Character deflations, wreath products and Foulkes' Conjecture

Mark Wildon (joint work with Anton Evseev and Rowena Paget)

Outline

- $\S1$ Foulkes' Conjecture
- $\S2$ Deflations
- $\S 3$ Combinatorial rule for deflated character values
- $\S4$ Applications

§1 Foulkes' Conjecture

Let S_r be the group of all permutations of $\Omega = \{1, 2, ..., r\}$. It is often useful to consider actions of S_r on other sets.

§1 Foulkes' Conjecture

Let S_r be the group of all permutations of $\Omega = \{1, 2, ..., r\}$. It is often useful to consider actions of S_r on other sets.

$$(x-\alpha)(x-\beta)(x-7)(x-5)$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=$$

Here we can find S_4 acting on (amongst other things):

• the set
$$\{\alpha, \beta, \gamma, \delta\}$$

- ▶ the set $\{\alpha\beta + \gamma\delta, \alpha\gamma + \beta\delta, \alpha\delta + \beta\gamma\}$ of size 3,
- the field extension $\mathbf{Q}(\alpha, \beta, \gamma, \delta)$,
- the 4-dimensional **Q**-vector space $\langle \alpha, \beta, \gamma, \delta \rangle_{\mathbf{Q}}$.

Linear representations

Let $\mathbf{C}\Omega = \langle e_1, e_2, \dots, e_r \rangle$. This is the natural permutation representation of S_r where the elements of S_r act by permutation matrices.

Vector space decomposition:

$$\mathbf{C}\Omega = \langle e_1 + e_2 + \dots + e_r
angle igoplus \langle e_i - e_j : 1 \leq i < j \leq r
angle$$
 .

Each summand is preserved (i.e. mapped into itself) by the action of S_r . No proper subspace of either summand is preserved, so each summand is an irreducible representation of S_r .

Different permutation representations of S_r can be compared by looking at the multiplicities of their irreducible constituents.

- S_4 acting on $\{1, 2, 3, 4\}$, point stabiliser S_3
- ► S_4 acting on $\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$, point stabiliser $S_2 \times S_2$

$$(12) \mapsto \begin{pmatrix} \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix} \quad (12) \mapsto \begin{pmatrix} 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

- S_4 acting on $\{1, 2, 3, 4\}$, point stabiliser S_3
- ► S_4 acting on $\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$, point stabiliser $S_2 \times S_2$

- S_4 acting on $\{1, 2, 3, 4\}$, point stabiliser S_3
- ► S_4 acting on $\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$, point stabiliser $S_2 \times S_2$

$$(12) \mapsto \begin{pmatrix} 1 & & \\ & -1 & 0 & 0 \\ & -1 & 1 & 0 \\ & & -1 & 0 & 1 \end{pmatrix} \quad (12) \mapsto \begin{pmatrix} 1 & & & & & \\ & -1 & 0 & 0 & & \\ & -1 & 0 & 1 & & \\ & & & & 1 & -1 \\ & & & & 0 & -1 \end{pmatrix}$$

- S_4 acting on $\{1, 2, 3, 4\}$, point stabiliser S_3
- ► S_4 acting on $\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\},\$ point stabiliser $S_2 \times S_2$

$$(234) \mapsto \begin{pmatrix} 1 & & \\ & 0 & 1 & 0 \\ & 0 & 0 & 1 \\ & 1 & 0 & 0 \end{pmatrix} \quad (234) \mapsto \begin{pmatrix} 1 & & & & \\ & 0 & 1 & 0 & & \\ & 0 & 0 & 1 & & \\ & 1 & 0 & 0 & & \\ & & & -1 & 1 \\ & & & -1 & 0 \end{pmatrix}$$

- S_4 acting on $\{1, 2, 3, 4\}$, point stabiliser S_3
- ► S_4 acting on $\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\},\$ point stabiliser $S_2 \times S_2$

$$(234) \mapsto \begin{pmatrix} 1 & & \\ & 0 & 1 & 0 \\ & 0 & 0 & 1 \\ & 1 & 0 & 0 \end{pmatrix} \quad (234) \mapsto \begin{pmatrix} 1 & & & & \\ & 0 & 1 & 0 & & \\ & 0 & 0 & 1 & & \\ & 1 & 0 & 0 & & \\ & & & -1 & 1 \\ & & & -1 & 0 \end{pmatrix}$$

Remarkable fact: any representation $\rho: S_r \to GL(V)$ is determined (up to a suitable notion of isomorphism) by its character

$$\phi(g) = \operatorname{tr}(\rho(g)) \quad \text{for } g \in S_r.$$

Moreover, the multiplicity of an irreducible representation with character χ in ρ is

$$\langle \phi, \chi \rangle = \frac{1}{r!} \sum_{g \in S_r} \phi(g) \chi(g).$$

Foulkes' Conjecture

- Let $a, b \in \mathbf{N}$.
- Let Ω^(a^b) be the collection of set partitions of {1, 2, ..., ab} into b sets each of size a, acted on by S_{ab}.
- Let $\mathbf{C}\Omega^{(a^b)}$ the the corresponding permutation representation of S_{ab} .
- Let φ^(a^b) be the character of CΩ^(a^b). So if g ∈ S_{ab} then φ^(a^b) is the number of set partitions in Ω^(a^b) that are fixed by g.

Conjecture (Foulkes' Conjecture) If a < b and χ is an irreducible character of S_{ab} then

$$\langle \phi^{(a^b)}, \chi \rangle \ge \langle \phi^{(b^a)}, \chi \rangle.$$

Let λ be a partition of r and let $\gamma = (\gamma_1, \ldots, \gamma_k)$ be such that $\gamma_1 + \cdots + \gamma_k = r$. A border-strip tableau of shape λ and type γ is an assignment of the numbers from the set $\{1, 2, \ldots, k\}$ to the boxes of the diagram of λ such that

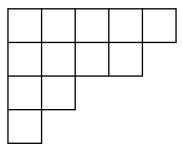
(i) The boxes labelled *i* form a border-strip of length γ_i ;

(ii) The boxes labelled by numbers $\leq i$ form the diagram of a partition.

Let λ be a partition of r and let $\gamma = (\gamma_1, \ldots, \gamma_k)$ be such that $\gamma_1 + \cdots + \gamma_k = r$. A border-strip tableau of shape λ and type γ is an assignment of the numbers from the set $\{1, 2, \ldots, k\}$ to the boxes of the diagram of λ such that

(i) The boxes labelled *i* form a border-strip of length γ_i ;

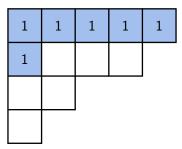
(ii) The boxes labelled by numbers $\leq i$ form the diagram of a partition.



Let λ be a partition of r and let $\gamma = (\gamma_1, \ldots, \gamma_k)$ be such that $\gamma_1 + \cdots + \gamma_k = r$. A border-strip tableau of shape λ and type γ is an assignment of the numbers from the set $\{1, 2, \ldots, k\}$ to the boxes of the diagram of λ such that

(i) The boxes labelled *i* form a border-strip of length γ_i ;

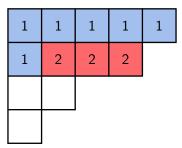
(ii) The boxes labelled by numbers $\leq i$ form the diagram of a partition.



Let λ be a partition of r and let $\gamma = (\gamma_1, \ldots, \gamma_k)$ be such that $\gamma_1 + \cdots + \gamma_k = r$. A border-strip tableau of shape λ and type γ is an assignment of the numbers from the set $\{1, 2, \ldots, k\}$ to the boxes of the diagram of λ such that

(i) The boxes labelled *i* form a border-strip of length γ_i ;

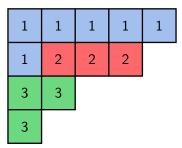
(ii) The boxes labelled by numbers $\leq i$ form the diagram of a partition.



Let λ be a partition of r and let $\gamma = (\gamma_1, \ldots, \gamma_k)$ be such that $\gamma_1 + \cdots + \gamma_k = r$. A border-strip tableau of shape λ and type γ is an assignment of the numbers from the set $\{1, 2, \ldots, k\}$ to the boxes of the diagram of λ such that

(i) The boxes labelled *i* form a border-strip of length γ_i ;

(ii) The boxes labelled by numbers $\leq i$ form the diagram of a partition.



Let λ be a partition of r and let $\gamma = (\gamma_1, \ldots, \gamma_k)$ be such that $\gamma_1 + \cdots + \gamma_k = r$. A border-strip tableau of shape λ and type γ is an assignment of the numbers from the set $\{1, 2, \ldots, k\}$ to the boxes of the diagram of λ such that

- (i) The boxes labelled *i* form a border-strip of length γ_i ;
- (ii) The boxes labelled by numbers $\leq i$ form the diagram of a partition.

Theorem (Murnaghan–Nakayama) Let $g \in S_r$ have cycle type γ . Then

$$\chi^{\lambda}(g) = \sum_{\mathcal{T}} \operatorname{sgn}(\mathcal{T})$$

where the sum is over all border-strip tableaux of shape λ and type γ , and sgn $(T) = (-1)^{sum of all leg lengths in T}$.

Example: a = 2, b = 6, $\lambda = (6, 3, 3)$, $\gamma = (1, 2, 3)$

11	12	31	32	32	32	
21	22	31				sign $+1$
21	2 ₂	31				

Example: a = 2, b = 6, $\lambda = (6, 3, 3)$, $\gamma = (1, 2, 3)$

11	1 ₂	31	32	32	32	
21	22	31				sign $+1$
21	2 ₂	31				

11	12	21	21	2 ₂	22	
31	31	32				sign +1
31	32	32				

Example: a = 2, b = 6, $\lambda = (6, 3, 3)$, $\gamma = (1, 2, 3)$

11	1 ₂	31	32	32	32	
21	22	31		-		sign $+1$
21	2 ₂	31				

1_1	1 ₂	21	21	2 ₂	22	
31	31	32				sign +1
31	32	32				

11	12	2 ₂	32	32	32	
21	21	22				sign —1
31	31	31				

$\S4$: Applications

c_{λ,γ} is independent of the order of the parts of γ. For example, if λ = (6,3,3) then c_{λ,(1,2,3)} = +1 + 1 − 1 = 1 and correspondingly c_{λ,(2,3,1)} = 1.

$\S4$: Applications

- c_{λ,γ} is independent of the order of the parts of γ. For example, if λ = (6,3,3) then c_{λ,(1,2,3)} = +1 + 1 − 1 = 1 and correspondingly c_{λ,(2,3,1)} = 1.
- (A special case of) Young's Rule: let π^(a^b) be the permutation character of S_{ab} acting on all ordered set partitions of {1, 2, ..., ab} into b sets each of size a. Then ⟨π^(a^b), χ^λ⟩ is equal to the number of semistandard λ-tableaux of type (a^b).

$\S4$: Applications

- ► $c_{\lambda,\gamma}$ is independent of the order of the parts of γ . For example, if $\lambda = (6,3,3)$ then $c_{\lambda,(1,2,3)} = +1 + 1 1 = 1$ and correspondingly $c_{\lambda,(2,3,1)} = 1$.
- (A special case of) Young's Rule: let π^(a^b) be the permutation character of S_{ab} acting on all ordered set partitions of {1, 2, ..., ab} into b sets each of size a. Then ⟨π^(a^b), χ^λ⟩ is equal to the number of semistandard λ-tableaux of type (a^b).
- ► A new recursive formula for Foulkes multiplicities. Fix a ∈ N. Then

$$\left\langle \phi^{(a^{b})}, \chi^{\lambda} \right\rangle = \frac{1}{b} \sum_{\ell=1}^{b} \sum_{\mu} \operatorname{sgn}(\lambda/\mu) \left\langle \phi^{(a^{b-\ell})}, \chi^{\mu} \right\rangle$$

where the second sum is over all partitions μ obtainable by removing *a* border-strips of length ℓ from λ , subject to the constraint in the main theorem.

Explanation of graphs

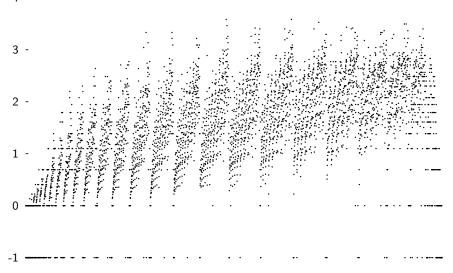
These graphs show Foulkes multiplicities for all partitions with at most b parts, arranged in lexicographic order. The y axis shows

$$\mathrm{og}\, rac{\left\langle \phi^{(a^b)}, \chi^\lambda
ight
angle}{\left\langle \phi^{(b^a)}, \chi^\lambda
ight
angle}.$$

If both numerator and denominator are 0 then the point is artificially placed at -1. If the denominator is 0 but not the numerator then log $\left\langle \phi^{(a^b)}, \chi^\lambda \right\rangle$ is shown.

a = 6, b = 7, log comparison of multiplicities

4 -



a = 6, b = 8, log comparison of multiplicities

a = 6, b = 9, log comparison of multiplicities

10 -2 -1

a = 6, b = 10, log comparison of multiplicities

14 -12 -

a = 6, b = 11, log comparison of multiplicities

a = 6, b = 12, log comparison of multiplicities

18	-						
16	-						
14	-						1
12							
10				222	88		
8			iii				e e .
6			6 F F				
4						·	
2			r + r	6.6.4	× * ·		
0							
_2	-						

۰Z

a = 6, b = 9, log comparison of Kostka multiplicities

$$\begin{array}{c}
16 \\
14 \\
12 \\
10 \\
8 \\
6 \\
4 \\
2 \\
0 \\
\end{array}$$

a = 6, b = 9, log comparison of multiplicities

10 -2 -1

Timings

For a = 6, varying $b \ge 6$, here are the times to compute all Foulkes multiplicities.

SYMMETRICA is a specialised package for computing with symmetric functions developed by Adelbert Kerber, Axel Kohnert *et al*: it is usually much faster than MAGMA and other more general purpose computer algebra systems. See www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/

Ь	6	7	8	9	10	11	12
Symmetrica	0.4s	3.5s	22.6s	272.0s	2710.0s	426m8s	> 2 days
Recurrence	0.6s	3.9s	25.6s	127.7s	454.3s	31m50s	117m3s
Memory used (Gb)	?	?	0.2	0.2	0.35	0.7	1
Speed up	0.6	1.1	0.88	2.1	6.0	13.4	> 24.6

To test Foulkes' Conjecture only the multiplicities for partitions with $\leq a$ parts are needed. This leads to big savings: for example for a = 6 and b = 13 only 20 minutes are needed (rather than over a day to compute all multiplicities).