The counter-intuitive behaviour of high-dimensional spaces

Mark Wildon

Slides are online (two equivalent links):

- http://www.ma.rhul.ac.uk/~uvah099/Talks/ HighDimensionalSpaces.pdf
- https://tinyurl.com/y8mptbej

I will probably have to turn off incoming video and mute everyone except Stefanie to conserve bandwidth. Please type in the chat box if you have a question and Stefanie will alert me if I miss it.

Outline and the wild claim

$\S 1$ Euclidean spaces \mathbb{R}^{n} : spheres and balls
$\S 2$ Binary codes \mathbb{F}_{2}^{n} : the geometry of Hamming balls

Outline and the wild claim

$\S 1$ Euclidean spaces \mathbb{R}^{n} : spheres and balls
$\S 2$ Binary codes \mathbb{F}_{2}^{n} : the geometry of Hamming balls
Quiz. Please order the following numbers:

$$
2^{2^{2^{100}}}, 2^{2^{3^{100}}}, 2^{3^{2^{100}}}, 3^{2^{2^{100}}} .
$$

Outline and the wild claim

$\S 1$ Euclidean spaces \mathbb{R}^{n} : spheres and balls
$\S 2$ Binary codes \mathbb{F}_{2}^{n} : the geometry of Hamming balls
Quiz. Please order the following numbers:

$$
2^{2^{2^{100}}}, 2^{2^{3^{100}}}, 2^{3^{2^{100}}}, 3^{2^{2^{100}}} .
$$

Answer. $2^{2^{2^{100}}}<3^{2^{2^{100}}}<2^{3^{2^{100}}}<2^{2^{3^{100}}}$.

Outline and the wild claim

$\S 1$ Euclidean spaces \mathbb{R}^{n} : spheres and balls
$\S 2$ Binary codes \mathbb{F}_{2}^{n} : the geometry of Hamming balls
Quiz. Please order the following numbers:

$$
2^{2^{2^{100}}}, 2^{2^{3^{100}}}, 2^{3^{2^{100}}}, 3^{2^{2^{100}}} .
$$

Answer. $2^{2^{2^{100}}}<3^{2^{2^{100}}}<2^{3^{2^{100}}}<2^{2^{3^{100}}}$.

- Rule of thumb: all that matters is the number at the top.
- In this spirit:
- \mathbb{F}_{2}^{256} is a finite set and \mathbb{R}^{3} is infinite.
- But there is a sense in which \mathbb{F}_{2}^{256} is still the 'larger' space.

§1 Euclidean space.

Flatland (1884) by Edwin Abbott is
(a) A stinging satire of Victorian society

- Are you an isosceles triangle with a smaller angle of 59.5° ? Sorry, you are a upper-lower middle class tradesman. Maybe your children will be lucky enough to be equilateral and go to university.

§1 Euclidean space.

Flatland (1884) by Edwin Abbott is
(a) A stinging satire of Victorian society

- Are you an isosceles triangle with a smaller angle of 59.5° ? Sorry, you are a upper-lower middle class tradesman. Maybe your children will be lucky enough to be equilateral and go to university.
- Are you a hexagon? Congratulations, you are upper-middle class man and have a life of privilege.

§1 Euclidean space.

Flatland (1884) by Edwin Abbott is
(a) A stinging satire of Victorian society

- Are you an isosceles triangle with a smaller angle of 59.5° ? Sorry, you are a upper-lower middle class tradesman. Maybe your children will be lucky enough to be equilateral and go to university.
- Are you a hexagon? Congratulations, you are upper-middle class man and have a life of privilege.
- Are you a line segment? [The appalling truth this reveals about Victorian society will be revealed verbally.]

§1 Euclidean space.

Flatland (1884) by Edwin Abbott is
(a) A stinging satire of Victorian society

- Are you an isosceles triangle with a smaller angle of 59.5° ? Sorry, you are a upper-lower middle class tradesman. Maybe your children will be lucky enough to be equilateral and go to university.
- Are you a hexagon? Congratulations, you are upper-middle class man and have a life of privilege.
- Are you a line segment? [The appalling truth this reveals about Victorian society will be revealed verbally.]
(b) A nice introduction to geometric reasoning by analogy

§1 Euclidean space.

Flatland (1884) by Edwin Abbott is
(a) A stinging satire of Victorian society

- Are you an isosceles triangle with a smaller angle of 59.5° ? Sorry, you are a upper-lower middle class tradesman. Maybe your children will be lucky enough to be equilateral and go to university.
- Are you a hexagon? Congratulations, you are upper-middle class man and have a life of privilege.
- Are you a line segment? [The appalling truth this reveals about Victorian society will be revealed verbally.]
(b) A nice introduction to geometric reasoning by analogy

(c) Highly recommended.

n-Sphereland

Let $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$ be the solid n-dimensional unit ball and let

$$
S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}
$$

be the n-dimensional sphere: it is the surface of B^{n+1}.

n-Sphereland

Let $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$ be the solid n-dimensional unit ball and let

$$
S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}
$$

be the n-dimensional sphere: it is the surface of B^{n+1}.
In ' n-Sphereland' the inhabitants are uniformly distributed on S^{n}.

n-Sphereland

Let $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$ be the solid n-dimensional unit ball and let

$$
S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}
$$

be the n-dimensional sphere: it is the surface of B^{n+1}.
In ' n-Sphereland' the inhabitants are uniformly distributed on S^{n}.

$$
\begin{aligned}
& \theta=59.6^{\circ}, z=\sin 59.6^{\circ} \approx 0.863 \\
& \theta=40^{\circ}, z=\sin 40^{\circ} \approx 0.643 \\
& \theta=25^{\circ}, z=\sin 25^{\circ} \approx 0.423
\end{aligned}
$$

Question: let $\left(X_{1}, \ldots, X_{n}, Z\right)$ be the coordinate of a randomly chosen n-Spherelander. Is Z uniformly distributed?

n-Sphereland

Let $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$ be the solid n-dimensional unit ball and let

$$
S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}
$$

be the n-dimensional sphere: it is the surface of B^{n+1}.
In ' n-Sphereland' the inhabitants are uniformly distributed on S^{n}.

$$
\begin{aligned}
& \theta=59.6^{\circ}, z=\sin 59.6^{\circ} \approx 0.863 \\
& \theta=40^{\circ}, z=\sin 40^{\circ} \approx 0.643 \\
& \theta=25^{\circ}, z=\sin 25^{\circ} \approx 0.423
\end{aligned}
$$

Question: let $\left(X_{1}, \ldots, X_{n}, Z\right)$ be the coordinate of a randomly chosen n-Spherelander. Is Z uniformly distributed?

Answer: Yes if $n=2$

Answer: Yes if $n=2$

Answer: Yes if $n=2$

- The length squared of the red line segment tangent to the circle is

$$
\left(\frac{z}{y} k\right)^{2}+k^{2}=k^{2}\left(\frac{z^{2}}{y^{2}}+1\right)=k^{2}\left(\frac{z^{2}+y^{2}}{y^{2}}\right)=\frac{k^{2}}{1-z^{2}}
$$

Answer: Yes if $n=2$

- The length squared of the red line segment tangent to the circle is

$$
\left(\frac{z}{y} k\right)^{2}+k^{2}=k^{2}\left(\frac{z^{2}}{y^{2}}+1\right)=k^{2}\left(\frac{z^{2}+y^{2}}{y^{2}}\right)=\frac{k^{2}}{1-z^{2}}
$$

- Hence the surface area of the part of the sphere between heights z and $z+k$ is (to first order in k)

$$
\frac{k}{\sqrt{1-z^{2}}} \times \text { circumference of latitude circle at height } z .
$$

Answer: Yes if $n=2$

- The length squared of the red line segment tangent to the circle is

$$
\left(\frac{z}{y} k\right)^{2}+k^{2}=k^{2}\left(\frac{z^{2}}{y^{2}}+1\right)=k^{2}\left(\frac{z^{2}+y^{2}}{y^{2}}\right)=\frac{k^{2}}{1-z^{2}}
$$

- Hence the surface area of the part of the sphere between heights z and $z+k$ is (to first order in k)

$$
\frac{k}{\sqrt{1-z^{2}}} \times \text { circumference of latitude circle at height } z .
$$

- This is $\frac{k}{\sqrt{1-z^{2}}} \sqrt{1-z^{2}}=k$, independent of z.

Answer: No if $n \neq 2$

To generalize, replace the circumference of the latitude circle at height z with the surface area of S^{n-1} of radius $\sqrt{1-z^{2}}$.
By dimensional analysis, the probability density function of Z is proportional to $\frac{1}{\sqrt{1-z^{2}}}\left(\sqrt{1-z^{2}}\right)^{n-1}=\sqrt{1-z^{2}}{ }^{n-2}$.

Answer: No if $n \neq 2$

To generalize, replace the circumference of the latitude circle at height z with the surface area of S^{n-1} of radius $\sqrt{1-z^{2}}$.
By dimensional analysis, the probability density function of Z is proportional to $\frac{1}{\sqrt{1-z^{2}}}\left(\sqrt{1-z^{2}}\right)^{n-1}=\sqrt{1-z^{2}}{ }^{n-2}$.

- For large n, by the Law of Large Numbers, $Z \approx \frac{1}{\sqrt{n}}$ with high probability.

Answer: No if $n \neq 2$

To generalize, replace the circumference of the latitude circle at height z with the surface area of S^{n-1} of radius $\sqrt{1-z^{2}}$.
By dimensional analysis, the probability density function of Z is proportional to $\frac{1}{\sqrt{1-z^{2}}}\left(\sqrt{1-z^{2}}\right)^{n-1}={\sqrt{1-z^{2}}}^{n-2}$.

- For large n, by the Law of Large Numbers, $Z \approx \frac{1}{\sqrt{n}}$ with high probability.
- In fact all coordinates are about $\frac{1}{\sqrt{n}}$ with high probability.

Volume of the unit ball

Question 1. What dimension maximizes the volume of the unit ball $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$?
Question 2. What proportion of the unit cube $[-1,1]^{n}$ is occupied by B^{n} ?

Volume of the unit ball

Question 1. What dimension maximizes the volume of the unit ball $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$?
Question 2. What proportion of the unit cube $[-1,1]^{n}$ is occupied by B^{n} ?

n	1	2	3	4	5	6	7
V_{n}	2	π	$\frac{4 \pi}{3}$	$\frac{\pi^{2}}{2}$	$\frac{8 \pi^{2}}{15}$	$\frac{16 \pi^{3}}{15}$	$\frac{\pi^{4}}{3}$
$V_{n} \approx$	2	3.142	4.189	4.935	5.264	5.168	4.725

Volume of the unit ball

Question 1. What dimension maximizes the volume of the unit ball $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$?
Question 2. What proportion of the unit cube $[-1,1]^{n}$ is occupied by B^{n} ?

n	1	2	3	4	5	6	7
V_{n}	2	π	$\frac{4 \pi}{3}$	$\frac{\pi^{2}}{2}$	$\frac{8 \pi^{2}}{15}$	$\frac{16 \pi^{3}}{15}$	$\frac{\pi^{4}}{3}$
$V_{n} \approx$	2	3.142	4.189	4.935	5.264	5.168	4.725
$V_{n} / 2^{n}$	1	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi^{2}}{32}$	$\frac{\pi^{2}}{60}$	$\frac{\pi^{3}}{384}$	$\frac{\pi^{3}}{840}$
$V_{n} / 2^{n} \approx$	1	0.785	0.524	0.308	0.164	0.081	0.037

Volume of the unit ball

Question 1. What dimension maximizes the volume of the unit ball $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$?
Question 2. What proportion of the unit cube $[-1,1]^{n}$ is occupied by B^{n} ?

n	1	2	3	4	5	6	7
V_{n}	2	π	$\frac{4 \pi}{3}$	$\frac{\pi^{2}}{2}$	$\frac{8 \pi^{2}}{15}$	$\frac{16 \pi^{3}}{15}$	$\frac{\pi^{4}}{3}$
$V_{n} \approx$	2	3.142	4.189	4.935	5.264	5.168	4.725
$V_{n} / 2^{n}$	1	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi^{2}}{32}$	$\frac{\pi^{2}}{60}$	$\frac{\pi^{3}}{384}$	$\frac{\pi^{3}}{840}$
$V_{n} / 2^{n} \approx$	1	0.785	0.524	0.308	0.164	0.081	0.037

In particular

$$
\frac{V_{2 m}}{2^{2 m}}=\left(\frac{\pi}{4}\right)^{m} \frac{1}{m!}
$$

which tends to 0 faster than any exponential. So high-dimensional balls are tiny

$\S 2$ Binary codes: \mathbb{F}_{2}^{n} and Hamming balls

Let $C \subseteq \mathbb{F}_{2}^{n}$ be a binary code.
In nearest neighbour decoding, a received word $v \in \mathbb{F}_{2}^{n}$ is decoded as the codeword $u \in C$ nearest to v with respect to Hamming distance:

$$
d(u, v)=\left|\left\{i \in\{1, \ldots, n\}: u_{i} \neq v_{i}\right\}\right| .
$$

(If there are several, pick one at random, and fear the worst.)
For instance let $n=4$ and $C=\{0000,1110\}$.

- Suppose 0000 is sent and, because of noise in the channel, 0011 is received. Since

$$
d(0000,0011)=2<d(1110,0011)=3
$$

nearest neighbour decoding succeeds,

- If instead 1100 is received, then nearest neighbour decoding fails.

Shannon's probabilistic model

Let $C \subseteq \mathbb{F}_{2}^{n}$ be a binary code. Let $p<\frac{1}{2}$.

- When $u \in C$ is sent, each bit is flipped independently with probability p.

Shannon's probabilistic model

Let $C \subseteq \mathbb{F}_{2}^{n}$ be a binary code. Let $p<\frac{1}{2}$.

- When $u \in C$ is sent, each bit is flipped independently with probability p. So typically $p n$ bits flip.

Shannon's probabilistic model

Let $C \subseteq \mathbb{F}_{2}^{n}$ be a binary code. Let $p<\frac{1}{2}$.

- When $u \in C$ is sent, each bit is flipped independently with probability p. So typically $p n$ bits flip.
- The amount of information in a received bit is $1-h(p)$, where

$$
h(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)
$$

is the entropy (uncertainty) in each flipped bit. E.g. $h\left(\frac{1}{4}\right) \approx 0.811$ and $1-h\left(\frac{1}{4}\right) \approx 0.189$. So a $\frac{1}{4}$-noisy bit conveys 0.189 bits of information.

Shannon's probabilistic model

Let $C \subseteq \mathbb{F}_{2}^{n}$ be a binary code. Let $p<\frac{1}{2}$.

- When $u \in C$ is sent, each bit is flipped independently with probability p. So typically $p n$ bits flip.
- The amount of information in a received bit is $1-h(p)$, where

$$
h(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)
$$

is the entropy (uncertainty) in each flipped bit. E.g. $h\left(\frac{1}{4}\right) \approx 0.811$ and $1-h\left(\frac{1}{4}\right) \approx 0.189$. So a $\frac{1}{4}$-noisy bit conveys 0.189 bits of information.

- Shannon's Noisy Coding Theorem says that if $\rho<1-h(p)$ then in a randomly chosen code of size $2^{\rho n}$, nearest neighbour decoding almost always succeeds.

Shannon's probabilistic model

Let $C \subseteq \mathbb{F}_{2}^{n}$ be a binary code. Let $p<\frac{1}{2}$.

- When $u \in C$ is sent, each bit is flipped independently with probability p. So typically $p n$ bits flip.
- The amount of information in a received bit is $1-h(p)$, where

$$
h(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)
$$

is the entropy (uncertainty) in each flipped bit. E.g. $h\left(\frac{1}{4}\right) \approx 0.811$ and $1-h\left(\frac{1}{4}\right) \approx 0.189$. So a $\frac{1}{4}$-noisy bit conveys 0.189 bits of information.

- Shannon's Noisy Coding Theorem says that if $\rho<1-h(p)$ then in a randomly chosen code of size $2^{\rho n}$, nearest neighbour decoding almost always succeeds.
- Thus we can send up to $1-h(p)$ bits of (reliable) information for each bit sent through the channel. For instance,
- The maximum 4G data rate is 100 million bits per second.

Shannon's probabilistic model

Let $C \subseteq \mathbb{F}_{2}^{n}$ be a binary code. Let $p<\frac{1}{2}$.

- When $u \in C$ is sent, each bit is flipped independently with probability p. So typically pn bits flip.
- The amount of information in a received bit is $1-h(p)$, where

$$
h(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)
$$

is the entropy (uncertainty) in each flipped bit. E.g. $h\left(\frac{1}{4}\right) \approx 0.811$ and $1-h\left(\frac{1}{4}\right) \approx 0.189$. So a $\frac{1}{4}$-noisy bit conveys 0.189 bits of information.

- Shannon's Noisy Coding Theorem says that if $\rho<1-h(p)$ then in a randomly chosen code of size $2^{\rho n}$, nearest neighbour decoding almost always succeeds.
- Thus we can send up to $1-h(p)$ bits of (reliable) information for each bit sent through the channel. For instance,
- The maximum 4G data rate is 100 million bits per second.
- [I should know, I have tried all four networks.]
- If $p=\frac{1}{4}$ then since $1-h\left(\frac{1}{4}\right) \approx 0.189$, we can reliably send 18.8 million bits per second.

Hamming's (simplified) adversarial model

Let $C \subseteq \mathbb{F}_{2}^{n}$ be a binary code. Let $p<\frac{1}{2}$.

- When $u \in C$ is sent, exactly $p n$ bits flip, chosen adversarially.
- Nearest neighbour decoding always succeeds if and only if the Hamming balls of radius pn about codewords are disjoint.

Hamming's (simplified) adversarial model

Let $C \subseteq \mathbb{F}_{2}^{n}$ be a binary code. Let $p<\frac{1}{2}$.

- When $u \in C$ is sent, exactly $p n$ bits flip, chosen adversarially.
- Nearest neighbour decoding always succeeds if and only if the Hamming balls of radius pn about codewords are disjoint.
- The Plotkin bound implies that if $p \geq \frac{1}{4}$ and the Hamming balls of radius $\frac{n}{2}$ are disjoint then $|C| \leq 4 n$. Hence $\left(\log _{2}|C|\right) / n \rightarrow 0$ as $n \rightarrow \infty$.

Hamming's (simplified) adversarial model

Let $C \subseteq \mathbb{F}_{2}^{n}$ be a binary code. Let $p<\frac{1}{2}$.

- When $u \in C$ is sent, exactly $p n$ bits flip, chosen adversarially.
- Nearest neighbour decoding always succeeds if and only if the Hamming balls of radius pn about codewords are disjoint.
- The Plotkin bound implies that if $p \geq \frac{1}{4}$ and the Hamming balls of radius $\frac{n}{2}$ are disjoint then $|C| \leq 4 n$. Hence $\left(\log _{2}|C|\right) / n \rightarrow 0$ as $n \rightarrow \infty$.
- For instance, if $p=\frac{1}{4}$, only 28.6 bits can be sent per second on the 4 G network.

Difference between probabilistic and adversarial errors

Question: why the huge difference between the two models?

Difference between probabilistic and adversarial errors

My answer: because the traditional picture (which I keep on drawing in my coding theory courses) is completely misleading.

Difference between probabilistic and adversarial errors

One adversarial error: The sent codeword 0000 heads for 1100 like a homing missile, and we assume nearest neighbour decoding makes the wrong choice.

Difference between probabilistic and adversarial errors

Probabilistic errors: Even if up to 2 errors occur (see middle of diagram and below) still more likely than not to decode correctly.

The effect is greater for larger n

Why: because \mathbb{F}_{2}^{n} is really, really highly connected. In this sense \mathbb{F}_{2}^{256} is 'larger' than \mathbb{R}^{4}.

In[-]:= HypercubeGraph [5]

The effect is greater for larger n

Why: because \mathbb{F}_{2}^{n} is really, really highly connected. In this sense \mathbb{F}_{2}^{256} is 'larger' than \mathbb{R}^{4}.

In[- I:= HypercubeGraph [6]

The effect is greater for larger n

Why: because \mathbb{F}_{2}^{n} is really, really highly connected. In this sense \mathbb{F}_{2}^{256} is 'larger' than \mathbb{R}^{4}.

```
In[-]:= HypercubeGraph[7]
```


The effect is greater for larger n

Why: because \mathbb{F}_{2}^{n} is really, really highly connected. In this sense \mathbb{F}_{2}^{256} is 'larger' than \mathbb{R}^{4}.

```
In[-]:= HypercubeGraph[12]
```


Any questions?

Any questions?

My blog post, see wildonblog.wordpress.com, has outline proofs of the special cases of Shannon's Noisy Coding Theorem and the Plotkin bound. Also the connection with cryptography:

- why \mathbb{F}_{2}^{56} is tiny and \mathbb{F}_{2}^{256} might as well be \mathbb{F}_{2}^{∞},
and computation:
- the amazing sense in which $2^{2^{\mathbb{N}}}$ (meaning definable subsets of the Cantor set) is a smaller computational space than $2^{\mathbb{N}}$.

