Commuting conjugacy classes in groups: an overview

Mark Wildon (joint work with John Britnell)
(1) Introduction
(2) Finite symmetric groups
(3) General linear groups
Let G be a group. For $x, g \in G$ define the conjugate of x by g to be $x^g = g^{-1}xg$. The conjugacy class of x is $x^G = \{x^g : g \in G\}$.
§1 Introduction

Let G be a group. For $x, g \in G$ define the conjugate of x by g to be $x^g = g^{-1}xg$. The conjugacy class of x is $x^G = \{x^g : g \in G\}$.

Definition
Say that classes C and D commute, and write $C \sim D$, if there exist $x \in C$, $y \in D$ such that $xy = yx$.
§1 Introduction

Let G be a group. For $x, g \in G$ define the \textit{conjugate of x by g} to be $x^g = g^{-1}xg$. The \textit{conjugacy class} of x is $x^G = \{x^g : g \in G\}$.

\textbf{Definition}

Say that classes C and D \textit{commute}, and write $C \sim D$, if there exist $x \in C$, $y \in D$ such that $xy = yx$.

\begin{tikzpicture}
\node at (0,0) {$\{ (12) , \ldots \}$};
\node at (1,-1) {$\{ (12)(34), \ldots \}$};
\node at (2.5,0) {$\{ \text{id} \}$};
\node at (5,0) {$\{ (123), \ldots \}$};
\node at (0,-2.5) {$\{ (1234), \ldots \}$};
\node at (5.5,-2.5) {$\text{Sym}(4)$};
\draw[->] (0,0) -- (1,-1);
\draw[->] (0,0) -- (0,-2.5);
\draw[->] (1,-1) -- (2.5,0);
\draw[->] (2.5,0) -- (5,0);
\draw[->] (0,-2.5) -- (5.5,-2.5);
\end{tikzpicture}
Remarks

(1) If $x, y \in G$ then

\[x^G \sim y^G \iff x \text{ commutes with } y^g \text{ for some } g \in G \]
Remarks

(1) If \(x, y \in G \) then
\[
x^G \sim y^G \iff x \text{ commutes with } y^g \text{ for some } g \in G
\iff \text{Cent}_G(x) = \{ h \in G : hx = xh \} \text{ meets } y^G.
\]
Remarks

(1) If $x, y \in G$ then

$$x^G \sim y^G \iff x \text{ commutes with } y^g \text{ for some } g \in G$$

$$\iff \text{Cent}_G(x) = \{h \in G : hx = xh\} \text{ meets } y^G.$$

The commuting relation therefore determines which conjugacy classes meet Cent$_G(x)$.

(2) If G is finite then \sim determines

$$Z(G) = \{x \in G : xy = yx \text{ for all } y \in G\}.$$
Remarks

(1) If \(x, y \in G \) then
\[
x^G \sim y^G \iff x \text{ commutes with } y^g \text{ for some } g \in G
\]
\[
\iff \text{Cent}_G(x) = \{h \in G : hx = xh\} \text{ meets } y^G.
\]

The commuting relation therefore determines which conjugacy classes meet \(\text{Cent}_G(x) \).

(2) If \(G \) is finite then \(\sim \) determines
\[
Z(G) = \{x \in G : xy = yx \text{ for all } y \in G\}.
\]

Proof: Suppose \(x^G \) commutes with every class. Then \(\text{Cent}_G(x) \) meets every class so
\[
\bigcup_{g \in G} \text{Cent}_G(x)^g = G.
\]
Remarks

(1) If \(x, y \in G \) then
\[
x^G \sim y^G \iff x \text{ commutes with } y^g \text{ for some } g \in G
\]
\[
\iff \Cent_G(x) = \{ h \in G : hx = xh \} \text{ meets } y^G.
\]

The commuting relation therefore determines which conjugacy classes meet \(\Cent_G(x) \).

(2) If \(G \) is finite then \(\sim \) determines
\[
Z(G) = \{ x \in G : xy = yx \text{ for all } y \in G \}.
\]

Proof: Suppose \(x^G \) commutes with every class. Then \(\Cent_G(x) \) meets every class so
\[
\bigcup_{g \in G} \Cent_G(x)^g = G.
\]

But the conjugates of a proper subgroup of \(G \) cannot cover \(G \). Hence \(\Cent_G(x) = G \). \(\square \)
Note that $\text{Cent}_G(x)^g$ is the stabiliser of x^g in the conjugacy action of G on x^G. So

$$\bigcup_{g \in G} \text{Cent}_G(x)^g$$

is the set of elements of G fixing at least one element of x^G. In 1870, Jordan showed that any non-trivial finite transitive permutation group contains an element without fixed points. So unless $\text{Cent}_G(x) = G$, when the action is trivial, the conjugates of $\text{Cent}_G(x)$ do not cover G.

Traité des substitutions
Note that $\text{Cent}_G(x)^g$ is the stabiliser of x^g in the conjugacy action of G on x^G. So

$$\bigcup_{g \in G} \text{Cent}_G(x)^g$$

is the set of elements of G fixing at least one element of x^G.

In 1870, Jordan showed that any non-trivial finite transitive permutation group contains an element without fixed points. So unless $\text{Cent}_G(x) = G$, when the action is trivial, the conjugates of $\text{Cent}_G(x)$ do not cover G.
(3) If G is infinite then $Z(G)$ cannot be determined by \sim. Let X be an infinite set and let

$$G = \text{FSym}(X) = \left\{ g : X \to X : \begin{array}{c} g \text{ bijective} \\ X \setminus \text{Fix } g \text{ finite} \end{array} \right\}.$$
(3) If G is infinite then $Z(G)$ cannot be determined by \sim. Let X be an infinite set and let

$$G = \text{FSym}(X) = \left\{ g : X \rightarrow X : g \text{ bijective} \right\}.$$

Then any two classes $x^G, y^G \in G$ commute. But G is not abelian.
Conjugacy classes in $\text{Sym}(n)$ are labelled by partitions of n.

For example, if $g = (2345)(67) \in \text{Sym}(7)$ then $g^{\text{Sym}(7)}$ consists of all permutations whose cycle decomposition has a 4-cycle, a 2-cycle and a fixed point. The labelling partition is $(4, 2, 1)$.
Conjugacy classes in $\text{Sym}(n)$ are labelled by partitions of n.

For example, if $g = (2345)(67) \in \text{Sym}(7)$ then $g^{\text{Sym}(7)}$ consists of all permutations whose cycle decomposition has a 4-cycle, a 2-cycle and a fixed point. The labelling partition is $(4, 2, 1)$.

Definition

If λ and ν are partitions of n, say that ν is a coarsening of λ, if ν can be obtained from λ by combining parts of the same size.
Conjugacy classes in $\text{Sym}(n)$ are labelled by partitions of n.
For example, if $g = (2345)(67) \in \text{Sym}(7)$ then $g^{\text{Sym}(7)}$ consists of all permutations whose cycle decomposition has a 4-cycle, a 2-cycle and a fixed point. The labelling partition is $(4, 2, 1)$.

Definition
If λ and ν are partitions of n, say that ν is a coarsening of λ, if ν can be obtained from λ by combining parts of the same size.

Theorem
The classes in $\text{Sym}(n)$ corresponding to partitions λ and μ commute if and only if there is a partition ν which is a coarsening of both λ and μ.
Probabilistic questions

This part is joint work with Simon Blackburn (RHUL).

Theorem

Let $P(n)$ be the probability that if two elements $g, h \in \text{Sym}(n)$ are chosen uniformly at random then $g^{\text{Sym}(n)} \sim h^{\text{Sym}(n)}$. Then there is a constant $C \approx 6.2$ such that $P(n) \sim \frac{C}{n^2}$ as $n \to \infty$.
Probabilistic questions

This part is joint work with Simon Blackburn (RHUL).

Theorem

Let $P(n)$ be the probability that if two elements $g, h \in \text{Sym}(n)$ are chosen uniformly at random then $g^\text{Sym}(n) \sim h^\text{Sym}(n)$. Then there is a constant $C \approx 6.2$ such that $P(n) \sim \frac{C}{n^2}$ as $n \to \infty$.
Probabilistic questions

This part is joint work with Simon Blackburn (RHUL).

Theorem

Let $P(n)$ be the probability that if two elements $g, h \in \text{Sym}(n)$ are chosen uniformly at random then $g^{\text{Sym}(n)} \sim h^{\text{Sym}(n)}$. Then there is a constant $C \approx 6.2$ such that $P(n) \sim \frac{C}{n^2}$ as $n \to \infty$.

Sketch proof: Most permutations in $\text{Sym}(n)$ have a long cycle, of length $> n/\log n$. If g has a long cycle of length ℓ and $g^{\text{Sym}(n)} \sim h^{\text{Sym}(n)}$ then, almost always, h also has a long cycle of length ℓ. We use this to get a recurrence for $P(n)$. Some analysis then shows that $P(n) \sim C/n^2$ where

$$C = \sum_{n=0}^{\infty} P(n)$$
Marrying in symmetric groups

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem
There is a bijection

\[
\left\{ \begin{array}{c}
\text{marriable classes} \\
h^{\text{Sym}(n)} \subseteq \text{Alt}(n)
\end{array} \right\} \leftrightarrow \left\{ \begin{array}{c}
\text{all classes} \\
g^{\text{Sym}(n)} \subseteq \text{Sym}(n) \setminus \text{Alt}(n)
\end{array} \right\}
\]
Marrying in symmetric groups

Say that an even permutation is **marriable** if it commutes with an odd permutation.

Theorem

There is a bijection

\[
\left\{ \begin{array}{c}
\text{marriable classes} \\
h^{\text{Sym}(n)} \subseteq \text{Alt}(n)
\end{array} \right\} \leftrightarrow \left\{ \begin{array}{c}
\text{all classes} \\
g^{\text{Sym}(n)} \subseteq \text{Sym}(n) \setminus \text{Alt}(n)
\end{array} \right\}
\]

with the property that if \(h^{\text{Sym}(n)} \leftrightarrow g^{\text{Sym}(n)} \) *then*

\[h^{\text{Sym}(n)} \sim g^{\text{Sym}(n)}.
\]
Marrying in symmetric groups

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem
There is a bijection

\[
\left\{ \begin{array}{c}
\text{marriable classes} \\
\sym(n) \subseteq \alt(n)
\end{array} \right\} \leftrightarrow \left\{ \begin{array}{c}
\text{all classes} \\
\sym(n) \subseteq \sym(n) \setminus \alt(n)
\end{array} \right\}
\]

with the property that if \(h^{\sym(n)} \leftrightarrow g^{\sym(n)} \) then

\[
h^{\sym(n)} \sim g^{\sym(n)}.
\]

Proof: show that given any \(r \) marriable classes, \(C_1, \ldots, C_r \) there are \(r \) classes of odd elements \(D_1, \ldots, D_r \) such that \(C_i \sim D_i \) for each \(i \).
Marrying in symmetric groups

Say that an even permutation is marriable if it commutes with an odd permutation.

Theorem

There is a bijection

\[
\left\{ \text{marriable classes} \right\}
\begin{array}{c}
\left\{ h^{\text{Sym}(n)} \subseteq \text{Alt}(n) \right\} \\
\left\{ g^{\text{Sym}(n)} \subseteq \text{Sym}(n) \setminus \text{Alt}(n) \right\}
\end{array}
\]

with the property that if \(h^{\text{Sym}(n)} \leftrightarrow g^{\text{Sym}(n)} \) *then*

\[
h^{\text{Sym}(n)} \sim g^{\text{Sym}(n)}.
\]

Proof: show that given any \(r \) marriable classes, \(C_1, \ldots, C_r \) there are \(r \) classes of odd elements \(D_1, \ldots, D_r \) such that \(C_i \sim D_i \) for each \(i \). Then apply Hall’s Marriage Theorem.
Let $C = C_1 \cup \cdots \cup C_r$.

Let $X = \{(h, g) : h \in C, \ g \text{ odd}, \ hg = gh\}$. So

$$|X| = \sum_{h \in C} \frac{1}{2} |\text{Cent}(h)| = \frac{n!}{2} \sum_{h \in C} \frac{1}{|h^{\text{Sym}(n)}|} = \frac{n!}{2} r.$$
Let \(C = C_1 \cup \cdots \cup C_r \).

Let \(X = \{(h, g) : h \in C, \ g \text{ odd}, \ hg = gh\} \). So

\[
|X| = \sum_{h \in C} \frac{1}{2} |\text{Cent}(h)| = \frac{n!}{2} \sum_{h \in C} \frac{1}{|h^{\text{Sym}(n)}|} = \frac{n!}{2} r.
\]

Counting the other way we get

\[
|X| = \sum_{g \in \text{Sym}(n) \setminus \text{Alt}(n)} |\text{Cent}_C(g)|
\]
Let $C = C_1 \cup \cdots \cup C_r$.

Let $X = \{(h, g) : h \in C, g \text{ odd}, hg = gh\}$. So

$$|X| = \sum_{h \in C} \frac{1}{2} |\text{Cent}(h)| = \frac{n!}{2} \sum_{h \in C} \frac{1}{|h^{\text{Sym}(n)}|} = \frac{n!}{2} r.$$

Counting the other way we get

$$|X| = \sum_{g \in \text{Sym}(n) \setminus \text{Alt}(n)} |\text{Cent}_C(g)|$$

where $g^{\text{Sym}(n)} \sim_C$.
Let \(C = C_1 \cup \cdots \cup C_r \).

Let \(X = \{(h, g) : h \in C, g \text{ odd, } hg = gh\} \). So

\[
|X| = \sum_{h \in C} \frac{1}{2} |\text{Cent}(h)| = \frac{n!}{2} \sum_{h \in C} \frac{1}{|h^{\text{Sym}(n)}|} = \frac{n!}{2^r}.
\]

Counting the other way we get

\[
|X| = \sum_{g \in \text{Sym}(n) \setminus \text{Alt}(n)} |\text{Cent}_C(g)|
\leq \sum_{g \in \text{Sym}(n) \setminus \text{Alt}(n)} |\text{Cent}_{\text{Alt}(n)}(g)|
\]
Let $C = C_1 \cup \cdots \cup C_r$.

Let $X = \{(h, g) : h \in C, g \text{ odd}, hg = gh\}$. So

$$|X| = \sum_{h \in C} \frac{1}{2} |\text{Cent}(h)| = \frac{n!}{2} \sum_{h \in C} \frac{1}{|h^{\text{Sym}(n)}|} = \frac{n!}{2} r.$$

Counting the other way we get

$$|X| = \sum_{g \in \text{Sym}(n) \setminus \text{Alt}(n)} \frac{1}{|\text{Cent}_C(g)|} \leq \sum_{g \in \text{Sym}(n) \setminus \text{Alt}(n)} \frac{1}{|\text{Cent}_{\text{Alt}(n)}(g)|} = \frac{n!}{2} \sum_{g \in \text{Sym}(n) \setminus \text{Alt}(n)} \frac{1}{|g^{\text{Sym}(n)}|} = \frac{n!}{2} \# \text{ classes of odd elements commuting with a class in } C$$
Another application of Hall’s Marriage Theorem

Let G be a group with a finite index subgroup H. There exist $g_1, \ldots, g_n \in G$ such that

$$G = g_1H \cup \cdots \cup g_nH = Hg_1 \cup \cdots \cup Hg_n.$$

This result may also be proved using Hall’s Marriage Theorem.
Another application of Hall’s Marriage Theorem

Let G be a group with a finite index subgroup H. There exist $g_1, \ldots, g_n \in G$ such that

$$G = g_1 H \cup \cdots \cup g_n H = Hg_1 \cup \cdots \cup Hg_n.$$

This result may also be proved using Hall’s Marriage Theorem. But to do so is overkill!
Another application of Hall’s Marriage Theorem

Let G be a group with a finite index subgroup H. There exist $g_1, \ldots, g_n \in G$ such that

$$G = g_1 H \cup \cdots \cup g_n H = H g_1 \cup \cdots \cup H g_n.$$

This result may also be proved using Hall’s Marriage Theorem. But to do so is overkill!
Background to results on $GL_n(F)$

Fix a field F. Given a partition λ of n, Let $J(\lambda) \in GL_n(F)$ be the unipotent Jordan matrix corresponding to λ.

A major open problem is to describe the conjugacy classes of $GL_n(F)$ that meet $\text{Cent}_{GL_n(F)} J(\lambda)$. In our language: which classes commute with $J(\lambda)^{GL_n(F)}$?

- Let $D(\lambda)$ be the largest partition such that $J(\lambda) \sim J(D(\lambda))$. In 2009 Iarrobino proved that the map $\lambda \mapsto D(\lambda)$ is idempotent.

- In 2010, Kosir and Oblak found $D(\lambda)$ in the cases where it has at most two parts.

- In 2008, Oblak defined a partition $Q(\lambda)$ and conjectured that $Q(\lambda) = D(\lambda)$. In 2012, Iarrobino and Khattami proved that $D(\lambda) \leq Q(\lambda)$.

Our results reduce the general problem of deciding which classes in $GL_n(F)$ commute to the problem for nilpotent classes over field extensions of F.
Types of matrices

Definition
Let $X \in \text{GL}_n(q)$ be a matrix with cycle type $f_1^{\lambda_1} \ldots f_r^{\lambda_r}$.
Types of matrices

Definition
Let \(X \in \text{GL}_n(q) \) be a matrix with cycle type \(f_1^{\lambda_1} \ldots f_r^{\lambda_r} \).
The type of \(X \) is the string \(d_1^{\lambda_1} \ldots d_r^{\lambda_r} \) where \(d_i = \deg f_i \).

- Introduced by Steinberg in 1951
- Important in Green’s 1955 construction of the irreducible characters of finite general linear groups.
Types of matrices

Definition
Let $X \in \text{GL}_n(q)$ be a matrix with cycle type $f_1^{\lambda_1} \ldots f_r^{\lambda_r}$. The type of X is the string $d_1^{\lambda_1} \ldots d_r^{\lambda_r}$ where $d_i = \deg f_i$.

- Introduced by Steinberg in 1951
- Important in Green’s 1955 construction of the irreducible characters of finite general linear groups.

Theorem
Let $X, Y \in \text{GL}_n(q)$. Then X and Y have the same type if and only if there exist polynomials $F, G \in \mathbf{F}_q[x]$ such that $F(X) \in Y^{\text{GL}_n(q)}$ and $g(Y) \in X^{\text{GL}_n(q)}$.
Types of matrices

Definition
Let $X \in \text{GL}_n(q)$ be a matrix with cycle type $f_1^{\lambda_1} \ldots f_r^{\lambda_r}$. The type of X is the string $d_1^{\lambda_1} \ldots d_r^{\lambda_r}$ where $d_i = \deg f_i$.

- Introduced by Steinberg in 1951
- Important in Green’s 1955 construction of the irreducible characters of finite general linear groups.

Theorem
Let $X, Y \in \text{GL}_n(q)$. Then X and Y have the same type if and only if there exist polynomials $F, G \in \mathbf{F}_q[x]$ such that $F(X) \in Y^{\text{GL}_n(q)}$ and $g(Y) \in X^{\text{GL}_n(q)}$.

Corollary
Suppose that $X^{\text{GL}_n(q)} \sim Y^{\text{GL}_n(q)}$. Then any class of the type of X commutes with any class of the type of Y.
Theorem
Let $G = GL_n(F_q)$ and let $X, Y \in G$. Then $Cent_G(X)$ is conjugate to $Cent_G(Y)$ if and only if X and Y have the same type.
Theorem

Let $G = GL_n(F_q)$ and let $X, Y \in G$. Then $Cent_G(X)$ is conjugate to $Cent_G(Y)$ if and only if X and Y have the same type.

Let $U_q(\lambda) = J(\lambda)^{GL_n(F_q)}$ be the unipotent conjugacy class corresponding to the partition λ of n.
Theorem

Let $G = \text{GL}_n(F_q)$ and let $X, Y \in G$. Then $\text{Cent}_G(X)$ is conjugate to $\text{Cent}_G(Y)$ if and only if X and Y have the same type.

Let $U_q(\lambda) = J(\lambda)^{\text{GL}_n(F_q)}$ be the unipotent conjugacy class corresponding to the partition λ of n.

Theorem

Let p be a prime and let $r \geq 1$. There exists $n \in \mathbb{N}$ such that

$$U_p^a((n, n)) \sim U_p^a((n + 1, n - 1))$$

if and only if $a > r$.
Future directions

- What is the correct generalization of type for matrices over infinite fields? Probably it involves isomorphism classes of Galois extensions.

- Find all possible determinants of a matrix of a given type. This leads to some interesting problems in arithmetic combinatorics.

- What is the probability that two classes chosen uniformly at random in $\text{Sym}(n)$ commute?