A tour of Foulkes’ Conjecture

Mark Wildon (joint work with Rowena Paget)
Outline

(1) Foulkes’ Conjecture
(2) Irreducible representations of symmetric groups
(3) Set families and maps
Let S_r be the symmetric group on $\Omega = \{1, 2, \ldots, r\}$.

Let $C\Omega = \langle e_1, e_2, \ldots, e_r \rangle$. This is the natural permutation representation of S_r where element of S_r act by permutation matrices.
Let S_r be the symmetric group on $\Omega = \{1, 2, \ldots, r\}$.

Let $C\Omega = \langle e_1, e_2, \ldots, e_r \rangle$. This is the natural permutation representation of S_r where element of S_r act by permutation matrices.

Vector space decomposition:

$$C\Omega = \langle e_1 + e_2 + \cdots + e_r \rangle \bigoplus \langle e_i - e_j : 1 \leq i < j \leq r \rangle.$$
Let S_r be the symmetric group on $\Omega = \{1, 2, \ldots, r\}$.

Let $\mathbf{C} \Omega = \langle e_1, e_2, \ldots, e_r \rangle$. This is the natural permutation representation of S_r where element of S_r act by permutation matrices.

Vector space decomposition:

$$\mathbf{C} \Omega = \langle e_1 + e_2 + \cdots + e_r \rangle \bigoplus \langle e_i - e_j : 1 \leq i < j \leq r \rangle.$$

Each summand is preserved by the action of S_r. No proper subspace of either summand is preserved, so each is an irreducible representation of S_r.
Foulkes’ Conjecture

- Let $a, b \in \mathbb{N}$.
- Let Ω^b_a be the collection of set partitions of $\{1, 2, \ldots, ab\}$ into b sets each of size a, acted on by S_{ab}.
- Let \mathcal{C}_a^b be the corresponding permutation representation of S_{ab}.

If U an irreducible representation of S_{ab}, let $[\mathcal{C}_a^b : U]$ denote the number of summands of \mathcal{C}_a^b isomorphic to U.
Foulkes’ Conjecture

- Let $a, b \in \mathbb{N}$.
- Let Ω^b_a be the collection of set partitions of $\{1, 2, \ldots, ab\}$ into b sets each of size a, acted on by S_{ab}.
- Let $C\Omega^b_a$ be the corresponding permutation representation of S_{ab}.

If U an irreducible representation of S_{ab}, let $[C\Omega^b_a : U]$ denote the number of summands of $C\Omega^b_a$ isomorphic to U.

Conjecture (Foulkes’ Conjecture)

If $a < b$ and U is an irreducible representation of S_{ab} then

$$[C\Omega^b_a : U] \geq [C\Omega^a_b : U].$$
Progress so far

Conjecture (Foulkes’ Conjecture)

If \(a < b \) and \(U \) is an irreducible representation of \(S_{ab} \) then

\[
[C \Omega_b^a : U] \geq [C \Omega_b^a : U].
\]

Proved for:

- \(a = 2 \), Thrall 1942;
Progress so far

Conjecture (Foulkes’ Conjecture)

If $a < b$ and U is an irreducible representation of S_{ab} then

$$\left[C\Omega^b_a : U \right] \geq \left[C\Omega^a_b : U \right].$$

Proved for:

- $a = 2$, Thrall 1942;
- b sufficiently large compared to a, Brion 1993;
Progress so far

Conjecture (Foulkes’ Conjecture)

If \(a < b \) and \(U \) is an irreducible representation of \(S_{ab} \) then

\[
[C \Omega^b_a : U] \geq [C \Omega^a_b : U].
\]

Proved for:

- \(a = 2 \), Thrall 1942;
- \(b \) sufficiently large compared to \(a \), Brion 1993;
- \(a = 3 \), Dent–Siemons 1998;
Progress so far

Conjecture (Foulkes’ Conjecture)

If $a < b$ and U is an irreducible representation of S_{ab} then

$$[\mathcal{C} \Omega^b_a : U] \geq [\mathcal{C} \Omega^a_b : U].$$

Proved for:

- $a = 2$, Thrall 1942;
- b sufficiently large compared to a, Brion 1993;
- $a = 3$, Dent–Siemons 1998;
- $a + b \leq 20$, Mueller–Neunhöffer 2005;
Progress so far

Conjecture (Foulkes’ Conjecture)

If \(a < b \) and \(U \) is an irreducible representation of \(S_{ab} \) then

\[
[C\Omega^b_a : U] \geq [C\Omega^a_b : U].
\]

Proved for:

- \(a = 2 \), Thrall 1942;
- \(b \) sufficiently large compared to \(a \), Brion 1993;
- \(a = 3 \), Dent–Siemons 1998;
- \(a + b \leq 20 \), Mueller–Neunhöffer 2005;
- \(a = 4 \), McKay 2008.
Other settings for Foulkes’ Conjecture

Representations of symmetric groups

Polynomial representations of $\text{GL}(E)$ where $E = \mathbb{C}^n$
Symmetric functions
Other settings for Foulkes’ Conjecture

Representations of symmetric groups

Schur functor

Characteristic map

Polynomial representations of $\text{GL}(E)$ where $E = \mathbb{C}^n$

Symmetric functions

Formal characters
Other settings for Foulkes’ Conjecture

Representations of symmetric groups

Schur functor

$S^r E$

Polynomial representations of $GL(E)$ where $E = \mathbb{C}^n$

Characteristic map

h_r

$h_r(x, y) = x^r + x^{r-1}y + \cdots + y^r$

Symmetric functions

Formal characters
§2 Irreducible representations of S_r

Indexed by partitions of r, e.g. $(5, 2, 2) \in \text{Par}(9)$.

Specht module S^λ is irreducible representation labelled by λ. Linearly spanned by all λ-tableaux: e.g. if $\lambda = (4, 2)$ then $S^{(4,2)}$ consists of all linear combinations of

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 \\
\end{array}, \quad \begin{array}{cccc}
4 & 3 & 5 & 6 \\
1 & 2 \\
\end{array}, \quad \begin{array}{cccc}
6 & 5 & 4 & 3 \\
2 & 1 \\
\end{array}, \ldots
\]

Satisfies Garnir relations:

- Column swaps:
 \[
 \begin{array}{cccc}
 4 & 3 & 5 & 6 \\
 1 & 2 \\
 \end{array} = \begin{array}{cccc}
 1 & 3 & 5 & 6 \\
 4 & 2 \\
 \end{array} = \begin{array}{cccc}
 1 & 2 & 5 & 6 \\
 4 & 3 \\
 \end{array}
 \]

- Shuffles.
§2 Irreducible representations of S_r

Indexed by partitions of r, e.g. $(5, 2, 2) \in \text{Par}(9)$.

Specht module S^λ is irreducible representation labelled by λ. Linearly spanned by all λ-tableaux: e.g. if $\lambda = (4, 2)$ then $S^{(4,2)}$ consists of all linear combinations of

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 \\
\end{array}, \quad
\begin{array}{cccc}
4 & 3 & 5 & 6 \\
1 & 2 \\
\end{array}, \quad
\begin{array}{cccc}
6 & 5 & 4 & 3 \\
2 & 1 \\
\end{array}, \ldots
\]

Satisfies Garnir relations:

- Column swaps:

\[
\begin{array}{cccc}
4 & 3 & 5 & 6 \\
1 & 2 \\
\end{array} = - \begin{array}{cccc}
1 & 3 & 5 & 6 \\
4 & 2 \\
\end{array} = \begin{array}{cccc}
1 & 2 & 5 & 6 \\
4 & 3 \\
\end{array}
\]

- Shuffles. Related to determinantal identities:

\[
\begin{vmatrix}
a & b & \alpha & \beta \\
c & d & \gamma & \delta \\
\end{vmatrix} = \begin{vmatrix}
a & \beta & b & \alpha \\
c & \delta & d & \gamma \\
\end{vmatrix} - \begin{vmatrix}
a & \alpha & \beta & b \\
c & \gamma & \delta & d \\
\end{vmatrix}
\]
Hook formula

The set of tableaux whose rows increase from left to right, and whose columns increase from top to bottom form a basis for S^λ.

The hook formula states that if λ is a partition of r

$$\dim S^\lambda = \frac{r!}{\prod_{\alpha \in \lambda} h_\alpha}$$

where h_α is the hook-length of the box α. For example, the red box has hook-length 6 and $\dim S^{(5,4,2,1)} = \frac{12!}{8.6.4.3.1.6.4.2.1.3.1.1}$.

\begin{array}{cccc}
8 & 6 & 4 & 3 \\
6 & 4 & 2 & 1 \\
3 & 1 & & \\
1 & & & \\
\end{array}
A set family of shape \((a^b)\) is a collection \(\mathcal{P}\) of \(b\) different sets each of size \(a\).

Say that \(\mathcal{P}\) has type \(\lambda\) if there are \(\lambda_i\) sets containing \(i\).
A set family of shape \((a^b)\) is a collection \(\mathcal{P}\) of \(b\) different sets each of size \(a\).

Say that \(\mathcal{P}\) has type \(\lambda\) if there are \(\lambda_i\) sets containing \(i\).

If \(X, Y\) are sets of size \(a\), say that \(X\) is majorized by \(Y\) if one can write \(X = \{x_1, \ldots, x_a\}\) and \(Y = \{y_1, \ldots, y_a\}\) where \(x_1 \leq y_1, \ldots, x_a \leq y_a\).

Say that \(\mathcal{P}\) is closed if \(Y \in \mathcal{P}, X \preceq Y \implies X \in \mathcal{P}\)

Theorem

Let \(a\) be odd. If there is a closed set family of shape \((a^b)\) and type \(\lambda\) then \([\mathcal{C} \Omega^b_a : S^\lambda] \geq 1\).
Minimal constituents

- Say that a set family \mathcal{P} is minimal if \mathcal{P} has minimal type (in the dominance order) for its shape.
- Say that S^λ is a minimal constituent of \mathcal{C}^b_a if $[\mathcal{C}^b_a : S^\lambda] \geq 1$ and λ is minimal with this property.

Theorem

If a is odd then S^λ is a minimal constituent of \mathcal{C}^b_a if and only if there is a minimal set family of shape (a^b) and type λ.
Minimal constituents

- Say that a set family \(\mathcal{P} \) is \textit{minimal} if \(\mathcal{P} \) has minimal type (in the dominance order) for its shape.
- Say that \(S^\lambda \) is a \textit{minimal constituent} of \(\mathcal{C}\Omega^b_a \) if \([\mathcal{C}\Omega^b_a : S^\lambda] \geq 1 \) and \(\lambda \) is minimal with this property.

\textbf{Theorem}

If \(a \) is odd then \(S^\lambda \) is a minimal constituent of \(\mathcal{C}\Omega^b_a \) if and only if there is a minimal set family of shape \((a^b)\) and type \(\lambda \).

\textbf{Theorem}

Let \(\mathcal{P} \) be a set family. Then

\[\mathcal{P} \text{ unique of its type} \implies \mathcal{P} \text{ minimal} \implies \mathcal{P} \text{ closed}. \]

None of these implications is reversible.