The Liar Game

Mark Wildon

Guessing Games

Ask a friend to thinks of a number between 0 and 15 . How many NO/YES questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 0 and 15 . How many NO/YES questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 0 and 15 . How many NO/YES questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 0 and 15 . How many NO/YES questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 0 and 15 . How many NO/YES questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 0 and 15 . How many NO/YES questions do you need to ask to find out the secret number?

Proofs

Mathematicians like to give rigorous arguments to justify the claims they make.

It is believable that no questioning strategy can guarantee to find the secret number using three or fewer questions. But can we prove this beyond any doubt?

Proofs

Mathematicians like to give rigorous arguments to justify the claims they make.

It is believable that no questioning strategy can guarantee to find the secret number using three or fewer questions. But can we prove this beyond any doubt?

- At the start of the game, there are 16 possible numbers.

Proofs

Mathematicians like to give rigorous arguments to justify the claims they make.
It is believable that no questioning strategy can guarantee to find the secret number using three or fewer questions. But can we prove this beyond any doubt?

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.

Proofs

Mathematicians like to give rigorous arguments to justify the claims they make.

It is believable that no questioning strategy can guarantee to find the secret number using three or fewer questions. But can we prove this beyond any doubt?

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.
- Then there are $16-r$ possible numbers if the first question is answered ' NO '.

Proofs

Mathematicians like to give rigorous arguments to justify the claims they make.

It is believable that no questioning strategy can guarantee to find the secret number using three or fewer questions. But can we prove this beyond any doubt?

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.
- Then there are $16-r$ possible numbers if the first question is answered 'NO'.
- Either r or $16-r$ is at least 8 .

Proofs

Mathematicians like to give rigorous arguments to justify the claims they make.

It is believable that no questioning strategy can guarantee to find the secret number using three or fewer questions. But can we prove this beyond any doubt?

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.
- Then there are $16-r$ possible numbers if the first question is answered 'NO'.
- Either r or $16-r$ is at least 8 .
- Hence, in the worst case, there are at least 8 possible numbers after Question 1.

Proofs

Mathematicians like to give rigorous arguments to justify the claims they make.
It is believable that no questioning strategy can guarantee to find the secret number using three or fewer questions. But can we prove this beyond any doubt?

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.
- Then there are $16-r$ possible numbers if the first question is answered 'NO'.
- Either r or $16-r$ is at least 8 .
- Hence, in the worst case, there are at least 8 possible numbers after Question 1.
- In the worst case, there are at least 4 possible numbers after Question 2.

Proofs

Mathematicians like to give rigorous arguments to justify the claims they make.
It is believable that no questioning strategy can guarantee to find the secret number using three or fewer questions. But can we prove this beyond any doubt?

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.
- Then there are $16-r$ possible numbers if the first question is answered 'NO'.
- Either r or $16-r$ is at least 8 .
- Hence, in the worst case, there are at least 8 possible numbers after Question 1.
- In the worst case, there are at least 4 possible numbers after Question 2.
- In the worst case, there are at least 2 possible numbers after Question 3.

Binary and Computers

In a modern computer, everything is stored as a lists of the bits (binary digits) 0 and 1.

Binary and Computers

In a modern computer, everything is stored as a lists of the bits (binary digits) 0 and 1 . For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', ‘No'.

Binary and Computers

In a modern computer, everything is stored as a lists of the bits (binary digits) 0 and 1 . For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.
Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

Binary and Computers

In a modern computer, everything is stored as a lists of the bits (binary digits) 0 and 1 . For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes’, ‘No', ‘No'.

Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

0111000011010111000001000001010111010100010001100000010011010111 0011010100000100010101111101011101110100000001000111010011010111 0000010000010101110101000010011100000100011101000001011010010100 0111010000000100100101101011010100000100011101000001011011010100 0000010010110100111101001101010010110101011101001001011011010111 0101011100100111000000111111000100010110110101000111010000010110 1101010000110101000001001100010101110100100101101011010100000100 0101011111010111000101010101011011010100001101010000010010010110 0101011100000100011101000001011011010100000001001101011010010110 0101011101010100000001000111010011010111000001001011010111110100 0101010101010101110101000011010100000011011100000001011011010100 0000010010110101010101101001011001010111110101011011010100000100 1001010001010111010101000000010010010100001101010011010111010111 1111010110110101000001001101011101010101000001001101011111110100 0111010000110101100101001101010111010100110101111111010010110101 0000010001010101110101110011010101110100111101000101011111010100 01000110

Binary and Computers

In a modern computer, everything is stored as a lists of the bits (binary digits) 0 and 1 . For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', ‘No', ‘No'.

Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

0111000011010111000001000001010111010100010001100000010011010111 0011010100000100010101111101011101110100000001000111010011010111 0000010000010101110101000010011100000100011101000001011010010100 0111010000000100100101101011010100000100011101000001011011010100 0000010010110100111101001101010010110101011101001001011011010111 0101011100100111000000111111000100010110110101000111010000010110 1101010000110101000001001100010101110100100101101011010100000100 0101011111010111000101010101011011010100001101010000010010010110 0101011100000100011101000001011011010100000001001101011010010110 0101011101010100000001000111010011010111000001001011010111110100 0101010101010101110101000011010100000011011100000001011011010100 0000010010110101010101101001011001010111110101011011010100000100 1001010001010111010101000000010010010100001101010011010111010111 1111010110110101000001001101011101010101000001001101011111110100 0111010000110101100101001101010111010100110101111111010010110101 0000010001010101110101110011010101110100111101000101011111010100 01000110

William Shakespeare (approx 1600)
To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,

Binary and Computers

In a modern computer, everything is stored as a lists of the bits (binary digits) 0 and 1 . For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', ‘No', ‘No'.

Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

01110000	11010111	00000100	00010101	11010100	01000110	00000100	11010111		
00110101	00000100	01010111	11010111	01110100	00000100	01110100	11010111		
00000100	00010101	11010100	00100111	00000100	01110100	00010110	10010100		
01110100	00000100	10010110	10110101	00000100	01110100	00010110	11010100		
00000100	10110100	11110100	11010100	10110101	01110100	10010110	11010111		
01010111	00100111	00000011	11110001	00010110	11010100	01110100	00010110		
11010100	00110101	00000100	11000101	01110100	10010110	10110101	00000100		
01010111	11010111	00010101	01010110	11010100	00110101	00000100	10010110		
01010111	00000100	01110100	00010110	11010100	00000100	11010110	10010110		
01010111	01010100	00000100	01110100	11010111	00000100	10110101	11110100		
01010101	01010101	11010100	00110101	00000011	01110000	00010110	11010100		
00000100	10110101	01010110	10010110	01010111	11010101	10110101	00000100		
10010100	01010111	01010100	00000100	10010100	00110101	00110101	11010111		
11110101	10110101	00000100	11010111	01010101	00000100	11010111	11110100		
01110100	00110101	10010100	11010101	11010100	11010111	11110100	10110101		
00000100	01010101	11010111	00110101	01110100	11110100	01010111	11010100		
01000110									

William Shakespeare (approx 1600)
To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,

Binary and Computers

In a modern computer, everything is stored as a lists of the bits (binary digits) 0 and 1 . For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', ‘No', ‘No'.

Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

0011000001110111010001101000000000011000000000010101110100011110 1010110000000000101011100000101110101100001010110110101101101001 0000111000101110101011000010100100101110100011010010010000100101 1010110000101011011010110110100100001110000011111000100001001011 0110010011001010110011001100111111001111000010000000010100010100 0000110000110000010000000101101000110000110000100011000000110000 1000000000011010001110100011000010000110101111010001101010101100 0000000000001011001011101010100100101011111010001010100011001011 1000100110100111101010011010101011001011101001011100101001001001 0000111011001100110011111100111100001000000101001000000101011010 0011000001000101000100010111101000110000101001010101101010101100 0000000000001011111010101110101101101001001011100010110000101011 1010100101101100000010111010111111101011011010101010101010101100 0010101110101110110010111010110000101011101010110010101100101110 1110101001001001100010010010011110100100101010011010101011001011 1010010111001010010010010000111011001100110011111100111100001000 00010100

Anonymous Microsoft Programmer (2010?)
Part of the machine code for Microsoft Word 2011.

Binary and Computers

In a modern computer, everything is stored as a lists of the bits (binary digits) 0 and 1 . For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.
Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A small QR-code:

441 bits

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A small QR-code:

441 bits

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A small QR-code:

441 bits

10000 bits

- Full text of Hamlet
1.5 million bits
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway

441 bits

10000 bits
1.5 million bits

5 million bits each

- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- A small QR-code:

441 bits

10000 bits
1.5 million bits

5 million bits each

- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- A small QR-code:

441 bits

10000 bits
1.5 million bits

5 million bits each
6 billion bits

- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- A small QR-code:

441 bits

10000 bits
1.5 million bits

5 million bits each
0.7 GB

- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:

4 bits

- A small QR-code:

441 bits

10000 bits
1.5 million bits

5 million bits each
0.7 GB

- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- A small QR-code:

441 bits

10000 bits
1.5 million bits

5 million bits each
0.7 GB

- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- A small QR-code:

441 bits

10000 bits
1.5 million bits

5 million bits each

- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

300 GB
Errors in reading and writing are inevitable. The 3G specification for mobile phones expects one bit in a thousand to be received wrongly.

Mariner 9

The Mariner 9 probe, launched in 1971, took the first images of Mars. The images were grey-scale, with 64 possible shades of grey for each pixel.

- The pictures were transmitted back to Earth by sending one pixel at a time. Since $64=2 \times 2 \times 2 \times 2 \times 2 \times 2$, each pixel needs 6 bits to send.
- The probability of each bit being flipped in the channel was about 5\%.
- Encoding each pixel using 6 bits, about 26% of every image would be wrong.

Mariner 9

The Mariner 9 probe, launched in 1971, took the first images of Mars. The images were grey-scale, with 64 possible shades of grey for each pixel.

- The pictures were transmitted back to Earth by sending one pixel at a time. Since $64=2 \times 2 \times 2 \times 2 \times 2 \times 2$, each pixel needs 6 bits to send.
- The probability of each bit being flipped in the channel was about 5\%.
- Encoding each pixel using 6 bits, about 26% of every image would be wrong.
- Instead each pixel was encoded using 32 bits, increasing the length of the transmitted message over five times.

Mariner 9 Image: Improvement Due to Error Correction

Mariner 9 Image: Improvement Due to Error Correction

The Mariner 9 Code: 32 of the 64 Mariner 9 codewords

$$
\left(\begin{array}{lllllllllllllllllllllllllllllllll}
0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

The Mariner 9 Code: 32 of the 64 Mariner 9 codewords

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many NO/YES questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many NO/YES questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many NO/YES questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies? (For example, asking if someone has lied so far?)

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many NO/YES questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies? (For example, asking if someone has lied so far?)

Claim. No strategy can guarantee to use fewer than 7 questions.

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many NO/YES questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies? (For example, asking if someone has lied so far?)

Claim. No strategy can guarantee to use fewer than 7 questions.
Coding theory can be used to find a good strategy. Lies correspond to errors in transmission.

The Hamming Code

Richard Hamming discovered a one-error correcting binary code of length 7 with 16 codewords. He invented it because he was fed up with the paper tape reader on his early computer misreading his programs.

It gives an optimal solution to the Liar Game using 7 questions.

Remarkably, it is possible to specify all the questions in advance.

The Hamming Code

Find the binary codeword corresponding to your secret number.

0	0000000	8	1110000
1	1101001	9	0011001
2	0101010	10	1011010
3	1000011	11	0110011
4	1001100	12	0111100
5	0100101	13	1010101
6	1100110	14	0010110
7	0001111	15	1111111

The questions are:
'Is there a 1 in the first position (far left) of the codeword?',
'Is there a 1 in the second position of the codeword?',
and so on. If there is one lie, then the questioner will write down one wrong bit. But because the Hamming code can correct one error, the questioner can still work out what the number is.

The Square Code

To encode a number between 0 and 15 in the square code

- Write it in binary as $b_{1} b_{2} b_{3} b_{4}$
- Make a square with these bits.
- Put in four check bits around the edges, computed using modulo 2 arithmetic:

$$
0+0=0, \quad 1+0=1, \quad 0+1=1, \quad 1+1=0
$$

The Square Code

To encode a number between 0 and 15 in the square code

- Write it in binary as $b_{1} b_{2} b_{3} b_{4}$
- Make a square with these bits.
- Put in four check bits around the edges, computed using modulo 2 arithmetic:

$$
0+0=0, \quad 1+0=1, \quad 0+1=1, \quad 1+1=0
$$

Imagine you receive this.

0	0	1
1	1	0
1	0	

What number do you think was sent?
(A) $3=0011$
(B) $5=0101$
(C) $6=0110$
(D) $7=0111$

Square Code

Square Code

Square Code

Square Code

Double Square Code (16 bits) Versus No Coding (4 bits)

Double Square Code (16 bits) Versus No Coding (4 bits)

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.
At the party a black or blue hat will be put on each person's head.
You can see your friends' hats, but not your own.

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.
At the party a black or blue hat will be put on each person's head. You can see your friends' hats, but not your own.

When the host shouts 'go!', you may either say a colour or remain silent. Everyone who speaks must speak at the same time.

If everyone who speaks gets the colour of his or her hat correct, you all win some cake. If no-one speaks, or someone gets it wrong, there is no cake.

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.
At the party a black or blue hat will be put on each person's head. You can see your friends' hats, but not your own.

When the host shouts 'go!', you may either say a colour or remain silent. Everyone who speaks must speak at the same time.

If everyone who speaks gets the colour of his or her hat correct, you all win some cake. If no-one speaks, or someone gets it wrong, there is no cake.
Question: What is a good strategy?

Another Hat Game

You and four friends are lined up. A black or blue hat is put on each person's head. You can see all the hats in front of you, but not your own, or those behind.

So the person at the back of the line can see four hats, the next person can see three, and so on.

Another Hat Game

You and four friends are lined up. A black or blue hat is put on each person's head. You can see all the hats in front of you, but not your own, or those behind.

So the person at the back of the line can see four hats, the next person can see three, and so on.
Starting at the back of the line, each person is asked to guess the colour of his or her hat.

Another Hat Game

You and four friends are lined up. A black or blue hat is put on each person's head. You can see all the hats in front of you, but not your own, or those behind.

So the person at the back of the line can see four hats, the next person can see three, and so on.

Starting at the back of the line, each person is asked to guess the colour of his or her hat.

Question: What is a good strategy?

Thank you! Any questions?

Thank you! Any questions?

- Why is maths a good subject to study?
- What do maths lecturers do all day?
- How does maths at university differ from A-level maths?
- Are women just as good as men at maths? (Answer: Yes!)

