The counter-intuitive behaviour of high-dimensional spaces

Mark Wildon

Slides are online (two equivalent links):

- http://www.ma.rhul.ac.uk/~uvah099/Talks/ HighDimensionalSpaces.pdf
- https://tinyurl.com/y8mptbej

I will probably have to turn off incoming video and mute everyone except Stefanie to conserve bandwidth. Please type in the chat box if you have a question and Stefanie will alert me if I miss it.

- $\S1$ Euclidean spaces \mathbb{R}^n : spheres and balls
- $\S2$ Binary codes \mathbb{F}_2^n : the geometry of Hamming balls

- $\S1$ Euclidean spaces \mathbb{R}^n : spheres and balls
- $\S2$ Binary codes \mathbb{F}_2^n : the geometry of Hamming balls

Quiz. Please order the following numbers:

$$2^{2^{2^{100}}}, 2^{2^{3^{100}}}, 2^{3^{2^{100}}}, 3^{2^{2^{100}}}$$

- $\S1$ Euclidean spaces \mathbb{R}^n : spheres and balls
- §2 Binary codes \mathbb{F}_2^n : the geometry of Hamming balls

Quiz. Please order the following numbers:

- $\S1$ Euclidean spaces \mathbb{R}^n : spheres and balls
- §2 Binary codes \mathbb{F}_2^n : the geometry of Hamming balls

Quiz. Please order the following numbers:

 $2^{2^{2^{100}}}, 2^{2^{3^{100}}}, 2^{3^{2^{100}}}, 3^{2^{2^{100}}}.$

Answer. $2^{2^{2^{100}}} < 3^{2^{2^{100}}} < 2^{3^{2^{100}}} < 2^{2^{3^{100}}}$.

Rule of thumb: all that matters is the number at the top.

- In this spirit:
 - \mathbb{F}_2^{256} is a finite set and \mathbb{R}^3 is infinite.
 - But there is a sense in which \mathbb{F}_2^{256} is still the 'larger' space.

Flatland (1884) by Edwin Abbott is

(a) A stinging satire of Victorian society

Are you an isosceles triangle with a smaller angle of 59.5°? Sorry, you are a upper-lower middle class tradesman. Maybe your children will be lucky enough to be equilateral and go to university.

Flatland (1884) by Edwin Abbott is

(a) A stinging satire of Victorian society

- Are you an isosceles triangle with a smaller angle of 59.5°? Sorry, you are a upper-lower middle class tradesman. Maybe your children will be lucky enough to be equilateral and go to university.
- Are you a hexagon? Congratulations, you are upper-middle class man and have a life of privilege.

Flatland (1884) by Edwin Abbott is

- (a) A stinging satire of Victorian society
 - Are you an isosceles triangle with a smaller angle of 59.5°? Sorry, you are a upper-lower middle class tradesman. Maybe your children will be lucky enough to be equilateral and go to university.
 - Are you a hexagon? Congratulations, you are upper-middle class man and have a life of privilege.
 - Are you a line segment? [The appalling truth this reveals about Victorian society will be revealed verbally.]

Flatland (1884) by Edwin Abbott is

- (a) A stinging satire of Victorian society
 - Are you an isosceles triangle with a smaller angle of 59.5°? Sorry, you are a upper-lower middle class tradesman. Maybe vour children will be lucky enough to be equilateral and go to university.
 - Are you a hexagon? Congratulations, you are upper-middle class man and have a life of privilege.
 - Are you a line segment? [The appalling truth this reveals about Victorian society will be revealed verbally.]

(b) A nice introduction to geometric reasoning by analogy

Flatland (1884) by Edwin Abbott is

- (a) A stinging satire of Victorian society
 - Are you an isosceles triangle with a smaller angle of 59.5°? Sorry, you are a upper-lower middle class tradesman. Maybe your children will be lucky enough to be equilateral and go to university.
 - Are you a hexagon? Congratulations, you are upper-middle class man and have a life of privilege.
 - Are you a line segment? [The appalling truth this reveals about Victorian society will be revealed verbally.]

(b) A nice introduction to geometric reasoning by analogy

Highly recommended.

Let $B^n = \{x \in \mathbb{R}^n : ||x|| < 1\}$ be the solid n-dimensional unit ball and let

$$S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$$

be the *n*-dimensional sphere: it is the surface of B^{n+1} .

Let $B^n = \{x \in \mathbb{R}^n : ||x|| < 1\}$ be the solid *n*-dimensional unit ball and let

$$S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$$

be the *n*-dimensional sphere: it is the surface of B^{n+1} .

In '*n*-Sphereland' the inhabitants are uniformly distributed on S^n .

Let $B^n = \{x \in \mathbb{R}^n : ||x|| < 1\}$ be the solid *n*-dimensional unit ball and let

$$S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$$

be the *n*-dimensional sphere: it is the surface of B^{n+1} .

In '*n*-Sphereland' the inhabitants are uniformly distributed on S^n .

 $\begin{array}{c|c} \theta = 59.6^{\circ}, z = \sin 59.6^{\circ} \approx 0.863 \\ \theta = 40^{\circ}, z = \sin 40^{\circ} \approx 0.643 \\ \theta = 25^{\circ}, z = \sin 25^{\circ} \approx 0.423 \end{array}$

Question: let $(X_1, ..., X_n, Z)$ be the coordinate of a randomly chosen *n*-Spherelander. Is Z uniformly distributed?

Let $B^n = \{x \in \mathbb{R}^n : ||x|| < 1\}$ be the solid *n*-dimensional unit ball and let

$$S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$$

be the *n*-dimensional sphere: it is the surface of B^{n+1} .

In '*n*-Sphereland' the inhabitants are uniformly distributed on S^n .

 $\theta = 59.6^{\circ}, z = \sin 59.6^{\circ} \approx 0.863$ $\theta = 40^{\circ}, z = \sin 40^{\circ} \approx 0.643$ $\theta = 25^{\circ}, z = \sin 25^{\circ} \approx 0.423$

Question: let $(X_1, ..., X_n, Z)$ be the coordinate of a randomly chosen *n*-Spherelander. Is Z uniformly distributed?

$$P = (0, y, z + k)$$

$$P = (0, y - \frac{z}{y}k, z + k)$$

$$(0, y, z) \in S^{2}$$

$$(0, y, z)$$

The length squared of the red line segment tangent to the circle is

$$\left(\frac{z}{y}k\right)^2 + k^2 = k^2 \left(\frac{z^2}{y^2} + 1\right) = k^2 \left(\frac{z^2 + y^2}{y^2}\right) = \frac{k^2}{1 - z^2}$$

The length squared of the red line segment tangent to the circle is

$$\left(\frac{z}{y}k\right)^2 + k^2 = k^2 \left(\frac{z^2}{y^2} + 1\right) = k^2 \left(\frac{z^2 + y^2}{y^2}\right) = \frac{k^2}{1 - z^2}$$

Hence the surface area of the part of the sphere between heights z and z + k is (to first order in k)

 $\frac{\kappa}{\sqrt{1-z^2}}$ × circumference of latitude circle at height z.

The length squared of the red line segment tangent to the circle is

$$\left(\frac{z}{y}k\right)^2 + k^2 = k^2 \left(\frac{z^2}{y^2} + 1\right) = k^2 \left(\frac{z^2 + y^2}{y^2}\right) = \frac{k^2}{1 - z^2}$$

Hence the surface area of the part of the sphere between heights z and z + k is (to first order in k)

 $\frac{\kappa}{\sqrt{1-z^2}}$ × circumference of latitude circle at height z.

• This is
$$\frac{k}{\sqrt{1-z^2}}\sqrt{1-z^2} = k$$
, independent of z.

Answer: No if $n \neq 2$

To generalize, replace the circumference of the latitude circle at height z with the surface area of S^{n-1} of radius $\sqrt{1-z^2}$. By dimensional analysis, the probability density function of Z is proportional to $\frac{1}{\sqrt{1-z^2}}(\sqrt{1-z^2})^{n-1} = \sqrt{1-z^2}^{n-2}$.

het=Plot[(f[1, z], f[2, z], f[3, z], f[5, z], f[10, z], f[25, z]), (z, -1, 1),
PlotRange → {0, 2},

PlotStyle → {Red, {Red, Dashed}, Blue, {Blue, Dashed}, Black, {Black, Dashed}}]

Answer: No if $n \neq 2$

To generalize, replace the circumference of the latitude circle at height z with the surface area of S^{n-1} of radius $\sqrt{1-z^2}$. By dimensional analysis, the probability density function of Z is proportional to $\frac{1}{\sqrt{1-z^2}}(\sqrt{1-z^2})^{n-1} = \sqrt{1-z^2}^{n-2}$.

PlotStyle → {Red, {Red, Dashed}, Blue, {Blue, Dashed}, Black, {Black, Dashed}}]

For large *n*, by the Law of Large Numbers, $Z \approx \frac{1}{\sqrt{n}}$ with high probability.

21 / 46

Answer: No if $n \neq 2$

To generalize, replace the circumference of the latitude circle at height *z* with the surface area of S^{n-1} of radius $\sqrt{1-z^2}$. By dimensional analysis, the probability density function of *Z* is proportional to $\frac{1}{\sqrt{1-z^2}}(\sqrt{1-z^2})^{n-1} = \sqrt{1-z^2}^{n-2}$.

 $PlotRange \rightarrow \{0, 2\},\$

PlotStyle → {Red, {Red, Dashed}, Blue, {Blue, Dashed}, Black, {Black, Dashed}}]

- For large *n*, by the Law of Large Numbers, $Z \approx \frac{1}{\sqrt{n}}$ with high probability.
- ln fact all coordinates are about $\frac{1}{\sqrt{n}}$ with high probability.

22/46

Question 1. What dimension maximizes the volume of the unit ball $B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$?

Question 2. What proportion of the unit cube $[-1,1]^n$ is occupied by B^n ?

Question 1. What dimension maximizes the volume of the unit ball $B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$?

Question 2. What proportion of the unit cube $[-1, 1]^n$ is occupied by B^n ?

n	1	2	3	4	5	6	7
V _n	2	π	$\frac{4\pi}{3}$	$\frac{\pi^2}{2}$	$\frac{8\pi^2}{15}$	$\frac{16\pi^3}{15}$	$\frac{\pi^4}{3}$
$V_n \approx$	2	3.142	4.189	4.935	5.264	5.168	4.725

Question 1. What dimension maximizes the volume of the unit ball $B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$?

Question 2. What proportion of the unit cube $[-1, 1]^n$ is occupied by B^n ?

п	1	2	3	4	5	6	7
V _n	2	π	$\frac{4\pi}{3}$	$\frac{\pi^2}{2}$	$\frac{8\pi^2}{15}$	$\frac{16\pi^3}{15}$	$\frac{\pi^4}{3}$
$V_n \approx$	2	3.142	4.189	4.935	5.264	5.168	4.725
$V_n/2^n$	1	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi^2}{32}$	$\frac{\pi^2}{60}$	$\frac{\pi^3}{384}$	$\frac{\pi^3}{840}$
$V_n/2^n \approx$	1	0.785	0.524	0.308	0.164	0.081	0.037

Question 1. What dimension maximizes the volume of the unit ball $B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$?

Question 2. What proportion of the unit cube $[-1,1]^n$ is occupied by B^n ?

n	1	2	3	4	5	6	7
V _n	2	π	$\frac{4\pi}{3}$	$\frac{\pi^2}{2}$	$\frac{8\pi^2}{15}$	$\frac{16\pi^3}{15}$	$\frac{\pi^4}{3}$
$V_n \approx$	2	3.142	4.189	4.935	5.264	5.168	4.725
$V_n/2^n$	1	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi^2}{32}$	$\frac{\pi^2}{60}$	$\frac{\pi^3}{384}$	$\frac{\pi^3}{840}$
$V_n/2^n \approx$	1	0.785	0.524	0.308	0.164	0.081	0.037

In particular

$$\frac{\sqrt{2m}}{2^{2m}} = \left(\frac{\pi}{4}\right)^m \frac{1}{m!}$$

which tends to 0 faster than any exponential. So high-dimensional balls are tiny . . . $26\,/\,46$

§2 Binary codes: \mathbb{F}_2^n and Hamming balls Let $C \subseteq \mathbb{F}_2^n$ be a binary code.

In **nearest neighbour decoding**, a received word $v \in \mathbb{F}_2^n$ is decoded as the codeword $u \in C$ nearest to v with respect to Hamming distance:

$$d(u,v) = |\{i \in \{1,\ldots,n\} : u_i \neq v_i\}|.$$

(If there are several, pick one at random, and fear the worst.)

For instance let n = 4 and $C = \{0000, 1110\}$.

Suppose 0000 is sent and, because of noise in the channel, 0011 is received. Since

$$d(0000, 0011) = 2 < d(1110, 0011) = 3,$$

nearest neighbour decoding succeeds,

 If instead 1100 is received, then nearest neighbour decoding fails.

- Let $C \subseteq \mathbb{F}_2^n$ be a binary code. Let $p < \frac{1}{2}$.
 - When u ∈ C is sent, each bit is flipped independently with probability p.

- Let $C \subseteq \mathbb{F}_2^n$ be a binary code. Let $p < \frac{1}{2}$.
 - When u ∈ C is sent, each bit is flipped independently with probability p. So typically pn bits flip.

Let $C \subseteq \mathbb{F}_2^n$ be a binary code. Let $p < \frac{1}{2}$.

- When u ∈ C is sent, each bit is flipped independently with probability p. So typically pn bits flip.
- The amount of information in a received bit is 1 h(p), where

$$h(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

is the entropy (uncertainty) in each flipped bit. E.g. $h(\frac{1}{4}) \approx 0.811$ and $1 - h(\frac{1}{4}) \approx 0.189$. So a $\frac{1}{4}$ -noisy bit conveys 0.189 bits of information.

Let $C \subseteq \mathbb{F}_2^n$ be a binary code. Let $p < \frac{1}{2}$.

- When u ∈ C is sent, each bit is flipped independently with probability p. So typically pn bits flip.
- The amount of information in a received bit is 1 h(p), where

$$h(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

is the entropy (uncertainty) in each flipped bit. E.g. $h(\frac{1}{4}) \approx 0.811$ and $1 - h(\frac{1}{4}) \approx 0.189$. So a $\frac{1}{4}$ -noisy bit conveys 0.189 bits of information.

► Shannon's Noisy Coding Theorem says that if ρ < 1 − h(p) then in a randomly chosen code of size 2^{ρn}, nearest neighbour decoding almost always succeeds.

Let $C \subseteq \mathbb{F}_2^n$ be a binary code. Let $p < \frac{1}{2}$.

- When u ∈ C is sent, each bit is flipped independently with probability p. So typically pn bits flip.
- The amount of information in a received bit is 1 h(p), where

$$h(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

is the entropy (uncertainty) in each flipped bit. E.g. $h(\frac{1}{4}) \approx 0.811$ and $1 - h(\frac{1}{4}) \approx 0.189$. So a $\frac{1}{4}$ -noisy bit conveys 0.189 bits of information.

- Shannon's Noisy Coding Theorem says that if ρ < 1 − h(p) then in a randomly chosen code of size 2^{ρn}, nearest neighbour decoding almost always succeeds.
- Thus we can send up to 1 h(p) bits of (reliable) information for each bit sent through the channel. For instance,
 - The maximum 4G data rate is 100 million bits per second.

Let $C \subseteq \mathbb{F}_2^n$ be a binary code. Let $p < \frac{1}{2}$.

- When u ∈ C is sent, each bit is flipped independently with probability p. So typically pn bits flip.
- The amount of information in a received bit is 1 h(p), where

$$h(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

is the entropy (uncertainty) in each flipped bit. E.g. $h(\frac{1}{4}) \approx 0.811$ and $1 - h(\frac{1}{4}) \approx 0.189$. So a $\frac{1}{4}$ -noisy bit conveys 0.189 bits of information.

- Shannon's Noisy Coding Theorem says that if ρ < 1 − h(p) then in a randomly chosen code of size 2^{ρn}, nearest neighbour decoding almost always succeeds.
- Thus we can send up to 1 h(p) bits of (reliable) information for each bit sent through the channel. For instance,
 - The maximum 4G data rate is 100 million bits per second.
 - [I should know, I have tried all four networks.]
 - ▶ If $p = \frac{1}{4}$ then since $1 h(\frac{1}{4}) \approx 0.189$, we can reliably send 18.8 million bits per second.

Hamming's (simplified) adversarial model

Let $C \subseteq \mathbb{F}_2^n$ be a binary code. Let $p < \frac{1}{2}$.

- When $u \in C$ is sent, exactly *pn* bits flip, chosen adversarially.
- Nearest neighbour decoding always succeeds if and only if the Hamming balls of radius *pn* about codewords are disjoint.

Hamming's (simplified) adversarial model

Let $C \subseteq \mathbb{F}_2^n$ be a binary code. Let $p < \frac{1}{2}$.

- When $u \in C$ is sent, exactly *pn* bits flip, chosen adversarially.
- Nearest neighbour decoding always succeeds if and only if the Hamming balls of radius *pn* about codewords are disjoint.
- ▶ The Plotkin bound implies that if $p \ge \frac{1}{4}$ and the Hamming balls of radius $\frac{n}{2}$ are disjoint then $|C| \le 4n$. Hence $(\log_2 |C|)/n \to 0$ as $n \to \infty$.

Hamming's (simplified) adversarial model

Let $C \subseteq \mathbb{F}_2^n$ be a binary code. Let $p < \frac{1}{2}$.

- When $u \in C$ is sent, exactly *pn* bits flip, chosen adversarially.
- Nearest neighbour decoding always succeeds if and only if the Hamming balls of radius *pn* about codewords are disjoint.
- The Plotkin bound implies that if p ≥ ¼ and the Hamming balls of radius n/2 are disjoint then |C| ≤ 4n. Hence (log₂ |C|)/n → 0 as n → ∞.
- For instance, if $p = \frac{1}{4}$, only 28.6 bits can be sent per second on the 4G network.

Question: why the huge difference between the two models?

37 / 46

My answer: because the traditional picture (which I keep on drawing in my coding theory courses) is completely misleading.

One adversarial error: The sent codeword 0000 heads for 1100 like a homing missile, and we assume nearest neighbour decoding makes the wrong choice.

Probabilistic errors: Even if up to 2 errors occur (see middle of diagram and below) still more likely than not to decode correctly.

Why: because \mathbb{F}_2^n is really, really highly connected. In this sense \mathbb{F}_2^{256} is 'larger' than \mathbb{R}^4 .

In[*]:= HypercubeGraph[5]

Why: because \mathbb{F}_2^n is really, really highly connected. In this sense \mathbb{F}_2^{256} is 'larger' than \mathbb{R}^4 .

In[*]:= HypercubeGraph[6]

Why: because \mathbb{F}_2^n is really, really highly connected. In this sense \mathbb{F}_2^{256} is 'larger' than \mathbb{R}^4 .

In[*]:= HypercubeGraph[7]

Why: because \mathbb{F}_2^n is really, really highly connected. In this sense \mathbb{F}_2^{256} is 'larger' than $\mathbb{R}^4.$

In[*]:= HypercubeGraph[12]

Any questions?

45 / 46

My blog post, see wildonblog.wordpress.com, has outline proofs of the special cases of Shannon's Noisy Coding Theorem and the Plotkin bound. Also the connection with cryptography:

• why \mathbb{F}_2^{56} is tiny and \mathbb{F}_2^{256} might as well be \mathbb{F}_2^{∞} ,

and computation:

► the amazing sense in which 2^{2^N} (meaning definable subsets of the Cantor set) is a smaller computational space than 2^N.