
Abstract

Let X be a character table of the symmetric group Sn. It is shown
that unless n = 4 or n = 6, there is a unique way to assign partitions
of n to the rows and columns of X so that for all λ and ν, Xλν is
equal to χλ(ν), the value of the irreducible character of Sn labelled
by λ on elements of cycle type ν. Analogous results are proved for
alternating groups, and for the Brauer character tables of symmetric
and alternating groups.

1



Labelling the character tables of symmetric and

alternating groups

Mark Wildon

April 23, 2006

1 Introduction

In 1957 Nagao [13] proved that if G is a finite group with a character table
which differs from a character table of the symmetric group Sn only by a
permutation of its rows and columns, then G is isomorphic to Sn. In this
paper we consider a question naturally raised by Nagao’s result. To state it,
we must recall that the ordinary irreducible characters of Sn are canonically
labelled by the partitions of n, and that this set also labels the conjugacy
classes of Sn. Given partitions λ and ν of n, let χλ(ν) be the value of the
irreducible character of Sn labelled by λ on elements of cycle type ν.

Now suppose that one has discovered (for example, by applying Nagao’s
theorem) that a given square matrix is an unlabelled character table of
the symmetric group Sn. We ask: when can one go further, and uniquely
reconstruct the partitions labelling its rows and columns? The answer is
given by the following theorem.

Theorem 1.1. Let X be a character table of the symmetric group Sn. Un-
less n = 4 or n = 6, there is a unique way to assign partitions of n to the
rows and columns of X so that Xλν = χλ(ν) for all partitions λ, ν of n. If
n = 4 or n = 6 then there are exactly two different labellings.

Probably the reader has already correctly guessed that the exception
for n = 6 arises from the outer automorphism that exists only in this case.
The exception for n = 4 appears to be a numerical coincidence. We discuss
the two exceptional cases more fully in §2.1.

The main work begins in §2.2, where we show that, provided n ≥ 7,
there is only one possible way to assign partitions of the form (n −m,m)
to the rows of X. (We say that such partitions are two-row partitions.)
Then in §2.3 we show that given such a partial row labelling, there is only
one way to assign all the column labels. Of course, once we have fixed the
column labels, the remaining row labels are uniquely determined. It follows
that there is a unique way to label X. In §2.4 we give an efficient way to
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complete the row labelling. A question related to the way our proof links
row and column labels is raised in §2.5.

It is natural to ask the analogous question for alternating groups, and
for the Brauer character tables of symmetric and alternating groups. Strik-
ingly, these questions may also be answered using the strategy we have just
outlined, giving the results stated below in Theorem 3.1, Theorem 4.1 and
Theorem 5.2 respectively.

In Theorem 5.2 on the Brauer character tables of alternating groups An,
we only consider representations in odd characteristic. This is because the
Clifford theory needed to relate simple representations of the alternating
groups to simple representations of the symmetric groups is essentially the
same in odd characteristic as in characteristic zero, and so the methods used
in the characteristic zero case generalise easily. As An has index 2 in Sn, the
situation in even characteristic is quite different, and so we do not attempt
to deal with it here.

Finally we remark that an informal interpretation of our results is that
the rich structure of representations of symmetric and alternating groups
makes their character tables highly rigid. In §6 we make this idea more
precise by putting our results in the general context of representations of
finite groups. We also pose two open problems suggested by our work.

2 Proof of Theorem 1.1

2.1

We begin with S6, the only symmetric group to have an outer automor-
phism (see for example [15, Theorem 7.9]). Any outer automorphism of S6

permutes its conjugacy classes by

(6) ↔ (3, 2), (3, 3) ↔ (3), (2, 2, 2) ↔ (2)

and permutes its ordinary characters by

(5, 1) ↔ (2, 2, 2), (2, 1, 1, 1, 1) ↔ (3, 3), (4, 1, 1) ↔ (3, 1, 1, 1).

Thus if σ and τ denote the corresponding permutations on the set of par-
titions of 6 then χλ(ν) = χλσ

(ντ ) for all partitions λ, ν. This gives two
different ways to label the character table of S6. Inspection of the table
shows there are no more.

We now turn to S4, which has the character table shown below.
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(14) (2, 1, 1) (4) (2, 2) (3, 1)

(4) 1 1 1 1 1
(3, 1) 3 −1 1 −1 0

(2, 1, 1) 3 1 −1 −1 0
(2, 2) 2 0 0 2 −1
(15) 1 −1 1 1 −1

Notice that if we swap the columns labelled by (2, 1, 1) and (4), and the
rows labelled by (3, 1) and (2, 1, 1), we end up with the same matrix. Again
it is easy to see that this is the only alternating way to label the character
table. Unlike the case of S6, this alternative labelling is not induced by
any automorphism of the group. (See §6 for some remarks related to this
phenomenon.)

Theorem 1.1 may readily be verified by inspection of the character tables
if n ≤ 3 or n = 5, so from now on we shall assume that n ≥ 7.

2.2

Let n ≥ 7 and let X be an unlabelled character table of Sn. We shall show
that there is a unique way to assign two-row partitions (that is, partitions
of the form (n−m,m)) to the rows of X.

By the orthogonality relations for ordinary characters, there is a unique
row of X containing only positive entries. Similarly there is a unique column
ofX containing only positive entries. We may therefore uniquely identify the
column corresponding to the identity element and the row corresponding to
the trivial character, thus fixing the row label (n) and the column label (1n).

For all n 6= 6 the symmetric group Sn has exactly two characters of
degree n− 1, namely χ(n−1,1) and χ(2,1n−2) (see [8] Theorem 2.4.10). These
characters are defined by

χ(n−1,1)(g) = |Fix g| − 1,

where Fix g is the set of elements fixed by g in its natural action on {1, . . . , n},
and

χ(2,1n−2)(g) = sgn(g)χ(n−1,1)(g).

The only elements in Sn with exactly n− 2 fixed points are transpositions.
Hence χ(n−1,1)(t) takes n − 3 as a value, while χ(2,1n−2) can only take this
value if n − 3 = 1 − |Fix g| for some odd element g ∈ Sn. Clearly this can
only happen if n ≤ 4. We may therefore fix the row label (n− 1, 1).

To proceed further, we make two key observations. First, given two rows
of the unlabelled character table X we may multiply the corresponding
entries and so obtain a new character; this is the character of the tensor
product of the representations corresponding to the rows we multiplied.
Second, still working only with the unlabelled table, we may take the inner
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product of our new character with each row of the table. The resulting
sequence of non-negative integers tells us its irreducible constituents.

The following lemma gives the results we need to exploit these observa-
tions. (The main idea in the proof comes from [1].)

Lemma 2.1. If n ≥ 4 then

χ(n−1,1)χ(n−1,1) = χ(n) + χ(n−1,1) + χ(n−2,2) + χ(n−2,1,1).

If r ≥ 2 and n > 2r + 1 then

χ(n−1,1)χ(n−r,r) = χ(n−r+1,r−1) + χ(n−r,r) + χ(n−r,r−1,1)

+χ(n−r−1,r+1) + χ(n−r−1,r,1).

Proof. Recall that χ(n−1,1) + χ(n) is the permutation character of Sn acting
on {1, . . . , n}. As this character is induced from the subgroup Sn−1 of Sn,
we have

χ(n−1,1)θ =
(
1Sn−1

xSn
)
θ − θ = θ

y
Sn−1

xSn − θ

for any character θ of Sn. The result now follows from the branching rule
for ordinary representations of Sn (see [9, Ch. 9]).

The first part of this lemma implies that by decomposing the product
χ(n−1,1)χ(n−1,1) we may find the two rows of X which should be labelled
by χ(n−2,2) and χ(n−2,1,1). Since these irreducible characters have different
degrees (see Lemma 2.2 below) we may fix the row labels (n − 2, 2) and
(n− 2, 1, 1).

The remaining two-row characters are found in a similar way. Suppose
inductively that there is a unique way to assign the labels (n − s, s) and
(n − s, s − 1, 1) for s ≤ r. If 2r = n or 2r + 1 = n then we are finished, so
we assume that n > 2r + 1. By decomposing the product χ(n−1,1)χ(n−r,r)

we may find the two rows which should be labelled by χ(n−r−1,r+1) and
χ(n−r−1,r,1). Again by Lemma 2.2, these characters have different degrees,
so we may fix the row labels (n − r − 1, r + 1) and (n − r − 1, r, 1). This
completes the inductive step.

Lemma 2.2. If r ≥ 2 and n ≥ 2r then

χ(n−r,r)(1) < χ(n−r,r−1,1)(1).

Proof. By the hook-formula for the irreducible character degrees of Sn (see
[8, Theorem 2.3.21]),

χ(n−r,r)(1) =
(
n

r

)
n− 2r + 1
n− r + 1

which is less than

χ(n−r,r−1,1)(1) = (r − 1)
(
n

r

)
n− 2r + 2
n− r + 2

.
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2.3

Fix a column of our unlabelled character table X. Suppose that in one
possible labelling of the columns of X, the corresponding conjugacy class
has g ∈ Sn as a representative. We shall show that the cycle type of g can be
reconstructed from the character values χ(n−r,r)(g), which are known from
the previous section. This shows that the column labels of X are uniquely
determined.

Since χ(n−1,1)(g) = |Fix g| − 1, we can find the number of fixed points
of g. Suppose inductively that we know that g has a1 fixed points, a2 2-
cycles, and so on, up to ar−1 (r − 1)-cycles, where 1 < r ≤ n/2. Let

π(n−r,r) =
r∑

s=0

χ(n−s,s).

This is the permutation character of Sn acting on r-subsets of {1, . . . , n}.
Using only known character values we may calculate π(n−r,r)(g), and so find
the number of r-subsets fixed by g. This equals the number of r-cycles
in g, plus some further quantity that can be computed given a1, . . . , ar−1.
Therefore ar may be determined. This gives us the number of cycles of all
lengths r ≤ n/2. Since g has at most one cycle of greater length, this gives
enough information to determine its cycle type.

2.4

Now we have found all the column labels of X, the remaining row labels
are uniquely determined. Here we briefly give a practical way to determine
these labels.

It follows from a result of Kramer [11] that two irreducible characters
of Sn which agree on every cycle of length r for 1 ≤ r ≤ n are equal. (See [19]
for a short proof of this, and some related results.) Suppose then that we
have already computed the character values χλ(n−r, 1r) for 0 ≤ r < n and λ
any partition of n. One efficient way to do this is to use the Murnagham–
Nakayama rule (see [9, Ch. 21]) and the hook-formula. Then to find the
partition labelling row i of the character table X, we need only compare the
values Xiν for ν = (n− r, 1r) and 0 ≤ r < n with those in our pre-computed
table.

2.5

It is natural to ask when it is possible to identify the label of a symmetric
group character or conjugacy class just from the multiset of values in the
corresponding row or column in the character table. For conjugacy classes
there are many cases where this is impossible; the following proposition gives
two families of examples.
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Proposition 2.3. Let m ≥ 4.
(i) The conjugacy classes (2m− 2, 2) and (2m− 2, 1, 1) of S2m have the

same multiset of character values.

(ii) The conjugacy classes (2m−3, 4) and (2m−3, 2, 1, 1) of S2m+1 have
the same multiset of character values.

Proof. The character values required may easily be computed using the
Murnagham–Nakayama rule. In (i), the classes take +1 and −1 each with
multiplicity 2m − 2, and all other values are 0. In (ii), the classes take +1
and −1 each with multiplicity 4m− 6 and all other values are 0.

I do not know of any example of two different characters of Sn (for
n 6= 4, 6) which have the same multiset of values. A search with the computer
algebra package gap [6] shows this behaviour does not occur for n ≤ 30,
n 6= 4, 6. It is therefore still possible that a slightly stronger result than our
Theorem 1.1 is true.

3 Alternating groups

The outer automorphisms of the alternating group An induced by the conju-
gacy action of Sn lead to some inevitable ambiguity in the row and column
labels of its character table. Any outer automorphism of An acts as an
involution, swapping pairs of split characters and conjugacy classes.

More precisely, if λ is a partition of n, then some basic Clifford theory
shows that χλ↓An is reducible if and only if

χλ = χλ × sgn

which holds if and only if λ is self-conjugate; in this case χλ splits as a sum
of two irreducible characters of An. Similarly, the conjugacy class labelled
by the partition ν of n splits in An if and only if ν has odd distinct parts.
We distinguish split characters and classes by arbitrarily allocating + and −
signs. Whichever allocation we choose, it will be reversed under the outer
action of Sn.

For example, the character table of A5 is

(15) (2, 2, 1) (3, 1, 1) (5)+ (5)−

(5) 1 1 1 1 1
(4, 1) 4 0 1 −1 −1
(3, 2) 5 1 −1 0 0

(3, 1, 1)+ 3 −1 0 α β
(3, 1, 1)− 3 −1 0 β α
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where α = (1+
√

5)/2 and β = (1−
√

5/2). An alternative labelling in which
the characters and conjugacy classes labelled + and − are swapped is given
by the action of S5.

The next theorem states that swapping signs usually gives all possible
labellings. Thus if there are s split conjugacy classes then there are usually 2s

different labellings.

Theorem 3.1. Let X be a character table of the alternating group An.
Provided n 6= 6 there is a unique way to assign non-self-conjugate partitions
to the rows of X and partitions not having odd distinct parts to the columns
of X so that Xλν = χλ(ν) for all such λ and ν. The labels of the split
characters and conjugacy classes are uniquely determined up to signs.

Proof. For n ≤ 5 the theorem can be readily verified by inspecting the
tables. By [8, Theorem 2.5.15], provided n ≥ 7, the only character of An of
degree n− 1 is the one labelled by (n− 1, 1). So we can fix this label. Since
no self-conjugate partitions appear in the calculations of §2.2, the remaining
two row characters may then be identified as before. The cycle types of the
columns may also be identified as before.

The character values of the split conjugacy classes are described by [4,
Proposition 5.3]. It follows from this proposition that the labels + and
− may be assigned independently on different split classes. Once all the
column labels are fixed, there is then a unique way to label the rows.

Inspection of the character table of A6 shows that it has 4 different
labellings. Using the definitions given in §6 below, we have cAut(A6) ∼=
χAut(A6) ∼= Out(A6) ∼= 〈(12), (34)〉.

4 Brauer character tables of symmetric groups

Let F be a field of prime characteristic p. Recall that a partition is said to
be p-regular if it has at most p − 1 parts of any given size. It is proved in
[9, Ch. 11] that the irreducible FSn representations are parametrised by the
p-regular partitions of n. Let Dµ be the p-modular irreducible correspond-
ing to the p-regular partition µ and let φµ be the Brauer character of Dµ.
(See [14] for an introduction to Brauer characters.) If ν is a partition of n
with no part divisible by p then we write φµ(ν) for the value of φµ on the
conjugacy class of p′-elements labelled by ν.

In this section we shall prove the following theorem.

Theorem 4.1. Let X be a Brauer character table of the symmetric group Sn

in characteristic p. Unless n = 6, or n = 4 and p > 2, there is a unique
way to assign p-regular partitions to the rows of X and partitions with no
part divisible by p to the columns of X so that Xµν = φµ(ν) for all such µ
and ν. In the exceptional cases there are exactly 2 different labellings.
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To prove this theorem we shall need some further results on the mod-
ular representations of symmetric groups. Recall that the decomposition
matrix Dn(p) of Sn in characteristic p is the matrix defined by

χλ =
∑

µ

Dn(p)λµφ
µ

where λ is a partition of n and the sum is over all p-regular partitions µ.
(Here and elsewhere when we write a relation between ordinary and Brauer
characters it is intended to hold for p′-elements only. This abuse of notation
will not lead to any ambiguity for us.)

We also need the dominance order on partitions. Recall that if λ and µ
are partitions of the same number then we say that µ dominates λ, and
write µ� λ if

µ1 + µ2 + . . .+ µj ≥ λ1 + λ2 + . . .+ λj for all j ≥ 1.

where if j exceeds the number of parts of µ we set µj = 0, and similarly
for λ. The following lemma is Corollary 12.3 in [9].

Lemma 4.2. Let λ be a partition of n and let µ be a p-regular partition
of n. If Dp(n)λµ 6= 0 then µ� λ. Moreover Dp(n)λλ = 1. 2

Finally we need a simple branching rule for modular representations.

Lemma 4.3. Let µ = (µ1, . . . , µk) be a partition of n such that µ1 > µ2.
If µ̄ = (µ1 − 1, µ2, . . . , µk) is p-regular then φµ↓Sn−1= φµ̄ + ψ where ψ is a
sum of Brauer characters φλ labelled by partitions λ such that λ� µ̄.

Proof. In future we shall write ψ � µ if ψ is an integral linear combination
of Brauer (or ordinary) characters labelled by partitions λ such that λ� µ.
By Lemma 4.2 we have φµ = χµ − θ where θ � µ. It then follows from the
ordinary branching rule that

φµ
y

Sn−1
= χµ̄ + ψ

where ψ � µ̄. Now apply Lemma 4.2 one more time.

We can now begin the proof of Theorem 4.1. We follow as closely as
possible the method of proof used in §2; thus §4.1 below is the analogue
of §2.1, and so on.

4.1

If n ≤ 6 the theorem may readily be verified by inspecting the tables.
(Brauer character tables for p = 2 and p = 3 and n ≤ 10 appear in Ap-
pendix I.F of [8]; for p = 5 and n = 5, 6 the required tables may easily be
calculated by hand, as all blocks have weight 0 or 1.) The only difference in
behaviour from the ordinary case occurs when n = 4: the Brauer character
table of S4 in characteristic 2 is shown below.
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(14) (3, 1)

(4) 1 1
(3, 1) 2 −1

Clearly there is no longer any ambiguity about the labels.

4.2

Let n ≥ 7 and let X be an unlabelled Brauer character table of Sn in charac-
teristic p. Although we can no longer exploit row and column orthogonality,
it is still easy to assign the row label (n) and the column label (1n).

It was first proved by Wagner (see [16, 17]) that if S is a simple FSn-
module with dimS ≤ n− 1 then, provided n ≥ 7, either S is 1-dimensional,
or S is isomorphic to one of D(n−1,1) or D(n−1,1) ⊗ sgn. (Of course if p = 2
then these representations are the same. For an alternative shorter proof
see James [10, Theorem 6].) The Brauer character of D(n−1,1) is

φ(n−1,1)(g) = |Fix g| −

{
1 if p 6 | n
2 if p | n.

If p is odd and p 6 | n then, of φ(n−1,1) and φ(n−1,1) sgn, only φ(n−1,1) takes
the value n− 3. Similarly, if p is odd and p | n then only φ(n−1,1) takes the
value n − 4. Hence in all cases we may identify the row of X labelled by
(n− 1, 1).

We are now in a position to identify the rows of X labelled by all two-
row partitions. As before, we do this inductively by taking products of
characters. However, as there is no simple formula for the degrees of the
characters φ(n−r,r), our approach has to be slightly more subtle. The follow-
ing lemma is the analogue of Lemma 2.1.

Lemma 4.4. If r ≥ 1 and n > 2r + 1 then

φ(n−1,1)φ(n−r,r) = bφ(n−r−1,r+1) + φ(n−r−1,r,1) + ψ

where b ≥ 1 and ψ is an integral linear combination of irreducible Brauer
characters labelled by partitions µ such that µ� (n− r, r − 1, 1).

Proof. Since φ(n−1,1) = 1Sn−1↑Sn −cφ(n) where c ∈ {1, 2}, it is sufficient to
show that

φ(n−r,r)
y

Sn−1

xSn = bφ(n−r−1,r+1) + φ(n−r−1,r,1) + ψ

where b ≥ 1 and ψ � (n− r, r − 1, 1). We have

φ(n−r,r) = χ(n−r,r) − θ
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where θ � (n− r + 1, r − 1). Hence by the the ordinary branching rule,

φ(n−r,r)
y

Sn−1

xSn = χ(n−r−1,r+1) + χ(n−r−1,r,1) + ψ

where ψ � (n− r, r − 1, 1). Now apply Lemma 4.2.

For simplicity we state and prove the following proposition for p > 2,
and explain later the small modifications needed when p = 2.

Proposition 4.5. Let n ≥ 7 and let C be a labelled Brauer character table
of Sn in characteristic p > 2. Suppose that the first column is labelled
by (1n), and that the rows are arranged so that the first row is labelled
by (n), the second by (n− 1, 1) and the next 2(r − 1) with the labels

(n− 2, 2), (n− 3, 3), . . . , (n− r, r)

(n− 2, 12), (n− 3, 2, 1), . . . , (n− r, r − 1, 1).

in any order. If we are given the first 2r rows of C with the row and column
labels removed, then the row labels may be uniquely reconstructed.

Proof. We work by induction on n. If n = 7 and p = 3 or p = 5 then the
Brauer characters of Sn that can appear in X have distinct degrees, so the
result is immediate. If p = 7 then both φ(5,2) and φ(4,3) have degree 14, but
only the former takes 6 as a value. (As both these characters lie in blocks
of weight zero this can be seen directly from the ordinary character table.)

Suppose now that n ≥ 8. By hypothesis, we may immediately attach the
row labels (n) and (n− 1, 1) to C. We now attempt to reach a situation in
which the inductive hypothesis for n−1 can be applied. Notice first that the
values of φ(n−1,1) determine which columns in the table come from conjugacy
classes with at least one fixed point, and so are relevant when we restrict a
character to Sn−1. The restriction of φ(n) to Sn−1 is, of course, φ(n−1). We
may obtain φ(n−2,1) by removing any copies of φ(n−1) from φ(n−1,1)↓Sn−1 .

By Lemma 4.4 above, when we express φ(n−1,1)φ(n−1,1) as a sum of rows
of X, two new characters appear: φ(n−2,2) and φ(n−1,1,1). When we re-
strict these new characters to Sn−1 we get, in addition to any copies of
φ(n−2,1) and φ(n−1) that may be present, two new Brauer characters of Sn−1:
namely φ(n−3,1,1) and φ(n−3,2). We may now apply the inductive hypoth-
esis (with r = 2) to determine which label should go with which. To get
back to Sn we use Lemma 4.3. Together with Lemma 4.2, it implies that
φ(n−2,2)↓Sn−1 does not contain φ(n−3,1,1), whereas φ(n−2,1,1)↓Sn−1 does. We
use this to fix the labels (n− 2, 2) and (n− 2, 1, 1).

The remaining two-row labels are fixed by repeating this argument, in
a way closely analogous to the proof of Lemma 2.2. We therefore leave the
remaining details of the proof to the reader.
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By a further induction on r we may use this proposition to identify the
rows of X labelled by two-row partitions.

If p = 2 then the statement of Proposition 4.5 must be slightly modified.
We must delete (n − 2, 1, 1) from the list as it is no longer p-regular, and
if n is even then we must also delete (n/2, n/2). The main change in the
proof is that now φ(n−1,1)φ(n−1,1) only contains one new Brauer character,
φ(n−2,2); this makes the first step slightly simpler. After that, no alterations
are needed, unless n = 2m is even, in which case the last two row Brauer
character we must find is φ(m+1,m−1). Again this makes the process slightly
simpler.

4.3

We now determine the column labels of X. By §4.2 we may rearrange the
rows of X so that the row labelled (n) appears first, followed by the rows
labelled by two row partitions in the order given by the dominance order.
We also order the rows and columns of the decomposition matrix Dn(p) by
the dominance order. By Lemma 4.2, Dn(p)λµ = 0 if λ has at most two
rows and µ does not. Hence, the matrix Dn(p)X has, at its top, the values
of the characters χλ for partitions λ with at most two rows.

We can now use the same argument as in the ordinary case to determine
the column labels of X. Once we have a complete set of column labels the
row labels are, of course, fixed. This completes the proof of Theorem 4.1.

5 Brauer character tables of alternating groups

Provided we work in odd characteristic, the modifications to the work of
§4 that are needed to deal with the Brauer character tables of alternating
groups are analogous to the modifications we needed to the work of §2 to
deal with the ordinary character tables of alternating groups.

Let X be an unlabelled Brauer character table of An in odd character-
istic p. If λ is a p-regular partition of n, let m(λ) be the p-regular partition
of n defined by

φλ × sgn = φm(λ).

(The map m was first considered by Mullineux in [12]). By the Clifford
theory given in [5], the Brauer character φλ splits on restriction to An if and
only if λ = m(λ). As before, we label split characters and conjugacy classes
by + and − signs.

As usual, to get started we need to identify the character labelled by
(n− 1, 1). For this we use Theorem 1.1 in [17], which states that if n ≥ 7
and φ is an odd characteristic Brauer character of An such that φ(1) ≤ n
then φ = φ(n−1,1)↓An . (For an alternative shorter proof of this result for
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n ≥ 10 see [10, Theorem 7(ii)]; the result can easily be checked directly in
the remaining cases.)

We also need to know that none of the characters considered in §4.2 split
on restriction to An. For this to hold we must take n ≥ 8.

Lemma 5.1. Let n ≥ 8 and let λ be a partition of n. If either λ has at
most two rows, or λ is of the form (n− r, r − 1, 1) where 2 ≤ r ≤ n/2 then
λ 6= m(λ). Hence φλ does not split on restriction to An.

Proof. It follows easily from Ford’s description [5] of the Mullineux map that
λ 6= m(λ) if either of the conditions on λ hold.

It is not possible to take n ≥ 7 (as was the case in §4.2) because if p = 3
then m((4, 2, 1)) = (4, 2, 1). The base case in the analogue of Proposition 4.5
is therefore n = 8. Calculation shows that the Brauer characters of A8 that
can appear in the table C have distinct degrees when p = 3 and when p = 7.
If p = 5 then φ(6,1,1) = φ(5,3) = 21, but only the former character takes 6 as
a value, so again there is no ambiguity. Thus we may identify the rows of X
labelled by two-row partitions. The column labels may now be determined
in essentially the same way as §4.3.

Direct examination of the cases for n ≤ 7 gives the following theorem.

Theorem 5.2. Let X be a Brauer character table of the alternating group An

in odd characteristic p. Provided n 6= 6 there is a unique way to assign p-
regular partitions λ such that m(λ) 6= λ to the rows of X, and partitions not
all of whose parts are odd, and with no part divisible by p, to the columns
of X, so that Xλµ = φλ(µ) for all such λ and µ. The labels of the split
characters and conjugacy classes are uniquely determined up to signs. 2

When n = 6 and p = 3 there are two different labellings, interchanged
by the conjugacy action of S6. When n = 6 and p = 5 there are again two
different labellings, but this time S6 acts trivially, and they are interchanged
only by the outer automorphism of S6.

6 A more general setting

Given a arbitrary finite group G, there is usually no canonical way to label
the rows and columns of its character table. However, this need not stop us
from considering analogous versions of our results.

Let k be the number of conjugacy classes of G, and let X be a character
table of G. We say that a pair (σ, τ) ∈ Sk × Sk is an automorphism of X
if Xiσ,jτ = Xij whenever 1 ≤ i, j ≤ k. Let Aut(X) be the group of all
automorphisms of X. It is clear that for each σ ∈ Sk there is at most one
τ ∈ Sk such that (σ, τ) ∈ Aut(X). We may therefore define a group χAut(G)
by

χAut(G) = {σ ∈ Sk : (σ, τ) ∈ Aut(X) for some τ ∈ Sk}.
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This group is well-defined up to conjugacy in Sk. For example, our Theo-
rem 1.1 states that χAut(Sn) is trivial unless n = 4 or n = 6.

An interesting property of the elements of χAut(G) is that if (σ, τ) ∈
χAut(G) then σ and τ have the same cycle structure. This result, usually
known as Brauer’s Permutation Lemma, was proved by Brauer in [2, §6].

Problem 6.1. Calculate χAut(G) for important classes of groups.

In connection with this problem, it is useful to explore the relationship
between χAut(G) and Out(G) = Aut(G)/ Inn(G), the group of outer auto-
morphisms of G. Clearly there is a group homomorphism

c : Out(G) → χAut(G)

defined for γ ∈ Out(G) by letting c(γ) be the permutation induced by γ
on the ordinary characters of G. In some cases c is an isomorphism — for
example, this is the case if G is abelian, or G is a symmetric group other
than S4. But, as the example of S4 shows, c need not be surjective. (Indeed,
since for n ≥ 9 there are always at least two self-conjugate partitions of n,
the alternating groups An give an infinite family of examples in which c is
not surjective.)

The dual question of whether cmust be injective, or equivalently, whether
there is a finite group G and an outer automorphism γ ∈ Aut(G) such
that χγ = χ for all irreducible characters χ, was considered by Burnside:
see Note B in [3]. In [18], G. E. Wall gives an example in which G has
order 32 and γ has order 4.

It is worth noting that Burnside’s question can be stated without even
mentioning characters, since by Brauer’s permutation lemma, t is such an
automorphism if and only if t permutes within themselves all the conju-
gacy classes of G. (Incidentally, it seems clear from [3, §217] that Brauer’s
permutation lemma was already well known to Burnside.)

Another obvious question, which is related to Problem 6.1, is:

Problem 6.2. Is the map c : Out(G) → χAut(G) always injective when G
is a finite simple group?

A third problem, which can be answered more easily, arises from the defi-
nition of χAut(G). If we look instead at the admissible column permutations
of X then we obtain the group

cAut(G) = {τ ∈ Sk : (σ, τ) ∈ Aut(X) for some σ ∈ Sk}.

By Brauer’s permutation lemma the groups χAut(G), cAut(G) ≤ Sk are iso-
morphic as abstract groups, via an isomorphism preserving the cycle types of
elements. But this on its own does not guarantee that they are permutation
isomorphic, as the two subgroups of S6,

〈(12)(34), (13)(24)〉 , 〈(12)(34), (12)(56)〉
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show. (There are many more examples of this type.) The following example
shows that χAut(G) and cAut(G) need not be permutation isomorphic, and
so we made a genuine choice in concentrating on χAut earlier.

Example 6.3. Let G ∼= C2×D8, where D8 is the dihedral group of order 8.
The character table of G is, with one ordering of the rows and columns:

−1 1 1 −1 1 −1 −1 −1 1 1
−1 −1 1 1 −1 1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 −1 1 1
1 1 −1 −1 −1 1 −1 −1 1 1
−1 1 −1 1 −1 −1 1 1 1 1
1 −1 1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 1 1 1 1 1 1
0 0 0 0 0 0 −2 2 2 −2
0 0 0 0 0 0 2 −2 2 −2
1 1 1 1 1 1 1 1 1 1

One finds that

χAut(G) = 〈(1234)(56), (34)(57), (89)〉 ,
cAut(G) = 〈(1234)(56), (25)(46), (78)〉

where the isomorphism χAut(G) ∼= cAut(G) is indicated by the order of
generators. As the orbits of χAut(G) have sizes 4, 3, 2, 1 whereas the orbits of
cAut(G) have sizes 6, 2, 1, 1, the two groups are not permutation isomorphic.
(Abstractly, both are isomorphic to S4 × C2.)

Finally we mention a theorem of Higman (see [7, Theorem 8.21]) which
states that given a character table of a finite group, one can determine
prime divisors of the orders of the group elements corresponding to any
given column. It is well known that the dihedral and quaternion groups of
order 8 have the same character table, so this is the most one can hope for
in general. Theorem 1.1 and Theorem 3.1 imply that for symmetric and
alternating groups much more is true.

Corollary 6.4. Given an unlabelled character table of a symmetric group
other than S4 one may determine the order of the elements corresponding
to any of its columns. The same result holds for any alternating group. 2
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