Commuting conjugacy classes in groups: an overview

Mark Wildon (joint work with John Britnell)

Outline

- (1) Introduction
- (2) Finite symmetric groups
- (3) General linear groups

§1 Introduction

Let G be a group. For $x, g \in G$ define the conjugate of x by g to be $x^g = g^{-1}xg$. The conjugacy class of x is $x^G = \{x^g : g \in G\}$.

§1 Introduction

Let G be a group. For $x, g \in G$ define the conjugate of x by g to be $x^g = g^{-1}xg$. The conjugacy class of x is $x^G = \{x^g : g \in G\}$.

Definition

Say that classes C and D commute, and write $C \sim D$, if there exist $x \in C$, $y \in D$ such that xy = yx.

§1 Introduction

Let G be a group. For $x, g \in G$ define the conjugate of x by g to be $x^g = g^{-1}xg$. The conjugacy class of x is $x^G = \{x^g : g \in G\}$.

Definition

Say that classes C and D commute, and write $C \sim D$, if there exist $x \in C$, $y \in D$ such that xy = yx.

$$\{(12), \dots\}$$
 $\{(12)(34), \dots\} - \{id\} - \{(123), \dots\}$

(1) If $x, y \in G$ then

 $x^G \sim y^G \iff x \text{ commutes with } y^g \text{ for some } g \in G$

(1) If $x, y \in G$ then

$$x^G \sim y^G \iff x \text{ commutes with } y^g \text{ for some } g \in G$$

$$\iff \operatorname{Cent}_G(x) = \{ h \in G : hx = xh \} \text{ meets } y^G.$$

(1) If $x, y \in G$ then

$$x^G \sim y^G \iff x \text{ commutes with } y^g \text{ for some } g \in G$$

$$\iff \mathsf{Cent}_G(x) = \{ h \in G : hx = xh \} \text{ meets } y^G.$$

The commuting relation therefore determines which conjugacy classes meet $Cent_G(x)$.

(2) If G is finite then \sim determines

$$Z(G) = \{x \in G : xy = yx \text{ for all } y \in G\}.$$

(1) If $x, y \in G$ then

$$x^G \sim y^G \iff x \text{ commutes with } y^g \text{ for some } g \in G$$
 $\iff \text{Cent}_G(x) = \{h \in G : hx = xh\} \text{ meets } y^G.$

The commuting relation therefore determines which conjugacy classes meet $Cent_G(x)$.

(2) If G is finite then \sim determines

$$Z(G) = \{x \in G : xy = yx \text{ for all } y \in G\}.$$

Proof: Suppose x^G commutes with every class. Then $\operatorname{Cent}_G(x)$ meets every class so

$$\bigcup_{g \in G} \operatorname{Cent}_G(x)^g = G.$$

(1) If $x, y \in G$ then

$$x^G \sim y^G \iff x \text{ commutes with } y^g \text{ for some } g \in G$$

$$\iff \mathsf{Cent}_G(x) = \{ h \in G : hx = xh \} \text{ meets } y^G.$$

The commuting relation therefore determines which conjugacy classes meet $Cent_G(x)$.

(2) If G is finite then \sim determines

$$Z(G) = \{x \in G : xy = yx \text{ for all } y \in G\}.$$

Proof: Suppose x^G commutes with every class. Then $\operatorname{Cent}_G(x)$ meets every class so

$$\bigcup_{g\in G} \operatorname{Cent}_G(x)^g = G.$$

But the conjugates of a proper subgroup of G cannot cover G. Hence $Cent_G(x) = G$. \square

Traité des substitutions

Note that $Cent_G(x)^g$ is the stabiliser of x^g in the conjugacy action of G on x^G . So

$$\bigcup_{g \in G} \operatorname{Cent}_G(x)^g$$

is the set of elements of G fixing at least one element of x^G .

Traité des substitutions

Note that $Cent_G(x)^g$ is the stabiliser of x^g in the conjugacy action of G on x^G . So

$$\bigcup_{g \in G} \operatorname{Cent}_G(x)^g$$

is the set of elements of G fixing at least one element of x^G .

In 1870, Jordan showed that any non-trivial finite transitive permutation group contains an element without fixed points. So unless $\operatorname{Cent}_G(x) = G$, when the action is trivial, the conjugates of $\operatorname{Cent}_G(x)$ do not cover G.

(3) If G is infinite then Z(G) cannot be determined by \sim . Let X be an infinite set and let

$$G = \operatorname{FSym}(X) = \left\{ g : X \to X : \begin{array}{l} g \text{ bijective} \\ X \setminus \operatorname{Fix} g \text{ finite} \end{array} \right\}.$$

(3) If G is infinite then Z(G) cannot be determined by \sim . Let X be an infinite set and let

$$G = \operatorname{FSym}(X) = \left\{ g : X \to X : \begin{matrix} g & \text{bijective} \\ X \setminus \operatorname{Fix} g & \text{finite} \end{matrix} \right\}.$$

Then any two classes $x^G, y^G \in G$ commute. But G is not abelian.

§2 Commuting in finite symmetric groups

Conjugacy classes in Sym(n) are labelled by partitions of n.

For example, if $g=(2345)(67)\in \mathrm{Sym}(7)$ then $g^{\mathrm{Sym}(7)}$ consists of all permutations whose cycle decomposition has a 4-cycle, a 2-cycle and a fixed point. The labelling partition is (4,2,1).

§2 Commuting in finite symmetric groups

Conjugacy classes in Sym(n) are labelled by partitions of n.

For example, if $g=(2345)(67)\in \mathrm{Sym}(7)$ then $g^{\mathrm{Sym}(7)}$ consists of all permutations whose cycle decomposition has a 4-cycle, a 2-cycle and a fixed point. The labelling partition is (4,2,1).

Definition

If λ and ν are partitions of n, say that ν is a coarsening of λ , if ν can be obtained from λ by combining parts of the same size.

§2 Commuting in finite symmetric groups

Conjugacy classes in Sym(n) are labelled by partitions of n.

For example, if $g=(2345)(67)\in \mathrm{Sym}(7)$ then $g^{\mathrm{Sym}(7)}$ consists of all permutations whose cycle decomposition has a 4-cycle, a 2-cycle and a fixed point. The labelling partition is (4,2,1).

Definition

If λ and ν are partitions of n, say that ν is a coarsening of λ , if ν can be obtained from λ by combining parts of the same size.

Theorem

The classes in $\operatorname{Sym}(n)$ corresponding to partitions λ and μ commute if and only if there is a partition ν which is a coarsening of both λ and μ .

Probabilistic questions

This part is joint work with Simon Blackburn (RHUL).

Theorem

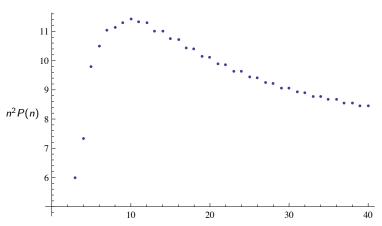
Let P(n) be the probability that if two elements $g,h \in \operatorname{Sym}(n)$ are chosen uniformly at random then $g^{\operatorname{Sym}(n)} \sim h^{\operatorname{Sym}(n)}$. Then there is a constant $C \approx 6.2$ such that $P(n) \sim \frac{C}{n^2}$ as $n \to \infty$.

Probabilistic questions

This part is joint work with Simon Blackburn (RHUL).

Theorem

Let P(n) be the probability that if two elements $g,h \in \mathrm{Sym}(n)$ are chosen uniformly at random then $g^{\mathrm{Sym}(n)} \sim h^{\mathrm{Sym}(n)}$. Then there is a constant $C \approx 6.2$ such that $P(n) \sim \frac{C}{n^2}$ as $n \to \infty$.



Probabilistic questions

This part is joint work with Simon Blackburn (RHUL).

Theorem

Let P(n) be the probability that if two elements $g,h \in \mathrm{Sym}(n)$ are chosen uniformly at random then $g^{\mathrm{Sym}(n)} \sim h^{\mathrm{Sym}(n)}$. Then there is a constant $C \approx 6.2$ such that $P(n) \sim \frac{C}{n^2}$ as $n \to \infty$.

Sketch proof: Most permutations in $\operatorname{Sym}(n)$ have a long cycle, of length $> n/\log n$. If g has a long cycle of length ℓ and $g^{\operatorname{Sym}(n)} \sim h^{\operatorname{Sym}(n)}$ then, almost always, h also has a long cycle of length ℓ . We use this to get a recurrence for P(n). Some analysis then shows that $P(n) \sim C/n^2$ where

$$C = \sum_{n=0}^{\infty} P(n)$$

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem

There is a bijection

$$\left\{\begin{array}{l} \textit{marriable classes} \\ \textit{h}^{\mathrm{Sym}(n)} \subseteq \mathrm{Alt}(n) \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \textit{all classes} \\ \textit{g}^{\mathrm{Sym}(n)} \subseteq \mathrm{Sym}(n) \backslash \mathrm{Alt}(n) \end{array}\right\}$$

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem

There is a bijection

$$\left\{\begin{array}{l} \textit{marriable classes} \\ \textit{h}^{\mathrm{Sym}(n)} \subseteq \mathrm{Alt}(n) \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \textit{all classes} \\ \textit{g}^{\mathrm{Sym}(n)} \subseteq \mathrm{Sym}(n) \backslash \mathrm{Alt}(n) \end{array}\right\}$$

with the property that if $h^{\mathrm{Sym}(n)} \longleftrightarrow g^{\mathrm{Sym}(n)}$ then

$$h^{\mathrm{Sym}(n)} \sim g^{\mathrm{Sym}(n)}$$
.

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem

There is a bijection

$$\left\{\begin{array}{l} \textit{marriable classes} \\ \textit{h}^{\mathrm{Sym}(n)} \subseteq \mathrm{Alt}(n) \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \textit{all classes} \\ \textit{g}^{\mathrm{Sym}(n)} \subseteq \mathrm{Sym}(n) \backslash \mathrm{Alt}(n) \end{array}\right\}$$

with the property that if $h^{\mathrm{Sym}(n)} \longleftrightarrow g^{\mathrm{Sym}(n)}$ then

$$h^{\mathrm{Sym}(n)} \sim g^{\mathrm{Sym}(n)}$$
.

Proof: show that given any r marriable classes, C_1, \ldots, C_r there are r classes of odd elements D_1, \ldots, D_r such that $C_i \sim D_i$ for each i.

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem

There is a bijection

$$\left\{\begin{array}{l} \textit{marriable classes} \\ \textit{h}^{\mathrm{Sym}(n)} \subseteq \mathrm{Alt}(n) \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \textit{all classes} \\ \textit{g}^{\mathrm{Sym}(n)} \subseteq \mathrm{Sym}(n) \backslash \mathrm{Alt}(n) \end{array}\right\}$$

with the property that if $h^{\mathrm{Sym}(n)} \longleftrightarrow g^{\mathrm{Sym}(n)}$ then

$$h^{\mathrm{Sym}(n)} \sim g^{\mathrm{Sym}(n)}$$
.

Proof: show that given any r marriable classes, C_1, \ldots, C_r there are r classes of odd elements D_1, \ldots, D_r such that $C_i \sim D_i$ for each i. Then apply Hall's Marriage Theorem.

Let
$$C = C_1 \cup \cdots \cup C_r$$
.

Let $X = \{(h, g) : h \in C, g \text{ odd}, hg = gh\}$. So

$$|X| = \sum_{n=1}^{\infty} |Cent(h)| = \frac{n!}{n!} \sum_{n=1}^{\infty} \frac{1}{n!} = \frac{n!}{n!} r$$

$$|X| = \sum_{h \in \mathcal{C}} rac{1}{2} |\mathsf{Cent}(h)| = rac{n!}{2} \sum_{h \in \mathcal{C}} rac{1}{|h^{\mathrm{Sym}(n)}|} = rac{n!}{2} r.$$

Let
$$X = \{(h, g) : h \in C, g \text{ odd}, hg = gh\}$$
. So

$$|X| = \sum_{h \in C} \frac{1}{2} |\mathsf{Cent}(h)| = \frac{n!}{2} \sum_{h \in C} \frac{1}{|h^{\mathrm{Sym}(n)}|} = \frac{n!}{2} r.$$

 $g \in \text{Sym}(n) \setminus \text{Alt}(n)$

$$|X| = \sum |\mathsf{Cent}_C(g)|$$

Let
$$X = \{(h, g) : h \in C, g \text{ odd}, hg = gh\}$$
. So

$$|X| = \sum_{h \in C} \frac{1}{2} |\mathsf{Cent}(h)| = \frac{n!}{2} \sum_{h \in C} \frac{1}{|h^{\mathrm{Sym}(n)}|} = \frac{n!}{2} r.$$

$$|X| = \sum_{\substack{g \in \mathrm{Sym}(n) \setminus \mathrm{Alt}(n) \ g \mathrm{Sym}(n) \sim \mathcal{C}}} |\mathsf{Cent}_{\mathcal{C}}(g)|$$

Let
$$X = \{(h,g) : h \in C, g \text{ odd}, hg = gh\}$$
. So

$$|X| = \sum_{h \in C} \frac{1}{2} |\mathsf{Cent}(h)| = \frac{n!}{2} \sum_{h \in C} \frac{1}{|h^{\mathrm{Sym}(n)}|} = \frac{n!}{2} r.$$

 $g \in \text{Sym}(n) \setminus \text{Alt}(n)$ $_{\sigma}\mathrm{Sym}(n)_{\sim}C$

 $g \in \text{Sym}(n) \setminus \text{Alt}(n)$ $_{\sigma}\mathrm{Sym}(n)_{\sim}C$

 $|\mathsf{Cent}_{\mathrm{Alt}(n)}(g)|$

$$|X| = \sum_{\text{Cent}_{C}(g)|} |\text{Cent}_{C}(g)|$$

Let $X = \{(h,g) : h \in C, g \text{ odd}, hg = gh\}$. So

$$|X| = \sum_{h \in C} \frac{1}{2} |\mathsf{Cent}(h)| = \frac{n!}{2} \sum_{h \in C} \frac{1}{|h^{\mathrm{Sym}(n)}|} = \frac{n!}{2} r.$$

 $|X| = \sum |Cent_C(g)|$

$$\leq \sum_{\substack{g \in \operatorname{Sym}(n) \setminus \operatorname{Alt}(n) \\ g^{\operatorname{Sym}(n)} \sim C}} |\operatorname{Cent}_{\operatorname{Alt}(n)}(g)|$$

$$= \frac{n!}{2} \sum_{\substack{g \in \operatorname{Sym}(n) \setminus \operatorname{Alt}(n) \\ g^{\operatorname{Sym}(n)} \sim C}} \frac{1}{|g^{\operatorname{Sym}(n)}|}$$

$$= \frac{n!}{2} \text{ $\#$ classes of odd elements commuting with a class in C}$$

Another application of Hall's Marriage Theorem

Let G be a group with a finite index subgroup H. There exist $g_1, \ldots, g_n \in G$ such that

$$G = g_1 H \dot{\cup} \cdots \dot{\cup} g_n H = Hg_1 \dot{\cup} \cdots \dot{\cup} Hg_n.$$

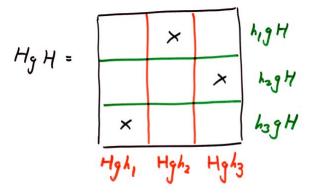
This result may also be proved using Hall's Marriage Theorem.

Another application of Hall's Marriage Theorem

Let G be a group with a finite index subgroup H. There exist $g_1, \ldots, g_n \in G$ such that

$$G = g_1 H \dot{\cup} \cdots \dot{\cup} g_n H = Hg_1 \dot{\cup} \cdots \dot{\cup} Hg_n.$$

This result may also be proved using Hall's Marriage Theorem. But to do so is overkill!

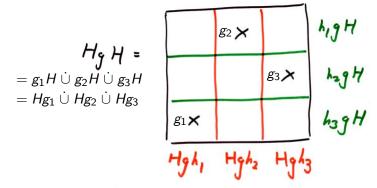


Another application of Hall's Marriage Theorem

Let G be a group with a finite index subgroup H. There exist $g_1, \ldots, g_n \in G$ such that

$$G = g_1 H \dot{\cup} \cdots \dot{\cup} g_n H = Hg_1 \dot{\cup} \cdots \dot{\cup} Hg_n.$$

This result may also be proved using Hall's Marriage Theorem. But to do so is overkill!



Background to results on $GL_n(F)$

Fix a field F. Given a partition λ of n, Let $J(\lambda) \in \mathrm{GL}_n(F)$ be the unipotent Jordan matrix corresponding to λ .

A major open problem is to describe the conjugacy classses of $\mathrm{GL}_n(F)$ that meet $\mathrm{Cent}_{\mathrm{GL}_n(F)} J(\lambda)$. In our langauge: which classes commute with $J(\lambda)^{\mathrm{GL}_n(F)}$?

- ▶ Let $D(\lambda)$ be the largest partition such that $J(\lambda) \sim J(D(\lambda))$. In 2009 larrobino proved that the map $\lambda \mapsto D(\lambda)$ is idempotent.
- ▶ In 2010, Kosir and Oblak found $D(\lambda)$ in the cases where it has at most two parts
- In 2008, Oblak defined a partition $Q(\lambda)$ and conjectured that $Q(\lambda) = D(\lambda)$. In 2012, larrobino and Khattami proved that $D(\lambda) \leq Q(\lambda)$.

Our results reduce the general problem of deciding which classes in $GL_n(F)$ commute to the problem for nilpotent classes over field extensions of F.

Definition

Let $X \in \mathrm{GL}_n(q)$ be a matrix with cycle type $f_1^{\lambda_1} \dots f_r^{\lambda_r}$.

Definition

Let $X \in \mathrm{GL}_n(q)$ be a matrix with cycle type $f_1^{\lambda_1} \dots f_r^{\lambda_r}$. The type of X is the string $d_1^{\lambda_1} \dots d_r^{\lambda_r}$ where $d_i = \deg f_i$.

- Introduced by Steinberg in 1951
- Important in Green's 1955 construction of the irreducible characters of finite general linear groups.

Definition

Let $X \in \mathrm{GL}_n(q)$ be a matrix with cycle type $f_1^{\lambda_1} \dots f_r^{\lambda_r}$. The type of X is the string $d_1^{\lambda_1} \dots d_r^{\lambda_r}$ where $d_i = \deg f_i$.

- Introduced by Steinberg in 1951
- Important in Green's 1955 construction of the irreducible characters of finite general linear groups.

Theorem

Let $X, Y \in \operatorname{GL}_n(q)$. Then X and Y have the same type if and only if there exist polynomials $F, G \in \mathbf{F}_q[x]$ such that $F(X) \in Y^{\operatorname{GL}_n(q)}$ and $g(Y) \in X^{\operatorname{GL}_n(q)}$.

Definition

Let $X \in \mathrm{GL}_n(q)$ be a matrix with cycle type $f_1^{\lambda_1} \dots f_r^{\lambda_r}$. The type of X is the string $d_1^{\lambda_1} \dots d_r^{\lambda_r}$ where $d_i = \deg f_i$.

- Introduced by Steinberg in 1951
- Important in Green's 1955 construction of the irreducible characters of finite general linear groups.

Theorem

Let $X, Y \in \operatorname{GL}_n(q)$. Then X and Y have the same type if and only if there exist polynomials $F, G \in \mathbf{F}_q[x]$ such that $F(X) \in Y^{\operatorname{GL}_n(q)}$ and $g(Y) \in X^{\operatorname{GL}_n(q)}$.

Corollary

Suppose that $X^{\mathrm{GL}_n(q)} \sim Y^{\mathrm{GL}_n(q)}$. Then any class of the type of X commutes with any class of the type of Y.

Theorem

Let $G = GL_n(\mathbf{F}_q)$ and let $X, Y \in G$. Then $Cent_G(X)$ is conjugate to $Cent_G(Y)$ if and only if X and Y have the same type.

Theorem

Let $G = GL_n(\mathbf{F}_q)$ and let $X, Y \in G$. Then $Cent_G(X)$ is conjugate to $Cent_G(Y)$ if and only if X and Y have the same type.

Let $U_q(\lambda) = J(\lambda)^{\mathrm{GL}_n(\mathbf{F}_q)}$ be the unipotent conjugacy class corresponding to the partition λ of n.

Theorem

Let $G=GL_n(\mathbf{F}_q)$ and let $X,Y\in G$. Then $Cent_G(X)$ is conjugate to $Cent_G(Y)$ if and only if X and Y have the same type.

Let $U_q(\lambda) = J(\lambda)^{GL_n(\mathbf{F}_q)}$ be the unipotent conjugacy class corresponding to the partition λ of n.

Theorem

Let p be a prime and let $r \ge 1$. There exists $n \in \mathbb{N}$ such that

$$U_{p^a}((n,n)) \sim U_{p^a}((n+1,n-1))$$

if and only if a > r.

Future directions

- What is the correct generalization of type for matrices over infinite fields? Probably it involves isomorphism classes of Galois extensions.
- Find all possible determinants of a matrix of a given type. This leads to some interesting problems in arithmetic combinatorics.
- ▶ What is the probability that two classes chosen uniformally at random in Sym(n) commute?