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Abstract

The relationships between the values taken by ordinary characters
of symmetric groups are exploited to prove two theorems in the mod-
ular representation theory of the symmetric group.

1. The decomposition matrices of symmetric groups in odd char-
acteristic have distinct rows. In characteristic 2 the rows of a decom-
position matrix labelled by the different partitions λ and µ are equal
if and only if λ and µ are conjugate. An analogous result is proved for
Hecke algebras.

2. A Specht module for the symmetric group Sn, defined over
an algebraically closed field of odd characteristic, is decomposable on
restriction to the alternating group An if and only if it is simple, and
the labelling partition is self-conjugate. This result is generalised to
an arbitrary field of odd characteristic.

Keywords: symmetric group, decomposition matrix, Specht module, alter-
nating group, centre of group algebra
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1 Introduction

In this paper we solve two problems in the modular representation theory
of the symmetric group. The first asks for a necessary and sufficient con-
dition for two rows of a decomposition matrix of a symmetric group to be
equal. The second asks for a characterisation of the Specht modules which
decompose on restriction from the symmetric group to the alternating group.
Although these problems may seem quite different from one another, both
can be solved by similar arguments using the ordinary characters of the sym-
metric group. In fact, both problems can be reduced to questions typified
by the following:

Question 1.1. Suppose that two ordinary irreducible characters of the sym-
metric group agree on all elements of order not divisible by 3 (that is, 3′-
elements) — must they be the same?

We give a general strategy for answering questions such as this in §2.
The idea is first of all to make a strategic choice of generators for Z(QSn),
the centre of the rational group algebra of the symmetric group Sn, and
then to use the central characters of symmetric groups to deduce algebraic
relationships between the values taken by a fixed ordinary irreducible char-
acter on different conjugacy classes. The main results we prove concerning
character values may be found below in Corollaries 2.2, 2.3, and 2.7.

To give a representative example, Corollary 2.3 implies that, given the
values taken by an ordinary irreducible character of a symmetric group on 3′-
elements, one can determine all its remaining values. Thus the question
posed above has an affirmative answer. As this example may suggest, our
results on character values are of some independent interest. In §2.5 we give
some questions they inspire.

Many results in the modular representation theory of the symmetric
group have been proved by examining the centres of the integral group
algebras ZSn. For example, the Nakayama Conjecture has been proved by
both Farahat–Higman [2] and Murphy [16] by different variations on this
technique. (For some more recent results on Z(ZSn), see [17].) It is an
important feature of the method used in this paper that we get all our
results on modular representations by considering the centres of the more
easily handled rational group algebras QSn.

We now outline the problems that will be solved using the results on
character values contained in §2.

1.1 Decomposition matrices

A partition of a number n ∈ N is a sequence (λ1, . . . , λk) of positive integers
such that λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1 and λ1 + . . .+ λk = n. To indicate that λ
is a partition of n we write λ ` n.
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Let F be a field and let Sλ be the Specht module for FSn labelled by
the partition λ of n. For the definition and some examples of these modules
see Chapters 4 and 5 of [13]. We recall here that if F has characteristic
zero then every Specht module is simple, and each simple FSn-module is
isomorphic to a unique Specht module. If F has prime characteristic p
then this is no longer the case. However, if λ is p-regular — that is, λ
has no more than p − 1 parts of any given size — then Sλ has a simple
top, denoted Dλ. The modules Dλ for λ a p-regular partition of n are
pairwise non-isomorphic and give all the simple representations of FSn. We
record the composition factors of Specht modules in characteristic p in the
decomposition matrix Dp(n), defined by letting Dp(n)λν be the number of
composition factors of Sλ that are isomorphic to Dν .

A fundamental problem in modular representation theory is to deter-
mine the decomposition matrices of symmetric groups. In §3 we prove the
following theorem.

Theorem 1.2. Let p be prime and let n ∈ N.
(i) If p > 2 then the rows of Dp(n) are mutually distinct.

(ii) If p = 2 then the rows labelled by λ and µ are the same if and only if
λ = µ or λ = µ′, the conjugate partition to µ.

Thus in odd characteristic, a Specht module is determined by its set of com-
position factors. In characteristic 2, there are at most two Specht modules
with any given set of composition factors. (Recall that if λ is a partition,
then its conjugate λ′ is the partition defined by λ′i = |{j : λj ≥ i}|. The di-
agram of λ′ is obtained from that of λ by reflecting it in its main diagonal.)

Remarks on Theorem 1.2.
(1) It is well known (see [13, Corollary 12.3]) that when the partitions la-

belling the rows and columns of a decomposition matrix are ordered lex-
icographically, but with p-regular partitions placed before non-p-regular
partitions, the matrix takes a ‘wedge’ shape, illustrated below by D3(5).

It is therefore easy to distinguish between the rows labelled by p-regular
partitions. The force of Theorem 1.2 comes from the fact that, when n is
large compared to p, most partitions are not p-regular. More precisely,
if for ` ≥ 2 we let r`(n) be the proportion of `-regular partitions of n
(here ` is not necessarily prime) then

r`(n) ∼ An1/4 e
−c

„
1−

q
`−1

`

«
√

n
as n→∞

where c = 2
√
π2/6 and A ∈ R depends only on `. The proportion of

`-regular partitions therefore tends rapidly to zero. This formula was
proved by Hagis using the circle-method (see [10, Corollary 4.2]). It
is interesting to see how close one can get to it by less sophisticated
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(5) 1
(4, 1) · 1
(3, 2) · 1 1

(3, 1, 1) · · · 1
(2, 2, 1) 1 · · · 1

(2, 1, 1, 1) · · · · 1
(15) · · 1 · ·

Figure 1: The decomposition matrix of S5 in characteristic 3.

methods. When ` = 2, I have given an elementary proof (see [21, §5]),
but when ` > 2, the strongest result I have been able to obtain by
elementary methods is

log r`(n) ∼ −c

(
1−

√
`− 1
`

)
√
n as n→∞.

(2) Theorem 3.2 gives the analogue of Theorem 1.2 for the Hecke algebras of
symmetric groups. I hope to report later on the situation for alternating
groups; for a partial result see Theorem 3.3. As Schur algebras have
lower-unitriangular decomposition matrices (see [9, Theorem 3.5a]), the
rows of their decomposition matrices are always distinct.

(3) When defined over a field of characteristic 2, Specht modules labelled
by different partitions may be isomorphic. In [13, Theorem 8.15] it is
shown that whatever the characteristic of the ground field,

Sλ′ ∼= (Sλ)? ⊗ sgn (1)

where sgn is the sign representation and ? denotes duality. Hence, over
a field of characteristic 2, Sλ′ ∼= (Sλ)?. Combining this with our Theo-
rem 1.2(ii) gives the following result.
Theorem 1.3. Let F have characteristic 2. The Specht modules Sλ

and Sµ for FSn are isomorphic if and only if either λ = µ, or λ = µ′

and Sλ is self-dual. �

Unfortunately it does not seem easy to classify the self-dual Specht mod-
ules in characteristic 2. For example, in characteristic 2, S(5,2) is simple,
and hence self-dual, but S(5,1,1) is also self-dual, and even decomposable
(see [13, §23.10]).
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1.2 The restriction of Specht modules to the alternating
group

Our main result is the following theorem, which we prove in §4.

Theorem 1.4. Let F be an algebraically closed field of odd characteristic.
Let λ be a partition of n ∈ N. The Specht module Sλ defined over F is
decomposable on restriction to An if and only if Sλ is simple and λ = λ′.

Remarks on Theorem 1.4.
(1) Theorem 1.4 also holds in characteristic zero, in which case the Specht

modules Sλ are always simple. An alternative generalisation of this
characteristic zero result is proved in [5], where Ford uses the Ford–
Kleshchev proof [6] of the Mullineux conjecture to give a straightforward
way of determining the simple FSn-modules Dλ such that Dλ ∼= Dλ ⊗
sgn, and hence (using some basic Clifford theory which we repeat in §4)
those irreducible representations of FSn which split on restriction to An.

(2) In [15, Conjecture 5.47] James and Mathas conjectured a necessary and
sufficient condition for a Specht module to be simple. Their conjecture
was subsequently proved by Fayers (see [3, 4]). His work makes it a
simple matter to work with the criterion given in our theorem. In §4.1 we
state the James–Mathas condition and use it to generalise Theorem 1.4
to fields of odd characteristic that are not algebraically closed.

2 Results on character values

Our approach uses the central characters of symmetric groups and some ele-
mentary properties of the sums of elements in conjugacy classes of symmetric
groups. We work all the time over the field of rational numbers.

First we must introduce some notation. Fix n ∈ N. For i ∈ N we
let si ∈ QSn be the sum of all i-cycles in Sn, so in particular s1 = 1Sn , the
identity element in QSn. More generally, if µ is a partition of n, we let sµ be
the sum of all elements in Sn of cycle type µ. When writing the elements sµ

we shall simplify the notation by ignoring parts of size 1; thus s(i) is the same
as si, and if, for example n = 9, then s(3,2) = s(3,2,14). (This leads to no
ambiguity, as the degree n is fixed throughout this section.) If µ has m parts
of size 1 then we say that µ has support n−m, and write suppµ = n−m.
Let Kµ be the number of elements of Sn of cycle type µ.

If λ is a partition of n, we write χλ for the the irreducible ordinary
character of Sn afforded by the Specht module Sλ (now defined over a field of
characteristic zero). Let χλ(µ) be the value of χλ on elements of cycle type µ.
The central character corresponding to λ is the algebra homomorphism ωλ :
Z(QSn) → Q defined by mapping an element z ∈ Z(QSn) to the scalar by
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which it acts on the Specht module Sλ. As

ωλ(sµ) =
χλ(µ)Kµ

χλ(1)
(2)

the values of χλ are determined by ωλ. Since {sµ : µ ` n} is a linear basis
for Z(QSn), the converse also holds.

2.1 Generating sets for Z(QSn)

It appears to have first been proved by Kramer [14] that the cycle sums
s1, . . . , sn generate Z(QSn) as a Q-algebra. We shall give a short proof of
this result in Proposition 2.1 below. First though we mention an immediate
consequence, namely that for each partition µ of n, there is a polynomial
Pµ(X1, . . . , Xn) ∈ Q[X1, . . . , Xn] such that

ωλ(sµ) = Pµ

(
ωλ(1Sn), ωλ(s2), . . . , ωλ(sn)

)
.

The important feature of these polynomials is that they are entirely inde-
pendent of the partition λ.

As an example, we determine P(2,2,1n−4). A short calculation shows that
in QSn, s22 = 2s(2,2) + 3s3 + n(n− 1)/2, and hence

P(2,2,1n−4) = −n(n− 1)
4

X1 +
1
2
X2

2 −
3
2
X3.

It now follows from (2) that if λ is a partition of n, χλ((1, 2, 3)) is determined
by the values of χλ at the 3′-elements 1Sn , (1, 2), and (1, 2)(3, 4). A straight-
forward generalisation of this fact, given in part (ii) of the proposition below,
shows that Question 1.1 has an affirmative answer.

In connection with these polynomials, it is worth mentioning that the
values taken by ordinary characters on cycles may easily be calculated using
the Murnagham–Nakayama rule (see [13, Ch. 21]). Another way to find these
values, of more theoretical interest, is to use the combinatorial interpretation
of Frumkin, James and Roichman [7]. For cycles of small length there are
also some interesting explicit formulae (see for instance [11]).

Proposition 2.1. Let µ be a partition of n and let ` ∈ N.
(i) The Q-algebra generated by

{si : i ≤ suppµ}

contains sµ. Moreover, if µ labels a conjugacy class of permutations of
sign −1, then sµ may be expressed as a polynomial in the si in such a way
that in every monomial term in the expression, at least one class sum s2j

appears.
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(ii) If ` > 2 then the conjugacy class sums

X`(n) =
{
si : 1 ≤ i ≤ n, ` 6 | i

}
∪
{
s(`j−1,2) : 1 < `j < n

}
generate Z(QSn) as a Q-algebra.

(iii) If ` is odd and ` > 2 then the conjugacy class sums

Y`(n) =
{
si : 1 ≤ i ≤ n, if i is even then ` 6 | i

}
∪
{
s(2`j−1,2) : 1 < 2`j < n

}
generate Z(QSn) as a Q-algebra. Moreover, if µ labels a conjugacy class
of permutations of sign −1 then sµ may be expressed as a polynomial in
the elements of Y`(n) in such a way that in every monomial term in the
expression, at least one class sum s2j or s(2`j−1,2) appears.

Proof. Suppose that µ = (nan , . . . , 2a2 , 1a1).
(i) We work by induction on suppµ. We have

sa1
1 s

a2
2 . . . san

n = αsµ + y

where α is a strictly positive integer and y is an integral linear combination
of conjugacy class sums sλ for partitions λ of support at most suppµ − 1.
Moreover, if µ labels a conjugacy class of permutations of sign −1 then so
does every λ which appears in y. Hence, by induction, y may be written as
a polynomial in the si of the required form.

(ii) Given (i), it is sufficient to prove that the conjugacy class sums s`j

are in the Q-algebra generated by X`(n). For this, it is sufficient to prove
by induction on j that if 1 < `j ≤ n then the conjugacy class sum s`j is in
the Q-algebra generated by{

si : 1 ≤ i < `j
}
∪
{
s(`j−1,2)

}
.

(The last term above should be disregarded if `j = n.) If `j < n then

s2s`j−1 = αs`j + βs(`j−1,2) +
∑

1≤i≤`j/2−1

γis(`j−1−i,i) (3)

for some coefficients α, β, γi, about which all we need to know is that α > 0.
Each element of Sn appearing in the conjugacy class sums s(`j−1−i,i) fixes
one more point than a `j-cycle, so by (i), each s(`j−1−i,i) is in the Q-
algebra generated by {si : i < `j}. Hence s`j is in the Q-algebra generated
by {si : 1 ≤ i < `j} ∪ {s(`j−1,2)}, as required.

If `j = n then

s2sn−1 = α′sn +
∑

1≤i≤n/2−1

γ′is(n−1−i,i) (4)

for some further coefficients α′, γ′i. Again it is clear that α′ > 0, so the result
follows in the same way as before.
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(iii) We use the same strategy as in (ii). By (i) it suffices to prove that
if 1 < 2`j ≤ n then s2`j may be expressed as a polynomial in the elements{

si : 1 ≤ i < 2`j
}
∪
{
s(2`j−1,2)

}
in such a way that in every monomial in the expression, at least one class
sum of permutations of sign −1 appears. As in (ii), this follows by induction
on j, using (3) and (4) above.

In order to move from conjugacy class sums to individual elements of Sn

we introduce a carefully chosen family of group elements. For ` ∈ N, let

Z`(n) = {(1, 2, . . . , 2j) : 1 ≤ j ≤ n/2, ` 6 | j}
∪ {(1, 2, . . . , 2k`− 1)(2k`, 2k`+ 1) : 1 < 2k` < n} .

Note that Z`(n) consists of odd `′-elements. We can now apply Proposi-
tion 2.1 to give results about ordinary characters.

Corollary 2.2. Let λ be a partition of n and let ` > 2 be an odd natural
number. Each of the following conditions implies that λ = λ′:

(i) χλ vanishes on all cycles of even length in Sn;

(ii) χλ vanishes on every element of Z`(n);

(iii) χλ vanishes on every `′-element in Sn of sign −1.

Proof. (i) By hypothesis, ωλ(s2i) = 0 for all i such that 1 ≤ i ≤ n/2. Hence,
by Proposition 2.1(i), ωλ(sµ) = 0 whenever µ labels a conjugacy class of
permutations of sign −1. This implies that χλ vanishes on every element
in Sn of sign −1, and so χλ = χλ × sgn. Since χλ × sgn = χλ′ (see for
instance [13, §6.6]) we may deduce that λ = λ′.

(ii) This follows in the same way as (i), this time using Proposition 2.1(iii).
(iii) This is merely a weaker version of the previous part.

Corollary 2.3. Let λ and µ be partitions of n. Let ` > 2 be a natural
number. If χλ and χµ agree on all `′-elements of Sn then λ = µ.

Proof. By hypothesis the central characters ωλ and ωµ agree on the set
X`(n) of generators of Z(QSn) given in Proposition 2.1(ii). Hence ωλ = ωµ

and so λ = µ.

2.2 Generating sets for Z(QAn)

Recall that the only conjugacy classes of Sn which split in An are those
labelled by partitions of n whose parts are odd and mutually distinct. If µ
is such a partition, let s+µ ∈ Z(QAn) and s−µ ∈ Z(QAn) be the sums of the
elements in the two associated conjugacy classes of An. (The signs + and
− may be assigned arbitrarily.)
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For part (ii) of Theorem 1.2 we need a generating set for Z(QAn) in-
volving only conjugacy class sums labelled by 2′-permutations (that is, per-
mutations of odd order). Fortunately for us, the split classes consist of
2′-elements, so they do not create any additional difficulties. Let

X(n) =
{
sλ : λ ` n, all parts of λ are odd

}
∪
{
s+λ : λ ` n, λ has odd distinct parts

}
.

We shall prove that X(n) is a generating set for Z(QAn) as a Q-algebra.
To do this we need the following lemma.

Lemma 2.4. Let k, l ≥ 3 be natural numbers such that k+ l ≤ n+2. Define
coefficients cµ for µ ` n by

sksl =
∑
µ`n

cµsµ.

If a, b ≥ 2 are natural numbers such that a+ b = k + l − 2 then

c(a,b,1n−a−b) = abmin(k − 1, l − 1, a, b).

The only other conjugacy class sums sµ with suppµ ≥ k + l − 2 which may
appear as summands of sksl are s(k+l−1), which appears only if k+ l−1 ≤ n,
and s(k,l), which appears only if k + l ≤ n.

The proof of this lemma is postponed to §2.3.

Proposition 2.5. The elements of X(n) generate Z(QAn) as a Q-algebra.

Proof. It is sufficient to prove that if µ is a partition of n with evenly many
even parts and at least two even parts, then sµ is in the Q-algebra generated
by X(n). Suppose that suppµ = m. By induction we may assume that all
conjugacy class sums labelled by partitions with support at most m− 1 can
be written as polynomials in elements of X(n).

The hardest case occurs when µ has just two even parts and all its other
parts are of size 1. Suppose that m = 2r. Let t = br/2c be the number of
partitions of 2r into two even parts. By Lemma 2.4, if 1 ≤ i ≤ t, then

s2r−2i+1s2i+1 =
i∑

j=1

8(r − j)j2s(2r−2j,2j) + 8i
t∑

j=i+1

(r − j)js(2r−2j,2j) + y

where y is a rational linear combination of conjugacy class sums sν such
that either

ν ∈ {(2r − 2j + 1, 2j − 1) : 1 ≤ j ≤ t} ∪ {(2r + 1), (2r − 2i+ 1, 2i+ 1)}
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or supp ν ≤ 2r−1. The partitions in the sets above all have only odd parts,
so our inductive hypothesis implies that for 1 ≤ i ≤ t,

ui =
i∑

j=1

(r − j)j2s(2r−2j,2j) + i
t∑

j=i+1

(r − j)js(2r−2j,2j)

is in the Q-algebra generated by X(n). Now

ut − ut−1 = (r − t)ts(2r−2t,2t)

and if i < t then

ui − ui−1 = (r − i)is(2r−2i,2i) +
t∑

j=i+1

(r − j)js(2r−2j,2j).

Hence, by starting at i = t and working down to i = 1, we may express each
conjugacy class sum s(2r−2i,2i) as a polynomial in the elements of X(n). In
particular, this shows that sµ lies in the Q-algebra generated by X(n).

The other possibility is that µ has two even parts, 2u and 2v say, and
some further parts, not all of size 1. Let ν be the partition of n − 2u − 2v
obtained by removing the parts of size 2u and 2v from µ. By induction sν

and s(2u,2v) are in the Q-algebra generated by X(n) and evidently

sνs(2u,2v) = sµ + y

where y is a rational linear combination of conjugacy class sums sλ for
partitions λ of support at mostm−1. Hence sµ is in the Q-algebra generated
by X(n). This completes the inductive step.

To obtain the expected corollary concerning ordinary characters of Sn

we need a small result about how characters of Sn restrict to An.

Lemma 2.6. Let λ and µ be partitions of n. The restricted characters χλ↓An

and χµ↓An agree if and only if λ = µ or λ = µ′.

Proof. This may be proved using the Clifford theory developed at the start
of §4. Alternatively see [8, §5.1] for a proof using only the language of basic
character theory.

Corollary 2.7. Let λ and µ be partitions of n. If χλ and χµ agree on all
2′-elements of Sn then either λ = µ or λ = µ′.

Proof. By Proposition 2.5 and our usual argument with central characters,
the hypothesis implies that χλ(g) = χµ(g) for all g ∈ An. Now apply the
previous lemma.
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2.3 Proof of Lemma 2.4

We may assume that k ≥ l. To find sksl we shall first calculate the product
(12 . . . k)sl. As we are mainly interested in terms in this product whose
support is exactly k+ l−2, we start by looking at those l-cycles which move
exactly two members of {1, 2, . . . , k}. Let i, j ∈ {1, 2, . . . , k} be distinct
numbers with i < j and let

τ = (i p1 . . . pr j q1 . . . ql−2−r)

where 0 ≤ r ≤ l−2 and p1, . . . , pr, q1, . . . , ql−2−r ∈ {k+1, . . . , n} are distinct.
Computation shows that if i > 1 then

(1 2 . . . k)τ = (1 . . . i− 1 p1 . . . pr j . . . k)(i i+ 1 . . . j − 1 q1 . . . ql−2−r),

which is a product of cycles of lengths (k+r)−(j−i) and (j−i)+(l−2−r).
If i = 1 then we have

(1 2 . . . k)τ = (1 . . . j − 1 q1 . . . ql−2−r)(j j + 1 . . . k p1 . . . pr),

so while there are some small differences, the cycle structure of the product
is unaltered. It follows that if 2 ≤ a < (k + l − 2)/2 then the number of
ways to choose i and j so that (1 2 . . . k)τ has cycle type (k+ l− 2− a, a) is{

a− r : a > r
0 : a ≤ r

+
{
k − a+ (l − 2)− r : a > l − 2− r
0 : a ≤ l − 2− r

.

Here the first term comes from the case (j−i)+(l−2−r) = k+ l−2−a and
the second from the case (j−i)+(l−2−r) = a. The remaining possibility is
that 2a = k+ l− 2. Then these two cases coincide, and the correct number
of choices for i and j is a− r = (k + l − 2)/2− r.

We now let r vary between 0 and l − 2 and add up the total number of
choices for i and j so that (1 2 . . . k)τ has cycle type (k + l − 2− a, a).

(1) If a ≤ l − 2 then the total number of choices for i and j is∑
0≤r<a

(a− r) +
∑

l−2−a<r≤l−2

(k − a+ (l − 2)− r) = ak.

(2) If l−2 < a < (k+ l−2)/2 then the conditions needed to get a positive
contribution always hold in both cases, and the total number of choices is∑

0≤r≤m

(
(a− r) + k − a+ (l − 2)− r

)
= (l − 1)k.

(3) If 2a = k + l − 2 then the sum in the previous case double counts
every choice and so the total number of choices is (l − 1)k/2.
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We must also choose p1, . . . , pr and q1, . . . , qm−2−r. Whatever the value
of r, this can always be done in exactly (n− k)l−2 ways; here xa stands for
x(x− 1) . . . (x− a+ 1) for x, a ∈ N. Hence the total number of elements of
cycle type (k + l − 2− a, a) in the product (12 . . . k)sl is

(n− k)l−2 ×


ak : 2 ≤ a ≤ l − 2
(l − 1)k : l − 2 < a < (k + l − 2)/2
(l − 1)k/2 : a = (k + l − 2)/2.

To obtain the coefficient c(k+l−2−a,a,1n−k−l+2) we must multiply by K(k,1n−k)

and then divide by K(k+l−2−a,a,1n−k−l+2). This gives

c(k+l−2,a,1n−k−l+2) = min(a, l − 1)
k(n− k)l−2nk/k

nk+l−2/(k + l − 2− a)a
= min(a, l − 1)(k + l − 2− a)a

as required.
It is easy to see that if τ is an l-cycle such that (1 2 . . . k)τ has sup-

port strictly more than k + l − 2 then either τ moves just one element of
{1, 2, . . . , k}, in which case (1 2 . . . k)τ has cycle type (k + l − 1, 1n−k−l+1),
or τ moves no elements of {1, 2, . . . , k}, in which case (1 2 . . . k)τ has cycle
type (k, l, 1n−k−l). This gives the final statement in the lemma. �

2.4 Some related problems

We now pose some problems suggested by Corollaries 2.2, 2.3 and 2.7. The
reader keen to see the applications to the modular theory should skip to §3.

Problem 2.8. Let n ∈ N. What is the size cn of the smallest set X ⊆ Sn

such that for all partitions λ ` n, if χλ vanishes on all the elements of X
then λ is self-conjugate?

It follows from Corollary 2.2(i) that cn ≤ n/2. However, as Suzuki points
out in [20], for n ≤ 14, it suffices to take X = {(1, 2)}, so this result is not
always the best possible. An exhaustive search using the computer algebra
package magma shows that for n ≤ 59 one may takeX = {(1, 2), (1, 2, 3, 4)},
hence cn = 1 if n ≤ 14 and cn ≤ 2 if n ≤ 59. (For n = 60 there is a non-self-
conjugate partition λ such that χλ((1, 2)) = χλ((1, 2, 3, 4)) = 0, so it seems
likely that c60 = 3.) We would ask for an asymptotic formula for cn, as its
precise behaviour may be too erratic to be easily described.

This problem may of course be posed with other properties in place of
the condition that λ be self-conjugate. For example, one might ask instead
that λ be a p-core for a given prime p. Also one may restrict the possible
set X, for example by insisting that X consist of p′-elements for a given
prime p.
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Problem 2.9. Let n ∈ N. What is the size bn of the smallest set X ⊆ Sn

such that for all partitions λ ` n, if χλ and χµ agree on all elements of X
then λ = µ?

Here Kramer’s result shows that bn ≤ n, but again this is not always the
best possible.

3 Consequences for decomposition matrices

We are ready to prove Theorem 1.2. Let φν be the Brauer character of the
irreducible module Dν defined over a field of prime characteristic p (for an
introduction to Brauer characters see [18, §2]). Suppose that in the decom-
position matrix Dp(n) of Sn modulo p, the rows labelled by partitions λ
and µ are equal. Adding up irreducible Brauer characters we find that if g
is a p′-element of Sn then

χλ(g) =
∑

ν

Dp(n)λνφν(g) =
∑

ν

Dp(n)µνφν(g) = χµ(g).

Thus χλ and χµ agree on all p′-elements of Sn. If p is odd then Corollary 2.3
implies that λ = µ. If p = 2 then Corollary 2.7 implies that either λ = µ
or λ = µ′. This completes the proof.

3.1 Hecke algebras

We now generalise Theorem 1.2 to Hecke algebras of symmetric groups.
Let F be any field (maybe of characteristic zero), and let q ∈ F\{0}. Let
HF,q(Sn) be the corresponding Hecke algebra, as defined in [15, §1.2] by
deforming the group algebra FSn. We may assume that q is a root of unity,
for if it is not, HF,q(Sn) is semisimple, and so the analogue of Theorem 1.2
is trivial. Moreover, if q = 1 then HF,q(Sn) = FSn, so we may also exclude
this case. From now on we write H for HF,q(Sn).

Let ` be minimal such that 1 + q + . . . + q`−1 = 0. The simple H-
modules are indexed by the `-regular partitions of n, and there are the
expected analogues of Specht modules, so the decomposition matrix of H
has rows labelled by all partitions of n, and columns labelled by the `-regular
partitions of n. We shall need the following lemma, which follows from the
remarks just after Proposition 2.6 in [19].

Lemma 3.1. The Z-span of the columns of the decomposition matrix of H
is equal to the Z-span of the columns of the ordinary character table of Sn

labelled by the `-regular partitions of n. �

We can now prove the following analogue of Theorem 1.2.

Theorem 3.2. Let H and ` be as above.
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(i) If ` > 2 then the rows of the decomposition matrix of H are distinct.

(ii) If ` = 2 then the rows labelled by λ and µ are the same if and only if
λ = µ or λ = µ′.

Proof. The previous lemma implies that the rows of the decomposition ma-
trix of H labelled by partitions λ and µ are equal if and only if χλ(g) = χµ(g)
for all `′-elements g ∈ Sn. The result now follows from Corollary 2.3 and
Corollary 2.7 in the same way as Theorem 1.2.

3.2 Alternating groups

For alternating groups, the situation in odd characteristic appears to be
quite difficult, and the obvious analogue of Theorem 1.2 is false. There is
however one result we can prove without doing any further work.

Theorem 3.3. Let n ∈ N. The rows of the decomposition matrix of An in
characteristic 2 are distinct.

Proof. Suppose that the rows labelled by the ordinary characters χ and ψ are
equal. Then χ(g) = ψ(g) for all 2′-elements of An and so by Proposition 2.5,
χ(g) = ψ(g) for all g ∈ An. Hence χ = ψ.

4 Specht modules and the alternating group

In this section we prove Theorem 1.4. Recall that this theorem states that
if λ is a partition of n and F is an algebraically closed field of odd charac-
teristic, then the Specht module Sλ is decomposable on restriction to An if
and only if Sλ is simple and λ = λ′.

We begin with some Clifford theory. Let F have characteristic p. As p 6=
2 the Specht module Sλ is indecomposable (see [13, Corollary 13.18]). Also,
when p 6= 2, the Sylow p-subgroups of Sn are contained in the alternating
group An, so by Higman’s criterion (see [1, Proposition 3.6.4]), Sλ is rela-
tively An-projective. Thus there exists an indecomposable FAn-module U
such that Sλ is a direct summand of the induced module U↑Sn

An
. We denote

this by writing
Sλ
∣∣ UxSn

An
.

By Mackey’s Lemma (see [1, Theorem 3.3.4]),

Sλ
y

An

∣∣ U ⊕ U t (5)

where t is any odd element in Sn and U t is the An-module with the same
underlying vector space as U , but with the action defined by u · g = ugt for
u ∈ U t, g ∈ An.

We can now prove the ‘if’ part of Theorem 1.4. As λ is self-conjugate,
the restricted ordinary character χλ↓An splits as a sum of two ordinary
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irreducible characters of An. Hence the Brauer character of Sλ↓An has
at least two irreducible summands. (Notice that we have used that F is
sufficiently large here.) Furthermore, by Clifford’s theorem on the restriction
of simple modules to normal subgroups, Sλ↓An is semisimple. Hence the
restriction of Sλ to An has at least two non-trivial direct summands. This
is sufficient to prove the result.

It is however not hard to give a little more information. By (5), Sλ↓An

has at most two non-trivial direct summands. Therefore

Sλ
y

An
= U ⊕ U t

and the Brauer characters of the simple summands U and U t are the re-
duction modulo p of the two ordinary irreducible An characters associated
to λ.

We now turn to the ‘only if’ part of Theorem 1.4. Suppose that Sλ↓An

is decomposable. Using (5), we have

Sλ ⊗ sgn = U
xSn

An
⊗ sgn ∼=

(
U ⊗ sgn

y
An

)xSn

An

∼= U
xSn

An

∼= Sλ.

It follows that the ordinary character of Sλ vanishes on all odd p′-elements
of Sn. By Corollary 2.2(iii) this implies that λ = λ′. Finally, since by (1)
we have Sλ ⊗ sgn ∼= (Sλ′)?, it follows that Sλ is self-dual, and hence simple
by Theorem 23.1 of [13]. This completes the proof of Theorem 1.4.

4.1 Theorem 1.4 for non-algebraically closed fields

We now consider Specht modules defined over an arbitrary field F of odd
characteristic p. As explained in Remark 2 of §1.2, we shall use a result due
to Fayers on the irreducibility of Specht modules. To state it we need two
final pieces of notation. If λ is a partition, and α is a node of the diagram
of λ, let hα be the hook-length of the hook on α. (See [13, Ch. 18] for the
definition of hooks in partitions.) Given n ∈ N, we set (n)p = pa if pa is the
highest power of p which divides n ∈ N.

Theorem 4.1 (Fayers). Let F be a field of odd characteristic. The Specht
module Sλ defined over F is reducible if and only if λ contains a node α, a
node β in the same row as α, and a node γ in the same column as α, such
that p | hα, (hα)p 6= (hβ)p and (hα)p 6= (hγ)p. �

Using the ‘if’ direction of this theorem (proved in [3]) we may prove the
following lemma.

Lemma 4.2. Let λ = (λ1, . . . , λk) be a self-conjugate partition of n. Suppose
that there is a node on the main diagonal of λ whose hook-length is divisible
by p. Then Sλ is reducible.
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Proof. For 1 ≤ i ≤ k and 1 ≤ j ≤ λi let hij be the hook-length of the node
in position (i, j) of λ. Suppose that (hss)p = pc where c ≥ 1. As λ is self-
conjugate, the sequence of hook lengths of nodes in row s is the same as the
sequence of hook lengths of nodes in column s. Hence, by Theorem 4.1, if Sλ

is irreducible then every node in row s and every node in column s has hook
length exactly divisible by pc. By considering the subdiagram of λ obtained
by taking all nodes in positions (a, b) for a, b ≥ s we obtain a partition µ
whose hook lengths satisfy

(hα)p = pc

for all nodes α in the first row and column of µ. Let µ1 = l. As pc | h1l

we must have µ′l > 1. Hence µ1 = µ2, and so h21 = h11 − 1. But both
these hook lengths are supposed to be divisible by pc, so we have reached a
contradiction.

We are now ready to prove the following generalisation of Theorem 1.4.

Theorem 4.3. Let F be a field of odd characteristic. Let λ be a partition
of n ∈ N with main diagonal hook lengths q1, . . . , qr. The FSn-Specht mod-
ule Sλ is decomposable on restriction to An if and only if all of the following
conditions hold:

(i) λ is self-conjugate,

(ii) (−1)(n−r)/2q1 . . . qr has a square root in F ,

(iii) Sλ is simple (we shall see this implies that p does not divide any of
the qi).

Proof. By the proof of Theorem 1.4, if Sλ ↓An is decomposable then (i)
and (iii) hold. Let χ1 and χ2 be the two ordinary characters of An associ-
ated to λ: at p′ elements these are the Brauer characters of the summands
of Sλ↓An . Proposition 5.3 of [8] tells us that

1
2(−1)(n−r)/2 ± 1

2

√
(−1)(n−r)/2q1 . . . qr

are the values of χ1 and χ2 on elements of the conjugacy class labelled
by (q1, . . . , qr). If any of the qi are divisible by p then Lemma 4.2 implies
that Sλ is reducible, a contradiction. Hence this conjugacy class is p-regular.
Therefore

(−1)(n−r)/2q1 . . . qr

has a square root in F , which gives (ii).
Conversely if all the conditions hold then the proof of the ‘if’ part of

Theorem 1.4 shows that Sλ↓An decomposes. Where before we used that F
was sufficiently large, now we merely use the fact that if χ is the character,
in the näıve sense, of an irreducible representation of a group G over a
field E of prime characteristic, then the representation can be defined over
a subfield F of E if and only if the values of χ lie in F . (For a proof of this
statement see [12, Theorem 9.14].)
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We conclude by noting that the last result has an especially nice form
for Specht modules labelled by hook partitions.

Corollary 4.4. Let F be a field of odd prime characteristic, and let 1 <
r < n − 1. The Specht module S(n−r,1r) decomposes on restriction to An if
and only if n = 2r + 1, p does not divide n, and (−1)(n−1)/2 n has a square
root in F . �
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