From Euclid to Turing: proofs, truths and codes.

Prof. Mark Wildon

Heilbronn Institute for Mathematical Research

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret num-

Why we need proofs

- True or false: $0.999999 \ldots=1$?
- I have equally full glasses of red wine and white wine.
- I transfer a teaspoon of red wine to the white wine glass;
- After stirring, I transfer a teaspoon of the mixture back to the red wine glass.
Which glass is more contaminated with the wine from the other glass?

Spot the prime.

Spot the prime.

- 31 is prime

1 is not a prime

1 is not a prime - says who?

1 is not a prime - says who?

We want unique factorization, not $57=3 \times 19=1 \times 3 \times 19=\cdots$.

$2,3,5,7,11, \ldots, 2003,2011,2017,2027,2029, \ldots$
$2,3,5,7,11, \ldots, 2003,2011,2017,2027,2029, \ldots, 1000000007, \ldots$
$2,3,5,7,11, \ldots, 2003,2011,2017,2027,2029, \ldots, 1000000007, \ldots$

- Does the sequence of primes ever stop?
- Or maybe there are infinitely many primes?

The first three primes are $2,3,5$

The first three primes are $2,3,5$ $2 \times 3 \times 5=30$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

But 31 is either prime or divisible by a prime

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

But 31 is either prime or divisible by a prime So $2,3,5$ are not all the primes

The first six primes are $2,3,5,7,11,13$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

But 31 is either prime or divisible by a prime So $2,3,5$ are not all the primes

The first six primes are $2,3,5,7,11,13$
$2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

But 31 is either prime or divisible by a prime So $2,3,5$ are not all the primes

The first six primes are $2,3,5,7,11,13$
$2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
$2 \times 3 \times 5 \times 7 \times 11 \times 13+1=30031$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

But 31 is either prime or divisible by a prime So $2,3,5$ are not all the primes

The first six primes are $2,3,5,7,11,13$
$2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
$2 \times 3 \times 5 \times 7 \times 11 \times 13+1=30031$
30031 leaves remainder 1 when we divide it by $2,3,5,7,11,13$.

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

But 31 is either prime or divisible by a prime So $2,3,5$ are not all the primes

The first six primes are $2,3,5,7,11,13$
$2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
$2 \times 3 \times 5 \times 7 \times 11 \times 13+1=30031$
30031 leaves remainder 1 when we divide it by $2,3,5,7,11,13$.

- $30031=15015 \times 2+1$
- $30031=10010 \times 3+1$
- $30031=2310 \times 13+1$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

But 31 is either prime or divisible by a prime So $2,3,5$ are not all the primes

The first six primes are $2,3,5,7,11,13$
$2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
$2 \times 3 \times 5 \times 7 \times 11 \times 13+1=30031$
30031 leaves remainder 1 when we divide it by $2,3,5,7,11,13$.

- $30031=15015 \times 2+1$
- $30031=10010 \times 3+1$
- $30031=2310 \times 13+1$

But 30031 is either prime or divisible by a prime

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

But 31 is either prime or divisible by a prime So $2,3,5$ are not all the primes

The first six primes are $2,3,5,7,11,13$
$2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
$2 \times 3 \times 5 \times 7 \times 11 \times 13+1=30031$
30031 leaves remainder 1 when we divide it by $2,3,5,7,11,13$.

- $30031=15015 \times 2+1$
- $30031=10010 \times 3+1$
- $30031=2310 \times 13+1$

But 30031 is either prime or divisible by a prime $(30031=59 \times 209)$

The first three primes are $2,3,5$
$2 \times 3 \times 5=30$
$2 \times 3 \times 5+1=31$
31 leaves remainder 1 when we divide it by $2,3,5$

- $31=15 \times 2+1$
- $31=10 \times 3+1$
- $31=6 \times 5+1$

But 31 is either prime or divisible by a prime So $2,3,5$ are not all the primes

The first six primes are $2,3,5,7,11,13$
$2 \times 3 \times 5 \times 7 \times 11 \times 13=30030$
$2 \times 3 \times 5 \times 7 \times 11 \times 13+1=30031$
30031 leaves remainder 1 when we divide it by $2,3,5,7,11,13$.

- $30031=15015 \times 2+1$
- $30031=10010 \times 3+1$
- $30031=2310 \times 13+1$

But 30031 is either prime or divisible by a prime $(30031=59 \times 209)$
So $2,3,5,7,11,13$ are not all the primes

A fictional Socratic dialogue

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes

A fictional Socratic dialogue

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+1$

A fictional Socratic dialogue

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+1$
- Socrates: If I must ...

A fictional Socratic dialogue

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+1$
- Socrates: If I must ...
- Euclid: N leaves remainder 1 when divided by all your primes

A fictional Socratic dialogue

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+1$
- Socrates: If I must ...
- Euclid: N leaves remainder 1 when divided by all your primes
- Socrates: You are correct

A fictional Socratic dialogue

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+1$
- Socrates: If I must ...
- Euclid: N leaves remainder 1 when divided by all your primes
- Socrates: You are correct
- Euclid: But N is divisible by some prime

A fictional Socratic dialogue

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+1$
- Socrates: If I must ...
- Euclid: N leaves remainder 1 when divided by all your primes
- Socrates: You are correct
- Euclid: But N is divisible by some prime
- Socrates: Yes. So there is a prime not in my list

A fictional Socratic dialogue

- Socrates: I think $p_{1}, p_{2}, \ldots, p_{r}$ might be all the primes
- Euclid: Consider $N=p_{1} \times p_{2} \times \cdots \times p_{r}+1$
- Socrates: If I must ...
- Euclid: N leaves remainder 1 when divided by all your primes
- Socrates: You are correct
- Euclid: But N is divisible by some prime
- Socrates: Yes. So there is a prime not in my list
- Euclid: Indeed. This shows there are more than any finite number of primes
- Socrates: You are correct

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 .

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

| 00001110 | 11101011 | 00100000 | 10101000 | 00101011 | 01100010 | 00100000 | 11101011 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10101100 | 00100000 | 11101010 | 11101011 | 00101110 | 00100000 | 00101110 | 11101011 | |
| 00100000 | 10101000 | 00101011 | 11100100 | 00100000 | 00101110 | 01101000 | 00101001 | |
| 00101110 | 00100000 | 01101001 | 10101101 | 00100000 | 00101110 | 01101000 | 00101011 | |
| 00100000 | 00101101 | 00101111 | 00101011 | 10101101 | 00101110 | 01101001 | 11101011 | |
| 11101010 | 11100100 | 11000000 | 10001111 | 01101000 | 00101011 | 00101110 | 01101000 | |
| 00101011 | 10101100 | 00100000 | 10100011 | 00101110 | 01101001 | 10101101 | 00100000 | |
| 11101010 | 11101011 | 10101000 | 01101010 | 00101011 | 10101100 | 00100000 | 01101001 | |
| 11101010 | 00100000 | 00101110 | 01101000 | 00101011 | 00100000 | 01101011 | 01101001 | |
| 11101010 | 00101010 | 00100000 | 00101110 | 11101011 | 00100000 | 10101101 | 00101111 | |
| 10101010 | 10101010 | 00101011 | 10101100 | 11000000 | 00001110 | 01101000 | 00101011 | |
| 00100000 | 10101101 | 01101010 | 01101001 | 11101010 | 10101011 | 10101101 | 00100000 | |
| 00101001 | 11101010 | 00101010 | 00100000 | 00101001 | 10101100 | 10101100 | 11101011 | |
| 10101111 | 10101101 | 00100000 | 11101011 | 10101010 | 00100000 | 11101011 | 00101111 | |
| 00101110 | 10101100 | 00101001 | 10101011 | 00101011 | 11101011 | 00101111 | 10101101 | |
| 00100000 | 10101010 | 11101011 | 10101100 | 00101110 | 00101111 | 11101010 | 00101011 | |
| 01100010 | | | | | | | | |

William Shakespeare (approx 1600)

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

| 00001110 | 11101011 | 00100000 | 10101000 | 00101011 | 01100010 | 00100000 | 11101011 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10101100 | 00100000 | 11101010 | 11101011 | 00101110 | 00100000 | 00101110 | 11101011 | |
| 00100000 | 10101000 | 00101011 | 11100100 | 00100000 | 00101110 | 01101000 | 00101001 | |
| 00101110 | 00100000 | 01101001 | 10101101 | 00100000 | 00101110 | 01101000 | 00101011 | |
| 00100000 | 00101101 | 00101111 | 00101011 | 10101101 | 00101110 | 01101001 | 11101011 | |
| 11101010 | 11100100 | 11000000 | 10001111 | 01101000 | 00101011 | 00101110 | 01101000 | |
| 00101011 | 10101100 | 00100000 | 10100011 | 00101110 | 01101001 | 10101101 | 00100000 | |
| 11101010 | 11101011 | 10101000 | 01101010 | 00101011 | 10101100 | 00100000 | 01101001 | |
| 11101010 | 00100000 | 00101110 | 01101000 | 00101011 | 00100000 | 01101011 | 01101001 | |
| 11101010 | 00101010 | 00100000 | 00101110 | 11101011 | 00100000 | 10101101 | 00101111 | |
| 10101010 | 10101010 | 00101011 | 10101100 | 11000000 | 00001110 | 01101000 | 00101011 | |
| 00100000 | 10101101 | 01101010 | 01101001 | 11101010 | 10101011 | 10101101 | 00100000 | |
| 00101001 | 11101010 | 00101010 | 00100000 | 00101001 | 10101100 | 10101100 | 11101011 | |
| 10101111 | 10101101 | 00100000 | 11101011 | 10101010 | 00100000 | 11101011 | 00101111 | |
| 00101110 | 10101100 | 00101001 | 10101011 | 00101011 | 11101011 | 00101111 | 10101101 | |
| 00100000 | 10101010 | 11101011 | 10101100 | 00101110 | 00101111 | 11101010 | 00101011 | |
| 01100010 | | | | | | | | |

William Shakespeare (approx 1600)
To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune,

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

| 00001110 | 11101011 | 00100000 | 10101000 | 00101011 | 01100010 | 00100000 | 11101011 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10101100 | 00100000 | 11101010 | 11101011 | 00101110 | 00100000 | 00101110 | 11101011 | |
| 00100000 | 10101000 | 00101011 | 11100100 | 00100000 | 00101110 | 01101000 | 00101001 | |
| 00101110 | 00100000 | 01101001 | 10101101 | 00100000 | 00101110 | 01101000 | 00101011 | |
| 00100000 | 00101101 | 00101111 | 00101011 | 10101101 | 00101110 | 01101001 | 11101011 | |
| 11101010 | 11100100 | 11000000 | 10001111 | 01101000 | 00101011 | 00101110 | 01101000 | |
| 00101011 | 10101100 | 00100000 | 10100011 | 00101110 | 01101001 | 10101101 | 00100000 | |
| 11101010 | 11101011 | 10101000 | 01101010 | 00101011 | 10101100 | 00100000 | 01101001 | |
| 11101010 | 00100000 | 00101110 | 01101000 | 00101011 | 00100000 | 01101011 | 01101001 | |
| 11101010 | 00101010 | 00100000 | 00101110 | 11101011 | 00100000 | 10101101 | 00101111 | |
| 10101010 | 10101010 | 00101011 | 10101100 | 11000000 | 00001110 | 01101000 | 00101011 | |
| 00100000 | 10101101 | 01101010 | 01101001 | 11101010 | 10101011 | 10101101 | 00100000 | |
| 00101001 | 11101010 | 00101010 | 00100000 | 00101001 | 10101100 | 10101100 | 11101011 | |
| 10101111 | 10101101 | 00100000 | 11101011 | 10101010 | 00100000 | 11101011 | 00101111 | |
| 00101110 | 10101100 | 00101001 | 10101011 | 00101011 | 11101011 | 00101111 | 10101101 | |
| 00100000 | 10101010 | 11101011 | 10101100 | 00101110 | 00101111 | 11101010 | 00101011 | |
| 01100010 | | | | | | | | |

William Shakespeare (approx 1600)
To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune,

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

| 00110000 | 01110111 | 01000110 | 10000000 | 00011000 | 00000001 | 01011101 | 00011110 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10101100 | 00000000 | 10101110 | 00001011 | 10101100 | 00101011 | 01101011 | 01101001 | |
| 00001110 | 00101110 | 10101100 | 00101001 | 00101110 | 10001101 | 00100100 | 00100101 | |
| 10101100 | 00101011 | 01101011 | 01101001 | 00001110 | 00001111 | 10001000 | 01001011 | |
| 01100100 | 11001010 | 11001100 | 11001111 | 11001111 | 00001000 | 00000101 | 00010100 | |
| 00001100 | 00110000 | 01000000 | 01011010 | 00110000 | 11000010 | 00110000 | 00110000 | |
| 10000000 | 00011010 | 00111010 | 00110000 | 10000110 | 10111101 | 00011010 | 10101100 | |
| 00000000 | 00001011 | 00101110 | 10101001 | 00101011 | 11101000 | 10101000 | 11001011 | |
| 10001001 | 10100111 | 10101001 | 10101010 | 11001011 | 10100101 | 11001010 | 01001001 | |
| 00001110 | 11001100 | 11001111 | 11001111 | 00001000 | 00010100 | 10000001 | 01011010 | |
| 00110000 | 01000101 | 00010001 | 01111010 | 00110000 | 10100101 | 01011010 | 10101100 | |
| 00000000 | 00001011 | 11101010 | 11101011 | 01101001 | 00101110 | 00101100 | 00101011 | |
| 10101001 | 01101100 | 00001011 | 10101111 | 11101011 | 01101010 | 10101010 | 10101100 | |
| 00101011 | 10101110 | 11001011 | 10101100 | 00101011 | 10101011 | 00101011 | 00101110 | |
| 11101010 | 01001001 | 10001001 | 00100111 | 10100100 | 10101001 | 10101010 | 11001011 | |
| 10100101 | 11001010 | 01001001 | 00001110 | 11001100 | 11001111 | 11001111 | 00001000 | |
| 00010100 | | | | | | | | |

Anonymous Microsoft Programmer (2010)

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

Part of the machine code for Microsoft Word 2011.

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway (compressed)
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- A number between 0 and 1000:

10 bits

- Full text of Hamlet
- Pictures of Royal Holloway (compressed)
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- A number between 0 and 1000:

10 bits

- Full text of Hamlet
1.5 million bits
- Pictures of Royal Holloway (compressed)
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- A number between 0 and 1000:

10 bits

- Full text of Hamlet
- Pictures of Royal Holloway (compressed) 5 million bits each
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway

10 bits
1.5 million bits

5 million bits each

- Compact disc of Beethoven 9th
- Large Hadron Collider, per second
- A quantum computer big enough to break public key cryptography

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:

4 bits

- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th

10 bits
1.5 million bits

5 million bits each
6 billion bits

- Large Hadron Collider, per second
- A quantum computer big enough to break public key cryptography

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th

10 bits
1.5 million bits

5 million bits each

- Large Hadron Collider, per second
- A quantum computer big enough to break public key cryptography

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
1.5 million bits

5 million bits each

- Large Hadron Collider, per second
- A quantum computer big enough to break public key cryptography

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:

4 bits

- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th

10 bits
1.5 million bits

5 million bits each

- Large Hadron Collider, per second
0.7 GB

300 GB

- A quantum computer big enough to

20 million qubits break public key cryptography
Errors in reading and writing are inevitable. We can only hope to correct them when they occur.

A Simple Error Correcting Code

Number	Encoded as	Number	Encoded as
0	000000000000	8	100010001000
1	000100010001	9	100110011001
2	001000100010	10	101010101010
3	001100110011	11	101110111011
4	010001000100	12	110011001100
5	010101010101	13	110111011101
6	011001100110	14	111011101110
7	011101110111	15	111111111111

A Simple Error Correcting Code

Number	Encoded as	Number	Encoded as
0	000000000000	8	100010001000
1	000100010001	9	100110011001
2	001000100010	10	101010101010
3	001100110011	11	101110111011
4	010001000100	12	110011001100
5	010101010101	13	110111011101
6	011001100110	14	111011101110
7	011101110111	15	111111111111

Question. Suppose you receive 00110010 0011. What number was most likely sent?

A Simple Error Correcting Code

Number	Encoded as	Number	Encoded as
0	000000000000	8	100010001000
1	000100010001	9	100110011001
2	001000100010	10	101010101010
3	001100110011	11	101110111011
4	010001000100	12	110011001100
5	010101010101	13	110111011101
6	011001100110	14	111011101110
7	011101110111	15	111111111111

Question. Suppose you receive 00110010 0011. What number was most likely sent?

Answer. Since 001100100011 differs from 001100110011 in just once place, it's most likely that the number is 3 .

Mariner 9 Image: Improvement Due to Error Correction

Mariner 9 Image: Improvement Due to Error Correction

The Mariner 9 Code: 32 of the 64 Mariner 9 codewords: Black Squares Show 0, White Squares Show 1

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?
Question 1. Are you going to tell the truth in the next three questions?

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?
Question 1. Are you going to tell the truth in the next three questions?

- If Yes: You told the truth!

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15. How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?
Question 1. Are you going to tell the truth in the next three questions?

- If Yes: You told the truth!
- If No: Either you're lying now, or you'll lie in the next three questions.

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?
Question 1. Are you going to tell the truth in the next three questions?

- If Yes: You told the truth!
- If No: Either you're lying now, or you'll lie in the next three questions.

How about a proof that no strategy can guarantee to use six questions or fewer?

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?
Question 1. Are you going to tell the truth in the next three questions?

- If Yes: You told the truth!
- If No: Either you're lying now, or you'll lie in the next three questions.

How about a proof that no strategy can guarantee to use six questions or fewer?

Coding theory gives a seven question strategy. Lies correspond to errors in transmission.

The Hamming Code

Richard Hamming discovered a one-error correcting binary code of length 7 with 16 codewords. He invented it because he was fed up with the paper tape reader on his early computer misreading his programs.

It gives an optimal solution to the Liar Game using 7 questions.

Remarkably, it is possible to specify all the questions in advance.

The Hamming Code

Find the binary codeword corresponding to your secret number.

0	0000000	8	1110000
1	1101001	9	0011001
2	0101010	10	1011010
3	1000011	11	0110011
4	1001100	12	0111100
5	0100101	13	1010101
6	1100110	14	0010110
7	0001111	15	1111111

The questions are:
'Is there a 1 in the first position (far left) of the codeword?',
'Is there a 1 in the second position of the codeword?',
and so on. If there is one lie, then the questioner will write down one wrong bit. But because the Hamming code can correct one error, the questioner can still work out what the number is.

Turing

Alan Turing (1912 - 1952) was a polymathematic pioneer of early computing

SHERBORNE SCHOOL

Turing's maths teacher had a fair point: mathematics papers are mostly words.

A PROOF OF LIOUVILLE'S THEOREM

EDWARD NELSON
Consider a bounded harmonic function on Euclidean space. Since it is harmonic, its value at any point is its average over any sphere, and hence over any ball, with the point as center. Given two points, choose two balls with the given points as centers and of equal radius. If the radius is large enough, the two balls will coincide except for an arbitrarily small proportion of their volume. Since the function is bounded, the averages of it over the two balls are arbitrarily close, and so the function assumes the same value at any two points. Thus a bounded harmonic function on Euclidean space is a constant.

Princeton University

Received by the editors June 26, 1961.

Turing and his Hut 8 team used a mixture of cryptanalysis, statistical inference and computation - the 'Bombe' - to crack the Enigma code used by the German Navy in the Second World War.

Turing's finest mathematical achievement is the following theorem.
Theorem. There is no algorithm that will decide the truth or falsity of a mathematical statement

- There are infinitely many primes
- There are infinitely many primes ending 1
- There are infinitely many primes ending 2
- $0.9999 \ldots=1$
- 2^{3} and 3^{2} are the only consecutive integer powers
- There are infinitely many twin primes such as 3,5 or 5,7 or 11,13 or 17,19 or \ldots or 2027,2029 or ...
- There is an efficient algorithm for factoring large??? numbers

What Turing really proved is that there is no algorithm that decides whether an algorithm terminates：＇The Entscheidungsproblem is undecidable．＇

Corollary 1 （Gödel＇s first incompleteness theorem）

Fix a formal proof system．There exists a true statement that has no formal proof．

For example，a formal proof from Russell－Whitehead Principia M^{*}＊5443．$\vdash:: \alpha, \beta \in 1 . \supset: \alpha \cap \beta=\Lambda . \equiv . \alpha \cup \beta \in 2$

Dem．

$$
\begin{align*}
& \text { ト. 米 } 54 \cdot 26 . \text { ノト: } \alpha=\iota^{6} x . \beta=\iota^{\boldsymbol{6}} y . \text { ว: } \alpha \cup \beta \in 2 . \equiv . x \neq y . \\
& \text { [*51.231] } \\
& \text { [*13•12] } \tag{1}\\
& \equiv . \iota^{\prime} x \cap \iota^{\boldsymbol{s}} y=\Lambda . \\
& \equiv . \alpha \cap \beta=\Lambda \\
& \text { ト.(1).*11•11•35.) } \\
& \vdash:(\text { (東 } x, y) \cdot \alpha=\iota^{\prime} x \cdot \beta=\iota^{\prime} y \cdot \text {) : } \alpha \cup \beta \in 2 . \equiv . \alpha \cap \beta=\Lambda \tag{2}\\
& \text { ト.(2) • } ⿻ 丷 木 11 \cdot 54 . * 52 \cdot 1 \text {. ว ト. Prop }
\end{align*}
$$

From this proposition it will follow，when arithmetical addition has been defined，that $1+1=2$ ．

What Turing really proved is that there is no algorithm that decides whether an algorithm terminates: 'The Entscheidungsproblem is undecidable.'

Corollary 1 (Gödel's first incompleteness theorem)

Fix a formal proof system. There exists a true statement that has no formal proof.

Proof. Suppose, for a contradiction, that either P or $\neg P$ is provable for every statement P. Given a Turing machine M, let P_{M} be the statement ' M halts'.

- Spend week 1 looking for a formal proof of P_{M},
- Spend week 2 looking for a formal proof of $\neg P_{M}$,
- Spend week 3 looking for a formal proof of P_{M},
and so on. Since either P_{M} or $\neg P_{M}$ is provable, and formal proofs can be enumerated one-by-one, eventually we will succeed in finding a proof. Therefore we can detect when Turing machines halt. This contradicts Turing's result. Hence there are statements Q such that neither Q nor $\neg Q$ is provable. But either Q or $\neg Q$ is true.

Thank you! Any questions?

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.
At the party a black or white hat will be put on each person's head. You can see your friends' hats, but not your own.

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.
At the party a black or white hat will be put on each person's head. You can see your friends' hats, but not your own.

When the host shouts 'Go!', you may either say a colour or remain silent. Everyone who speaks must speak at the same time.

If everyone who speaks gets the colour of his or her hat correct, you all win some cake. If no-one speaks, or someone gets it wrong, there is no cake.

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.
At the party a black or white hat will be put on each person's head. You can see your friends' hats, but not your own.

When the host shouts 'Go!', you may either say a colour or remain silent. Everyone who speaks must speak at the same time.

If everyone who speaks gets the colour of his or her hat correct, you all win some cake. If no-one speaks, or someone gets it wrong, there is no cake.
Question: What is a good strategy?

Thank you! Any questions?

Thank you! Any questions?

- Why is maths a good subject to study?
- What do maths lecturers do all day?
- How does maths at university differ from A-level maths?
- Are women just as good as men at maths? (Answer: Yes!)

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'

$$
7(\mathrm{NO})+8(\mathrm{YES})=15
$$

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
$7(\mathrm{NO})+8(\mathrm{YES})=15$
- 'Is the number even?'
$8(\mathrm{NO})+7(\mathrm{YES})=15$

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'

$$
\begin{array}{r}
7(\mathrm{NO})+8(\mathrm{YES})=15 \\
8(\mathrm{NO})+7(\mathrm{YES})=15 \\
14(\mathrm{NO})+1(\mathrm{YES})=15
\end{array}
$$

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'

$$
\begin{array}{r}
7(\mathrm{NO})+8(\mathrm{YES})=15 \\
8(\mathrm{NO})+7(\mathrm{YES})=15 \\
14(\mathrm{NO})+1(\mathrm{YES})=15 \\
9(\mathrm{NO})+6(\mathrm{YES})=15
\end{array}
$$

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
- 'Is the number even?'
- 'Is the number 12?
- 'Is the number prime?

$$
\begin{array}{r}
7(\mathrm{NO})+8(\mathrm{YES})=15 \\
8(\mathrm{NO})+7(\mathrm{YES})=15 \\
14(\mathrm{NO})+1(\mathrm{YES})=15 \\
9(\mathrm{NO})+6(\mathrm{YES})=15
\end{array}
$$

- In the worst case there are at least 4 possible numbers after the second question.

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
- 'Is the number even?'
- 'Is the number 12?
- 'Is the number prime?

$$
\begin{aligned}
7(\mathrm{NO})+8(\mathrm{YES}) & =15 \\
8(\mathrm{NO})+7(\mathrm{YES}) & =15 \\
14(\mathrm{NO})+1(\mathrm{YES}) & =15 \\
9(\mathrm{NO})+6(\mathrm{YES}) & =15
\end{aligned}
$$

- In the worst case there are at least 4 possible numbers after the second question.
- In the worst case there are at least 2 possible numbers after the third question.

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
- 'Is the number even?'
- 'Is the number 12?
- 'Is the number prime?

$$
\begin{aligned}
7(\mathrm{NO})+8(\mathrm{YES}) & =15 \\
8(\mathrm{NO})+7(\mathrm{YES}) & =15 \\
14(\mathrm{NO})+1(\mathrm{YES}) & =15 \\
9(\mathrm{NO})+6(\mathrm{YES}) & =15
\end{aligned}
$$

- In the worst case there are at least 4 possible numbers after the second question.
- In the worst case there are at least 2 possible numbers after the third question.
- So three questions are not enough.

