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§1: Foulkes’ Conjecture

Let Sr be the symmetric group on ⌦ = {1, 2, . . . , r}.

Let C⌦ = he1, e2, . . . er i. This is the natural permutation

representation of Sr where element of Sr act by permutation

matrices.

Vector space decomposition:

C⌦ = he1 + e2 + · · · + er i
M

hei � ej : 1  i < j  ri .

Each summand is preserved by the action of Sr . No proper

subspace of either summand is preserved, so each is an irreducible

representation of Sr .
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Foulkes’ Conjecture

• Let a, b 2 N.

• Let ⌦

b
a be the collection of set partitions of {1, 2, . . . , ab}

into b sets each of size a, acted on by Sab.

• Let C⌦

b
a be the corresponding permutation representation

of Sab.

If U an irreducible representation of Sab, let [C⌦

b
a : U] denote the

number of summands of C⌦

b
a isomorphic to U.

Conjecture (Foulkes’ Conjecture)

If a < b and U is an irreducible representation of Sab then

[C⌦

b
a : U] � [C⌦

a
b : U].
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Progress so far

Conjecture (Foulkes’ Conjecture)

If a < b and U is an irreducible representation of Sab then

[C⌦

b
a : U] � [C⌦

a
b : U].

Proved for:

• a = 2, Thrall 1942;

• b su�ciently large compared to a, Brion 1993;

• a = 3, Dent–Siemons 1998;

• a + b  20, Mueller–Neunhö↵er 2005;

• a = 4, McKay 2008.
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Other settings for Foulkes’ Conjecture

Representations of symmetric groups
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Polynomial representations

of GL(E ) where E = Cn
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§2 Irreducible representations of S
r

Indexed by partitions of r , e.g. (5, 2, 2) 2 Par(9).

Specht module S

�
is irreducible representation labelled by �.

Linearly spanned by all �-tableaux: e.g. if � = (4, 2) then S

(4,2)

consists of all linear combinations of

1 2 3 4

5 6

, 4 3 5 6

1 2

, 6 5 4 3

2 1

, . . .

Satisfies Garnir relations:

• Column swaps:

4 3 5 6

1 2

= �

1 3 5 6

4 2

=

1 2 5 6

4 3

• Shu✏es.

Related to determinantal identities:����
a b

c d

����

����
↵ �
� �

���� =
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a �
c �

����
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b ↵
d �

���� �
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a ↵
c �
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� b

� d
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Hook formula
The set of tableaux whose rows increase from left to right, and

whose columns increase from top to bottom form a basis for S

�
.

The hook formula states that if � is a partition of r

dim S

�
=

r !Q
↵2� h↵

where h↵ is the hook-length of the box ↵. For example, the red

box has hook-length 6 and dim S

(5,4,2,1)
=

12!
8.6.4.3.1.6.4.2.1.3.1.1 .

8 6 4 3 1

6 4 2 1

3 1

1



§3: Set families and maps

• A set family of shape (a

b
) is a collection P of b di↵erent sets

each of size a.

• Say that P has type � if there are �0
i sets containing i .

• If X , Y are sets of size a, say that X is majorized by Y if one

can write X = {x1, . . . , xa} and Y = {y1, . . . , ya} where

x1  y1, . . . , xa  ya.

• Say that P is closed if Y 2 P, X � Y =) X 2 P

Theorem
Let a be odd. If there is a closed set family of shape (a

b
) and

type � then [C⌦

b
a : S

�
] � 1.
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Minimal constituents

• Say that a set family P is minimal if P has minimal type (in

the dominance order) for its shape.

• Say that S

�
is a minimal constituent of C⌦

b
a if [C⌦

b
a : S

�
] � 1

and � is minimal with this property.

Theorem
If a is odd then S

�
is a minimal constituent of C⌦

b
a if and only if

there is a minimal set family of shape (a

b
) and type �.

Theorem
Let P be a set family. Then

P unique of its type =) P minimal =) P closed.

None of these implications is reversible.
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