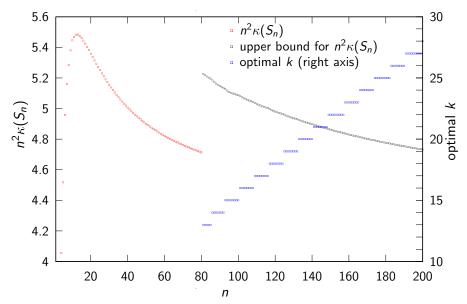
The probability that two elements of a finite group are conjugate

Mark Wildon (with Simon R. Blackburn and John R. Britnell)

Outline

- §1 Small $\kappa(G)$
- $\S2$ Limit points of $\kappa(G)$
- §3 Large $\kappa(G)$
- $\S4 \ \kappa$ for symmetric groups

Inductive proof of Theorem 3



Conjugate commuting probabilities

Let $\rho(G)$ be the probability that if $g, h \in G$ are chosen uniformly and independently at random, then g and h have conjugates that commute.

The method used to prove Theorem 3 also give the analogous result for $\rho(S_n)$.

Theorem 4

For all $n \in \mathbf{N}$ we have

$$\rho(S_n) \leq \frac{C_{\rho}}{n^2}$$

where $C_{\rho} = 10^2 \rho(S_{10}) \approx 11.42$. Moreover if $A_{\rho} = \sum_{n=1}^{\infty} \rho(S_n)$ then $\rho(S_n) \sim \frac{A_{\rho}}{n^2}$ as $n \to \infty$.

Conjugate commuting probabilities

Let $\rho(G)$ be the probability that if $g, h \in G$ are chosen uniformly and independently at random, then g and h have conjugates that commute.

The method used to prove Theorem 3 also give the analogous result for $\rho(S_n)$.

Theorem 4

For all $n \in \mathbf{N}$ we have

$$\rho(S_n) \leq \frac{C_{\rho}}{n^2}$$

where $C_{\rho} = 10^2 \rho(S_{10}) \approx 11.42$. Moreover if $A_{\rho} = \sum_{n=1}^{\infty} \rho(S_n)$ then $\rho(S_n) \sim \frac{A_{\rho}}{n^2}$ as $n \to \infty$.

Corollary 5

Let g, $h \in S_n$ be chosen independently and uniformly at random. If g and h have conjugates that commute then, provided n is sufficiently large, the probability that g and h are conjugate is at least $42/65 \approx 0.646$, and at most $43/61 \approx 0.710$.

Thank you. Any questions?

Other results and questions

- If G and H are isoclinic groups then κ(G) = κ(H). The groups G such that |G : Z(G)| = 4 form a single isoclinism class.
- If N ⊲ G then κ(G) < κ(G/N). Using this we can define κ for a profinite group G as lim_N κ(G/N). Could it be that every limit point of κ is 'explained' by a profinite group?
- What can be said about $\rho(G)$ for a general group G?