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Decomposition matrix of 354

(6) 1

(5,1) 1 1

(472) . .

(3,3) - 1

(4,1,1) - 1

(3,2,1) 1 1
(2,2,1,1) -
(2,2,2) 1
(3,1,1,1) -
(2,1,1,1,1) -
(1,1,1,1,1,1) -

(4,1,1)
(3,2,1)
(2,2,1,1)
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General form of the two-row decomposition matrix

1
11
11
111
11 11
1 111
(B
1 111
111 1
11 111
1 1 1 (N




Decomposition matrix of F354: separated into blocks

© 6B o s o
6) 1
(5,1) 1 1
(3,3) 1 1
(4,1,1) 1 -1
(3,21 1 1 1 1 1
(2,2,2) 1 Co1
(3,1,1,1) 1 1
(2,1,1,1,1) 1 1
(1,1,1,1,1,1) 1
=
'_'_
~ N
S o
(4,2) 1 (2,2,1,1) 1



Decomposition matrix of [F,5;9: separated into blocks

(10)
(9,1)
(8,2)
(7,3)
(6,4)
(6,3,1)
(57372)
(5,5)
(8,1,1)
(6,2,2)
(4,4,2)
(4,3,3)
(7,1,1,1)
(6,2,1)
(5,3,1,1)
(4747171)
(5,2,2,1)
(6,1,1,1,1) :
(7.2,1) 1 -
(5,4,1) 11
(4,3,2,1) 1
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p-cores and p-hooks

The partition (5,3,2,2,1,1) is a 3-core. It has a unique 5-hook
and two 7-hooks.
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Decomposition matrices: 3-block of S;, with core (3,1,1)

_=a<4
I N S B
AT 0T 0 T T
[ R I R R
12,15 =2 1
9,4H)=2,2) 1 1
9.3.2=, D] 2 11
®42)=M| 1 1 111
(6%,2) = (1,2) 11
6,4%) =(1,2,2) IR R
6,425=2,22 1 1 1011 1 1
6,3,22,)=(1, 1,2 2 1 1 11
5,422, )=, 1 1 1 111 11
42,22,15=3)| 1 1 11 11 1
9,15 =(2,3) 1
(6,4,1%) = (2,2,3) 1
(6,3,2,13) =(1,2,3) 1 11
6,23,12) = (3,2) 1
6,13)=(2,3,3) 1
(5,4,2,13) =(1,3) 21 1 1 1
@ 1H=3,n| 1 1 1 1
(32,24 =(1,1,3)| 1 1
(32,22, 1% = (1,1,1) 11 11
(3%,2,1%)=(1,3,3) 2 1 1
(3,23,15)=@3,3) 1 1
(3,1 =(3,3,3) 1
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Sketch of proof
Let M) = (QCM)p = F, T2 where Q") is the set of set

p — T PIlSns,

partitions of {1,...,2n} into n sets each of size 2.

>

>

By hypothesis £(v) # &.

So there exists U, a direct summand of M(") lying in
B(v, w(v))-

Suppose U is non-projective. Let Q < Syl,(5205,) be a
vertex. Its Green correspondent is a summand of

(@) )e, = ([P € Q™) : o(P) = P for all 7 € Q)
=~ v M)

where 2rp is the size of the support of Q.

By Brauer's theory of corresponding blocks, M("™") has a
summand in the block B(’y, w— 2r).

This contradicts the definition of w(7y).

Hence U is projective with character inside 221,65(7) e

By Brauer reciprocity the column for the greatest element of
E(7) is as claimed.



Example of a more general theorem
Start with the empty 3-core @ and try to reach a partition with 2
odd parts. This can’t be done by adding one 3-hook. But it can be

done by adding two 3-hooks, giving
0= {(57 1)7 (47 L, 1)7 (37 3)7 (37 2, 1)}

The column of the decomposition matrix labelled by (5,1) is given

by a generalization of the theorem.

—_— — — ~— ~—

= ()
(

(5,1) 1
(4,2) S
(3,3) 1 1
(4,1,1) 1
(3,2,1) 1 1 1 1
(2,2,1,1) 1
(2,2,2) 1 S
(3,1,1,1) 11
(2,1,1,1,1) 1 -1
(1,1,1,1,1,1) 1
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o
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