A tour of Foulkes' Conjecture

Mark Wildon (joint work with Rowena Paget)

Kunt

Outline

(1) Foulkes' Conjecture
(2) Irreducible representations of symmetric groups
(3) Set families and maps

§1: Foulkes' Conjecture

Let S_{r} be the symmetric group on $\Omega=\{1,2, \ldots, r\}$.
Let $\mathbf{C} \Omega=\left\langle e_{1}, e_{2}, \ldots e_{r}\right\rangle$. This is the natural permutation representation of S_{r} where element of S_{r} act by permutation matrices.

$\S 1: ~ F o u l k e s ' ~ C o n j e c t u r e ~$

Let S_{r} be the symmetric group on $\Omega=\{1,2, \ldots, r\}$.
Let $\mathbf{C} \Omega=\left\langle e_{1}, e_{2}, \ldots e_{r}\right\rangle$. This is the natural permutation representation of S_{r} where element of S_{r} act by permutation matrices.

Vector space decomposition:

$$
\mathbf{C} \Omega=\left\langle e_{1}+e_{2}+\cdots+e_{r}\right\rangle \bigoplus\left\langle e_{i}-e_{j}: 1 \leq i<j \leq r\right\rangle
$$

§1: Foulkes' Conjecture

Let S_{r} be the symmetric group on $\Omega=\{1,2, \ldots, r\}$.
Let $\mathbf{C} \Omega=\left\langle e_{1}, e_{2}, \ldots e_{r}\right\rangle$. This is the natural permutation representation of S_{r} where element of S_{r} act by permutation matrices.

Vector space decomposition:

$$
\mathbf{C} \Omega=\left\langle e_{1}+e_{2}+\cdots+e_{r}\right\rangle \bigoplus\left\langle e_{i}-e_{j}: 1 \leq i<j \leq r\right\rangle
$$

Each summand is preserved by the action of S_{r}. No proper subspace of either summand is preserved, so each is an irreducible representation of S_{r}.

Foulkes' Conjecture

- Let $a, b \in \mathbf{N}$.
- Let Ω_{a}^{b} be the collection of set partitions of $\{1,2, \ldots, a b\}$ into b sets each of size a, acted on by $S_{a b}$.
- Let $\mathbf{C} \Omega_{a}^{b}$ be the corresponding permutation representation of $S_{a b}$.
If U an irreducible representation of $S_{a b}$, let $\left[\mathbf{C} \Omega_{a}^{b}: U\right]$ denote the number of summands of $\mathbf{C} \Omega_{a}^{b}$ isomorphic to U.

Foulkes' Conjecture

- Let $a, b \in \mathbf{N}$.
- Let Ω_{a}^{b} be the collection of set partitions of $\{1,2, \ldots, a b\}$ into b sets each of size a, acted on by $S_{a b}$.
- Let $\mathbf{C} \Omega_{a}^{b}$ be the corresponding permutation representation of $S_{a b}$.
If U an irreducible representation of $S_{a b}$, let $\left[\mathbf{C} \Omega_{a}^{b}: U\right]$ denote the number of summands of $\mathbf{C} \Omega_{a}^{b}$ isomorphic to U.

Conjecture (Foulkes' Conjecture)
If $a<b$ and U is an irreducible representation of $S_{a b}$ then

$$
\left[\mathbf{C} \Omega_{a}^{b}: U\right] \geq\left[\mathbf{C} \Omega_{b}^{a}: U\right] .
$$

Progress so far

Conjecture (Foulkes' Conjecture)
If $a<b$ and U is an irreducible representation of $S_{a b}$ then

$$
\left[\mathbf{C} \Omega_{a}^{b}: U\right] \geq\left[\mathbf{C} \Omega_{b}^{a}: U\right] .
$$

Proved for:

- $a=2$, Thrall 1942;

Progress so far

Conjecture (Foulkes' Conjecture)
If $a<b$ and U is an irreducible representation of $S_{a b}$ then

$$
\left[\mathbf{C} \Omega_{a}^{b}: U\right] \geq\left[\mathbf{C} \Omega_{b}^{a}: U\right] .
$$

Proved for:

- $a=2$, Thrall 1942;
- b sufficiently large compared to a, Brion 1993;

Progress so far

Conjecture (Foulkes' Conjecture)
If $a<b$ and U is an irreducible representation of $S_{a b}$ then

$$
\left[\mathbf{C} \Omega_{a}^{b}: U\right] \geq\left[\mathbf{C} \Omega_{b}^{a}: U\right] .
$$

Proved for:

- $a=2$, Thrall 1942;
- b sufficiently large compared to a, Brion 1993;
- $a=3$, Dent-Siemons 1998;

Progress so far

Conjecture (Foulkes' Conjecture)
If $a<b$ and U is an irreducible representation of $S_{a b}$ then

$$
\left[\mathbf{C} \Omega_{a}^{b}: U\right] \geq\left[\mathbf{C} \Omega_{b}^{a}: U\right] .
$$

Proved for:

- $a=2$, Thrall 1942;
- b sufficiently large compared to a, Brion 1993;
- $a=3$, Dent-Siemons 1998;
- $a+b \leq 20$, Mueller-Neunhöffer 2005;

Progress so far

Conjecture (Foulkes' Conjecture)

If $a<b$ and U is an irreducible representation of $S_{a b}$ then

$$
\left[\mathbf{C} \Omega_{a}^{b}: U\right] \geq\left[\mathbf{C} \Omega_{b}^{a}: U\right] .
$$

Proved for:

- $a=2$, Thrall 1942;
- b sufficiently large compared to a, Brion 1993;
- $a=3$, Dent-Siemons 1998;
- $a+b \leq 20$, Mueller-Neunhöffer 2005;
- $a=4$, McKay 2008.

Other settings for Foulkes' Conjecture

Representations of symmetric groups

Polynomial representations of $\mathrm{GL}(E)$ where $E=\mathbf{C}^{n}$

Other settings for Foulkes' Conjecture

Representations of symmetric groups

Polynomial representations of $\mathrm{GL}(E)$ where $E=\mathbf{C}^{n}$

Formal characters

Other settings for Foulkes' Conjecture

Representations of symmetric groups

Polynomial representations of $\mathrm{GL}(E)$ where $E=\mathbf{C}^{n}$

Formal characters

§2 Irreducible representations of S_{r}

Indexed by partitions of r, e.g. $(5,2,2) \in \operatorname{Par}(9)$.
Specht module S^{λ} is irreducible representation labelled by λ. Linearly spanned by all λ-tableaux: e.g. if $\lambda=(4,2)$ then $S^{(4,2)}$ consists of all linear combinations of

$$
\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & &
\end{array}, \quad \begin{array}{|l|l|l|l|}
\hline 4 & 3 & 5 & 6 \\
\hline 1 & 2 & & \\
\hline
\end{array}, \quad \begin{array}{|l|l|l|l|}
\hline 6 & 5 & 4 & 3 \\
\hline 2 & 1 & & \\
\hline
\end{array}, \ldots
$$

Satisfies Garnir relations:

- Column swaps:

$$
\left.\begin{array}{|l|l|l|l|}
\hline 4 & 3 & 5 & 6 \\
\hline 1 & 2 & & \\
\hline
\end{array}=- \right\rvert\, \begin{array}{|l|l|}
\hline 4 & 3 \\
& \\
\hline
\end{array}
$$

- Shuffles.

§2 Irreducible representations of S_{r}

Indexed by partitions of r, e.g. $(5,2,2) \in \operatorname{Par}(9)$.
Specht module S^{λ} is irreducible representation labelled by λ. Linearly spanned by all λ-tableaux: e.g. if $\lambda=(4,2)$ then $S^{(4,2)}$ consists of all linear combinations of

1	2	3	4					
5	6			,	4	3	5	6
:---	:---	:---	:---					
1	2			,	6	5	4	3
:---	:---	:---	:---					
2	1			,\ldots				

Satisfies Garnir relations:

- Column swaps:

$$
\left.\begin{array}{|l|l|l|l|}
\hline 4 & 3 & 5 & 6 \\
\hline 1 & 2 & & \\
\hline
\end{array}=- \right\rvert\, \begin{array}{|l|l|}
\hline 4 & 3
\end{array}
$$

- Shuffles. Related to determinantal identities:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|\left|\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right|=\left|\begin{array}{ll}
a & \beta \\
c & \delta
\end{array}\right|\left|\begin{array}{ll}
b & \alpha \\
d & \gamma
\end{array}\right|-\left|\begin{array}{ll}
a & \alpha \\
c & \gamma
\end{array}\right|\left|\begin{array}{ll}
\beta & b \\
\delta & d
\end{array}\right|
$$

Hook formula

The set of tableaux whose rows increase from left to right, and whose columns increase from top to bottom form a basis for S^{λ}.

The hook formula states that if λ is a partition of r

$$
\operatorname{dim} S^{\lambda}=\frac{r!}{\prod_{\alpha \in \lambda} h_{\alpha}}
$$

where h_{α} is the hook-length of the box α. For example, the red box has hook-length 6 and $\operatorname{dim} S^{(5,4,2,1)}=\frac{12!}{8.6 .4 .3 \cdot 1 \cdot 6 \cdot 4.2 \cdot 1 \cdot 3 \cdot 1.1}$.

§3: Set families and maps

- A set family of shape $\left(a^{b}\right)$ is a collection \mathcal{P} of b different sets each of size a.
- Say that \mathcal{P} has type λ if there are λ_{i}^{\prime} sets containing i.

§3: Set families and maps

- A set family of shape $\left(a^{b}\right)$ is a collection \mathcal{P} of b different sets each of size a.
- Say that \mathcal{P} has type λ if there are λ_{i}^{\prime} sets containing i.
- If X, Y are sets of size a, say that X is majorized by Y if one can write $X=\left\{x_{1}, \ldots, x_{a}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{a}\right\}$ where $x_{1} \leq y_{1}, \ldots, x_{a} \leq y_{a}$.
- Say that \mathcal{P} is closed if $Y \in \mathcal{P}, X \preceq Y \Longrightarrow X \in \mathcal{P}$

Theorem

Let a be odd. If there is a closed set family of shape $\left(a^{b}\right)$ and type λ then $\left[\mathbf{C} \Omega_{a}^{b}: S^{\lambda}\right] \geq 1$.

Minimal constituents

- Say that a set family \mathcal{P} is minimal if \mathcal{P} has minimal type (in the dominance order) for its shape.
- Say that S^{λ} is a minimal constituent of $\mathbf{C} \Omega_{a}^{b}$ if $\left[\mathbf{C} \Omega_{a}^{b}: S^{\lambda}\right] \geq 1$ and λ is minimal with this property.

Theorem

If a is odd then S^{λ} is a minimal constituent of $\mathbf{C} \Omega_{a}^{b}$ if and only if there is a minimal set family of shape $\left(a^{b}\right)$ and type λ.

Minimal constituents

- Say that a set family \mathcal{P} is minimal if \mathcal{P} has minimal type (in the dominance order) for its shape.
- Say that S^{λ} is a minimal constituent of $\mathbf{C} \Omega_{a}^{b}$ if $\left[\mathbf{C} \Omega_{a}^{b}: S^{\lambda}\right] \geq 1$ and λ is minimal with this property.

Theorem

If a is odd then S^{λ} is a minimal constituent of $\mathbf{C} \Omega_{a}^{b}$ if and only if there is a minimal set family of shape (a^{b}) and type λ.

Theorem
Let \mathcal{P} be a set family. Then

$$
\mathcal{P} \text { unique of its type } \Longrightarrow \mathcal{P} \text { minimal } \Longrightarrow \mathcal{P} \text { closed. }
$$

None of these implications is reversible.

