. The following lemma gives a construction of such central elements.

Lemma 3.1. Suppose that x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} are bases of L such that

$$
\kappa\left(x_{i}, y_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Then $\sum_{i=1}^{n} x_{i} y_{i}$ is in the centre of $\mathcal{U}(L)$.
Proof. See Exercise 3.3.
Let $\alpha, \beta \in \Phi$. By (1) we have $\kappa\left(e_{\alpha}, f_{\beta}\right)=0$ whenever $\alpha \neq \beta$ and by (3) we have $\kappa\left(e_{\alpha}, f_{\alpha}\right)=2 / \kappa\left(t_{\alpha}, t_{\alpha}\right)=2 /(\alpha, \alpha)$ and $\kappa\left(t_{\alpha}, h_{\alpha}\right)=2$ for all $\alpha \in \Phi$. Lemma 3.1 therefore implies that

$$
\Gamma=\sum_{\alpha \in \Phi} \frac{(\alpha, \alpha)}{2} f_{\alpha} e_{\alpha}+\frac{1}{2} \sum_{j=1}^{\ell} t_{\alpha_{j}} h_{\alpha_{j}}
$$

is in the centre of $\mathcal{U}(L)$. We may assume that if $\alpha \in \Phi^{+}$then $e_{-\alpha}=f_{\alpha}$ and $f_{-\alpha}=e_{\alpha}$. Hence $f_{-\alpha} e_{-\alpha}=e_{\alpha} f_{\alpha}=h_{\alpha}+f_{\alpha} e_{\alpha}$ and

$$
\Gamma=\sum_{\alpha \in \Phi^{+}} \frac{(\alpha, \alpha)}{2} h_{\alpha}+\sum_{\alpha \in \Phi^{+}}(\alpha, \alpha) f_{\alpha} e_{\alpha}+\frac{1}{2} \sum_{j=1}^{\ell} t_{\alpha_{j}} h_{\alpha_{j}}
$$

The action of each of the three summands of Γ preserves the weight spaces V_{λ}. The next three lemmas determine the traces of these summands on each V_{λ}. The first explains the appearance of δ in Freudenthal's Formula.

Lemma 3.2. If $\lambda \in \Lambda$ and $v \in V_{\lambda}$ then

$$
\sum_{\alpha \in \Phi^{+}} \frac{(\alpha, \alpha)}{2} h_{\alpha} \cdot v=(\lambda, 2 \delta) v .
$$

Proof. Using (4) we get

$$
\sum_{\alpha \in \Phi^{+}} \frac{(\alpha, \alpha)}{2} \lambda\left(h_{\alpha}\right)=\sum_{\alpha \in \Phi^{+}} \frac{(\alpha, \alpha)}{2} \frac{2(\lambda, \alpha)}{(\alpha, \alpha)}=\sum_{\alpha \in \Phi^{+}}(\lambda, \alpha)=(\lambda, 2 \delta)
$$

as required.

Lemma 3.3. If $\alpha \in \Phi$ and $\lambda \in \Lambda$ then

$$
(\alpha, \alpha) \operatorname{Tr}_{V_{\lambda}}\left(f_{\alpha} e_{\alpha}\right)=2 \sum_{m=1}^{\infty} n_{\lambda+m \alpha}(\lambda+m \alpha, \alpha) .
$$

Proof. Since $\frac{2(\lambda+m \alpha, \alpha)}{(\alpha, \alpha)}=\langle\lambda+m \alpha, \alpha\rangle$, it is equivalent to prove that

$$
\operatorname{Tr}_{V_{\lambda}}\left(f_{\alpha} e_{\alpha}\right)=\sum_{m=1}^{\infty} n_{\lambda+m \alpha}\langle\lambda+m \alpha, \alpha\rangle .
$$

Let $W=\bigoplus_{c \in \mathbf{Z}} V_{\lambda+c \alpha}$. Note that W is a direct sum of weight spaces for the action of H, and that W is an $\mathrm{sl}(\alpha)$-submodule of V. We may write

$$
W=U^{(1)} \oplus \cdots \oplus U^{(d)}
$$

where each $U^{(i)}$ is an irreducible sl($\left.\alpha\right)$-module.
Assume first of all that $\lambda\left(h_{\alpha}\right) \geq 0$. Suppose that $U_{\lambda}^{(i)} \neq 0$. Choose m maximal such that $U_{\lambda+m \alpha}^{(i)} \neq 0$. Then $U^{(i)}$ has highest weight $(\lambda+m \alpha)\left(h_{\alpha}\right)$ as an $\operatorname{sI}(\alpha)$-module and by (b) in Section 1 , the scalar by which $f_{\alpha} e_{\alpha}$ acts on a vector in $U_{\lambda}^{(i)}$ is

$$
m\left((\lambda+m \alpha)\left(h_{\alpha}\right)-m+1\right)=m\left(\lambda\left(h_{\alpha}\right)+m+1\right)
$$

It follows from (c) in Section 1 that the number of summands $U^{(i)}$ with highest weight $(\lambda+m \alpha)\left(h_{\alpha}\right)$ as an $\operatorname{si}(\alpha)$-module is $n_{\lambda+m \alpha}-n_{\lambda+(m+1) \alpha}$. Hence

$$
\begin{aligned}
\operatorname{Tr}_{V_{\lambda}}\left(f_{\alpha} e_{\alpha}\right) & =\sum_{m=0}^{\infty}\left(n_{\lambda+m \alpha}-n_{\lambda+(m+1) \alpha}\right) m\left(\lambda\left(h_{\alpha}\right)+m+1\right) \\
& =\sum_{m=1}^{\infty} n_{\lambda+m \alpha}\left(m\left(\lambda\left(h_{\alpha}\right)+m+1\right)-(m-1)\left(\lambda\left(h_{\alpha}\right)+m\right)\right) \\
& =\sum_{m=1}^{\infty} n_{\lambda+m \alpha}\left(\lambda\left(h_{\alpha}\right)+2 m\right) .
\end{aligned}
$$

as required. Note that this equation holds even when $V_{\lambda}=0$, since the argument just given shows that both sides are zero.

If $\lambda\left(h_{\alpha}\right) \leq 0$ then a similar calculation (see Exercise 3.4) shows that $f_{\alpha} e_{\alpha}$ acts as the scalar $-\sum_{b=0}^{\infty} n_{\lambda-b \alpha}\langle\lambda-b \alpha, \alpha\rangle$ on V_{λ}. Now $\sum_{c=-\infty}^{\infty} n_{\lambda+c \alpha}\langle\lambda+$ $c \alpha, \alpha\rangle=0$ since each irreducible summand $U^{(i)}$ contributes the sum of the h_{α} eigenvalues on $U^{(i)}$, which is 0 by (a) in Section 1. Adding these two equations we get the required formula.

Lemma 3.4. Let $\lambda \in \Lambda$. If $v \in V_{\lambda}$ then

$$
\frac{1}{2} \sum_{j=1}^{\ell} t_{\alpha_{j}} h_{\alpha_{j}} \cdot v=(\lambda, \lambda) v
$$

Proof. We saw earlier that $\frac{1}{2} t_{\alpha_{1}}, \ldots, \frac{1}{2} t_{\alpha_{\ell}}$ and $h_{\alpha_{1}}, \ldots, h_{\alpha_{\ell}}$ are dual bases of H^{\star} with respect to the Killing form κ on $H \times H$. By Exercise 3.2(ii)

$$
\frac{1}{2} \sum_{i=1}^{\ell} \lambda\left(t_{\alpha_{j}}\right) \lambda\left(h_{\alpha_{j}}\right)=(\ell, \ell)
$$

as required.
Since Γ is central in $\mathcal{U}(L)$ it acts as a scalar on V, say γ. Let $\lambda \in \Lambda$. By Lemmas 3.2, 3.3 and 3.4, we have

$$
n_{\lambda} \gamma=\operatorname{Tr}_{V_{\lambda}}\left(f_{\alpha} e_{\alpha}\right)=(\lambda, 2 \delta) n_{\lambda}+2 \sum_{\alpha \in \Phi^{+}} \sum_{m=1}^{\infty} n_{\lambda+m \alpha}(\lambda+m \alpha, \alpha)+(\lambda, \lambda) n_{\lambda}
$$

Recall that V has highest weight μ. Since $e_{\alpha} \cdot V_{\mu}=0$ for all $\alpha \in \Phi^{+}, n_{\mu}=1$, and $(\lambda, 2 \delta)+(\lambda, \lambda)=\|\lambda+\delta\|^{2}-\|\delta\|^{2}$, the previous equation implies

$$
\gamma=\|\mu+\delta\|^{2}-\left\|\delta^{2}\right\|
$$

Comparing these two equations we obtain

$$
\left(\|\mu+\delta\|^{2}-\|\lambda+\delta\|^{2}\right) n_{\lambda}=2 \sum_{\alpha \in \Phi^{+}} \sum_{m=1}^{\infty} n_{\lambda+m \alpha}(\lambda+m \alpha, \alpha)
$$

as stated in Freudenthal's Formula. For an immediate application of Freudenthal's Formula see Exercise 3.5 below.

4. Statement of Weyl Character Formula

Formal exponentials and characters. For each $\lambda \in \Lambda$ we introduce a formal symbol $e(\lambda)$ which we call the formal exponential of λ. Let $\mathbf{Q}[\Lambda]$ denote the abelian group with \mathbf{Z}-basis $\{e(\lambda): \lambda \in \Lambda\}$. We make $\mathbf{Q}[\Lambda]$ into an algebra by defining the multiplication on basis elements by

$$
\mathrm{e}(\lambda) e\left(\lambda^{\prime}\right)=\mathrm{e}\left(\lambda+\lambda^{\prime}\right) \quad \text { for } \lambda, \lambda^{\prime} \in \Lambda
$$

Note that $\mathrm{e}(0)=1$ and that each $\mathrm{e}(\lambda)$ is invertible, with inverse $\mathrm{e}(-\lambda)$. This definition is motivated by 1-parameter subgroups: see Exercise 4.1. Given an L-module V, we define the formal character of L by

$$
\chi_{V}=\sum_{\lambda \in \Lambda}\left(\operatorname{dim} V_{\lambda}\right) e(\lambda) \in \mathbf{Q}[\Lambda]
$$

Weyl group. Let $S_{\beta}: H_{\mathbf{R}}^{\star} \rightarrow H_{\mathbf{R}}^{\star}$ denote the reflection corresponding to $\beta \in \Phi$ as defined by

$$
S_{\beta}(\theta)=\theta-\frac{2(\theta, \beta)}{(\beta, \beta)} \beta \quad \text { for } \theta \in H_{\mathbf{R}}^{\star}
$$

The alterative forms $S_{\beta}(\theta)=\theta-\langle\theta, \beta\rangle \beta=w-\theta\left(h_{\beta}\right) \alpha$ are often useful. By definition the Weyl group of L is the group generated by the S_{β} for $\beta \in \Phi$. We define $\varepsilon(w)=1$ if w is a product of an even number of reflections, and
$\varepsilon(w)=-1$ otherwise. The Weyl group W acts on $\mathbf{Q}[\Lambda]$ by $w \cdot \mathrm{e}(\lambda)=e(w(\lambda))$ for $w \in W$ and $\lambda \in \Lambda$.

Symmetric and antisymmetric elements. We say that an element $f \in \mathbf{Q}[\Lambda]$ is symmetric if $w \cdot f=f$ for all $w \in W$ and antisymmetric if $w \cdot f=\varepsilon(w) f$ for all $w \in W$. By Exercise 4.3(iv), $f \in \mathbf{Q}[\Lambda]$ is antisymmetric if and only if

$$
f=g \sum_{w \in W} \varepsilon(w) w \cdot \mathrm{e}(\delta)
$$

for some symmetric g.
Weyl Character Formula. We may now state the main result. By the result on antisymmetric elements of $\mathbf{Q}[\Lambda]$ just mentioned, the right-hand side in the formula below is a well-defined symmetric element of $\mathbf{Q}[\Lambda]$.

Theorem 4.1 (Weyl Character Formula). Let V be the irreducible L-module of highest weight $\mu \in \Lambda$. Then

$$
\chi_{V}=\frac{\sum_{w \in W} \varepsilon(w) w \cdot \mathrm{e}(\mu+\delta)}{\sum_{w \in W} \varepsilon(w) w \cdot \mathrm{e}(\delta)} .
$$

For applications of the Weyl Character Formula are given in Exercises 4.4, 4.5 and 4.6. Kostant's Multiplicity Formula (see for instance [2, $\S 8.2]$) is also a quick corollary.

5. Proof of the Weyl Character Formula

The following proof is adapted from Igusa's notes [4]. For calculations it will be convenient to extend $\mathbf{Q}[\Lambda]$ to a larger ring $\mathbf{Q}\left[\frac{1}{2} \Lambda\right]$ by adjoining a square root $e\left(\frac{1}{2} \alpha\right)$ for each $\alpha \in \Phi$. We then complete $\mathbf{Q}\left[\frac{1}{2} \Lambda\right]$ to the algebra $\mathbf{Q}\left[\left[\frac{1}{2} \Lambda\right]\right]$ of formal power series generated by the $e\left(\frac{1}{2} \lambda\right)$ for $\lambda \in \Lambda$. For example, in $\mathbf{Q}\left[\left[\frac{1}{2} \Lambda\right]\right]$ we have $\sum_{s=0}^{\infty} \mathrm{e}(\lambda)^{s}=\frac{1}{1-\mathrm{e}(\lambda)}$.

We shall also need the Laplacian operator $\Delta: \mathbf{Q}\left[\left[\frac{1}{2} \Lambda\right]\right] \rightarrow \mathbf{Q}\left[\left[\frac{1}{2} \Lambda\right]\right]$, defined by $\Delta(\mathrm{e}(\lambda))=\|\lambda\|^{2} e(\lambda)$ for $\lambda \in \frac{1}{2} \Lambda$, and the bilinear form $\{$,$\} on \mathbf{Q}\left[\left[\frac{1}{2} \lambda\right]\right]$ defined by

$$
\{\mathrm{e}(\lambda), e(\mu)\}=(\lambda, \mu) \mathrm{e}(\lambda+\mu) \quad \text { for } \lambda, \mu \in \frac{1}{2} \Lambda .
$$

See Exercise 4.3(i) and (iv) for some motivation for Δ. These gadgets are related by the following lemma.
Lemma 5.1. Let $f, g \in \mathbf{Q}\left[\left[\frac{1}{2} \Lambda\right]\right]$. Then

$$
\Delta(f g)=f \Delta(g)+\Delta(f) g+2\{f, g\}
$$

Proof. By linearity it is sufficient to prove the lemma when $f=\mathrm{e}(\lambda)$ and $g=\mathrm{e}(\mu)$ for some $\lambda, \mu \in \frac{1}{2} \Lambda$. In this case it states that

$$
\|\lambda+\mu\|^{2} \mathrm{e}(\lambda+\mu)=\mathrm{e}(\lambda)\|\mu\|^{2} \mathrm{e}(\mu)+\left\|\lambda^{2}\right\| \mathrm{e}(\lambda) \mathrm{e}(\mu)+2(\lambda, \mu) \mathrm{e}(\lambda+\mu)
$$

which is obvious.

Proof of Weyl Character Formula. Let Q denote the denominator in the Weyl Character Formula. We begin the proof with Freudenthal's formula in the form

$$
\left(\|\mu+\delta\|^{2}-\|\delta\|^{2}\right) n_{\lambda}=\left(\|\lambda\|^{2}+(\lambda, 2 \delta)\right) n_{\lambda}+2 \sum_{\alpha \in \Phi^{+}} \sum_{m=1}^{\infty}(\lambda+m \alpha, \alpha) n_{\lambda+m \alpha}
$$

Multiply both sides by $\mathrm{e}(\lambda)$ and sum over all $\lambda \in \Lambda$ to get

$$
\begin{equation*}
\left(\|\mu+\delta\|^{2}-\|\delta\|^{2}\right) \chi_{V}=\Delta\left(\chi_{V}\right)+\sum_{\lambda \in \Lambda}(\lambda, 2 \delta) n_{\lambda} \mathrm{e}(\lambda)+X \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
X & =2 \sum_{\lambda \in \Lambda} \sum_{\alpha \in \Phi^{+}} \sum_{m=1}^{\infty}(\lambda+m \alpha, \alpha) n_{\lambda+m \alpha} \mathrm{e}(\lambda) \\
& =2 \sum_{\lambda \in \Lambda} \sum_{\alpha \in \Phi^{+}} \sum_{m=1}^{\infty}(\lambda, \alpha) n_{\lambda} \mathrm{e}(\lambda-m \alpha) \\
& =2 \sum_{\lambda \in \Lambda} \sum_{\alpha \in \Phi^{+}}(\lambda, \alpha) \frac{n_{\lambda} \mathrm{e}(\lambda)}{\mathrm{e}(\alpha)-1} .
\end{aligned}
$$

Now multiply through by Q and replace 2δ with $\sum_{\alpha \in \Phi^{+}} \alpha$ to combine the second two summands on the right-hand side of (5). This gives

$$
\left(\|\mu+\delta\|^{2}-\|\delta\|^{2}\right) Q \chi_{V}=Q \Delta\left(\chi_{V}\right)+Q \sum_{\lambda \in \Lambda} \sum_{\alpha \in \Phi^{+}}(\lambda, \alpha) n_{\lambda} \mathrm{e}(\lambda) \frac{\mathrm{e}(\alpha)+1}{\mathrm{e}(\alpha)-1}
$$

Since $Q \chi_{V}$ is antisymmetric, it follows from Exercise 4.3(i) that $Q \chi_{V}=$ $\sum_{w \in W} \varepsilon(w) w \cdot e(\mu+\delta)$ if and only if $\Delta\left(Q \chi_{V}\right)=\|\mu+\delta\|^{2} Q \chi_{V}$. Again by this exercise, $\Delta(Q)=\|\delta\|^{2} Q$. Hence it is sufficient to prove
(6) $\Delta\left(Q \chi_{V}\right)-\Delta(Q) \chi_{V}-Q \Delta\left(\chi_{V}\right)=Q \sum_{\lambda \in \Lambda} \sum_{\alpha \in \Phi^{+}}(\lambda, \alpha) n_{\lambda} \mathrm{e}(\lambda) \frac{\mathrm{e}(\alpha)+1}{\mathrm{e}(\alpha)-1}$.

By Lemma 5.1, the left-hand side in (6) is $2\left\{Q, \chi_{V}\right\}$. So finally, it is sufficient to prove that

$$
2\left\{Q, \sum_{\lambda \in \Lambda} n_{\lambda} \mathrm{e}(\lambda)\right\}=Q \sum_{\alpha \in \Phi^{+}} \frac{\mathrm{e}(\alpha)+1}{\mathrm{e}(\alpha)-1} \sum_{\lambda \in \Lambda}(\lambda, \alpha) n_{\lambda} \mathrm{e}(\lambda)
$$

which, by linearity, follows from the relation

$$
2\{Q, \mathrm{e}(\nu)\}=Q \sum_{\alpha \in \Phi^{+}} \frac{\mathrm{e}(\alpha)+1}{\mathrm{e}(\alpha)-1}(\nu, \alpha) e(\nu) \quad \text { for } \nu \in \Lambda
$$

proved in Exercise 5.2 below.

Exercises

Exercise 1.1. Let $E=\langle u, v\rangle$ be the natural 2-dimensional $\mathrm{sl}_{2}(\mathbf{C})$-module. Show that $\operatorname{Sym}^{d} E$ is irreducible for each $d \in \mathbf{N}$.

Exercise 1.2. Let V be a finite-dimensional $\mathrm{sl}_{2}(\mathbf{C})$-module.
(i) Show that V contains an h-eigenvector v such that $e \cdot v=0$.
(ii) Show that the submodule of V generated by V is d-dimensional if and only if $h \cdot v=d v$.
(iii) Deduce that any irreducible $\mathrm{ss}_{2}(\mathbf{C})$-module is isomorphic to $\operatorname{Sym}^{d} E$ for some $d \in \mathbf{N}_{0}$.

Exercise 2.1. Show that a Cartan subalgebra (as defined in Section 2) is abelian.

Solution. Given $h, k \in H$, we can write k as a sum of ad h eigenvectors, say $k=k_{0}+\sum_{i=1}^{n} k_{i}$ where $(\operatorname{ad} h) k_{0}=0$ and $(\operatorname{ad} h) k_{i}=\lambda_{i} k_{i}$. Hence $(\mathrm{ad} h)^{r} k=\sum_{i=1}^{n} \lambda_{i}^{r} k_{i}$. A useful linear algebra lemma shows that all the k_{i} are in the Lie subalgebra of H generated by x and y. Now $\left[h, k_{i}\right]=\lambda_{i} k_{i}$ and so $\left(a d k_{i}\right)^{2} x=\left[k_{i},\left[k_{i}, x\right]\right]=\left[k_{i},-\lambda_{i} k_{i}\right]=0$; since $k_{i} \in H$, ad k_{i} is diagonalizable, and so we must have $\left(\operatorname{ad} k_{i}\right) x=0$. Hence $[h, k]=0$.

Exercise 2.2. The aim of this exercise is to show that if H is a Cartan subalgebra of L then H is self-centralizing.
(i) Show that L_{0} is nilpotent. [Hint: use Engel's theorem and the abstract Jordan decomposition.]
(ii) Show that there is a basis of L_{0} in which all ad $x: L \rightarrow L$ for $x \in L_{0}$ are represented by upper-triangular matrices.
(iii) Show that if $x \in L_{0}$ and $\operatorname{ad} x: L \rightarrow L$ is nilpotent then $\operatorname{Tr}(\operatorname{ad} x \circ$ $\operatorname{ad} y)=0$ for all $y \in L_{0}$. Deduce that $x=0$.
(iv) Deduce that every element of L_{0} is semisimple and hence show that $L_{0}=H$.

Exercise 2.3. Let V be a complex vector space. Show that if x and $y \in$ $\mathrm{gl}(V)$ are such that $[x, y]$ commutes with x then $[x, y]$ is nilpotent. [Hint: there is a quick solution using Lie's Theorem. For an ad-hoc proof (which then allows this exercise to be used as part of a proof of Lie's Theorem) first show that $\operatorname{Tr}[x, y]^{n}=0$ for all $n \in \mathbf{N}$.]

Exercise 2.4. Let α and β be non-perpendicular roots in a root system. Use the fundamental relation (4) to find the possible angles between α and β and the possible values of $\|\alpha\| / /\|\beta\|$.

Exercise 2.5. Find the Killing form of $\mathrm{ss}_{2}(\mathbf{C})$ with respect to the basis e, f, h and hence calculate $\|\alpha\|^{2}$ where α is the unique root of $\mathrm{sl}_{2}(\mathbf{C})$. (In practice
the previous exercise always gives enough information, so this calculation is unnecessary. For example, this is true in Freudenthal's formula, since n_{λ} is expressed as a quotient of norms, and in Exercise 4.6, for the same reason.)

Exercise 2.6. Let V be a finite-dimensional L-module and let $v \in V$ be a highest-weight vector. Show that the submodule of L generated by v is irreducible.

Exercise 2.7. Let H be the Cartan subalgebra of diagonal matrices in $\mathrm{sl}_{3}(\mathbf{C})$. For $i \in\{1,2,3\}$, let $\varepsilon_{i}: H \rightarrow \mathbf{C}$ be the function sending $\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right)$ to a_{i}. Let $\alpha=\varepsilon_{1}-\varepsilon_{2}$ and let $\beta=\varepsilon_{2}-\varepsilon_{3}$.
(i) Show that $\{\alpha, \beta\}$ is a base for the root system Φ.
(ii) Show that $\|\alpha\|=\|\beta\|$ and that the angle between α and β is $2 \pi / 3$.
(iii) Find the fundamental dominant integral weights ω_{1}, ω_{2} corresponding to this base in terms of α and β.
(iv) Show that $\omega_{1}=\varepsilon_{1}$ and $\omega_{2}=\varepsilon_{1}+\varepsilon_{2}$. (Since $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}=0$ other, equivalent, expressions for ω_{1} and ω_{2} are also possible.)
(iv) Express the highest weight of the natural, dual natural and adjoint representations of $\mathrm{sl}_{3}(\mathbf{C})$ as \mathbf{Z}-linear combinations of ω_{1} and ω_{2}.

Exercise 3.1. Recall that $\delta=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$ and that $B=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ is a base for Φ.
(i) Show that if $\beta \in \Phi^{+}$and $\beta \neq \alpha_{i}$ then $S_{\alpha_{i}}(\beta) \in \Phi^{+}$
(ii) Show that $S_{\alpha_{i}}(\delta)=\delta-\alpha_{i}$ for all i.
(iii) Show that $\delta=\omega_{1}+\cdots+\omega_{\ell}$ and deduce that $\delta \in \Lambda$.

Solution. (i) Since $\beta \neq \alpha_{i}$ and $k \alpha_{i}$ is a root if and only if $k \in\{+1,-1\}$ (see, for example, [1, Proposition 10.9]), there exists j such that α_{j} appears with a strictly positive coefficient in the expression for β as a Z-linear combination of $\alpha_{1}, \ldots, \alpha_{n}$. Now α_{j} has the same coefficient in

$$
S_{\alpha_{i}}(\beta)=\beta-\left\langle\beta, \alpha_{i}\right\rangle \alpha_{i}
$$

and so it follows that $S_{\alpha_{i}}(\beta) \in \Phi^{+}$.
(ii) Since $S_{\alpha_{i}}$ permutes $\Phi^{+} \backslash\left\{\alpha_{i}\right\}$ and $S_{\alpha_{i}}\left(\alpha_{i}\right)=-\alpha_{i}$, we have

$$
S_{\alpha_{i}}(\delta)=\frac{1}{2} \sum_{\beta \in \Phi} S_{\alpha_{i}}(\beta)=\frac{1}{2} \sum_{\beta \in \Phi} S_{\alpha_{i}}(\beta)-\alpha_{i}=\delta-\alpha_{i}
$$

as required.
(iii) By definition $\left\langle\alpha_{i}, \omega_{j}\right\rangle=0$ if $i \neq j$ and $\left\langle\alpha_{i}, \omega_{j}\right\rangle=1$. Hence

$$
S_{\alpha_{j}}\left(\sum_{i=1}^{\ell} \omega_{i}\right)=\sum_{i=1}^{\ell} \omega_{i}-\omega_{j}+S_{\alpha_{j}}\left(\omega_{j}\right)=\sum_{i=1}^{\ell} \omega_{i}-\omega_{j}+\omega_{j}-\alpha_{j}=\sum_{i=1}^{\ell} \omega_{i}-\alpha_{j} .
$$

Hence by (ii), $-\delta+\sum_{i=1}^{\ell} \omega_{i}$ is invariant under the generators $S_{\alpha_{1}}, \ldots, S_{\alpha_{\ell}}$ of W. Hence $\delta=\sum_{i=1}^{\ell} \omega_{i} \in \Lambda$.

Exercise 3.2. Let $B: V \rightarrow V$ be a non-degenerate symmetric bilinear form on an n-dimensional vector space V. Suppose that x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} are dual bases for V, so

$$
B\left(x_{i}, y_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Let $\theta \in V^{\star}$ and let t_{θ} be the unique element such that $B\left(t_{\theta}, v\right)=\theta(v)$ for all $v \in V$. Let $v \in V$.
(i) Show that $v=\sum_{i=1}^{n} B\left(x_{i}, v\right) y_{i}=\sum_{j=1}^{n} B\left(v, y_{j}\right) x_{j}$.
(ii) Hence show that $B\left(t_{\theta}, t_{\theta}\right)=\sum_{k=1}^{n} \theta\left(x_{k}\right) \theta\left(y_{k}\right)$.

Solution. (i) For each j we have $B\left(\sum_{i=1}^{n} B\left(x_{i}, v\right) y_{i}, x_{j}\right)=B\left(x_{j}, v\right)$, hence $B\left(-v+\sum_{i=1}^{n} B\left(x_{i}, v\right) y_{i}, x_{j}\right)=0$ for all j. Since x_{1}, \ldots, x_{n} is a basis of V and B is non-degenerate, it follows that $v=\sum_{i=1}^{n} B\left(x_{i}, v\right) y_{i}, x_{j}$, as required. Similarly one finds that $v=\sum_{j=1}^{n} B\left(v, y_{j}\right) x_{j}$.
(ii) We have $t_{\theta}=\sum_{i=1}^{n} B\left(x_{i}, t_{\theta}\right) y_{i}$ and $t_{\theta}=\sum_{j=1}^{n} B\left(t_{\theta}, y_{j}\right) x_{j}$. Hence

$$
\left(t_{\theta}, t_{\theta}\right)=\sum_{k=1}^{n} B\left(x_{k}, t_{\theta}\right) B\left(t_{\theta}, y_{k}\right)=\sum_{k=1}^{n} t_{\theta}\left(x_{k}\right) t_{\theta}\left(y_{k}\right)
$$

as required.
Exercise 3.3. Prove Lemma 3.1. [Hint: Show that $\sum_{k=1}^{n}\left[x_{k} y_{k}, w\right]=$ $\sum_{k=1}^{n} x_{k}\left[y_{k} w\right]+\sum_{k=1}^{n}\left[x_{k} w\right] y_{k}$ for $w \in L$, and then use Exercise 3.2(i) to express $\left[y_{k}, w\right]$ as a linear combination of y_{1}, \ldots, y_{n} and $\left[x_{k}, w\right]$ as a linear combination of x_{1}, \ldots, x_{n}.]

Solution. Since $\mathcal{U}(L)$ is generated, as an algebra, by L, it is sufficient to prove that $\left[\sum_{k=1}^{n} x_{k} y_{k}, w\right]=0$ for each $w \in L$. A routine calculation gives the result stated in the hint that

$$
\sum_{k=1}^{n}\left[x_{k} y_{k}, w\right]=\sum_{k=1}^{n} x_{k}\left[y_{k}, w\right]+\sum_{k=1}^{n}\left[x_{k}, w\right] y_{k} .
$$

By Exercise 3.2(i) we have $\left[y_{k}, w\right]=\sum_{i=1}^{n} \kappa\left(x_{i},\left[y_{k}, w\right]\right) y_{i}$ and $\left[x_{k}, w\right]=$ $\sum_{j=1}^{n} \kappa\left(\left[x_{k}, w\right], y_{j}\right) x_{j}$. Substituting we get

$$
\sum_{k=1}^{n}\left[x_{k} y_{k}, w\right]=\sum_{k=1}^{n} \sum_{i=1}^{n} \kappa\left(x_{i},\left[y_{k}, w\right]\right) x_{k} y_{i}+\sum_{k=1}^{n} \sum_{j=1}^{n} \kappa\left(\left[x_{k}, w\right], y_{j}\right) x_{j} y_{k} .
$$

Now change the summation variables in the second sum and use the associativity of the Killing form to get

$$
\begin{aligned}
\sum_{k=1}^{n}\left[x_{k} y_{k}, w\right] & =\sum_{k=1}^{n} \sum_{i=1}^{n} \kappa\left(x_{i},\left[y_{k}, w\right]\right) x_{k} y_{i}+\sum_{i=1}^{n} \sum_{k=1}^{n} \kappa\left(\left[x_{i}, w\right], y_{k}\right) x_{k} y_{i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n}\left(-\kappa\left(x_{i},\left[w, y_{k}\right]\right)+\kappa\left(\left[x_{i}, w\right], y_{k}\right)\right) x_{k} y_{i} \\
& =0
\end{aligned}
$$

as required.
Exercise 3.4. Take the notation from Lemma 3.3. Suppose that $\lambda\left(h_{\alpha}\right) \leq 0$.
(i) Deduce from (b) in Section 1 that if $U^{(i)}$ is a summand with lowest weight $(\lambda-b \alpha)\left(h_{\alpha}\right)$ where $b \in \mathbf{N}_{0}$, then $f_{\alpha} e_{\alpha}$ acts on $U_{\lambda}^{(i)}$ as the scalar $\left(b-\lambda\left(h_{\alpha}\right)\right)(b+1)$.
(ii) Show that the number of summands $U^{(i)}$ with lowest weight $(\lambda-$ $b \alpha)\left(h_{\alpha}\right)$ is $n_{\lambda-b \alpha}-n_{\lambda-(b+1) \alpha}$.
(iii) Hence show that $f_{\alpha} e_{\alpha}$ acts on V_{λ} as the scalar $-\sum_{b=0}^{\infty} n_{\lambda-b \alpha}\langle\lambda-$ $b \alpha, \alpha\rangle$, as claimed in the proof of Lemma 3.3.

Solution. (i) If $U^{(i)}$ has lowest weight $(\lambda-b \alpha)\left(h_{\alpha}\right)$ then $U^{(i)}$ has highest weight $-(\lambda-b \alpha)\left(h_{\alpha}\right)$. If $v \in U_{\lambda}^{(i)}$ then

$$
h \cdot v=\lambda(h)=(-\lambda-b \alpha)\left(h_{\alpha}\right)-2\left(b-\lambda\left(h_{\alpha}\right)\right)
$$

and so taking $c=b-\lambda\left(h_{\alpha}\right)$ in (b) in Section 1 gives

$$
\begin{aligned}
f \cdot e \cdot v & =\left(b-\lambda\left(h_{\alpha}\right)\right)\left((-\lambda-b \alpha)\left(h_{\alpha}\right)-\left(b-\lambda\left(h_{\alpha}\right)\right)+1\right) v \\
& =\left(b-\lambda\left(h_{\alpha}\right)\right)(b+1) v
\end{aligned}
$$

as required. Now (ii) follows from (a) in Section 1, in the same way as (c) did, and (iii) is an immediate corollary of (i) and (ii).

Exercise 3.5. Let ω_{1}, ω_{2} be the fundamental dominant weights for $\mathrm{sl}_{3}(\mathbf{C})$ (see Exercise 2.7). Use Freudenthal's Formula to determine the dimensions of the weight spaces for the $s_{3}(\mathbf{C})$-module with highest weight $2 \omega_{1}+\omega_{2}$.

Exercise 4.1. Let $\tau: L \rightarrow \mathrm{gl}(V)$ be a representation of L. Let G be the simply connected Lie group corresponding to L and let $\rho: G \rightarrow \mathrm{GL}(V)$ be the corresponding representation of G, as defined by

$$
\rho(\exp x)=\exp (\tau(x)) \quad \text { for } x \in L
$$

(This defines ρ on a generating set for G.) Let $\lambda \in \Lambda$. Show that if $h \in H$ and $v \in V_{\lambda}$ then $\rho(\exp h) v=\exp (\lambda(h)) v$.

Exercise 4.2. Show that if V is an L-module then $\chi_{V} \in \mathbf{Q}[\Lambda]$ is symmetric.

Exercise 4.3. Let $\Lambda_{\text {dom }}$ be the set of strictly dominant weights in Λ.
(i) Given $\lambda \in \Lambda$ define $a(\lambda)=\sum_{w \in W} \varepsilon(w) w \cdot \mathrm{e}(\lambda)$. Show that $\Delta(a(\lambda))=$ $\|\lambda\|^{2} a(\lambda)$ and deduce that $\left\{a(\lambda): \lambda \in \Lambda_{\text {dom }}\right\}$ is a Z-basis of Δ eigenvectors for the set of all antisymmetric elements of $\mathbf{Q}[\Lambda]$.
(ii) Show that

$$
\mathrm{e}(-\delta) \prod_{\alpha \in \Phi^{+}}(\mathrm{e}(\alpha)-1)=\prod_{\alpha \in \Phi^{+}}\left(\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)\right)
$$

and that either side is antisymmetric.
(iii) Show that

$$
\sum_{w \in W} \varepsilon(w) w \cdot \mathrm{e}(\delta)=\prod_{\alpha \in \Phi^{+}}\left(\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)\right)
$$

(iv) Prove that $f \in \mathbf{Q}\left[\frac{1}{2} \Lambda\right]$ is antisymmetric if and only if

$$
f=g \prod_{\alpha \in \Phi^{+}}\left(\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)\right)
$$

for some symmetric g.
Solution. (i) Fix a total order on Λ refining the dominance order. Define the degree of an antisymmetric element f to be the greatest weight μ in this order such that $e(\mu)$ has a non-zero coefficient in f. If μ is the greatest weight of f then $\mu \in \Lambda_{\text {dom }}$ and μ is acted on regularly by the Weyl group. Hence $f-\sum_{w \in W} \varepsilon(w) w \cdot e(\mu)$ has strictly smaller weight. The result now follows by induction.
(ii) The equality is routine. Recall that $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ is a base for Φ. It follows from Exercise 3.1(i) and (ii) that

$$
\begin{aligned}
S_{\alpha_{i}}\left(\prod_{\alpha \in \Phi^{+}}\left(\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)\right)\right) & =\frac{-\mathrm{e}\left(\frac{1}{2} \alpha_{i}\right)+\mathrm{e}\left(-\frac{1}{2} \alpha_{i}\right)}{\mathrm{e}\left(\frac{1}{2} \alpha_{i}\right)-\mathrm{e}\left(-\frac{1}{2} \alpha_{i}\right)} \prod_{\alpha \in \Phi^{+}}\left(\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)\right) \\
& =-\prod_{\alpha \in \Phi^{+}}\left(\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)\right)
\end{aligned}
$$

Hence the right-hand side is antisymmetric.
(iii) Both sides are anti-symmetric and the coefficients of $\mathrm{e}(\delta)$ agree. The result now follows from (i) since, by Exercise 3.1(iii), δ is the smallest element of $\Lambda_{\text {dom }}$.
(iv) Sketch: it is sufficient to prove that each $a(\lambda)$ is divisible by $\prod_{\alpha \in \Phi^{+}}\left(\mathrm{e}\left(\frac{1}{2} \alpha\right)-\right.$ $\left.\mathrm{e}\left(-\frac{1}{2} \alpha\right)\right)$. This follows using that $\mathbf{Q}\left[\frac{1}{2} \Lambda\right]$ is a UFD.

Exercise 4.4. Let ω be the unique fundamental dominant weight for $\mathrm{sl}_{2}(\mathbf{C})$, so $\omega \in\langle h\rangle^{\star}$ is defined by $\omega(h)=1$.
(i) Use the results of Section 1 to show that V is the irreducible $\mathrm{sl}_{2}(\mathbf{C})$ module with highest weight $d \omega$ then

$$
\chi_{V}=e(d \omega)+\mathrm{e}((d-2) \omega)+\cdots+\mathrm{e}(-d \omega)
$$

(ii) Check that this is consistent with the Weyl Character Formula.

Exercise 4.5. Let ω_{1}, ω_{2} be the fundamental dominant weights for $\mathrm{sl}_{3}(\mathbf{C})$ (see Exercise 2.7).
(i) Use the Weyl Character Formula to determine the characters of the finite-dimensional irreducible $\mathrm{sl}_{3}(\mathbf{C})$-module V with highest weight $a \omega_{1}+b \omega_{2}$ where $a, b \in \mathbf{N}_{0}$.
(ii) Give a necessary and sufficient condition on a and b for V to have a weight space of dimension at least two.

Exercise 4.6. Deduce from the Weyl Character Formula that if V is the irreducible L-module with highest weight λ then

$$
\operatorname{dim} V=\frac{\prod_{\alpha \in \Phi^{+}}(\lambda+\delta, \alpha)}{\prod_{\alpha \in \Phi^{+}}(\lambda, \alpha)}
$$

Exercise 5.1. Show that if $f, g, h \in \mathbf{Q}[[\Lambda]]$ then $\{f g, h\}=f\{g, h\}+\{f, h\} g$.
Exercise 5.2. Recall that Q is the denominator in the Weyl Character Formula. Use Exercise 4.3(iii) and Exercise 5.1 to show that

$$
2\{Q, \mathrm{e}(\nu)\}=Q \sum_{\alpha \in \Phi^{+}} \frac{\mathrm{e}(\alpha)+1}{\mathrm{e}(\alpha)-1}(\nu, \alpha) e(\nu)
$$

Solution. By the generalization of Exercise 5.1 to arbitrary products we have

$$
\begin{aligned}
2\{Q, \mathrm{e}(\nu)\} & =2\left\{\prod_{\alpha \in \Phi^{+}} \frac{1}{\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)}, \mathrm{e}(\nu)\right\} \\
& =2 \sum_{\alpha \in \Phi^{+}} \frac{Q}{\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)}\left\{\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right), \mathrm{e}(\nu)\right\} \\
& =2 \sum_{\alpha \in \Phi^{+}} \frac{Q}{\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)}\left(\left(\frac{1}{2} \alpha, \nu\right) \mathrm{e}\left(\nu+\frac{1}{2} \alpha\right)+\left(\frac{1}{2} \alpha, \nu\right) \mathrm{e}\left(\nu-\frac{1}{2} \alpha\right)\right) \\
& =\sum_{\alpha \in \Phi^{+}} \frac{Q}{\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)}(\alpha, \nu)\left(\mathrm{e}\left(\frac{1}{2} \alpha\right)+\mathrm{e}\left(-\frac{1}{2} \alpha\right)\right) e(\nu) \\
& =Q \sum_{\alpha \in \Phi^{+}} \frac{\mathrm{e}\left(\frac{1}{2} \alpha\right)+\mathrm{e}\left(-\frac{1}{2} \alpha\right)}{\mathrm{e}\left(\frac{1}{2} \alpha\right)-\mathrm{e}\left(-\frac{1}{2} \alpha\right)}(\nu, \alpha) \mathrm{e}(\nu) \\
& =Q \sum_{\alpha \in \Phi^{+}} \frac{\mathrm{e}(\alpha)+1}{\mathrm{e}(\alpha)-1}(\nu, \alpha) e(\nu)
\end{aligned}
$$

as required.

References

[1] Karin Erdmann and Mark J. Wildon, Introduction to Lie algebras, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2006.
[2] Roe Goodman and Nolan R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009.
[3] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978, revised Second printing.
[4] Kiyoshi Igusa, Notes for Math 23a: Lie Algebras, Fall 2011, Section 24b, Weyl Character Formula. Available from http://people.brandeis.edu/~igusa/Math223aF11/ Notes223a24b.pdf.
[5] Nathan Jacobson, Lie algebras, Dover Publications, Inc., New York, 1979, Republication of the 1962 original.

