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1 An example on dual Specht modules

Let ZS
λ = Sλ denote that Specht module corresponding to λ ` n viewed as a module

for ZSn. Let
(
Sλ

)∗ denote its dual, HomZ
(
Sλ,Z

)
which is a ZSn module via the rule

xφg = xg−1φ where x ∈ Sλ, φ ∈
(
Sλ

)∗ and g ∈ Sn.

Theorem 1 There is an inclusion of ZSn-modules,
(
Sλ

)∗
↪→ Sλ.

An immediate corollary is that it is always possible to pick a Z-lattice inside QS
λ

so that the corresponding p-modular reduction is isomorphic to the dual of the conven-
tional p-modular reduction (coming from the standard basis and written FpS

λ). Thus
our theorem gives a rich source of examples of non-isomorphic p-modular reductions.
It would be interesting to know how far it is possible, by picking a suitable basis of
QS

λ, to make the p-modular reduction semisimple.
The theorem is not hard to prove, the main idea being the following trivial gener-

alisation of James’ Submodule Theorem.

Lemma 2 Let U be a ZSn-submodule of ZM
λ. Let t be a fixed λ-tableaux and let bt by

the corresponding signed column sum. Then either Ubt 6= 0 in which case U contains
mSλ for some m ∈ Z or Ubt = 0 and then U is contained in

(
Sλ

)⊥. 2

Proof of theorem 1: Our first step is to follow the proof of theorem 8.15 in James [3].
Fix a λ-tableaux, u and define a map

φ : Mλ → Sλ′ ⊗ sgn by extending u → eu′ ⊗ 1.

φ is well defined, for if the λ-tableaux s differ by a row permutation from u then et′

and eu′ are equal up to a sign, which is taken care of by multiplying the right hand side
by the sign representation. Also φ is obviously onto. If t is any λ-tableau then

etφ =
∑
σ∈Ct

tφσ = et′ |Ct| 6= 0

so by the Submodule Theorem, the kernel of φ must be contained in Sλ⊥. By looking
at Z-ranks, we see kerφ is of full rank in Sλ⊥. Finally, as it is impossible for xφ 6= 0
but mxφ = 0 for x ∈Mλ,m ∈ Z, kerφ must be all of Sλ⊥. We have shown that

Mλ/Sλ⊥ ∼= Sλ′ ⊗ ε.

On the other hand, it is clear that Sλ⊥ is the kernel of the map

ψ : Mλ → Sλ∗
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given by
xψ = [y → 〈x, y〉] .

Now the difficulty (such as it is) lies in proving that ψ is onto. This follows from
a remark of James (see corollary 8.12 in [3]) that there is a Z-basis of Sλ each of
whose elements involve a unique standard tableaux precisely once. (Thus if the basis
is (f1, . . . , fm) and fi is unique in involving ti then tiψ = ±f∗i .) This shows that, over
Z, and hence over any field, Sλ∗ ∼= Sλ′ ⊗ sgn.

The second step in the proof is to identify Sλ′ ⊗ sgn with Fulton’s module S̃λ

constructed in §7.4 of Fulton [1]. Then the proof of Lemma 5 in his §7.4 gives us the
necessary inclusion. The map is as follows: Sλ′ ⊗ sgn is naturally a submodule of
Mλ′ ⊗ sgn. Sλ is a quotient of this ‘twisted’ permutation module via ZSn extension of
the map sending

u′ ⊗ 1 → eu

where u is any fixed λ-tableaux. Now one can check directly that the composition
Sλ′ ⊗ sgn→ Sλ is injective and so complete the proof. (The aproach in Fulton §7.4 [1]
avoids the choice of u and gives a better reason why the composite map is injective.)

In summary, we fix a λ-tableaux, u and send 〈−,u〉 to eu′⊗1 ∈ Sλ′⊗sgn, and then
to

∑
σ∈Ru

euσ. ZSn extension of this map then gives us an injection, Sλ∗ ↪→ Sλ. 2

Example 3 We exhibit an explicit inclusion S(n−1,1)∗ ↪→ S(n−1,1). As usual we omit
the redundant top row from (n− 1, 1)-tabloids.

Let ei = i−1 ∈ S(n−1,1), so S(n−1,1) has Z-basis (ei : i ∈ [2..n]). Let (e∗i : i ∈ [2..n])
be the dual basis of S(n−1,1). If u is the standard (n − 1, 1)-tableau with an n in the
bottom row then 〈−,u〉 corresponds to e∗n. We are told to map

e∗n →
∑

σ∈Sn−1

euσ

so en → (n− 2)! ((n− 1)n− 1− . . .− (n− 1)).

2 Further examples of duality

This theorem is not expected to be orignal.

Theorem 4 Let G be a finite group and let F be a field. Then any finite dimensional
uniserial FG-module is cyclic.

Proof: Let u be a non-cyclic finite dimensional FG-module. We will construct an
ascending chain of submodules of U as follows. Take any u1 ∈ U . Since u1FG 6= U we
can find u2 ∈ U\u1FG. Now if u1 6∈ u2FG we are done, for the module u1FG+u2FG ⊆
U has two different composition series. On the other hand, if u1 ∈ u2FG then we can
continue the process, reaching a chain of modules

u1FG ⊂ u2FG ⊂ u3FG ⊂ . . .

each strictly included in the previous one. But this chain cannot reach U (as then
U would be cyclic) so two of these supposedly different modules must coincide —
contradiction. 2
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Example 5 The finite-dimensionality assumption in theorem 4 cannot be removed.
Let SN denote the finitary symmetric group on the natural numbers. (A permutation
is finitary if it has finite support, i.e. if its fixed point set is cofinite.) Let F be a finite
or countable field. Then U = FN is a cyclic permutation module for FSN in an obvious
way.

By standard linear algebra we know that as an F -vector space, U is of uncountably-
infinite dimension. Now if θ is any vector in U , the submodule of U? generated by θ is
countable, because both F and SN are countable. Thus U? cannot be cyclic.

Specht modules are cyclic (generated by any one polytabloid), and so are their duals
(see §1 above). Theorem 4 above shows that the dual of a cyclic uniserial module is
cyclic. Another partial result if that if U is a quotient of FG, by V say, and V has an
FG-complement, then U is cyclic. Below we show that, in general, the dual of a cyclic
module need not be cyclic.

Example 6 Let G = C2 × C2 and let F = F2, the finite field with 2 elements. Let N
be the permutation module of C2 acting on 2 points, and let M = N ⊗N , with F -basis
ei × fj for i = 1, 2 and j = 1, 2. Let U = M/ 〈(e1 + e2)⊗ (f1 + f2)〉. As a quotient of
a cyclic module, U is certainly cyclic. Let

V = 〈(e1 + e2)⊗ (f1 + f2), (e1 + e2)⊗ f1, e1 ⊗ (f1 + f2)〉

Since M has radical layers F , F ⊕ F , F , V is isomorphic to U∗ (this can also be
checked directly). On the other hand, V is not cyclic — one checks directly by careful
calculation that although there are 8 vectors in V , counting 0, none of them generate
V as a FG-module).

One thing that has puzzled me in the past is the distinction made between the
two possible symmetric power constructions. Let V be a left-FG module with F -basis
(v1, . . . , vn). V ⊗r has a basis given by (vi : i ∈ [n][r]) where vi = vi1 ⊗ . . . ⊗ vir . Sr

acts on the right on the set of all ’multi-indexes’, i.e. functions [r] → [n] by place
permutation, and hence on E⊗r: if σ ∈ Sr then

viσ = vi1σ−1 ⊗ . . .⊗ virσ−1 .

Our first version of the symmetric power is the submodule of V ⊗r given by sym-
metrising this basis: let fi =

∑
vj where the sum is over all vj that can be obtained

from the action of Sr on ei, each occuring once. Alternatively, fi =
∑
viσ where the

sum is taken over a set of coset representatives for Stab i in Sr. Let SnV be the F -span
of all such elements. The action of GLn (on the left) commutes with the action of Sr

(on the right), i.e. (gvi)σ = g(viσ) so SnV is a representation of GLn(F ).
The alternative definition is to identify vi with viσ, so define SrV = E⊗r/K where

K is the submodule generated by all vi− viσ. Let ei be the image of vi in the quotient.
The latter definition is probably the one most people mean by ’symmetric power’.

Using the convenient notation of Green’s book, say that if k and i are multi-indices
then k ∼ i if k and i have the same content, i.e. if k and i are in the same Sr orbit.
It is easy to see that one can obtain a basis of either SrV by choosing exactly one fi

from each orbit, and similarly for SrV .

Lemma 7 SrV is isomorphic to the contravariant dual of SrV .
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Proof: For the definition of contravariant dual see e.g. §2.7 of Green [2]. It is easy to
find the action of GLn(F ) on SrV — if g ∈ GLn(F ) then gej =

∑
k gk1j1 . . . gkrjrek.

Thus if A(g) is the matrix of g acting on SrV with respect to the basis of ei’s given
above, we have

A(g)ij =
∑
k∼i

gk1j1 . . . gkrjr .

The action of GLn(F ) on SrV is only slightly more fiddly. We have that

gfj =
∑

l

∑
σ

gl1i1 . . . glrjrekσ =
∑

l

∑
σ

gl1i1σ−1 . . . glrjrσ−1ek

where σ runs over a set of coset represenatives for Stab j in Sr. We read the coefficient
of vk off from the second form above, showing that if B(g) is the matrix of g acting on
SrV with respect to the basis of fi’s given above then:

B(g)ij =
∑
k∼j

gi1k1 . . . girkr .

Comparing coefficients we can now see that A(g)tr = B(gtr), proving the lemma. 2

Proof(2): Say f : V → W is a map of GLn(F )-modules. Then we have an induced
map f◦ : W ◦ → V ◦ on the contravariant duals, given by

(f.θ)v = θ(fv).

By the same argument that works for the normal dual, we show that f◦ is a module-
homomorphism.

We now state universal properties for SrV and SrV . Firstly we look at SrV . Given
any map f : V ⊗r → W of GLn(F )-modules with the property that f vanishes on the
ideal K defined above, there is a unique map g : SrV → W such that the following
diagram commutes:

V ⊗r f - W
@

@
@R

q
�

�
��
g

SrV

where q is the quotient map V ⊗r � SrV .
Similarly, given any map f : W → V ⊗r of GLn(F )-modules with the property that

for all w ∈ W and σ ∈ Sr, (fw)σ = fw there is a unique map g : W → SrV such that
this diagram commutes:

W
f - V ⊗r

@
@
@R

g
�

�
��
ι

SrV

where ι is the inclusion of SrV into V ⊗r.
Since these diagrams are dual to each other, we see that (SrV )◦ solves the same

problem as SrV (here we have used that V , and hence V ⊗r are their own contravariant
duals), so by general nonsense we are allowed to deduce that (SrV )◦ ∼= SrV . 2

In characteristic 0 the two versions of the symmetric power are isomorphic. This
can be seen directly by scaling one of the bases appropriately. Alternatively one
could be more sophisticated and observe that in characteristic 0, GLn-modules are
semisimple and that any simple-module is self-dual, so any GLn(K) module is its own
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contravariant-dual. In characteristic p though, the is a difference. A simple yet instruc-
tive example is to look at S2E where E is the usual 2-dimensional module for GL2(F )
in the case where F has characteristic 2 (see e.g. the section SK(2, 2), revisited in Mar-
tin [5]). In general it is not hard to show from the definitions (see e.g. Green [2] §4.4
and §5.1) that if E is the usual n-dimensional module for GLn(F ) then SrE ∼= ∇(r)
and Sr

∼= ∆(r).
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