NOTES ON THE WEYL CHARACTER FORMULA

The aim of these notes is to give a self-contained algebraic proof of the Weyl Character Formula. The necessary background results on modules for $sl_2(\mathbf{C})$ and complex semisimple Lie algebras are outlined in the first two sections. Some technical details are left to the exercises at the end; solutions are provided when the exercise is needed for the proof.

1. Representations of $sl_2(\mathbf{C})$

Define

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

and note that $\langle h, e, f \rangle = \mathrm{sl}_2(\mathbf{C})$. Let u, v be the canonical basis of $E = \mathbf{C}^2$. Then each $\mathrm{Sym}^d E$ is irreducible with u^d spanning the highest-weight space of weight d and, up to isomorphism, $\mathrm{Sym}^d E$ is the unique irreducible $\mathrm{sl}_2(\mathbf{C})$ module with highest weight d. (See Exercises 1.1 and 1.2.) The diagram below shows the actions of h, e and f on the canonical basis of $\mathrm{Sym}^d E$: loops show the action of h, arrows to the right show the action of e, arrow to the left show the action of f.

In particular

- (a) the eigenvalues of h on $\operatorname{Sym}^d E$ are $-d, -d+2, \ldots, d-2, d$ and each h-eigenspace is 1-dimensional,
- (b) if $w \in \operatorname{Sym}^d E$ and $h \cdot w = (d 2c)w$ then $f \cdot e \cdot w = c(d c + 1)w$.

If V is an arbitrary $sl_2(\mathbf{C})$ -module then, by Weyl's Theorem (see [1, Appendix B] or [3, §6.3]), V decomposes as a direct sum of irreducible $sl_2(\mathbf{C})$ -submodules. Let $V_r = \{v \in V : h \cdot w = rv\}$ for $r \in \mathbf{Z}$. Then (a) implies

(c) if $r \ge 0$ then the number of irreducible summands of V with highest weight r is dim $V_r - \dim V_{r+2}$.

Date: June 16, 2014.

2. Prerequisites on complex semisimple Lie Algebras

In this section we recall the basic setup of a Cartan subalgebra H inside a complex semisimple Lie algebra L, a lattice of weights $\Lambda \subseteq H_{\mathbf{R}}^{\star}$ and a root system $\Phi \subseteq \Lambda$. The mathematically most interesting parts are that H is self-centralizing (which is left to Exercise 2.2 and the trick used to construct an $\mathfrak{sl}_2(\mathbf{C})$ -subalgebra corresponding to each root. For an example of all the theory below, see Exercise 2.7.

Cartan subalgebras. We define a Cartan subalgebra of L to be a Lie subalgebra H of L maximal subject to the condition that $\operatorname{ad} h : L \to L$ is diagonalizable for all $h \in H$. It is an interesting fact (see Exercise 2.1) that any Cartan subalgebra is abelian. We may therefore decompose L as a direct sum of simultaneous eigenspaces for the elements of H. To each simultaneous eigenspace V we associate the unique $\alpha \in H^*$ such that $(\operatorname{ad} h)x = \alpha(h)x$ for all $h \in H$ and $x \in V$. For $\alpha \in H^*$ let

$$L_{\alpha} = \{ x \in L : (ad h)x = \alpha(h)x \text{ for all } h \in H, x \in V \}$$

and let Φ be the set of all non-zero $\alpha \in H^*$ such that $L_{\alpha} \neq 0$. The elements of Φ are called *roots* and L_{α} is the *root space* corresponding to $\alpha \in \Phi$ and we have

$$L = L_0 \oplus \left(\bigoplus_{\alpha \in \Phi} L_{\alpha} \right).$$

Note that L_0 is the centralizer of H in L. It is an important and nonobvious fact (see Exercise 2.2) that $L_0 = H$, so H is self-centralizing: An easy calculation shows that

(1)
$$[L_{\alpha}, L_{\beta}] \subseteq L_{\alpha+\beta}$$
 for all $\alpha, \beta \in \Phi_0$.

Killing form. The Killing form on L is the bilinear form $\kappa(x, y) = \text{Tr}(\text{ad } x \circ \text{ad } y)$. By Cartan's Criterion κ is non-degenerate. It follows from (1) that if $x \in L_{\alpha}$ and $y \in L_{\beta}$ where $\alpha, \beta \in \Phi_0$, then $\text{ad } x \circ \text{ad } y$ is nilpotent, unless $\alpha + \beta = 0$. Therefore if $\alpha, \beta \in \Phi_0$ then $L_{\alpha} \perp L_{\beta}$ unless $\beta = -\alpha$. Hence α is a root if and only if $-\alpha$ is a root and the restriction of κ to $L_{\alpha} \times L_{-\alpha}$ is non-degenerate. In particular, the restriction of κ to $H \times H$ is non-degenerate. For each $\alpha \in \Phi$, let $t_{\alpha} \in H$ be the unique element of H such that

$$\kappa(t_{\alpha}, h) = \alpha(h)$$
 for all $h \in H$.

 sl_2 subalgebras. Choose $e \in L_{\alpha}$ and $f \in L_{-\alpha}$ such that $\kappa(e, f) \neq 0$. By the associativity of the Killing form

$$\kappa(h, [e, f]) = \kappa([h, e], f) = \alpha(h)\kappa(e, f)$$
 for all $h \in H$

Since κ is non-degenerate on H, there exists $h \in H$ such that $\alpha(h) = \kappa(t_{\alpha}, h) \neq 0$. Since $\kappa(e, f) \neq 0$, the previous equation then implies that $[e, f] \neq 0$. Consider the Lie subalgebra

$$\langle e, f, [e, f] \rangle$$

of L. Since $[e, f] \in [L_{\alpha}, L_{-\alpha}] \subseteq H$ we have $[[e, f], e] = \alpha([e, f])e$ and $[[e, f], f] = -\alpha([e, f])f$.

If $\alpha([e, f]) = 0$ then [e, f] is central in $\langle e, f, [e, f] \rangle$. By Exercise 2.3 below [e, f] is nilpotent. But $[e, f] \in H$ and all the elements of H are semisimple. So [e, f] = 0, which contradicts the previous paragraph. Therefore $\alpha([e, f]) \neq 0$ and we can scale e so that $\alpha([e, f]) = 2$ and so $\langle e, f, [e, f] \rangle \cong$ $\mathsf{sl}_2(\mathbf{C})$.

For each $\alpha \in \Phi$ let $\langle e_{\alpha}, f_{\alpha}, h_{\alpha} \rangle$ be a subalgebra of L constructed as above so that

$$[e_{\alpha}, f_{\alpha}] = h_{\alpha}, \quad [h_{\alpha}, e_{\alpha}] = 2e_{\alpha}], \quad [h_{\alpha}, f_{\alpha}] = 2f_{\alpha}.$$

We may suppose that these elements are chosen so that $e_{-\alpha} = f_{\alpha}$ and $f_{-\alpha} = e_{\alpha}$ for each $\alpha \in \Phi$.

Relationship between t_{α} and h_{α} . By choice of t_{α} we have $\kappa(t_{\alpha}, h) = \alpha(h)$ for all $h \in H$. By associativity of the Killing form we also have

$$\kappa([e_{\alpha}, f_{\alpha}], h) = \kappa(e_{\alpha}, [f_{\alpha}, h]) = \kappa(e_{\alpha}, \alpha(h)f_{\alpha}) = \alpha(h)\kappa(e_{\alpha}, f_{\alpha}).$$

Hence

$$\kappa\left(t_{\alpha} - \frac{[e_{\alpha}, f_{\alpha}]}{\kappa(e_{\alpha}, f_{\alpha})}, h\right) = 0 \text{ for all } h \in H.$$

Since the restriction of κ to $H \times H$ is non-degenerate it follows that

(2)
$$t_{\alpha} = \frac{h_{\alpha}}{\kappa(e_{\alpha}, f_{\alpha})}$$

Since $\kappa(t_{\alpha}, t_{\alpha}) = \alpha(t_{\alpha})$, this implies the useful relations

(3)
$$2 = \alpha(h_{\alpha}) = \kappa(t_{\alpha}, h_{\alpha}) = \frac{\kappa(h_{\alpha}, h_{\alpha})}{\kappa(e_{\alpha}, f_{\alpha})} = \kappa(e_{\alpha}, f_{\alpha})\kappa(t_{\alpha}, t_{\alpha}).$$

Transport of the Killing form to $H_{\mathbf{R}}^{\star}$. We saw earlier that for all $\alpha \in \Phi$ there exists $h \in H$ such that $\alpha(h) \neq 0$. It follows that Φ spans H^{\star} and there is a unique bilinear form (,) on H^{\star} such that

$$(\alpha, \beta) = \kappa(t_{\alpha}, t_{\beta}) \text{ for } \alpha, \beta \in \Phi.$$

By (2) and (3) we have the fundamental formula

(4)
$$\frac{2(\alpha,\beta)}{(\beta,\beta)} = \kappa \left(t_{\alpha}, \frac{2t_{\beta}}{\kappa(t_{\beta},t_{\beta})} \right) = \kappa(t_{\alpha},h_{\beta}) = \alpha(h_{\beta}).$$

Note also that $\alpha(h_{\beta})$ is an eigenvalue of h_{β} in the finite-dimensional $\mathbf{sl}(\beta)$ module *L*. It follows that (,) takes real values on the roots and from the equation $\kappa(h,k) = \sum_{\alpha \in \Phi} \alpha(h)\alpha(k)$ for $h,k \in H$, we see that it is a realvalued inner-product on $H_{\mathbf{R}}^{\star} = \langle \alpha : \alpha \in \Phi \rangle_{\mathbf{R}}$. Exercise 2.4 shows that the angles between the roots are determined by (4). (In fact if *L* is a simple Lie algebra then Φ is a connected root system and (,) is completely determined by (4) and (α, α) for any single root $\alpha \in \Phi$.)

Angled brackets notation. It will be convenient to define

$$\langle \lambda, \mu \rangle = \frac{2(\lambda, \mu)}{(\mu, \mu)}$$

for $\lambda, \mu \in H^*_{\mathbf{R}}$. Note that the form \langle , \rangle is linear only in its first component. This notation will often be used when $\mu \in \Phi$, in which case (4) implies that $\langle \lambda, \beta \rangle = \lambda(h_{\beta})$.

Fundamental dominant weights. Recall that $\{\alpha_1, \ldots, \alpha_\ell\}$ is a base for Φ if element of Φ can be written uniquely as either a non-negative or non-positive integral linear combination of the α_i . (For a proof that every root system has a basis, see [1, Theorem 11.10] or [3, Theorem 10.1].) Fix, once and for all, a base $\{\alpha_1, \ldots, \alpha_\ell\}$ for Φ and let Φ^+ be the set of positive roots with respect to this basis. There exist unique $\omega_1, \ldots, \omega_\ell \in H^*$ such that, for all $i, j \in \{1, \ldots, \ell\}$,

$$\omega_i(h_{\alpha_j}) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Let $\Lambda = \langle \omega_1, \ldots, \omega_\ell \rangle_{\mathbf{Z}} \subseteq H^{\star}$.

Weight space decomposition. The elements of H act semisimply in any finitedimensional *L*-module (see [3, Corollary 6.3]). By Section 1, the eigenvalues of each h_{α_j} are integral. Hence if V is a finite-dimensional *L*-module then

$$V \downarrow_H = \bigoplus_{\lambda \in \Lambda} V_\lambda$$

where

$$V_{\lambda} = \{ v \in V : h \cdot v = \lambda(h)v \text{ for all } h \in H \}$$

(The root spaces defined earlier are weight spaces for the action of L on itself by the adjoint representation.) We shall say that an element of V lying in some non-zero V_{λ} is a *weight vector*. Starting with any weight vector, and then repeatedly applying the elements e_{α} for $\alpha \in \Phi^+$, it follows that Vcontains a weight vector v such that $e_{\alpha} \cdot v = 0$ for all $\alpha \in \Phi^+$. Such a vector is said to be a *highest-weight vector* with respect to the base $\{\alpha_1, \ldots, \alpha_\ell\}$. By Exercise 2.6, the submodule of V generated by a highest weight vector is irreducible.

3. Freudenthal's Formula

Let V be an irreducible L-module of highest weight $\mu \in \Lambda$. Let $n_{\nu} = \dim V_{\nu}$ for each $\nu \in \Lambda$. The aim of this section is to prove Freudenthal's Formula, that if $\lambda \in \Lambda$ then

$$\left(||\mu+\delta||^2 - ||\lambda+\delta||^2\right)n_{\lambda} = 2\sum_{\alpha\in\Phi^+}\sum_{m=1}^{\infty}n_{\lambda+m\alpha}(\lambda+m\alpha,\alpha)$$

where $\delta = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$. The key idea in this proof (which is based on [5, VIII.2]) is to calculate the scalar by which a central element in the universal enveloping algebra $\mathcal{U}(L)$ acts on V, using the theory of $\mathfrak{sl}_2(\mathbf{C})$ -modules in Section 1. The following lemma gives a construction of such central elements.

Lemma 3.1. Suppose that x_1, \ldots, x_n and y_1, \ldots, y_n are bases of L such that

$$\kappa(x_i, y_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Then $\sum_{i=1}^{n} x_i y_i$ is in the centre of $\mathcal{U}(L)$.

Proof. See Exercise 3.3.

Let $\alpha, \beta \in \Phi$. By (1) we have $\kappa(e_{\alpha}, f_{\beta}) = 0$ whenever $\alpha \neq \beta$ and by (3) we have $\kappa(e_{\alpha}, f_{\alpha}) = 2/\kappa(t_{\alpha}, t_{\alpha}) = 2/(\alpha, \alpha)$ and $\kappa(t_{\alpha}, h_{\alpha}) = 2$ for all $\alpha \in \Phi$. Lemma 3.1 therefore implies that

$$\Gamma = \sum_{\alpha \in \Phi} \frac{(\alpha, \alpha)}{2} f_{\alpha} e_{\alpha} + \frac{1}{2} \sum_{j=1}^{\ell} t_{\alpha_j} h_{\alpha_j}$$

is in the centre of $\mathcal{U}(L)$. We may assume that if $\alpha \in \Phi^+$ then $e_{-\alpha} = f_{\alpha}$ and $f_{-\alpha} = e_{\alpha}$. Hence $f_{-\alpha}e_{-\alpha} = e_{\alpha}f_{\alpha} = h_{\alpha} + f_{\alpha}e_{\alpha}$ and

$$\Gamma = \sum_{\alpha \in \Phi^+} \frac{(\alpha, \alpha)}{2} h_{\alpha} + \sum_{\alpha \in \Phi^+} (\alpha, \alpha) f_{\alpha} e_{\alpha} + \frac{1}{2} \sum_{j=1}^{\ell} t_{\alpha_j} h_{\alpha_j}.$$

The action of each of the three summands of Γ preserves the weight spaces V_{λ} . The next three lemmas determine the traces of these summands on each V_{λ} . The first explains the appearance of δ in Freudenthal's Formula.

Lemma 3.2. If $\lambda \in \Lambda$ and $v \in V_{\lambda}$ then

$$\sum_{\alpha \in \Phi^+} \frac{(\alpha, \alpha)}{2} h_{\alpha} \cdot v = (\lambda, 2\delta) v$$

Proof. Using (4) we get

$$\sum_{\alpha \in \Phi^+} \frac{(\alpha, \alpha)}{2} \lambda(h_\alpha) = \sum_{\alpha \in \Phi^+} \frac{(\alpha, \alpha)}{2} \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} = \sum_{\alpha \in \Phi^+} (\lambda, \alpha) = (\lambda, 2\delta)$$

as required.

 α

5

Lemma 3.3. If $\alpha \in \Phi$ and $\lambda \in \Lambda$ then

$$(\alpha, \alpha) \operatorname{Tr}_{V_{\lambda}}(f_{\alpha} e_{\alpha}) = 2 \sum_{m=1}^{\infty} n_{\lambda+m\alpha} (\lambda + m\alpha, \alpha).$$

Proof. Since $\frac{2(\lambda + m\alpha, \alpha)}{(\alpha, \alpha)} = \langle \lambda + m\alpha, \alpha \rangle$, it is equivalent to prove that

$$\operatorname{Tr}_{V_{\lambda}}(f_{\alpha}e_{\alpha}) = \sum_{m=1}^{\infty} n_{\lambda+m\alpha} \langle \lambda + m\alpha, \alpha \rangle.$$

Let $W = \bigoplus_{c \in \mathbb{Z}} V_{\lambda+c\alpha}$. Note that W is a direct sum of weight spaces for the action of H, and that W is an $sl(\alpha)$ -submodule of V. We may write

$$W = U^{(1)} \oplus \dots \oplus U^{(d)}$$

where each $U^{(i)}$ is an irreducible $\mathsf{sl}(\alpha)$ -module.

Assume first of all that $\lambda(h_{\alpha}) \geq 0$. Suppose that $U_{\lambda}^{(i)} \neq 0$. Choose m maximal such that $U_{\lambda+m\alpha}^{(i)} \neq 0$. Then $U^{(i)}$ has highest weight $(\lambda + m\alpha)(h_{\alpha})$ as an $\mathfrak{sl}(\alpha)$ -module and by (b) in Section 1, the scalar by which $f_{\alpha}e_{\alpha}$ acts on a vector in $U_{\lambda}^{(i)}$ is

$$m((\lambda + m\alpha)(h_{\alpha}) - m + 1) = m(\lambda(h_{\alpha}) + m + 1).$$

It follows from (c) in Section 1 that the number of summands $U^{(i)}$ with highest weight $(\lambda + m\alpha)(h_{\alpha})$ as an $sl(\alpha)$ -module is $n_{\lambda+m\alpha} - n_{\lambda+(m+1)\alpha}$. Hence

$$\operatorname{Tr}_{V_{\lambda}}(f_{\alpha}e_{\alpha}) = \sum_{m=0}^{\infty} \left(n_{\lambda+m\alpha} - n_{\lambda+(m+1)\alpha}\right) m(\lambda(h_{\alpha}) + m + 1)$$
$$= \sum_{m=1}^{\infty} n_{\lambda+m\alpha} \left(m(\lambda(h_{\alpha}) + m + 1) - (m - 1)(\lambda(h_{\alpha}) + m)\right)$$
$$= \sum_{m=1}^{\infty} n_{\lambda+m\alpha} (\lambda(h_{\alpha}) + 2m).$$

as required. Note that this equation holds even when $V_{\lambda} = 0$, since the argument just given shows that both sides are zero.

If $\lambda(h_{\alpha}) \leq 0$ then a similar calculation (see Exercise 3.4) shows that $f_{\alpha}e_{\alpha}$ acts as the scalar $-\sum_{b=0}^{\infty} n_{\lambda-b\alpha} \langle \lambda - b\alpha, \alpha \rangle$ on V_{λ} . Now $\sum_{c=-\infty}^{\infty} n_{\lambda+c\alpha} \langle \lambda + c\alpha, \alpha \rangle = 0$ since each irreducible summand $U^{(i)}$ contributes the sum of the h_{α} eigenvalues on $U^{(i)}$, which is 0 by (a) in Section 1. Adding these two equations we get the required formula.

Lemma 3.4. Let $\lambda \in \Lambda$. If $v \in V_{\lambda}$ then

$$\frac{1}{2}\sum_{j=1}^{\ell} t_{\alpha_j} h_{\alpha_j} \cdot v = (\lambda, \lambda) v$$

Proof. We saw earlier that $\frac{1}{2}t_{\alpha_1}, \ldots, \frac{1}{2}t_{\alpha_\ell}$ and $h_{\alpha_1}, \ldots, h_{\alpha_\ell}$ are dual bases of H^* with respect to the Killing form κ on $H \times H$. By Exercise 3.2(ii)

$$\frac{1}{2}\sum_{i=1}^{\ell}\lambda(t_{\alpha_j})\lambda(h_{\alpha_j}) = (\ell,\ell)$$

as required.

Since Γ is central in $\mathcal{U}(L)$ it acts as a scalar on V, say γ . Let $\lambda \in \Lambda$. By Lemmas 3.2, 3.3 and 3.4, we have

$$n_{\lambda}\gamma = \operatorname{Tr}_{V_{\lambda}}(f_{\alpha}e_{\alpha}) = (\lambda, 2\delta)n_{\lambda} + 2\sum_{\alpha \in \Phi^{+}}\sum_{m=1}^{\infty} n_{\lambda+m\alpha}(\lambda+m\alpha, \alpha) + (\lambda, \lambda)n_{\lambda}.$$

Recall that V has highest weight μ . Since $e_{\alpha} \cdot V_{\mu} = 0$ for all $\alpha \in \Phi^+$, $n_{\mu} = 1$, and $(\lambda, 2\delta) + (\lambda, \lambda) = ||\lambda + \delta||^2 - ||\delta||^2$, the previous equation implies

$$\gamma = ||\mu + \delta||^2 - ||\delta^2||.$$

Comparing these two equations we obtain

$$\left(||\mu+\delta||^2 - ||\lambda+\delta||^2\right)n_{\lambda} = 2\sum_{\alpha\in\Phi^+}\sum_{m=1}^{\infty}n_{\lambda+m\alpha}(\lambda+m\alpha,\alpha)$$

as stated in Freudenthal's Formula. For an immediate application of Freudenthal's Formula see Exercise 3.5 below.

4. STATEMENT OF WEYL CHARACTER FORMULA

Formal exponentials and characters. For each $\lambda \in \Lambda$ we introduce a formal symbol $e(\lambda)$ which we call the formal exponential of λ . Let $\mathbf{Q}[\Lambda]$ denote the abelian group with **Z**-basis $\{e(\lambda) : \lambda \in \Lambda\}$. We make $\mathbf{Q}[\Lambda]$ into an algebra by defining the multiplication on basis elements by

$$e(\lambda)e(\lambda') = e(\lambda + \lambda') \text{ for } \lambda, \lambda' \in \Lambda.$$

Note that e(0) = 1 and that each $e(\lambda)$ is invertible, with inverse $e(-\lambda)$. This definition is motivated by 1-parameter subgroups: see Exercise 4.1. Given an *L*-module *V*, we define the *formal character* of *L* by

$$\chi_V = \sum_{\lambda \in \Lambda} (\dim V_\lambda) e(\lambda) \in \mathbf{Q}[\Lambda].$$

Weyl group. Let $S_{\beta} : H^{\star}_{\mathbf{R}} \to H^{\star}_{\mathbf{R}}$ denote the reflection corresponding to $\beta \in \Phi$ as defined by

$$S_{\beta}(\theta) = \theta - \frac{2(\theta, \beta)}{(\beta, \beta)}\beta \quad \text{for } \theta \in H_{\mathbf{R}}^{\star}.$$

The alterative forms $S_{\beta}(\theta) = \theta - \langle \theta, \beta \rangle \beta = w - \theta(h_{\beta}) \alpha$ are often useful. By definition the *Weyl group* of *L* is the group generated by the S_{β} for $\beta \in \Phi$. We define $\varepsilon(w) = 1$ if *w* is a product of an even number of reflections, and

 $\varepsilon(w) = -1$ otherwise. The Weyl group W acts on $\mathbf{Q}[\Lambda]$ by $w \cdot \mathbf{e}(\lambda) = e(w(\lambda))$ for $w \in W$ and $\lambda \in \Lambda$.

Symmetric and antisymmetric elements. We say that an element $f \in \mathbf{Q}[\Lambda]$ is symmetric if $w \cdot f = f$ for all $w \in W$ and antisymmetric if $w \cdot f = \varepsilon(w)f$ for all $w \in W$. By Exercise 4.3(iv), $f \in \mathbf{Q}[\Lambda]$ is antisymmetric if and only if

$$f = g \sum_{w \in W} \varepsilon(w) \, w \cdot \mathbf{e}(\delta)$$

for some symmetric g.

Weyl Character Formula. We may now state the main result. By the result on antisymmetric elements of $\mathbf{Q}[\Lambda]$ just mentioned, the right-hand side in the formula below is a well-defined symmetric element of $\mathbf{Q}[\Lambda]$.

Theorem 4.1 (Weyl Character Formula). Let V be the irreducible L-module of highest weight $\mu \in \Lambda$. Then

$$\chi_V = \frac{\sum_{w \in W} \varepsilon(w) \, w \cdot \mathbf{e}(\mu + \delta)}{\sum_{w \in W} \varepsilon(w) \, w \cdot \mathbf{e}(\delta)}.$$

For applications of the Weyl Character Formula are given in Exercises 4.4, 4.5 and 4.6. Kostant's Multiplicity Formula (see for instance [2, §8.2]) is also a quick corollary.

5. PROOF OF THE WEYL CHARACTER FORMULA

The following proof is adapted from Igusa's notes [4]. For calculations it will be convenient to extend $\mathbf{Q}[\Lambda]$ to a larger ring $\mathbf{Q}[\frac{1}{2}\Lambda]$ by adjoining a square root $e(\frac{1}{2}\alpha)$ for each $\alpha \in \Phi$. We then complete $\mathbf{Q}[\frac{1}{2}\Lambda]$ to the algebra $\mathbf{Q}[[\frac{1}{2}\Lambda]]$ of formal power series generated by the $e(\frac{1}{2}\lambda)$ for $\lambda \in \Lambda$. For example, in $\mathbf{Q}[[\frac{1}{2}\Lambda]]$ we have $\sum_{s=0}^{\infty} e(\lambda)^s = \frac{1}{1-e(\lambda)}$.

We shall also need the Laplacian operator $\Delta : \mathbf{Q}[[\frac{1}{2}\Lambda]] \to \mathbf{Q}[[\frac{1}{2}\Lambda]]$, defined by $\Delta(\mathbf{e}(\lambda)) = ||\lambda||^2 e(\lambda)$ for $\lambda \in \frac{1}{2}\Lambda$, and the bilinear form $\{,\}$ on $\mathbf{Q}[[\frac{1}{2}\lambda]]$ defined by

$$\{\mathbf{e}(\lambda), e(\mu)\} = (\lambda, \mu)\mathbf{e}(\lambda + \mu) \quad \text{for } \lambda, \mu \in \frac{1}{2}\Lambda.$$

See Exercise 4.3(i) and (iv) for some motivation for Δ . These gadgets are related by the following lemma.

Lemma 5.1. Let $f, g \in \mathbf{Q}[[\frac{1}{2}\Lambda]]$. Then

$$\Delta(fg) = f\Delta(g) + \Delta(f)g + 2\{f,g\}.$$

Proof. By linearity it is sufficient to prove the lemma when $f = e(\lambda)$ and $g = e(\mu)$ for some $\lambda, \mu \in \frac{1}{2}\Lambda$. In this case it states that

$$||\lambda + \mu||^2 \mathbf{e}(\lambda + \mu) = \mathbf{e}(\lambda)||\mu||^2 \mathbf{e}(\mu) + ||\lambda^2||\mathbf{e}(\lambda)\mathbf{e}(\mu) + 2(\lambda,\mu)\mathbf{e}(\lambda + \mu)$$

which is obvious.

Proof of Weyl Character Formula. Let Q denote the denominator in the Weyl Character Formula. We begin the proof with Freudenthal's formula in the form

$$\left(||\mu+\delta||^2 - ||\delta||^2\right)n_{\lambda} = \left(||\lambda||^2 + (\lambda, 2\delta)\right)n_{\lambda} + 2\sum_{\alpha\in\Phi^+}\sum_{m=1}^{\infty}(\lambda+m\alpha, \alpha)n_{\lambda+m\alpha}.$$

Multiply both sides by $e(\lambda)$ and sum over all $\lambda \in \Lambda$ to get

(5)
$$(||\mu + \delta||^2 - ||\delta||^2)\chi_V = \Delta(\chi_V) + \sum_{\lambda \in \Lambda} (\lambda, 2\delta)n_\lambda \mathbf{e}(\lambda) + X$$

where

$$X = 2 \sum_{\lambda \in \Lambda} \sum_{\alpha \in \Phi^+} \sum_{m=1}^{\infty} (\lambda + m\alpha, \alpha) n_{\lambda + m\alpha} e(\lambda)$$
$$= 2 \sum_{\lambda \in \Lambda} \sum_{\alpha \in \Phi^+} \sum_{m=1}^{\infty} (\lambda, \alpha) n_{\lambda} e(\lambda - m\alpha)$$
$$= 2 \sum_{\lambda \in \Lambda} \sum_{\alpha \in \Phi^+} (\lambda, \alpha) \frac{n_{\lambda} e(\lambda)}{e(\alpha) - 1}.$$

Now multiply through by Q and replace 2δ with $\sum_{\alpha \in \Phi^+} \alpha$ to combine the second two summands on the right-hand side of (5). This gives

$$\left(||\mu+\delta||^2 - ||\delta||^2\right)Q\chi_V = Q\Delta(\chi_V) + Q\sum_{\lambda\in\Lambda}\sum_{\alpha\in\Phi^+} (\lambda,\alpha)n_\lambda \mathbf{e}(\lambda)\frac{\mathbf{e}(\alpha)+1}{\mathbf{e}(\alpha)-1}.$$

Since $Q\chi_V$ is antisymmetric, it follows from Exercise 4.3(i) that $Q\chi_V = \sum_{w \in W} \varepsilon(w) w \cdot e(\mu + \delta)$ if and only if $\Delta(Q\chi_V) = ||\mu + \delta||^2 Q\chi_V$. Again by this exercise, $\Delta(Q) = ||\delta||^2 Q$. Hence it is sufficient to prove

(6)
$$\Delta(Q\chi_V) - \Delta(Q)\chi_V - Q\Delta(\chi_V) = Q \sum_{\lambda \in \Lambda} \sum_{\alpha \in \Phi^+} (\lambda, \alpha) n_\lambda \mathbf{e}(\lambda) \frac{\mathbf{e}(\alpha) + 1}{\mathbf{e}(\alpha) - 1}.$$

By Lemma 5.1, the left-hand side in (6) is $2\{Q, \chi_V\}$. So finally, it is sufficient to prove that

$$2\big\{Q,\sum_{\lambda\in\Lambda}n_\lambda \mathbf{e}(\lambda)\big\} = Q\sum_{\alpha\in\Phi^+}\frac{\mathbf{e}(\alpha)+1}{\mathbf{e}(\alpha)-1}\sum_{\lambda\in\Lambda}(\lambda,\alpha)n_\lambda\mathbf{e}(\lambda)$$

which, by linearity, follows from the relation

$$2\{Q, \mathbf{e}(\nu)\} = Q \sum_{\alpha \in \Phi^+} \frac{\mathbf{e}(\alpha) + 1}{\mathbf{e}(\alpha) - 1}(\nu, \alpha) e(\nu) \quad \text{for } \nu \in \Lambda,$$

proved in Exercise 5.2 below.

EXERCISES

Exercise 1.1. Let $E = \langle u, v \rangle$ be the natural 2-dimensional $sl_2(\mathbf{C})$ -module. Show that $Sym^d E$ is irreducible for each $d \in \mathbf{N}$.

Exercise 1.2. Let V be a finite-dimensional $sl_2(\mathbf{C})$ -module.

- (i) Show that V contains an h-eigenvector v such that $e \cdot v = 0$.
- (ii) Show that the submodule of V generated by V is d-dimensional if and only if $h \cdot v = dv$.
- (iii) Deduce that any irreducible $sl_2(\mathbf{C})$ -module is isomorphic to $\operatorname{Sym}^d E$ for some $d \in \mathbf{N}_0$.

Exercise 2.1. Show that a Cartan subalgebra (as defined in Section 2) is abelian.

Solution. Given $h, k \in H$, we can write k as a sum of ad h eigenvectors, say $k = k_0 + \sum_{i=1}^n k_i$ where $(ad h)k_0 = 0$ and $(ad h)k_i = \lambda_i k_i$. Hence $(ad h)^r k = \sum_{i=1}^n \lambda_i^r k_i$. A useful linear algebra lemma shows that all the k_i are in the Lie subalgebra of H generated by x and y. Now $[h, k_i] = \lambda_i k_i$ and so $(adk_i)^2 x = [k_i, [k_i, x]] = [k_i, -\lambda_i k_i] = 0$; since $k_i \in H$, $ad k_i$ is diagonalizable, and so we must have $(ad k_i)x = 0$. Hence [h, k] = 0.

Exercise 2.2. The aim of this exercise is to show that if H is a Cartan subalgebra of L then H is self-centralizing.

- (i) Show that L_0 is nilpotent. [*Hint:* use Engel's theorem and the abstract Jordan decomposition.]
- (ii) Show that there is a basis of L_0 in which all $\operatorname{ad} x : L \to L$ for $x \in L_0$ are represented by upper-triangular matrices.
- (iii) Show that if $x \in L_0$ and $\operatorname{ad} x : L \to L$ is nilpotent then $\operatorname{Tr}(\operatorname{ad} x \circ \operatorname{ad} y) = 0$ for all $y \in L_0$. Deduce that x = 0.
- (iv) Deduce that every element of L_0 is semisimple and hence show that $L_0 = H$.

Exercise 2.3. Let V be a complex vector space. Show that if x and $y \in gl(V)$ are such that [x, y] commutes with x then [x, y] is nilpotent. [*Hint:* there is a quick solution using Lie's Theorem. For an *ad-hoc* proof (which then allows this exercise to be used as part of a proof of Lie's Theorem) first show that $Tr[x, y]^n = 0$ for all $n \in \mathbf{N}$.]

Exercise 2.4. Let α and β be non-perpendicular roots in a root system. Use the fundamental relation (4) to find the possible angles between α and β and the possible values of $||\alpha||/||\beta||$.

Exercise 2.5. Find the Killing form of $sl_2(\mathbf{C})$ with respect to the basis e, f, h and hence calculate $||\alpha||^2$ where α is the unique root of $sl_2(\mathbf{C})$. (In practice

the previous exercise always gives enough information, so this calculation is unnecessary. For example, this is true in Freudenthal's formula, since n_{λ} is expressed as a quotient of norms, and in Exercise 4.6, for the same reason.)

Exercise 2.6. Let V be a finite-dimensional L-module and let $v \in V$ be a highest-weight vector. Show that the submodule of L generated by v is irreducible.

Exercise 2.7. Let H be the Cartan subalgebra of diagonal matrices in $sl_3(\mathbf{C})$. For $i \in \{1, 2, 3\}$, let $\varepsilon_i : H \to \mathbf{C}$ be the function sending diag (a_1, a_2, a_3) to a_i . Let $\alpha = \varepsilon_1 - \varepsilon_2$ and let $\beta = \varepsilon_2 - \varepsilon_3$.

- (i) Show that $\{\alpha, \beta\}$ is a base for the root system Φ .
- (ii) Show that $||\alpha|| = ||\beta||$ and that the angle between α and β is $2\pi/3$.
- (iii) Find the fundamental dominant integral weights ω_1 , ω_2 corresponding to this base in terms of α and β .
- (iv) Show that $\omega_1 = \varepsilon_1$ and $\omega_2 = \varepsilon_1 + \varepsilon_2$. (Since $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0$ other, equivalent, expressions for ω_1 and ω_2 are also possible.)
- (iv) Express the highest weight of the natural, dual natural and adjoint representations of $sl_3(\mathbf{C})$ as **Z**-linear combinations of ω_1 and ω_2 .

Exercise 3.1. Recall that $\delta = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$ and that $B = \{\alpha_1, \ldots, \alpha_\ell\}$ is a base for Φ .

- (i) Show that if $\beta \in \Phi^+$ and $\beta \neq \alpha_i$ then $S_{\alpha_i}(\beta) \in \Phi^+$
- (ii) Show that $S_{\alpha_i}(\delta) = \delta \alpha_i$ for all *i*.
- (iii) Show that $\delta = \omega_1 + \cdots + \omega_\ell$ and deduce that $\delta \in \Lambda$.

Solution. (i) Since $\beta \neq \alpha_i$ and $k\alpha_i$ is a root if and only if $k \in \{+1, -1\}$ (see, for example, [1, Proposition 10.9]), there exists j such that α_j appears with a strictly positive coefficient in the expression for β as a **Z**-linear combination of $\alpha_1, \ldots, \alpha_n$. Now α_j has the same coefficient in

$$S_{\alpha_i}(\beta) = \beta - \langle \beta, \alpha_i \rangle \alpha_i,$$

and so it follows that $S_{\alpha_i}(\beta) \in \Phi^+$.

(ii) Since S_{α_i} permutes $\Phi^+ \setminus \{\alpha_i\}$ and $S_{\alpha_i}(\alpha_i) = -\alpha_i$, we have

$$S_{\alpha_i}(\delta) = \frac{1}{2} \sum_{\beta \in \Phi} S_{\alpha_i}(\beta) = \frac{1}{2} \sum_{\beta \in \Phi} S_{\alpha_i}(\beta) - \alpha_i = \delta - \alpha_i$$

as required.

(iii) By definition
$$\langle \alpha_i, \omega_j \rangle = 0$$
 if $i \neq j$ and $\langle \alpha_i, \omega_j \rangle = 1$. Hence

$$S_{\alpha_j}(\sum_{i=1}^{\ell}\omega_i) = \sum_{i=1}^{\ell}\omega_i - \omega_j + S_{\alpha_j}(\omega_j) = \sum_{i=1}^{\ell}\omega_i - \omega_j + \omega_j - \alpha_j = \sum_{i=1}^{\ell}\omega_i - \alpha_j.$$

Hence by (ii), $-\delta + \sum_{i=1}^{\ell} \omega_i$ is invariant under the generators $S_{\alpha_1}, \ldots, S_{\alpha_\ell}$ of W. Hence $\delta = \sum_{i=1}^{\ell} \omega_i \in \Lambda$.

Exercise 3.2. Let $B: V \to V$ be a non-degenerate symmetric bilinear form on an *n*-dimensional vector space V. Suppose that x_1, \ldots, x_n and y_1, \ldots, y_n are dual bases for V, so

$$B(x_i, y_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Let $\theta \in V^*$ and let t_{θ} be the unique element such that $B(t_{\theta}, v) = \theta(v)$ for all $v \in V$. Let $v \in V$.

- (i) Show that $v = \sum_{i=1}^{n} B(x_i, v) y_i = \sum_{j=1}^{n} B(v, y_j) x_j$. (ii) Hence show that $B(t_{\theta}, t_{\theta}) = \sum_{k=1}^{n} \theta(x_k) \theta(y_k)$.

Solution. (i) For each j we have $B\left(\sum_{i=1}^{n} B(x_i, v)y_i, x_j\right) = B(x_j, v)$, hence $B(-v + \sum_{i=1}^{n} B(x_i, v)y_i, x_j) = 0$ for all j. Since x_1, \ldots, x_n is a basis of V and B is non-degenerate, it follows that $v = \sum_{i=1}^{n} B(x_i, v) y_i, x_j$, as required. Similarly one finds that $v = \sum_{j=1}^{n} B(v, y_j) x_j$.

(ii) We have $t_{\theta} = \sum_{i=1}^{n} B(x_i, t_{\theta}) y_i$ and $t_{\theta} = \sum_{j=1}^{n} B(t_{\theta}, y_j) x_j$. Hence

$$(t_{\theta}, t_{\theta}) = \sum_{k=1}^{n} B(x_k, t_{\theta}) B(t_{\theta}, y_k) = \sum_{k=1}^{n} t_{\theta}(x_k) t_{\theta}(y_k)$$

as required.

Exercise 3.3. Prove Lemma 3.1. [*Hint:* Show that $\sum_{k=1}^{n} [x_k y_k, w] =$ $\sum_{k=1}^{n} x_k[y_k w] + \sum_{k=1}^{n} [x_k w] y_k$ for $w \in L$, and then use Exercise 3.2(i) to express $[y_k, w]$ as a linear combination of y_1, \ldots, y_n and $[x_k, w]$ as a linear combination of x_1, \ldots, x_n .]

Solution. Since $\mathcal{U}(L)$ is generated, as an algebra, by L, it is sufficient to prove that $\left[\sum_{k=1}^{n} x_k y_k, w\right] = 0$ for each $w \in L$. A routine calculation gives the result stated in the hint that

$$\sum_{k=1}^{n} [x_k y_k, w] = \sum_{k=1}^{n} x_k [y_k, w] + \sum_{k=1}^{n} [x_k, w] y_k.$$

By Exercise 3.2(i) we have $[y_k, w] = \sum_{i=1}^n \kappa(x_i, [y_k, w]) y_i$ and $[x_k, w] =$ $\sum_{j=1}^{n} \kappa([x_k, w], y_j) x_j$. Substituting we get

$$\sum_{k=1}^{n} [x_k y_k, w] = \sum_{k=1}^{n} \sum_{i=1}^{n} \kappa(x_i, [y_k, w]) x_k y_i + \sum_{k=1}^{n} \sum_{j=1}^{n} \kappa([x_k, w], y_j) x_j y_k.$$

Now change the summation variables in the second sum and use the associativity of the Killing form to get

$$\sum_{k=1}^{n} [x_k y_k, w] = \sum_{k=1}^{n} \sum_{i=1}^{n} \kappa(x_i, [y_k, w]) x_k y_i + \sum_{i=1}^{n} \sum_{k=1}^{n} \kappa([x_i, w], y_k) x_k y_i$$
$$= \sum_{k=1}^{n} \sum_{i=1}^{n} (-\kappa(x_i, [w, y_k]) + \kappa([x_i, w], y_k)) x_k y_i$$
$$= 0$$

as required.

Exercise 3.4. Take the notation from Lemma 3.3. Suppose that $\lambda(h_{\alpha}) \leq 0$.

- (i) Deduce from (b) in Section 1 that if $U^{(i)}$ is a summand with *lowest* weight $(\lambda b\alpha)(h_{\alpha})$ where $b \in \mathbf{N}_0$, then $f_{\alpha}e_{\alpha}$ acts on $U_{\lambda}^{(i)}$ as the scalar $(b \lambda(h_{\alpha}))(b + 1)$.
- (ii) Show that the number of summands $U^{(i)}$ with lowest weight $(\lambda b\alpha)(h_{\alpha})$ is $n_{\lambda-b\alpha} n_{\lambda-(b+1)\alpha}$.
- (iii) Hence show that $f_{\alpha}e_{\alpha}$ acts on V_{λ} as the scalar $-\sum_{b=0}^{\infty} n_{\lambda-b\alpha} \langle \lambda b\alpha, \alpha \rangle$, as claimed in the proof of Lemma 3.3.

Solution. (i) If $U^{(i)}$ has lowest weight $(\lambda - b\alpha)(h_{\alpha})$ then $U^{(i)}$ has highest weight $-(\lambda - b\alpha)(h_{\alpha})$. If $v \in U_{\lambda}^{(i)}$ then

$$h \cdot v = \lambda(h) = (-\lambda - b\alpha)(h_{\alpha}) - 2(b - \lambda(h_{\alpha}))$$

and so taking $c = b - \lambda(h_{\alpha})$ in (b) in Section 1 gives

$$f \cdot e \cdot v = (b - \lambda(h_{\alpha})) ((-\lambda - b\alpha)(h_{\alpha}) - (b - \lambda(h_{\alpha})) + 1) v$$
$$= (b - \lambda(h_{\alpha}))(b + 1)v$$

as required. Now (ii) follows from (a) in Section 1, in the same way as (c) did, and (iii) is an immediate corollary of (i) and (ii).

Exercise 3.5. Let ω_1, ω_2 be the fundamental dominant weights for $\mathsf{sl}_3(\mathbf{C})$ (see Exercise 2.7). Use Freudenthal's Formula to determine the dimensions of the weight spaces for the $\mathsf{sl}_3(\mathbf{C})$ -module with highest weight $2\omega_1 + \omega_2$.

Exercise 4.1. Let $\tau : L \to gl(V)$ be a representation of L. Let G be the simply connected Lie group corresponding to L and let $\rho : G \to GL(V)$ be the corresponding representation of G, as defined by

$$\rho(\exp x) = \exp(\tau(x)) \quad \text{for } x \in L.$$

(This defines ρ on a generating set for G.) Let $\lambda \in \Lambda$. Show that if $h \in H$ and $v \in V_{\lambda}$ then $\rho(\exp h)v = \exp(\lambda(h))v$.

Exercise 4.2. Show that if V is an L-module then $\chi_V \in \mathbf{Q}[\Lambda]$ is symmetric.

Exercise 4.3. Let Λ_{dom} be the set of *strictly* dominant weights in Λ .

- (i) Given $\lambda \in \Lambda$ define $a(\lambda) = \sum_{w \in W} \varepsilon(w) w \cdot e(\lambda)$. Show that $\Delta(a(\lambda)) = ||\lambda||^2 a(\lambda)$ and deduce that $\{a(\lambda) : \lambda \in \Lambda_{\text{dom}}\}$ is a **Z**-basis of Δ -eigenvectors for the set of all antisymmetric elements of $\mathbf{Q}[\Lambda]$.
- (ii) Show that

$$e(-\delta)\prod_{\alpha\in\Phi^+} (e(\alpha)-1) = \prod_{\alpha\in\Phi^+} (e(\frac{1}{2}\alpha) - e(-\frac{1}{2}\alpha))$$

and that either side is antisymmetric.

(iii) Show that

$$\sum_{w \in W} \varepsilon(w) \, w \cdot \mathbf{e}(\delta) = \prod_{\alpha \in \Phi^+} \left(\mathbf{e}(\frac{1}{2}\alpha) - \mathbf{e}(-\frac{1}{2}\alpha) \right)$$

(iv) Prove that $f \in \mathbf{Q}[\frac{1}{2}\Lambda]$ is antisymmetric if and only if

$$f = g \prod_{\alpha \in \Phi^+} \left(e(\frac{1}{2}\alpha) - e(-\frac{1}{2}\alpha) \right)$$

for some symmetric g.

Solution. (i) Fix a total order on Λ refining the dominance order. Define the *degree* of an antisymmetric element f to be the greatest weight μ in this order such that $e(\mu)$ has a non-zero coefficient in f. If μ is the greatest weight of f then $\mu \in \Lambda_{\text{dom}}$ and μ is acted on regularly by the Weyl group. Hence $f - \sum_{w \in W} \varepsilon(w) w \cdot e(\mu)$ has strictly smaller weight. The result now follows by induction.

(ii) The equality is routine. Recall that $\{\alpha_1, \ldots, \alpha_\ell\}$ is a base for Φ . It follows from Exercise 3.1(i) and (ii) that

$$S_{\alpha_i} \left(\prod_{\alpha \in \Phi^+} \left(\mathbf{e}(\frac{1}{2}\alpha) - \mathbf{e}(-\frac{1}{2}\alpha) \right) \right) = \frac{-\mathbf{e}(\frac{1}{2}\alpha_i) + \mathbf{e}(-\frac{1}{2}\alpha_i)}{\mathbf{e}(\frac{1}{2}\alpha_i) - \mathbf{e}(-\frac{1}{2}\alpha_i)} \prod_{\alpha \in \Phi^+} \left(\mathbf{e}(\frac{1}{2}\alpha) - \mathbf{e}(-\frac{1}{2}\alpha) \right)$$
$$= -\prod_{\alpha \in \Phi^+} \left(\mathbf{e}(\frac{1}{2}\alpha) - \mathbf{e}(-\frac{1}{2}\alpha) \right).$$

Hence the right-hand side is antisymmetric.

(iii) Both sides are anti-symmetric and the coefficients of $e(\delta)$ agree. The result now follows from (i) since, by Exercise 3.1(iii), δ is the smallest element of Λ_{dom} .

(iv) *Sketch:* it is sufficient to prove that each $a(\lambda)$ is divisible by $\prod_{\alpha \in \Phi^+} \left(e(\frac{1}{2}\alpha) - e(-\frac{1}{2}\alpha) \right)$. This follows using that $\mathbf{Q}[\frac{1}{2}\Lambda]$ is a UFD.

Exercise 4.4. Let ω be the unique fundamental dominant weight for $sl_2(\mathbf{C})$, so $\omega \in \langle h \rangle^*$ is defined by $\omega(h) = 1$.

(i) Use the results of Section 1 to show that V is the irreducible $sl_2(\mathbf{C})$ -module with highest weight $d\omega$ then

$$\chi_V = e(d\omega) + e((d-2)\omega) + \dots + e(-d\omega).$$

(ii) Check that this is consistent with the Weyl Character Formula.

Exercise 4.5. Let ω_1, ω_2 be the fundamental dominant weights for $sl_3(\mathbf{C})$ (see Exercise 2.7).

- (i) Use the Weyl Character Formula to determine the characters of the finite-dimensional irreducible $sl_3(\mathbf{C})$ -module V with highest weight $a\omega_1 + b\omega_2$ where $a, b \in \mathbf{N}_0$.
- (ii) Give a necessary and sufficient condition on a and b for V to have a weight space of dimension at least two.

Exercise 4.6. Deduce from the Weyl Character Formula that if V is the irreducible L-module with highest weight λ then

$$\dim V = \frac{\prod_{\alpha \in \Phi^+} (\lambda + \delta, \alpha)}{\prod_{\alpha \in \Phi^+} (\lambda, \alpha)}$$

Exercise 5.1. Show that if $f, g, h \in \mathbf{Q}[[\Lambda]]$ then $\{fg, h\} = f\{g, h\} + \{f, h\}g$.

Exercise 5.2. Recall that Q is the denominator in the Weyl Character Formula. Use Exercise 4.3(iii) and Exercise 5.1 to show that

$$2\{Q, \mathbf{e}(\nu)\} = Q \sum_{\alpha \in \Phi^+} \frac{\mathbf{e}(\alpha) + 1}{\mathbf{e}(\alpha) - 1}(\nu, \alpha) e(\nu)$$

Solution. By the generalization of Exercise 5.1 to arbitrary products we have

$$\begin{split} 2\{Q, \mathbf{e}(\nu)\} &= 2\{\prod_{\alpha \in \Phi^+} \frac{1}{\mathbf{e}(\frac{1}{2}\alpha) - \mathbf{e}(-\frac{1}{2}\alpha)}, \mathbf{e}(\nu)\} \\ &= 2\sum_{\alpha \in \Phi^+} \frac{Q}{\mathbf{e}(\frac{1}{2}\alpha) - \mathbf{e}(-\frac{1}{2}\alpha)} \{\mathbf{e}(\frac{1}{2}\alpha) - \mathbf{e}(-\frac{1}{2}\alpha), \mathbf{e}(\nu)\} \\ &= 2\sum_{\alpha \in \Phi^+} \frac{Q}{\mathbf{e}(\frac{1}{2}\alpha) - \mathbf{e}(-\frac{1}{2}\alpha)} \left((\frac{1}{2}\alpha, \nu)\mathbf{e}(\nu + \frac{1}{2}\alpha) + (\frac{1}{2}\alpha, \nu)\mathbf{e}(\nu - \frac{1}{2}\alpha) \right) \\ &= \sum_{\alpha \in \Phi^+} \frac{Q}{\mathbf{e}(\frac{1}{2}\alpha) - \mathbf{e}(-\frac{1}{2}\alpha)} (\alpha, \nu) \left(\mathbf{e}(\frac{1}{2}\alpha) + \mathbf{e}(-\frac{1}{2}\alpha)\right) \mathbf{e}(\nu) \\ &= Q\sum_{\alpha \in \Phi^+} \frac{\mathbf{e}(\frac{1}{2}\alpha) + \mathbf{e}(-\frac{1}{2}\alpha)}{\mathbf{e}(\frac{1}{2}\alpha) - \mathbf{e}(-\frac{1}{2}\alpha)} (\nu, \alpha)\mathbf{e}(\nu) \\ &= Q\sum_{\alpha \in \Phi^+} \frac{\mathbf{e}(\alpha) + 1}{\mathbf{e}(\alpha) - 1} (\nu, \alpha)\mathbf{e}(\nu) \end{split}$$

as required.

References

- Karin Erdmann and Mark J. Wildon, *Introduction to Lie algebras*, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2006.
- [2] Roe Goodman and Nolan R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009.
- [3] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978, revised Second printing.
- [4] Kiyoshi Igusa, Notes for Math 23a: Lie Algebras, Fall 2011, Section 24b, Weyl Character Formula. Available from http://people.brandeis.edu/~igusa/Math223aF11/ Notes223a24b.pdf.
- [5] Nathan Jacobson, *Lie algebras*, Dover Publications, Inc., New York, 1979, Republication of the 1962 original.