A tour of Foulkes' Conjecture

Mark Wildon (joint work with Rowena Paget)

Outline

- (1) Foulkes' Conjecture
- (2) Irreducible representations of symmetric groups
- (3) Set families and maps

$\S1$: Foulkes' Conjecture

Let S_r be the symmetric group on $\Omega = \{1, 2, \dots, r\}$.

Let $\mathbf{C}\Omega = \langle e_1, e_2, \dots e_r \rangle$. This is the natural permutation representation of S_r where element of S_r act by permutation matrices.

$\S1$: Foulkes' Conjecture

Let S_r be the symmetric group on $\Omega = \{1, 2, \dots, r\}$.

Let $\mathbf{C}\Omega = \langle e_1, e_2, \dots e_r \rangle$. This is the natural permutation representation of S_r where element of S_r act by permutation matrices.

Vector space decomposition:

$$\mathbf{C}\Omega = \langle e_1 + e_2 + \dots + e_r \rangle \bigoplus \langle e_i - e_j : 1 \leq i < j \leq r \rangle$$
.

$\S1$: Foulkes' Conjecture

Let S_r be the symmetric group on $\Omega = \{1, 2, \dots, r\}$.

Let $\mathbf{C}\Omega = \langle e_1, e_2, \dots e_r \rangle$. This is the natural permutation representation of S_r where element of S_r act by permutation matrices.

Vector space decomposition:

$$\mathbf{C}\Omega = \langle e_1 + e_2 + \cdots + e_r \rangle \bigoplus \langle e_i - e_j : 1 \le i < j \le r \rangle.$$

Each summand is preserved by the action of S_r . No proper subspace of either summand is preserved, so each is an irreducible representation of S_r .

Foulkes' Conjecture

Let *a*, *b* ∈ **N**.

- Let Ω^b_a be the collection of set partitions of {1, 2, ..., ab} into b sets each of size a, acted on by S_{ab}.
- Let $\mathbf{C}\Omega_a^b$ be the corresponding permutation representation of S_{ab} .

If U an irreducible representation of S_{ab} , let $[\mathbf{C}\Omega_a^b: U]$ denote the number of summands of $\mathbf{C}\Omega_a^b$ isomorphic to U.

Foulkes' Conjecture

Let *a*, *b* ∈ **N**.

- Let Ω^b_a be the collection of set partitions of {1, 2, ..., ab} into b sets each of size a, acted on by S_{ab}.
- Let $\mathbf{C}\Omega_a^b$ be the corresponding permutation representation of S_{ab} .

If U an irreducible representation of S_{ab} , let $[\mathbf{C}\Omega_a^b: U]$ denote the number of summands of $\mathbf{C}\Omega_a^b$ isomorphic to U.

Conjecture (Foulkes' Conjecture)

If a < b and U is an irreducible representation of S_{ab} then

 $[\mathbf{C}\Omega_a^b:U] \ge [\mathbf{C}\Omega_b^a:U].$

Conjecture (Foulkes' Conjecture) If a < b and U is an irreducible representation of S_{ab} then

 $[\mathbf{C}\Omega_a^b:U] \ge [\mathbf{C}\Omega_b^a:U].$

Proved for:

• *a* = 2, Thrall 1942;

Conjecture (Foulkes' Conjecture)

If a < b and U is an irreducible representation of S_{ab} then

$$[\mathbf{C}\Omega_a^b:U] \ge [\mathbf{C}\Omega_b^a:U].$$

- *a* = 2, Thrall 1942;
- *b* sufficiently large compared to *a*, Brion 1993;

Conjecture (Foulkes' Conjecture)

If a < b and U is an irreducible representation of S_{ab} then

$$[\mathbf{C}\Omega_a^b:U] \ge [\mathbf{C}\Omega_b^a:U].$$

- *a* = 2, Thrall 1942;
- *b* sufficiently large compared to *a*, Brion 1993;
- *a* = 3, Dent–Siemons 1998;

Conjecture (Foulkes' Conjecture)

If a < b and U is an irreducible representation of S_{ab} then

$$[\mathbf{C}\Omega_a^b:U] \geq [\mathbf{C}\Omega_b^a:U].$$

- *a* = 2, Thrall 1942;
- *b* sufficiently large compared to *a*, Brion 1993;
- *a* = 3, Dent–Siemons 1998;
- a + b ≤ 20, Mueller–Neunhöffer 2005;

Conjecture (Foulkes' Conjecture)

If a < b and U is an irreducible representation of S_{ab} then

$$[\mathbf{C}\Omega_a^b:U] \ge [\mathbf{C}\Omega_b^a:U].$$

- *a* = 2, Thrall 1942;
- b sufficiently large compared to a, Brion 1993;
- *a* = 3, Dent–Siemons 1998;
- $a + b \le 20$, Mueller–Neunhöffer 2005;
- *a* = 4, McKay 2008.

Other settings for Foulkes' Conjecture

Other settings for Foulkes' Conjecture

Other settings for Foulkes' Conjecture

$\S2$ Irreducible representations of S_r

Indexed by partitions of r, e.g. $(5,2,2) \in Par(9)$.

Specht module S^{λ} is irreducible representation labelled by λ . Linearly spanned by all λ -tableaux: e.g. if $\lambda = (4, 2)$ then $S^{(4,2)}$ consists of all linear combinations of

Satisfies Garnir relations:

• Column swaps:

$$\begin{bmatrix}
 4 & 3 & 5 & 6 \\
 1 & 2
 \end{bmatrix}
 =
 -
 \begin{bmatrix}
 1 & 3 & 5 & 6 \\
 4 & 2
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 2 & 5 & 6 \\
 4 & 3
 \end{bmatrix}$$

• Shuffles.

$\S2$ Irreducible representations of S_r

Indexed by partitions of r, e.g. $(5,2,2) \in Par(9)$.

Specht module S^{λ} is irreducible representation labelled by λ . Linearly spanned by all λ -tableaux: e.g. if $\lambda = (4, 2)$ then $S^{(4,2)}$ consists of all linear combinations of

Satisfies Garnir relations:

• Column swaps:

$$\begin{bmatrix}
 4 & 3 & 5 & 6 \\
 1 & 2
 \end{bmatrix}
 =
 -
 \begin{bmatrix}
 1 & 3 & 5 & 6 \\
 4 & 2
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 2 & 5 & 6 \\
 4 & 3
 \end{bmatrix}$$

• Shuffles. Related to determinantal identities:

$$\begin{vmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{vmatrix} \begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix} = \begin{vmatrix} \mathbf{a} & \beta \\ \mathbf{c} & \delta \end{vmatrix} \begin{vmatrix} \mathbf{b} & \alpha \\ \mathbf{d} & \gamma \end{vmatrix} - \begin{vmatrix} \mathbf{a} & \alpha \\ \mathbf{c} & \gamma \end{vmatrix} \begin{vmatrix} \beta & \mathbf{b} \\ \delta & \mathbf{d} \end{vmatrix}$$

Hook formula

The set of tableaux whose rows increase from left to right, and whose columns increase from top to bottom form a basis for S^{λ} .

The hook formula states that if λ is a partition of r

$$\dim S^{\lambda} = \frac{r!}{\prod_{\alpha \in \lambda} h_{\alpha}}$$

where h_{α} is the hook-length of the box α . For example, the red box has hook-length 6 and dim $S^{(5,4,2,1)} = \frac{12!}{8.6.4.3.1.6.4.2.1.3.1.1}$.

8	6	4	3	1
6	4	2	1	
3	1		•	
1				

$\S3$: Set families and maps

- A set family of shape (a^b) is a collection \mathcal{P} of b different sets each of size a.
- Say that \mathcal{P} has type λ if there are λ'_i sets containing *i*.

$\S3$: Set families and maps

- A set family of shape (a^b) is a collection \mathcal{P} of b different sets each of size a.
- Say that \mathcal{P} has type λ if there are λ'_i sets containing *i*.
- If X, Y are sets of size a, say that X is majorized by Y if one can write X = {x₁,..., x_a} and Y = {y₁,..., y_a} where x₁ ≤ y₁, ..., x_a ≤ y_a.
- Say that \mathcal{P} is closed if $Y \in \mathcal{P}, \ X \preceq Y \implies X \in \mathcal{P}$

Theorem

Let a be odd. If there is a closed set family of shape (a^b) and type λ then $[\mathbf{C}\Omega_a^b: S^{\lambda}] \geq 1$.

Minimal constituents

- Say that a set family \mathcal{P} is minimal if \mathcal{P} has minimal type (in the dominance order) for its shape.
- Say that S^λ is a minimal constituent of CΩ^b_a if [CΩ^b_a : S^λ] ≥ 1 and λ is minimal with this property.

Theorem

If a is odd then S^{λ} is a minimal constituent of $\mathbf{C}\Omega_{a}^{b}$ if and only if there is a minimal set family of shape (a^{b}) and type λ .

Minimal constituents

- Say that a set family \mathcal{P} is minimal if \mathcal{P} has minimal type (in the dominance order) for its shape.
- Say that S^λ is a minimal constituent of CΩ^b_a if [CΩ^b_a : S^λ] ≥ 1 and λ is minimal with this property.

Theorem

If a is odd then S^{λ} is a minimal constituent of $\mathbf{C}\Omega_a^b$ if and only if there is a minimal set family of shape (a^b) and type λ .

Theorem Let \mathcal{P} be a set family. Then

 \mathcal{P} unique of its type $\implies \mathcal{P}$ minimal $\implies \mathcal{P}$ closed.

None of these implications is reversible.