The probability that two elements of a finite group are conjugate

Mark Wildon (with Simon R. Blackburn and John R. Britnell)

Outline

$\S 1$ Small $\kappa(G)$
§2 Limit points of $\kappa(G)$
§3 Large $\kappa(G)$
$\S 4 \kappa$ for symmetric groups

Inductive proof of Theorem 3

Conjugate commuting probabilities

Let $\rho(G)$ be the probability that if $g, h \in G$ are chosen uniformly and independently at random, then g and h have conjugates that commute.
The method used to prove Theorem 3 also give the analogous result for $\rho\left(S_{n}\right)$.

Theorem 4
For all $n \in \mathbf{N}$ we have

$$
\rho\left(S_{n}\right) \leq \frac{C_{\rho}}{n^{2}}
$$

where $C_{\rho}=10^{2} \rho\left(S_{10}\right) \approx 11.42$. Moreover if $A_{\rho}=\sum_{n=1}^{\infty} \rho\left(S_{n}\right)$ then $\rho\left(S_{n}\right) \sim \frac{A_{\rho}}{n^{2}}$ as $n \rightarrow \infty$.

Conjugate commuting probabilities

Let $\rho(G)$ be the probability that if $g, h \in G$ are chosen uniformly and independently at random, then g and h have conjugates that commute.
The method used to prove Theorem 3 also give the analogous result for $\rho\left(S_{n}\right)$.

Theorem 4
For all $n \in \mathbf{N}$ we have

$$
\rho\left(S_{n}\right) \leq \frac{C_{\rho}}{n^{2}}
$$

where $C_{\rho}=10^{2} \rho\left(S_{10}\right) \approx 11.42$. Moreover if $A_{\rho}=\sum_{n=1}^{\infty} \rho\left(S_{n}\right)$ then $\rho\left(S_{n}\right) \sim \frac{A_{\rho}}{n^{2}}$ as $n \rightarrow \infty$.

Corollary 5

Let $g, h \in S_{n}$ be chosen independently and uniformly at random. If g and h have conjugates that commute then, provided n is sufficiently large, the probability that g and h are conjugate is at least $42 / 65 \approx 0.646$, and at most $43 / 61 \approx 0.710$.

Thank you. Any questions?

Other results and questions

- If G and H are isoclinic groups then $\kappa(G)=\kappa(H)$. The groups G such that $|G: Z(G)|=4$ form a single isoclinism class.
- If $N \triangleleft G$ then $\kappa(G)<\kappa(G / N)$. Using this we can define κ for a profinite group G as $\lim _{N} \kappa(G / N)$. Could it be that every limit point of κ is 'explained' by a profinite group?
- What can be said about $\rho(G)$ for a general group G ?

