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of high-dimensional spaces
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Slides are online (two equivalent links):

I http://www.ma.rhul.ac.uk/~uvah099/Talks/

HighDimensionalSpaces.pdf
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I will probably have to turn off incoming video and mute everyone
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Outline and the wild claim

§1 Euclidean spaces Rn: spheres and balls

§2 Binary codes Fn
2: the geometry of Hamming balls

Quiz. Please order the following numbers:

22
2100

, 22
3100

, 23
2100

, 32
2100

.

Answer. 22
2100

< 32
2100

< 23
2100

< 22
3100

.

I Rule of thumb: all that matters is the number at the top.
I In this spirit:

I F256
2 is a finite set and R3 is infinite.

I But there is a sense in which F256
2 is still the ‘larger’ space.
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§1 Euclidean space.

Flatland (1884) by Edwin Abbott is
(a) A stinging satire of Victorian society

I Are you an isosceles triangle with a smaller angle of 59.5◦?
Sorry, you are a upper-lower middle class tradesman. Maybe
your children will be lucky enough to be equilateral and go to
university.

I Are you a hexagon? Congratulations, you are upper-middle
class man and have a life of privilege.

I Are you a line segment? [The appalling truth this reveals
about Victorian society will be revealed verbally.]

(b) A nice introduction to geometric reasoning by analogy

(c) Highly recommended.
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n-Sphereland
Let Bn = {x ∈ Rn : ||x || < 1} be the solid n-dimensional unit ball
and let

Sn = {x ∈ Rn+1 : ||x || = 1}
be the n-dimensional sphere: it is the surface of Bn+1.

In ‘n-Sphereland’ the inhabitants are uniformly distributed on Sn.

11 / 46



n-Sphereland
Let Bn = {x ∈ Rn : ||x || < 1} be the solid n-dimensional unit ball
and let

Sn = {x ∈ Rn+1 : ||x || = 1}
be the n-dimensional sphere: it is the surface of Bn+1.

In ‘n-Sphereland’ the inhabitants are uniformly distributed on Sn.

12 / 46



n-Sphereland
Let Bn = {x ∈ Rn : ||x || < 1} be the solid n-dimensional unit ball
and let

Sn = {x ∈ Rn+1 : ||x || = 1}
be the n-dimensional sphere: it is the surface of Bn+1.

In ‘n-Sphereland’ the inhabitants are uniformly distributed on Sn.

θ = 25◦, z = sin 25◦ ≈ 0.423
θ = 40◦, z = sin 40◦ ≈ 0.643
θ = 59.6◦, z = sin 59.6◦ ≈ 0.863

Question: let (X1, . . . ,Xn,Z ) be the coordinate of a randomly
chosen n-Spherelander. Is Z uniformly distributed?
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Answer: Yes if n = 2

(0,y ,z)

(0,−z,y)

(0, y , z) ∈ S2

(0, y , z + k)
P

P = (0, y − z
y k, z + k)

I The length squared of the red line segment tangent to the
circle is( z

y
k
)2

+ k2 = k2
( z2
y2

+ 1
)

= k2
(z2 + y2

y2

)
=

k2

1− z2

I Hence the surface area of the part of the sphere between
heights z and z + k is (to first order in k)

k√
1− z2

× circumference of latitude circle at height z .

I This is k√
1−z2
√

1− z2 = k , independent of z .
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Answer: No if n 6= 2
To generalize, replace the circumference of the latitude circle at
height z with the surface area of Sn−1 of radius

√
1− z2.

By dimensional analysis, the probability density function of Z is

proportional to 1√
1−z2 (

√
1− z2)n−1 =

√
1− z2

n−2
.

������ Plot[{f[1, z], f[2, z], f[3, z], f[5, z], f[10, z], f[25, z]}, {z, -1, 1},

PlotRange → {0, 2},

PlotStyle → {Red, {Red, Dashed}, Blue, {Blue, Dashed}, Black, {Black, Dashed}}]

������

-1.0 -0.5 0.0 0.5 1.0

0.5

1.0

1.5

2.0

I For large n, by the Law of Large Numbers, Z ≈ 1√
n

with high

probability.
I In fact all coordinates are about 1√

n
with high probability.
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Volume of the unit ball
Question 1. What dimension maximizes the volume of the unit ball
Bn = {x ∈ Rn : ||x || ≤ 1}?
Question 2. What proportion of the unit cube [−1, 1]n is occupied
by Bn?

n 1 2 3 4 5 6 7

Vn 2 π 4π
3

π2

2
8π2

15
16π3

15
π4

3

Vn ≈ 2 3.142 4.189 4.935 5.264 5.168 4.725

Vn/2n 1 π
4

π
6

π2

32
π2

60
π3

384
π3

840

Vn/2n ≈ 1 0.785 0.524 0.308 0.164 0.081 0.037

In particular
V2m

22m
=

(π
4

)m 1

m!
which tends to 0 faster than any exponential. So high-dimensional
balls are tiny . . .

23 / 46



Volume of the unit ball
Question 1. What dimension maximizes the volume of the unit ball
Bn = {x ∈ Rn : ||x || ≤ 1}?
Question 2. What proportion of the unit cube [−1, 1]n is occupied
by Bn?

n 1 2 3 4 5 6 7

Vn 2 π 4π
3

π2

2
8π2

15
16π3

15
π4

3

Vn ≈ 2 3.142 4.189 4.935 5.264 5.168 4.725

Vn/2n 1 π
4

π
6

π2

32
π2

60
π3

384
π3

840

Vn/2n ≈ 1 0.785 0.524 0.308 0.164 0.081 0.037

In particular
V2m

22m
=

(π
4

)m 1

m!
which tends to 0 faster than any exponential. So high-dimensional
balls are tiny . . .

24 / 46



Volume of the unit ball
Question 1. What dimension maximizes the volume of the unit ball
Bn = {x ∈ Rn : ||x || ≤ 1}?
Question 2. What proportion of the unit cube [−1, 1]n is occupied
by Bn?

n 1 2 3 4 5 6 7

Vn 2 π 4π
3

π2

2
8π2

15
16π3

15
π4

3

Vn ≈ 2 3.142 4.189 4.935 5.264 5.168 4.725

Vn/2n 1 π
4

π
6

π2

32
π2

60
π3

384
π3

840

Vn/2n ≈ 1 0.785 0.524 0.308 0.164 0.081 0.037

In particular
V2m

22m
=

(π
4

)m 1

m!
which tends to 0 faster than any exponential. So high-dimensional
balls are tiny . . .

25 / 46



Volume of the unit ball
Question 1. What dimension maximizes the volume of the unit ball
Bn = {x ∈ Rn : ||x || ≤ 1}?
Question 2. What proportion of the unit cube [−1, 1]n is occupied
by Bn?

n 1 2 3 4 5 6 7

Vn 2 π 4π
3

π2

2
8π2

15
16π3

15
π4

3

Vn ≈ 2 3.142 4.189 4.935 5.264 5.168 4.725

Vn/2n 1 π
4

π
6

π2

32
π2

60
π3

384
π3

840

Vn/2n ≈ 1 0.785 0.524 0.308 0.164 0.081 0.037

In particular
V2m

22m
=

(π
4

)m 1

m!
which tends to 0 faster than any exponential. So high-dimensional
balls are tiny . . . 26 / 46



§2 Binary codes: Fn
2 and Hamming balls

Let C ⊆ Fn
2 be a binary code.

In nearest neighbour decoding, a received word v ∈ Fn
2 is

decoded as the codeword u ∈ C nearest to v with respect to
Hamming distance:

d(u, v) =
∣∣{i ∈ {1, . . . , n} : ui 6= vi}

∣∣.
(If there are several, pick one at random, and fear the worst.)

For instance let n = 4 and C = {0000, 1110}.
I Suppose 0000 is sent and, because of noise in the channel,

0011 is received. Since

d(0000, 0011) = 2 < d(1110, 0011) = 3,

nearest neighbour decoding succeeds,

I If instead 1100 is received, then nearest neighbour decoding
fails.
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Shannon’s probabilistic model
Let C ⊆ Fn

2 be a binary code. Let p < 1
2 .

I When u ∈ C is sent, each bit is flipped independently with
probability p.

So typically pn bits flip.

I The amount of information in a received bit is 1− h(p), where

h(p) = −p log2 p − (1− p) log2(1− p)

is the entropy (uncertainty) in each flipped bit. E.g.
h(14) ≈ 0.811 and 1− h(14) ≈ 0.189. So a 1

4 -noisy bit conveys
0.189 bits of information.

I Shannon’s Noisy Coding Theorem says that if ρ < 1− h(p)
then in a randomly chosen code of size 2ρn, nearest neighbour
decoding almost always succeeds.

I Thus we can send up to 1− h(p) bits of (reliable) information
for each bit sent through the channel. For instance,
I The maximum 4G data rate is 100 million bits per second.
I

[
I should know, I have tried all four networks.

]
I If p = 1

4 then since 1− h( 1
4 ) ≈ 0.189, we can reliably send

18.8 million bits per second.
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Hamming’s (simplified) adversarial model

Let C ⊆ Fn
2 be a binary code. Let p < 1

2 .

I When u ∈ C is sent, exactly pn bits flip, chosen adversarially.

I Nearest neighbour decoding always succeeds if and only if the
Hamming balls of radius pn about codewords are disjoint.

I The Plotkin bound implies that if p ≥ 1
4 and the Hamming

balls of radius n
2 are disjoint then |C | ≤ 4n. Hence

(log2 |C |)/n→ 0 as n→∞.

I For instance, if p = 1
4 , only 28.6 bits can be sent per second

on the 4G network.
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(log2 |C |)/n→ 0 as n→∞.

I For instance, if p = 1
4 , only 28.6 bits can be sent per second

on the 4G network.
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Difference between probabilistic and adversarial errors

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Question: why the huge difference between the two models?
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Difference between probabilistic and adversarial errors
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My answer: because the traditional picture (which I keep on
drawing in my coding theory courses) is completely misleading.
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Difference between probabilistic and adversarial errors

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

One adversarial error: The sent codeword 0000 heads for 1100
like a homing missile, and we assume nearest neighbour decoding
makes the wrong choice.
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Difference between probabilistic and adversarial errors

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Probabilistic errors: Even if up to 2 errors occur (see middle of
diagram and below) still more likely than not to decode correctly.
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The effect is greater for larger n
Why: because Fn

2 is really, really highly connected. In this sense
F256
2 is ‘larger’ than R4.

������ HypercubeGraph[5]

������
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The effect is greater for larger n
Why: because Fn

2 is really, really highly connected. In this sense
F256
2 is ‘larger’ than R4.

������ HypercubeGraph[12]

������

44 / 46



Any questions?

My blog post, see wildonblog.wordpress.com, has outline
proofs of the special cases of Shannon’s Noisy Coding Theorem
and the Plotkin bound. Also the connection with cryptography:

I why F56
2 is tiny and F256

2 might as well be F∞2 ,

and computation:

I the amazing sense in which 22
N

(meaning definable subsets of
the Cantor set) is a smaller computational space than 2N.
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