Commuting conjugacy classes in groups: an overview

Mark Wildon (joint work with John Britnell)

Outline

(1) Introduction
(2) Finite symmetric groups
(3) General linear groups

§1 Introduction

Let G be a group. For $x, g \in G$ define the conjugate of x by g to be $x^{g}=g^{-1} x g$. The conjugacy class of x is $x^{G}=\left\{x^{g}: g \in G\right\}$.

§1 Introduction

Let G be a group. For $x, g \in G$ define the conjugate of x by g to be $x^{g}=g^{-1} x g$. The conjugacy class of x is $x^{G}=\left\{x^{g}: g \in G\right\}$.

Definition
Say that classes C and D commute, and write $C \sim D$, if there exist $x \in C, y \in D$ such that $x y=y x$.
§1 Introduction
Let G be a group. For $x, g \in G$ define the conjugate of x by g to be $x^{g}=g^{-1} x g$. The conjugacy class of x is $x^{G}=\left\{x^{g}: g \in G\right\}$.

Definition
Say that classes C and D commute, and write $C \sim D$, if there exist $x \in C, y \in D$ such that $x y=y x$.

Remarks

(1) If $x, y \in G$ then
$x^{G} \sim y^{G} \Longleftrightarrow x$ commutes with y^{g} for some $g \in G$

Remarks

(1) If $x, y \in G$ then

$$
\begin{aligned}
x^{G} \sim y^{G} & \Longleftrightarrow x{\text { commutes with } y^{g} \text { for some } g \in G} \\
& \Longleftrightarrow \operatorname{Cent}_{G}(x)=\{h \in G: h x=x h\} \text { meets } y^{G} .
\end{aligned}
$$

Remarks

(1) If $x, y \in G$ then
$x^{G} \sim y^{G} \Longleftrightarrow x$ commutes with y^{g} for some $g \in G$

$$
\Longleftrightarrow \operatorname{Cent}_{G}(x)=\{h \in G: h x=x h\} \text { meets } y^{G} .
$$

The commuting relation therefore determines which conjugacy classes meet Cent $_{G}(x)$.
(2) If G is finite then \sim determines

$$
Z(G)=\{x \in G: x y=y x \text { for all } y \in G\}
$$

Remarks

(1) If $x, y \in G$ then
$x^{G} \sim y^{G} \Longleftrightarrow x$ commutes with y^{g} for some $g \in G$

$$
\Longleftrightarrow \operatorname{Cent}_{G}(x)=\{h \in G: h x=x h\} \text { meets } y^{G} .
$$

The commuting relation therefore determines which conjugacy classes meet Cent $_{G}(x)$.
(2) If G is finite then \sim determines

$$
Z(G)=\{x \in G: x y=y x \text { for all } y \in G\}
$$

Proof: Suppose x^{G} commutes with every class. Then
Cent ${ }_{G}(x)$ meets every class so

$$
\bigcup_{g \in G} \operatorname{Cent}_{G}(x)^{g}=G
$$

Remarks

(1) If $x, y \in G$ then
$x^{G} \sim y^{G} \Longleftrightarrow x$ commutes with y^{g} for some $g \in G$

$$
\Longleftrightarrow \operatorname{Cent}_{G}(x)=\{h \in G: h x=x h\} \text { meets } y^{G} .
$$

The commuting relation therefore determines which conjugacy classes meet Cent $_{G}(x)$.
(2) If G is finite then \sim determines

$$
Z(G)=\{x \in G: x y=y x \text { for all } y \in G\}
$$

Proof: Suppose x^{G} commutes with every class. Then Cent ${ }_{G}(x)$ meets every class so

$$
\bigcup_{g \in G} \operatorname{Cent}_{G}(x)^{g}=G
$$

But the conjugates of a proper subgroup of G cannot cover G. Hence $\operatorname{Cent}_{G}(x)=G . \square$

Traité des substitutions

Note that $\operatorname{Cent}_{G}(x)^{g}$ is the stabiliser of x^{g} in the conjugacy action of G on x^{G}. So

$$
\bigcup_{g \in G} \operatorname{Cent}_{G}(x)^{g}
$$

is the set of elements of G fixing at least one element of x^{G}.

Traité des substitutions

Note that Cent ${ }_{G}(x)^{g}$ is the stabiliser of x^{g} in the conjugacy action of G on x^{G}. So

$$
\bigcup_{g \in G} \operatorname{Cent}_{G}(x)^{g}
$$

is the set of elements of G fixing at least one element of x^{G}.
In 1870, Jordan showed that any non-trivial finite transitive permutation group contains an element without fixed points. So unless Cent $_{G}(x)=G$, when the action is trivial, the conjugates of $\operatorname{Cent}_{G}(x)$ do not cover G.

Remarks

(3) If G is infinite then $Z(G)$ cannot be determined by \sim. Let X be an infinite set and let

$$
G=\operatorname{FSym}(X)=\left\{g: X \rightarrow X: \begin{array}{l}
g \text { bijective } \\
X \backslash \text { Fix } g \text { finite }
\end{array}\right\}
$$

Remarks

(3) If G is infinite then $Z(G)$ cannot be determined by \sim. Let X be an infinite set and let

$$
G=\operatorname{FSym}(X)=\left\{g: X \rightarrow X: \begin{array}{l}
g \text { bijective } \\
X \backslash \text { Fix } g \text { finite }
\end{array}\right\}
$$

Then any two classes $x^{G}, y^{G} \in G$ commute. But G is not abelian.

§2 Commuting in finite symmetric groups

Conjugacy classes in $\operatorname{Sym}(n)$ are labelled by partitions of n.
For example, if $g=(2345)(67) \in \operatorname{Sym}(7)$ then $g^{\operatorname{Sym}(7)}$ consists of all permutations whose cycle decomposition has a 4 -cycle, a 2 -cycle and a fixed point. The labelling partition is ($4,2,1$).

§2 Commuting in finite symmetric groups

Conjugacy classes in $\operatorname{Sym}(n)$ are labelled by partitions of n.
For example, if $g=(2345)(67) \in \operatorname{Sym}(7)$ then $g^{\operatorname{Sym}(7)}$ consists of all permutations whose cycle decomposition has a 4 -cycle, a 2 -cycle and a fixed point. The labelling partition is ($4,2,1$).

Definition
If λ and ν are partitions of n, say that ν is a coarsening of λ, if ν can be obtained from λ by combining parts of the same size.

$\S 2$ Commuting in finite symmetric groups

Conjugacy classes in $\operatorname{Sym}(n)$ are labelled by partitions of n.
For example, if $g=(2345)(67) \in \operatorname{Sym}(7)$ then $g^{\operatorname{Sym}(7)}$ consists of all permutations whose cycle decomposition has a 4 -cycle, a 2 -cycle and a fixed point. The labelling partition is ($4,2,1$).

Definition

If λ and ν are partitions of n, say that ν is a coarsening of λ, if ν can be obtained from λ by combining parts of the same size.

Theorem

The classes in $\operatorname{Sym}(n)$ corresponding to partitions λ and μ commute if and only if there is a partition ν which is a coarsening of both λ and μ.

Probabilistic questions

This part is joint work with Simon Blackburn (RHUL).

Theorem

Let $P(n)$ be the probability that if two elements $g, h \in \operatorname{Sym}(n)$ are chosen uniformly at random then $g^{\operatorname{Sym}(n)} \sim h^{\operatorname{Sym}(n)}$. Then there is a constant $C \approx 6.2$ such that $P(n) \sim \frac{C}{n^{2}}$ as $n \rightarrow \infty$.

Probabilistic questions

This part is joint work with Simon Blackburn (RHUL).

Theorem

Let $P(n)$ be the probability that if two elements $g, h \in \operatorname{Sym}(n)$ are chosen uniformly at random then $g^{\operatorname{Sym}(n)} \sim h^{\operatorname{Sym}(n)}$. Then there is a constant $C \approx 6.2$ such that $P(n) \sim \frac{C}{n^{2}}$ as $n \rightarrow \infty$.

Probabilistic questions

This part is joint work with Simon Blackburn (RHUL).

Theorem

Let $P(n)$ be the probability that if two elements $g, h \in \operatorname{Sym}(n)$ are chosen uniformly at random then $g^{\operatorname{Sym}(n)} \sim h^{\operatorname{Sym}(n)}$. Then there is a constant $C \approx 6.2$ such that $P(n) \sim \frac{C}{n^{2}}$ as $n \rightarrow \infty$.

Sketch proof: Most permutations in $\operatorname{Sym}(n)$ have a long cycle, of length $>n / \log n$. If g has a long cycle of length ℓ and $g^{\operatorname{Sym}(n)} \sim h^{\operatorname{Sym}(n)}$ then, almost always, h also has a long cycle of length ℓ. We use this to get a recurrence for $P(n)$. Some analysis then shows that $P(n) \sim C / n^{2}$ where

$$
C=\sum_{n=0}^{\infty} P(n)
$$

Marrying in symmetric groups

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem
There is a bijection

$$
\left\{\begin{array}{l}
\text { marriable classes } \\
h^{\operatorname{Sym}(n)} \subseteq \operatorname{Alt}(n)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { all classes } \\
g^{\operatorname{Sym}(n)} \subseteq \operatorname{Sym}(n) \backslash \operatorname{Alt}(n)
\end{array}\right\}
$$

Marrying in symmetric groups

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem
There is a bijection

$$
\left\{\begin{array}{l}
\text { marriable classes } \\
h^{\operatorname{Sym}(n)} \subseteq \operatorname{Alt}(n)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { all classes } \\
g^{\operatorname{Sym}(n)} \subseteq \operatorname{Sym}(n) \backslash \operatorname{Alt}(n)
\end{array}\right\}
$$

with the property that if $h^{\operatorname{Sym}(n)} \longleftrightarrow g^{\operatorname{Sym}(n)}$ then

$$
h^{\operatorname{Sym}(n)} \sim g^{\operatorname{Sym}(n)}
$$

Marrying in symmetric groups

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem
There is a bijection

$$
\left\{\begin{array}{l}
\text { marriable classes } \\
h^{\operatorname{Sym}(n)} \subseteq \operatorname{Alt}(n)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { all classes } \\
g^{\operatorname{Sym}(n)} \subseteq \operatorname{Sym}(n) \backslash \operatorname{Alt}(n)
\end{array}\right\}
$$

with the property that if $h^{\operatorname{Sym}(n)} \longleftrightarrow g^{\operatorname{Sym}(n)}$ then

$$
h^{\operatorname{Sym}(n)} \sim g^{\operatorname{Sym}(n)} .
$$

Proof: show that given any r marriable classes, C_{1}, \ldots, C_{r} there are r classes of odd elements D_{1}, \ldots, D_{r} such that $C_{i} \sim D_{i}$ for each i.

Marrying in symmetric groups

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem
There is a bijection

$$
\left\{\begin{array}{l}
\text { marriable classes } \\
h^{\operatorname{Sym}(n)} \subseteq \operatorname{Alt}(n)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { all classes } \\
g^{\operatorname{Sym}(n)} \subseteq \operatorname{Sym}(n) \backslash \operatorname{Alt}(n)
\end{array}\right\}
$$

with the property that if $h^{\operatorname{Sym}(n)} \longleftrightarrow g^{\operatorname{Sym}(n)}$ then

$$
h^{\operatorname{Sym}(n)} \sim g^{\operatorname{Sym}(n)} .
$$

Proof: show that given any r marriable classes, C_{1}, \ldots, C_{r} there are r classes of odd elements D_{1}, \ldots, D_{r} such that $C_{i} \sim D_{i}$ for each i. Then apply Hall's Marriage Theorem.

Let $C=C_{1} \cup \cdots \cup C_{r}$.
Let $X=\{(h, g): h \in C, g$ odd, $h g=g h\}$. So

$$
|X|=\sum_{h \in C} \frac{1}{2}|\operatorname{Cent}(h)|=\frac{n!}{2} \sum_{h \in C} \frac{1}{\mid h^{\operatorname{Sym}(n) \mid}}=\frac{n!}{2} r .
$$

Let $C=C_{1} \cup \cdots \cup C_{r}$.

Let $X=\{(h, g): h \in C, g$ odd, $h g=g h\}$. So

$$
|X|=\sum_{h \in C} \frac{1}{2}|\operatorname{Cent}(h)|=\frac{n!}{2} \sum_{h \in C} \frac{1}{\left|h^{\text {Sym(n) }}\right|}=\frac{n!}{2} r .
$$

Counting the other way we get

$$
|X|=\sum_{g \in \operatorname{Sym}(n) \backslash \operatorname{Alt}(n)}\left|\operatorname{Cent}_{C}(g)\right|
$$

Let $C=C_{1} \cup \cdots \cup C_{r}$.

Let $X=\{(h, g): h \in C, g$ odd, $h g=g h\}$. So

$$
|X|=\sum_{h \in C} \frac{1}{2}|\operatorname{Cent}(h)|=\frac{n!}{2} \sum_{h \in C} \frac{1}{\left|h^{\text {Sym(n) }}\right|}=\frac{n!}{2} r .
$$

Counting the other way we get

$$
|X|=\sum_{\substack{g \in \operatorname{Sym}(n) \operatorname{Alt}(n) \\ g^{\operatorname{Sym}(n)} \sim C}}\left|\operatorname{Cent}_{C}(g)\right|
$$

Let $C=C_{1} \cup \cdots \cup C_{r}$.

Let $X=\{(h, g): h \in C, g$ odd, $h g=g h\}$. So

$$
|X|=\sum_{h \in C} \frac{1}{2}|\operatorname{Cent}(h)|=\frac{n!}{2} \sum_{h \in C} \frac{1}{\mid h^{\operatorname{Sym}(n) \mid}}=\frac{n!}{2} r .
$$

Counting the other way we get

$$
\begin{aligned}
|X| & =\sum_{\substack{g \in \operatorname{Sym}(n) \backslash \operatorname{Alt}(n) \\
g_{\operatorname{Sym}(n)}^{\operatorname{Syn}} \sim c}}\left|\operatorname{Cent}_{C}(g)\right| \\
& \leq \sum_{\substack{g \in \operatorname{Sim}(n) \operatorname{Alt}(n) \\
g^{\operatorname{Sym}(n)(n)} \sim C}}\left|\operatorname{Cent}_{\operatorname{Alt}(n)}(g)\right|
\end{aligned}
$$

$$
\text { Let } C=C_{1} \cup \cdots \cup C_{r} \text {. }
$$

Let $X=\{(h, g): h \in C, g$ odd, $h g=g h\}$. So

$$
|X|=\sum_{h \in C} \frac{1}{2}|\operatorname{Cent}(h)|=\frac{n!}{2} \sum_{h \in C} \frac{1}{\mid h^{\operatorname{Sym}(n) \mid}}=\frac{n!}{2} r .
$$

Counting the other way we get

$$
\begin{aligned}
|X| & =\sum_{\substack{g \in \operatorname{Sym}(n) \backslash \operatorname{Alt}(n) \\
g^{\operatorname{Sym}(n)} \sim C}}\left|\operatorname{Cent}_{C}(g)\right| \\
& \leq \sum_{\substack{g \in \operatorname{Sym}(n) \operatorname{Alt(n)} \\
g^{\operatorname{Sym}(n)} \sim C}}^{n!} \operatorname{Cent}_{\operatorname{Alt}(n)}(g) \mid \\
& =\frac{1}{2} \sum_{\substack{g \in \operatorname{Sym}(n) \backslash \operatorname{Alt}(n) \\
g^{\operatorname{Sym}(n)} \sim C}} \frac{1}{\mid g^{\operatorname{Sym}(n) \mid}} \\
& =\frac{n!}{2} \quad \# \begin{array}{c}
\text { classes of odd elements } \\
\text { commuting with a class in } C
\end{array}
\end{aligned}
$$

Another application of Hall's Marriage Theorem

Let G be a group with a finite index subgroup H. There exist $g_{1}, \ldots, g_{n} \in G$ such that

$$
G=g_{1} H \dot{\cup} \cdots \dot{U} g_{n} H=H g_{1} \dot{\cup} \ldots \dot{U} H g_{n} .
$$

This result may also be proved using Hall's Marriage Theorem.

Another application of Hall's Marriage Theorem

Let G be a group with a finite index subgroup H. There exist $g_{1}, \ldots, g_{n} \in G$ such that

$$
G=g_{1} H \dot{\cup} \cdots \dot{U} g_{n} H=H g_{1} \dot{\cup} \ldots \dot{U} H g_{n} .
$$

This result may also be proved using Hall's Marriage Theorem. But to do so is overkill!

Another application of Hall's Marriage Theorem

Let G be a group with a finite index subgroup H. There exist $g_{1}, \ldots, g_{n} \in G$ such that

$$
G=g_{1} H \dot{\cup} \cdots \dot{\cup} g_{n} H=H g_{1} \dot{\cup} \cdots \dot{\cup} H g_{n} .
$$

This result may also be proved using Hall's Marriage Theorem. But to do so is overkill!

Background to results on $\mathrm{GL}_{n}(F)$

Fix a field F. Given a partition λ of n, Let $J(\lambda) \in \mathrm{GL}_{n}(F)$ be the unipotent Jordan matrix corresponding to λ.
A major open problem is to describe the conjugacy classses of $\mathrm{GL}_{n}(F)$ that meet $\operatorname{Cent}_{\mathrm{GL}_{n}(F)} J(\lambda)$. In our langauge: which classes commute with $J(\lambda)^{\mathrm{GL}_{n}(F)}$?

- Let $D(\lambda)$ be the largest partition such that $J(\lambda) \sim J(D(\lambda))$. In 2009 larrobino proved that the map $\lambda \mapsto D(\lambda)$ is idempotent.
- In 2010, Kosir and Oblak found $D(\lambda)$ in the cases where it has at most two parts
- In 2008, Oblak defined a partition $Q(\lambda)$ and conjectured that $Q(\lambda)=D(\lambda)$. In 2012, larrobino and Khattami proved that $D(\lambda) \leq Q(\lambda)$.
Our results reduce the general problem of deciding which classes in $\mathrm{GL}_{n}(F)$ commute to the problem for nilpotent classes over field extensions of F.

Types of matrices

Definition
Let $X \in \mathrm{GL}_{n}(q)$ be a matrix with cycle type $f_{1}^{\lambda_{1}} \ldots f_{r}^{\lambda_{r}}$.

Types of matrices

Definition

Let $X \in \mathrm{GL}_{n}(q)$ be a matrix with cycle type $f_{1}^{\lambda_{1}} \ldots f_{r}^{\lambda_{r}}$. The type of X is the string $d_{1}^{\lambda_{1}} \ldots d_{r}^{\lambda_{r}}$ where $d_{i}=\operatorname{deg} f_{i}$.

- Introduced by Steinberg in 1951
- Important in Green's 1955 construction of the irreducible characters of finite general linear groups.

Types of matrices

Definition

Let $X \in \mathrm{GL}_{n}(q)$ be a matrix with cycle type $f_{1}^{\lambda_{1}} \ldots f_{r}^{\lambda_{r}}$. The type of X is the string $d_{1}^{\lambda_{1}} \ldots d_{r}^{\lambda_{r}}$ where $d_{i}=\operatorname{deg} f_{i}$.

- Introduced by Steinberg in 1951
- Important in Green's 1955 construction of the irreducible characters of finite general linear groups.

Theorem

Let $X, Y \in \mathrm{GL}_{n}(q)$. Then X and Y have the same type if and only if there exist polynomials $F, G \in \mathbf{F}_{q}[x]$ such that $F(X) \in Y^{\mathrm{GL}_{n}(q)}$ and $g(Y) \in X^{\mathrm{GL}_{n}(q)}$.

Types of matrices

Definition

Let $X \in \mathrm{GL}_{n}(q)$ be a matrix with cycle type $f_{1}^{\lambda_{1}} \ldots f_{r}^{\lambda_{r}}$. The type of X is the string $d_{1}^{\lambda_{1}} \ldots d_{r}^{\lambda_{r}}$ where $d_{i}=\operatorname{deg} f_{i}$.

- Introduced by Steinberg in 1951
- Important in Green's 1955 construction of the irreducible characters of finite general linear groups.

Theorem
Let $X, Y \in \mathrm{GL}_{n}(q)$. Then X and Y have the same type if and only if there exist polynomials $F, G \in \mathbf{F}_{q}[x]$ such that $F(X) \in Y^{\mathrm{GL}_{n}(q)}$ and $g(Y) \in X^{\mathrm{GL}_{n}(q)}$.

Corollary
Suppose that $X^{\mathrm{GL}_{n}(q)} \sim Y^{\mathrm{GL}_{n}(q)}$. Then any class of the type of X commutes with any class of the type of Y.

Theorem
Let $G=G L_{n}\left(\mathbf{F}_{q}\right)$ and let $X, Y \in G$. Then Cent $_{G}(X)$ is conjugate to $\operatorname{Cent}_{G}(Y)$ if and only if X and Y have the same type.

Theorem
Let $G=G L_{n}\left(\mathbf{F}_{q}\right)$ and let $X, Y \in G$. Then Cent ${ }_{G}(X)$ is conjugate to $\operatorname{Cent}_{G}(Y)$ if and only if X and Y have the same type.

Let $U_{q}(\lambda)=J(\lambda)^{\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)}$ be the unipotent conjugacy class corresponding to the partition λ of n.

Theorem
Let $G=G L_{n}\left(\mathbf{F}_{q}\right)$ and let $X, Y \in G$. Then Cent $_{G}(X)$ is conjugate to $\operatorname{Cent}_{G}(Y)$ if and only if X and Y have the same type.

Let $U_{q}(\lambda)=J(\lambda)^{\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)}$ be the unipotent conjugacy class corresponding to the partition λ of n.

Theorem
Let p be a prime and let $r \geq 1$. There exists $n \in \mathbf{N}$ such that

$$
U_{p^{a}}((n, n)) \sim U_{p^{a}}((n+1, n-1))
$$

if and only if $a>r$.

Future directions

- What is the correct generalization of type for matrices over infinite fields? Probably it involves isomorphism classes of Galois extensions.
- Find all possible determinants of a matrix of a given type. This leads to some interesting problems in arithmetic combinatorics.
- What is the probability that two classes chosen uniformally at random in $\operatorname{Sym}(n)$ commute?

