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But the conjugates of a proper subgroup of G cannot
cover G. Hence Centg(x) = G. O
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Traité des substitutions

Note that Centg(x)# is the stabiliser of x& in the conjugacy action

of G on x%. So
U Centg(x)®
geaqG

is the set of elements of G fixing at least one element of x©.

In 1870, Jordan showed that any non-trivial
finite transitive permutation group contains
an element without fixed points. So unless
Centg(x) = G, when the action is trivial,
the conjugates of Centg(x) do not cover G.
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Remarks

(3) If G is infinite then Z(G) cannot be determined by ~. Let X
be an infinite set and let
G = FSym(X) X s X g bijective
e m = . . .
Y £ X \ Fix g finite
Then any two classes x¢,y® € G commute. But G is not
abelian.
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For example, if g = (2345)(67) € Sym(7) then g™ (") consists of
all permutations whose cycle decomposition has a 4-cycle, a
2-cycle and a fixed point. The labelling partition is (4,2,1).

Definition
If A and v are partitions of n, say that v is a coarsening of A, if v
can be obtained from A by combining parts of the same size.

Theorem

The classes in Sym(n) corresponding to partitions A and p
commute if and only if there is a partition v which is a coarsening
of both \ and p.
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Probabilistic questions
This part is joint work with Simon Blackburn (RHUL).

Theorem

Let P(n) be the probability that if two elements g, h € Sym(n) are
chosen uniformly at random then gSv™(") ~ pSY™(n)  Then there is
a constant C ~ 6.2 such that P(n) ~ n% as n— oo.

Sketch proof: Most permutations in Sym(n) have a long cycle, of
length > n/log n. If g has a long cycle of length ¢ and

gSym(n)  pSym(n) then, almost always, h also has a long cycle of
length ¢. We use this to get a recurrence for P(n). Some analysis
then shows that P(n) ~ C/n? where

C=> P(n)
n=0
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odd permutation.

Theorem
There is a bijection

marriable classes all classes
RSym(n) C Alt(n) gSvm(n) C Sym(n)\Alt(n)

with the property that if hSY™(") «— gSym(n) thep
RSYm(n)  gSym(n),
Proof: show that given any r marriable classes, Ci,..., C, there

are r classes of odd elements Dy, ..., D, such that C; ~ D; for
each i. Then apply Hall's Marriage Theorem.
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Background to results on GL,(F)

Fix a field F. Given a partition A of n, Let J(\) € GL,(F) be the
unipotent Jordan matrix corresponding to A.

A major open problem is to describe the conjugacy classses of
GLn(F) that meet Centgy,,(r) J(A). In our langauge: which

classes commute with J(\)GLn(F)?

» Let D()) be the largest partition such that J(X) ~ J(D())).
In 2009 larrobino proved that the map A — D(}) is
idempotent.

» In 2010, Kosir and Oblak found D()) in the cases where it
has at most two parts

» In 2008, Oblak defined a partition Q(A) and conjectured that
Q(X\) = D(A). In 2012, larrobino and Khattami proved that
D(X) < Q(N).

Our results reduce the general problem of deciding which classes in
GL,(F) commute to the problem for nilpotent classes over field
extensions of F.



Types of matrices

Definition
Let X € GL,(qg) be a matrix with cycle type ;"' ... .



Types of matrices

Definition
Let X € GL,(qg) be a matrix with cycle type ;"' ... .
The type of X is the string d; ... d} where d; = deg f;.

e Introduced by Steinberg in 1951

e Important in Green's 1955 construction of the irreducible
characters of finite general linear groups.



Types of matrices

Definition
Let X € GL,(qg) be a matrix with cycle type ;"' ... .
The type of X is the string d; ... d} where d; = deg f;.

e Introduced by Steinberg in 1951

e Important in Green's 1955 construction of the irreducible
characters of finite general linear groups.

Theorem

Let X,Y € GL,(q). Then X and Y have the same type if and
only if there exist polynomials F, G € F4[x] such that

F(X) € YGL(9) and g(Y) € XCnla),



Types of matrices

Definition
Let X € GL,(qg) be a matrix with cycle type ;"' ... .
The type of X is the string d; ... d} where d; = deg f;.

e Introduced by Steinberg in 1951

e Important in Green's 1955 construction of the irreducible
characters of finite general linear groups.

Theorem

Let X,Y € GL,(q). Then X and Y have the same type if and
only if there exist polynomials F, G € F4[x] such that
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Corollary

Suppose that XGLn(@) ~ YGLa(9)  Then any class of the type of X
commutes with any class of the type of Y.
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Theorem
Let G = GL,(Fy) and let X, Y € G. Then Centg(X) is conjugate
to Centg(Y) if and only if X and Y have the same type.

Let Ug(N) = J(\)GEn(Fa) be the unipotent conjugacy class
corresponding to the partition A of n.

Theorem
Let p be a prime and let r > 1. There exists n € N such that

Ups((n,n)) ~ Upa((n+1,n—1))

if and only if a > r.



Future directions

» What is the correct generalization of type for matrices over
infinite fields? Probably it involves isomorphism classes of
Galois extensions.

» Find all possible determinants of a matrix of a given type.
This leads to some interesting problems in arithmetic
combinatorics.

» What is the probability that two classes chosen uniformally at
random in Sym(n) commute?



