Plethysms and decomposition matrices of symmetric groups

Mark Wildon (joint work with Eugenio Giannelli)

Kronecker Coefficients Conference 2016 City University, 6 September 2016

$[\operatorname{Sym}^7(\operatorname{Sym}^8V):\operatorname{Sym}^\lambda(V)]$ for $\lambda \vdash$ 56, largest first

$$V = \langle v_1, v_2, v_3, v_4
angle_{\mathbb{F}_2}$$
 $v_1 \quad v_2 \quad v_3$

$$(1,2,3,4) \mapsto \begin{pmatrix} \cdot & \cdot & \cdot & 1 \\ 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \end{pmatrix}$$

$$V = \langle v_1, v_2, v_3, v_4 \rangle_{\mathbb{F}_2}$$
 $v_1 \quad v_2 \quad v_3$

$$(1,4,3) \mapsto \begin{pmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \\ 1 & \cdot & \cdot & \cdot \end{pmatrix}$$

$$(1,2)(3,4) \mapsto egin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ & \cdot & \cdot & 1 \\ & \cdot & \cdot & 1 & \cdot \end{pmatrix}$$

 $V = \langle v_1, v_2, v_3, v_4 \rangle_{\mathbb{F}_2}$

$$V = \langle v_1, v_2, v_3, v_4 \rangle_{\mathbb{F}_2}$$

$$(1,2)(3,4) \mapsto \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ \vdots & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & 1 & \cdot \end{pmatrix}$$

In the new basis

$$w_1 = v_1 + v_2 + v_3 + v_4$$

 $w_2 = v_1 + v_2$
 $w_3 = v_1 + v_3$
 $w_4 = v_1$

$$V = \langle v_1, v_2, v_3, v_4 \rangle_{\mathbb{F}_2}$$

$$(1,2)(3,4) \mapsto \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & 1 & \cdot \end{pmatrix} \qquad \mapsto \begin{pmatrix} w_1 & w_2 & w_3 & w_4 \\ 1 & 0 & 1 & 0 \\ \cdot & 1 & 0 & 1 \\ \cdot & 0 & 1 & 0 \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

In the new basis $w_1 = v_1 + v_2 + v_3 + v_4$ $w_2 = v_1 + v_2$ $w_3 = v_1 + v_3$ $w_4 = v_1$

$$V = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \rangle_{\mathbb{F}_2}$$

$$(1,2,3,4) \mapsto \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ \cdot & \cdot & \cdot & 1 \\ 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \end{pmatrix} \qquad \mapsto \begin{pmatrix} w_1 & w_2 & w_3 & w_4 \\ 1 & 0 & 1 & 0 \\ \cdot & 1 & 0 & 1 \\ \cdot & 1 & 1 & 0 \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

In the new basis

$$w_1 = v_1 + v_2 + v_3 + v_4$$

 $w_2 = v_1 + v_2$
 $w_3 = v_1 + v_3$
 $w_4 = v_1$

Filtration:

$$0 \subseteq \langle w_1 \rangle \subseteq \langle w_1, w_2, w_3 \rangle \subseteq \langle w_1, w_2, w_3, w_4 \rangle$$

Decomposition matrix of \mathbb{F}_3S_6

Decomposition matrix of \mathbb{F}_3S_6 : two-row partitions

General form of the two-row decomposition matrix

Decomposition matrix of \mathbb{F}_3S_6 : separated into blocks

Decomposition matrix of \mathbb{F}_2S_{10} : separated into blocks

Let $M^{(2^n)} = \langle \Omega^{(2^n)} \rangle_{\mathbb{F}_p} \cong \mathbb{F}_p \uparrow_{S_2 \wr S_n}^{S_{2n}}$ where $\Omega^{(2^n)}$ is the set of set partitions of $\{1, \ldots, 2n\}$ into n sets each of size 2.

Let $M^{(2^n)} = \langle \Omega^{(2^n)} \rangle_{\mathbb{F}_p} \cong \mathbb{F}_p \uparrow_{S_2 \wr S_n}^{S_{2n}}$ where $\Omega^{(2^n)}$ is the set of set partitions of $\{1, \ldots, 2n\}$ into n sets each of size 2.

▶ By hypothesis $\mathcal{E}(\gamma) \neq \emptyset$.

Let $M^{(2^n)} = \langle \Omega^{(2^n)} \rangle_{\mathbb{F}_p} \cong \mathbb{F}_p \cap_{S_2 \wr S_n}^{S_{2n}}$ where $\Omega^{(2^n)}$ is the set of set partitions of $\{1, \ldots, 2n\}$ into n sets each of size 2.

- ▶ By hypothesis $\mathcal{E}(\gamma) \neq \emptyset$.
- ▶ So there exists U, a direct summand of $M^{(2^n)}$, lying in $B(\gamma, w(\gamma))$.

Let $M^{(2^n)} = \langle \Omega^{(2^n)} \rangle_{\mathbb{F}_p} \cong \mathbb{F}_p \uparrow_{S_2 \wr S_n}^{S_{2n}}$ where $\Omega^{(2^n)}$ is the set of set partitions of $\{1, \ldots, 2n\}$ into n sets each of size 2.

- ▶ By hypothesis $\mathcal{E}(\gamma) \neq \emptyset$.
- So there exists U, a direct summand of $M^{(2^n)}$, lying in $B(\gamma, w(\gamma))$.
- ▶ Suppose U is non-projective. Let $Q \leq \operatorname{Syl}_p(S_2 \wr S_n)$ be a vertex. Its Green correspondent is a summand of

$$\langle\langle\Omega^{(2^n)}{}^Q\rangle_{\mathbb{F}_p} = \langle\{\mathcal{P}\in\Omega^{(2^n)}:\sigma(\mathcal{P})=\mathcal{P} \text{ for all } \sigma\in Q\rangle_{\mathbb{F}_p}$$

 $\cong V\boxtimes M^{(2^{n-rp})}$

Let $M^{(2^n)} = \langle \Omega^{(2^n)} \rangle_{\mathbb{F}_p} \cong \mathbb{F}_p \uparrow_{S_2 \wr S_n}^{S_{2n}}$ where $\Omega^{(2^n)}$ is the set of set partitions of $\{1, \ldots, 2n\}$ into n sets each of size 2.

- ▶ By hypothesis $\mathcal{E}(\gamma) \neq \emptyset$.
- So there exists U, a direct summand of $M^{(2^n)}$, lying in $B(\gamma, w(\gamma))$.
- ▶ Suppose *U* is non-projective. Let $Q \leq \operatorname{Syl}_p(S_2 \wr S_n)$ be a vertex. Its Green correspondent is a summand of

$$\langle\langle\Omega^{(2^n)}{}^Q\rangle_{\mathbb{F}_p} = \langle\{\mathcal{P}\in\Omega^{(2^n)}:\sigma(\mathcal{P})=\mathcal{P} \text{ for all } \sigma\in Q\rangle_{\mathbb{F}_p}$$

 $\cong V\boxtimes M^{(2^{n-rp})}$

where 2rp is the size of the support of Q.

▶ By Brauer's theory of corresponding blocks, $M^{(2^{n-rp})}$ has a summand in the block $B(\gamma, w-2r)$.

Let $M^{(2^n)} = \langle \Omega^{(2^n)} \rangle_{\mathbb{F}_p} \cong \mathbb{F}_p \uparrow_{S_2 \wr S_n}^{S_{2n}}$ where $\Omega^{(2^n)}$ is the set of set partitions of $\{1, \ldots, 2n\}$ into n sets each of size 2.

- ▶ By hypothesis $\mathcal{E}(\gamma) \neq \emptyset$.
- ▶ So there exists U, a direct summand of $M^{(2^n)}$, lying in $B(\gamma, w(\gamma))$.
- ▶ Suppose *U* is non-projective. Let $Q \leq \operatorname{Syl}_p(S_2 \wr S_n)$ be a vertex. Its Green correspondent is a summand of

$$\langle\langle\Omega^{(2^n)}{}^Q\rangle_{\mathbb{F}_p} = \langle\{\mathcal{P}\in\Omega^{(2^n)}:\sigma(\mathcal{P})=\mathcal{P} \text{ for all } \sigma\in Q\rangle_{\mathbb{F}_p}$$

 $\cong V\boxtimes M^{(2^{n-rp})}$

- ▶ By Brauer's theory of corresponding blocks, $M^{(2^{n-rp})}$ has a summand in the block $B(\gamma, w-2r)$.
- ▶ This contradicts the definition of $w(\gamma)$.

Let $M^{(2^n)} = \langle \Omega^{(2^n)} \rangle_{\mathbb{F}_p} \cong \mathbb{F}_p \uparrow_{S_2 \wr S_n}^{S_{2n}}$ where $\Omega^{(2^n)}$ is the set of set partitions of $\{1, \ldots, 2n\}$ into n sets each of size 2.

- ▶ By hypothesis $\mathcal{E}(\gamma) \neq \emptyset$.
- ▶ So there exists U, a direct summand of $M^{(2^n)}$, lying in $B(\gamma, w(\gamma))$.
- ▶ Suppose *U* is non-projective. Let $Q \leq \operatorname{Syl}_p(S_2 \wr S_n)$ be a vertex. Its Green correspondent is a summand of

$$\langle\langle\Omega^{(2^n)}{}^Q\rangle_{\mathbb{F}_p} = \langle\{\mathcal{P}\in\Omega^{(2^n)}:\sigma(\mathcal{P})=\mathcal{P} \text{ for all } \sigma\in Q\rangle_{\mathbb{F}_p}$$

 $\cong V\boxtimes M^{(2^{n-rp})}$

- ▶ By Brauer's theory of corresponding blocks, $M^{(2^{n-rp})}$ has a summand in the block $B(\gamma, w-2r)$.
- ▶ This contradicts the definition of $w(\gamma)$.
- ► Hence *U* is projective with character inside $\sum_{2\nu \in \mathcal{E}(\gamma)} \chi^{2\nu}$.

Let $M^{(2^n)} = \langle \Omega^{(2^n)} \rangle_{\mathbb{F}_p} \cong \mathbb{F}_p \uparrow_{S_2 \wr S_n}^{S_{2n}}$ where $\Omega^{(2^n)}$ is the set of set partitions of $\{1, \ldots, 2n\}$ into n sets each of size 2.

- ▶ By hypothesis $\mathcal{E}(\gamma) \neq \emptyset$.
- So there exists U, a direct summand of $M^{(2^n)}$, lying in $B(\gamma, w(\gamma))$.
- ▶ Suppose *U* is non-projective. Let $Q \leq \operatorname{Syl}_p(S_2 \wr S_n)$ be a vertex. Its Green correspondent is a summand of

$$\langle\langle\Omega^{(2^n)}{}^Q\rangle_{\mathbb{F}_p}=\langle\{\mathcal{P}\in\Omega^{(2^n)}:\sigma(\mathcal{P})=\mathcal{P} \text{ for all } \sigma\in Q\rangle_{\mathbb{F}_p}\ \cong V\boxtimes M^{(2^{n-rp})}$$

- ▶ By Brauer's theory of corresponding blocks, $M^{(2^{n-rp})}$ has a summand in the block $B(\gamma, w-2r)$.
- ▶ This contradicts the definition of $w(\gamma)$.
- ▶ Hence *U* is projective with character inside $\sum_{2\nu \in \mathcal{E}(\gamma)} \chi^{2\nu}$.
- ▶ By Brauer reciprocity the column for the greatest element of $\mathcal{E}(\gamma)$ is as claimed.

Example of a more general theorem

Start with the empty 3-core \varnothing and try to reach a partition with 2 odd parts. This can't be done by adding one 3-hook. But it can be done by adding two 3-hooks, giving

$$\mathcal{O} = \{(5,1), (4,1,1), (3,3), (3,2,1)\}.$$

The column of the decomposition matrix labelled by (5,1) is given by a generalization of the theorem.

Example of a more general theorem

Start with the empty 3-core \varnothing and try to reach a partition with 2 odd parts. This can't be done by adding one 3-hook. But it can be done by adding two 3-hooks, giving

$$\mathcal{O} = \{(5,1), (4,1,1), (3,3), (3,2,1)\}.$$

The column of the decomposition matrix labelled by (5,1) is given by **two different** generalizations of the theorem.