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§1 Introduction

Let G be a group. For x , g 2 G define the conjugate of x by g to
be xg = g�1xg . The conjugacy class of x is xG = {xg : g 2 G}.

Definition
Say that classes C and D commute, and write C ⇠ D, if there
exist x 2 C , y 2 D such that xy = yx .
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Commuting Classes

Let G be a group. For x , g 2 G let xg = g�1xg . The conjugacy
class of x is

{xg : g 2 G} = xG .

Definition
Classes C and D of G commute if there exists x 2 C and y 2 D
such that xy = yx .



Remarks

(1) If x , y 2 G then

xG
⇠ yG

() x commutes with yg for some g 2 G

() CentG (x) = {h 2 G : hx = xh} meets yG .

The commuting relation therefore determines which conjugacy
classes meet CentG (x).

(2) If G is finite then ⇠ determines

Z (G ) = {x 2 G : xy = yx for all y 2 G}.

Proof: Suppose xG commutes with every class. Then
CentG (x) meets every class so

[

g2G

CentG (x)g = G .

But the conjugates of a proper subgroup of G cannot
cover G . Hence CentG (x) = G . ⇤
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Traité des substitutions

Note that CentG (x)g is the stabiliser of xg in the conjugacy action
of G on xG . So [

g2G

CentG (x)g

is the set of elements of G fixing at least one element of xG .

In 1870, Jordan showed that any non-trivial
finite transitive permutation group contains
an element without fixed points. So unless
CentG (x) = G , when the action is trivial,
the conjugates of CentG (x) do not cover G .



Traité des substitutions

Note that CentG (x)g is the stabiliser of xg in the conjugacy action
of G on xG . So [

g2G

CentG (x)g

is the set of elements of G fixing at least one element of xG .

In 1870, Jordan showed that any non-trivial
finite transitive permutation group contains
an element without fixed points. So unless
CentG (x) = G , when the action is trivial,
the conjugates of CentG (x) do not cover G .



Remarks

(3) If G is infinite then Z (G ) cannot be determined by ⇠. Let X
be an infinite set and let

G = FSym(X ) =

⇢
g : X ! X :

g bijective

X \ Fix g finite

�
.

Then any two classes xG , yG
2 G commute. But G is not

abelian.
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§2 Commuting in finite symmetric groups

Conjugacy classes in Sym(n) are labelled by partitions of n.

For example, if g = (2345)(67) 2 Sym(7) then gSym(7) consists of
all permutations whose cycle decomposition has a 4-cycle, a
2-cycle and a fixed point. The labelling partition is (4, 2, 1).

Definition
If � and ⌫ are partitions of n, say that ⌫ is a coarsening of �, if ⌫
can be obtained from � by combining parts of the same size.

Theorem
The classes in Sym(n) corresponding to partitions � and µ
commute if and only if there is a partition ⌫ which is a coarsening
of both � and µ.
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Probabilistic questions
This part is joint work with Simon Blackburn (RHUL).

Theorem
Let P(n) be the probability that if two elements g , h 2 Sym(n) are
chosen uniformly at random then gSym(n)

⇠ hSym(n). Then there is
a constant C ⇡ 6.2 such that P(n) ⇠ C

n2 as n!1.
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Probabilistic questions
This part is joint work with Simon Blackburn (RHUL).

Theorem
Let P(n) be the probability that if two elements g , h 2 Sym(n) are
chosen uniformly at random then gSym(n)

⇠ hSym(n). Then there is
a constant C ⇡ 6.2 such that P(n) ⇠ C

n2 as n!1.

Sketch proof: Most permutations in Sym(n) have a long cycle, of
length > n/ log n. If g has a long cycle of length ` and
gSym(n)

⇠ hSym(n) then, almost always, h also has a long cycle of
length `. We use this to get a recurrence for P(n). Some analysis
then shows that P(n) ⇠ C/n2 where

C =
1X

n=0

P(n)



Marrying in symmetric groups

Say that an even permutation is marriable if it commutes with an
odd permutation.

Theorem
There is a bijection

⇢
marriable classes

hSym(n)
✓ Alt(n)

�
 !

⇢
all classes

gSym(n)
✓ Sym(n)\Alt(n)

�

with the property that if hSym(n)
 ! gSym(n) then

hSym(n)
⇠ gSym(n).

Proof: show that given any r marriable classes, C1, . . . , Cr there
are r classes of odd elements D1, . . . , Dr such that Ci ⇠ Di for
each i . Then apply Hall’s Marriage Theorem.
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Let C = C1 [ · · · [ Cr .

Let X = {(h, g) : h 2 C , g odd, hg = gh}. So

|X | =
X

h2C

1
2 |Cent(h)| =

n!

2

X

h2C

1

|hSym(n)
|

=
n!

2
r .

Counting the other way we get

|X | =
X

|CentC (g)|



X

g2Sym(n)\Alt(n)

gSym(n)⇠C

|CentAlt(n)(g)|

=
n!

2

X

g2Sym(n)\Alt(n)

gSym(n)⇠C

1

|gSym(n)
|

=
n!

2
#

classes of odd elements

commuting with a class in C
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Another application of Hall’s Marriage Theorem
Let G be a group with a finite index subgroup H. There exist
g1, . . . , gn 2 G such that

G = g1H [̇ · · · [̇ gnH = Hg1 [̇ · · · [̇ Hgn.

This result may also be proved using Hall’s Marriage Theorem.

But to do so is overkill!

g1

g2

g3= g1H [̇ g2H [̇ g3H

= Hg1 [̇ Hg2 [̇ Hg3
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Background to results on GLn(F )
Fix a field F . Given a partition � of n, Let J(�) 2 GLn(F ) be the
unipotent Jordan matrix corresponding to �.
A major open problem is to describe the conjugacy classses of
GLn(F ) that meet CentGLn(F ) J(�). In our langauge: which

classes commute with J(�)GLn(F )?

I Let D(�) be the largest partition such that J(�) ⇠ J
�
D(�)

�
.

In 2009 Iarrobino proved that the map � 7! D(�) is
idempotent.

I In 2010, Kosir and Oblak found D(�) in the cases where it
has at most two parts

I In 2008, Oblak defined a partition Q(�) and conjectured that
Q(�) = D(�). In 2012, Iarrobino and Khattami proved that
D(�)  Q(�).

Our results reduce the general problem of deciding which classes in
GLn(F ) commute to the problem for nilpotent classes over field
extensions of F .



Types of matrices

Definition
Let X 2 GLn(q) be a matrix with cycle type f �1

1 . . . f �r
r .

The type of X is the string d�1
1 . . . d�r

r where di = deg fi .

• Introduced by Steinberg in 1951

• Important in Green’s 1955 construction of the irreducible
characters of finite general linear groups.

Theorem
Let X , Y 2 GLn(q). Then X and Y have the same type if and
only if there exist polynomials F , G 2 Fq[x ] such that
F (X ) 2 YGLn(q) and g(Y ) 2 XGLn(q).

Corollary
Suppose that XGLn(q)

⇠ YGLn(q). Then any class of the type of X
commutes with any class of the type of Y .
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Theorem
Let G = GLn(Fq) and let X , Y 2 G. Then CentG (X ) is conjugate
to CentG (Y ) if and only if X and Y have the same type.

Let Uq(�) = J(�)GLn(Fq) be the unipotent conjugacy class
corresponding to the partition � of n.

Theorem
Let p be a prime and let r � 1. There exists n 2 N such that

Upa

�
(n, n)

�
⇠ Upa

�
(n + 1, n � 1)

�

if and only if a > r .
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Future directions

I What is the correct generalization of type for matrices over
infinite fields? Probably it involves isomorphism classes of
Galois extensions.

I Find all possible determinants of a matrix of a given type.
This leads to some interesting problems in arithmetic
combinatorics.

I What is the probability that two classes chosen uniformally at
random in Sym(n) commute?


