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§1 Foulkes’ Conjecture
Let Sr be the group of all permutations of Ω = {1, 2, . . . , r}. It is
often useful to consider actions of Sr on other sets.

Here we can find S4 acting on (amongst other things):
I the set {α, β, γ, δ}
I the set {αβ + γδ, αγ + βδ, αδ + βγ} of size 3,
I the field extension Q(α, β, γ, δ),
I the 4-dimensional Q-vector space 〈α, β, γ, δ〉Q.
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Linear representations

Let CΩ = 〈e1, e2, . . . , er 〉. This is the natural permutation
representation of Sr where the elements of Sr act by permutation
matrices.

Vector space decomposition:

CΩ = 〈e1 + e2 + · · ·+ er 〉
⊕
〈ei − ej : 1 ≤ i < j ≤ r〉 .

Each summand is preserved (i.e. mapped into itself) by the action
of Sr . No proper subspace of either summand is preserved, so each
summand is an irreducible representation of Sr .

Different permutation representations of Sr can be compared by
looking at the multiplicities of their irreducible constituents.



Example: comparing different linear representations
I S4 acting on {1, 2, 3, 4}, point stabiliser S3
I S4 acting on

{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

}
,

point stabiliser S2 × S2

(12) 7→


· 1 · ·
1 · · ·
· · 1 ·
· · · 1

 (12) 7→



1 · · · · ·
· · · 1 · ·
· · · · 1 ·
· 1 · · · ·
· · 1 · · ·
· · · · · 1



Remarkable fact: any representation ρ : Sr → GL(V ) is determined
(up to a suitable notion of isomorphism) by its character

φ(g) = tr
(
ρ(g)

)
for g ∈ Sr .

Moreover, the multiplicity of an irreducible representation with
character χ in ρ is

〈φ, χ〉 =
1

r !

∑
g∈Sr

φ(g)χ(g).
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Foulkes’ Conjecture

I Let a, b ∈ N.

I Let Ω(ab) be the collection of set partitions of {1, 2, . . . , ab}
into b sets each of size a, acted on by Sab.

I Let CΩ(ab) the the corresponding permutation representation
of Sab.

I Let φ(a
b) be the character of CΩ(ab). So if g ∈ Sab then φ(a

b)

is the number of set partitions in Ω(ab) that are fixed by g .

Conjecture (Foulkes’ Conjecture)

If a < b and χ is an irreducible character of Sab then〈
φ(a

b), χ
〉
≥
〈
φ(b

a), χ
〉
.



Murnaghan–Nakayama Rule
Let λ be a partition of r and let γ = (γ1, . . . , γk) be such that
γ1 + · · ·+ γk = r . A border-strip tableau of shape λ and type γ is
an assignment of the numbers from the set {1, 2, . . . , k} to the
boxes of the diagram of λ such that

(i) The boxes labelled i form a border-strip of length γi ;
(ii) The boxes labelled by numbers ≤ i form the diagram of a

partition.

Let λ = (5, 4, 2, 1) and let γ = (6, 3, 3). To find one border-strip
tableau of shape λ and type γ:
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Murnaghan–Nakayama Rule

Let λ be a partition of r and let γ = (γ1, . . . , γk) be such that
γ1 + · · ·+ γk = r . A border-strip tableau of shape λ and type γ is
an assignment of the numbers from the set {1, 2, . . . , k} to the
boxes of the diagram of λ such that

(i) The boxes labelled i form a border-strip of length γi ;

(ii) The boxes labelled by numbers ≤ i form the diagram of a
partition.

Theorem (Murnaghan–Nakayama)

Let g ∈ Sr have cycle type γ. Then

χλ(g) =
∑
T

sgn(T )

where the sum is over all border-strip tableaux of shape λ and
type γ, and sgn(T ) = (−1)sum of all leg lengths in T .



Example: a = 2, b = 6, λ = (6, 3, 3), γ = (1, 2, 3)
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31 31 31
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§4: Applications

I cλ,γ is independent of the order of the parts of γ. For
example, if λ = (6, 3, 3) then cλ,(1,2,3) = +1 + 1− 1 = 1 and
correspondingly cλ,(2,3,1) = 1.

I (A special case of) Young’s Rule: let π(a
b) be the permutation

character of Sab acting on all ordered set partitions of
{1, 2, . . . , ab} into b sets each of size a. Then

〈
π(a

b), χλ
〉

is
equal to the number of semistandard λ-tableaux of type (ab).

I A new recursive formula for Foulkes multiplicities. Fix a ∈ N.
Then 〈

φ(a
b), χλ

〉
=

1

b

b∑
`=1

∑
µ

sgn(λ/µ)
〈
φ(a

b−`), χµ
〉

where the second sum is over all partitions µ obtainable by
removing a border-strips of length ` from λ, subject to the
constraint in the main theorem.
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Explanation of graphs

These graphs show Foulkes multiplicities for all partitions with at
most b parts, arranged in lexicographic order. The y axis shows

log

〈
φ(a

b), χλ
〉

〈
φ(ba), χλ

〉 .
If both numerator and denominator are 0 then the point is
artificially placed at −1. If the denominator is 0 but not the

numerator then log
〈
φ(a

b), χλ
〉

is shown.



a = 6, b = 7, log comparison of multiplicities
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a = 6, b = 8, log comparison of multiplicities
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a = 6, b = 9, log comparison of multiplicities
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a = 6, b = 10, log comparison of multiplicities
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a = 6, b = 11, log comparison of multiplicities

0

2

4

6

8

10

12

14



a = 6, b = 12, log comparison of multiplicities
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a = 6, b = 9, log comparison of Kostka multiplicities

0

2

4

6

8

10

12

14

16



a = 6, b = 9, log comparison of multiplicities
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Timings
For a = 6, varying b ≥ 6, here are the times to compute all
Foulkes multiplicities.

Symmetrica is a specialised package for computing with
symmetric functions developed by Adelbert Kerber, Axel Kohnert
et al: it is usually much faster than Magma and other more
general purpose computer algebra systems. See
www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/

b 6 7 8 9 10 11 12

Symmetrica 0.4s 3.5s 22.6s 272.0s 2710.0s 426m8s > 2 days

Recurrence 0.6s 3.9s 25.6s 127.7s 454.3s 31m50s 117m3s
Memory used (Gb) ? ? 0.2 0.2 0.35 0.7 1

Speed up 0.6 1.1 0.88 2.1 6.0 13.4 > 24.6

To test Foulkes’ Conjecture only the multiplicities for partitions
with ≤ a parts are needed. This leads to big savings: for example
for a = 6 and b = 13 only 20 minutes are needed (rather than over
a day to compute all multiplicities).

www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/

