The Liar Game

Mark Wildon

Mathematicians like to give rigorous arguments to justify the claims they make.

Mathematicians like to give rigorous arguments to justify the claims they make.

It is believable that no questioning strategy can **guarantee** to find the secret number using three or fewer questions. But can we prove this **beyond any doubt**?

• At the start of the game, there are 16 possible numbers.

Mathematicians like to give rigorous arguments to justify the claims they make.

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.

Mathematicians like to give rigorous arguments to justify the claims they make.

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.
 - ► Then there are 16 r possible numbers if the first question is answered 'NO'.

Mathematicians like to give rigorous arguments to justify the claims they make.

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.
 - ► Then there are 16 r possible numbers if the first question is answered 'NO'.
 - Either r or 16 r is at least 8.

Mathematicians like to give rigorous arguments to justify the claims they make.

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.
 - ► Then there are 16 r possible numbers if the first question is answered 'NO'.
 - Either r or 16 r is at least 8.
 - ► Hence, in the worst case, there are at least 8 possible numbers after Question 1.

Mathematicians like to give rigorous arguments to justify the claims they make.

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.
 - ► Then there are 16 r possible numbers if the first question is answered 'NO'.
 - Either r or 16 r is at least 8.
 - ► Hence, in the worst case, there are at least 8 possible numbers after Question 1.
- In the worst case, there are at least 4 possible numbers after Question 2.

Mathematicians like to give rigorous arguments to justify the claims they make.

- At the start of the game, there are 16 possible numbers.
- Suppose that if the first question is answered 'YES' then there are r possible numbers.
 - ► Then there are 16 r possible numbers if the first question is answered 'NO'.
 - Either r or 16 r is at least 8.
 - ► Hence, in the worst case, there are at least 8 possible numbers after Question 1.
- In the worst case, there are at least 4 possible numbers after Question 2.
- In the worst case, there are at least 2 possible numbers after Question 3.

In a modern computer, everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1.

In a modern computer, everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

In a modern computer, everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

In a modern computer, everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

01110000 11010111 00000100 00010101 11010100 01000110 00000100 11010111 00110101 00000100 01010111 11010111 01110100 00000100 01110100 11010111 00000100 00010101 11010100 00100111 00000100 01110100 00010110 10010100 01110100 00000100 10010110 10110101 00000100 01110100 00010110 11010100 01010111 00100111 00000011 11110001 00010110 11010100 01110100 00010110 01010111 11010111 00010101 01010110 11010100 00110101 00000100 10010110 01010111 00000100 01110100 00010110 11010100 00000100 11010110 10010110 10010100 01010111 01010100 00000100 10010100 00110101 00110101 11010111 11110101 10110101 00000100 11010111 01010101 00000100 11010111 11110100 00000100 01010101 11010111 00110101 01110100 11110100 01010111 11010100 01000110

William Shakespeare (approx 1600)

In a modern computer, everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

01110000 11010111 00000100 00010101 11010100 01000110 00000100 11010111 00110101 00000100 01010111 11010111 01110100 00000100 01110100 11010111 00000100 00010101 11010100 00100111 00000100 01110100 00010110 10010100 01110100 00000100 10010110 10110101 00000100 01110100 00010110 11010100 01010111 00100111 00000011 11110001 00010110 11010100 01110100 00010110 01010111 11010111 00010101 01010110 11010100 00110101 00000100 10010110 01010111 00000100 01110100 00010110 11010100 00000100 11010110 10010110 10010100 01010111 01010100 00000100 10010100 00110101 00110101 11010111 11110101 10110101 00000100 11010111 01010101 00000100 11010111 11110100 00000100 01010101 11010111 00110101 01110100 11110100 01010111 11010100 01000110

William Shakespeare (approx 1600)

To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune,

In a modern computer, everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

```
01110000 11010111 00000100 00010101 11010100 01000110 00000100 11010111
00110101 00000100 01010111 11010111 01110100 00000100 01110100 11010111
00000100 00010101 11010100 00100111 00000100 01110100 00010110 10010100
01110100 00000100 10010110 10110101 00000100 01110100 00010110 11010100
01010111 00100111 00000011 11110001 00010110 11010100 01110100 00010110
01010111 11010111 00010101 01010110 11010100 00110101 00000100 10010110
01010111 00000100 01110100 00010110 11010100 00000100 11010110 10010110
10010100 01010111 01010100 00000100 10010100 00110101 00110101 11010111
00000100 01010101 11010111 00110101 01110100 11110100 01010111 11010100
01000110
```

William Shakespeare (approx 1600)

To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune,

In a modern computer, everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

 $10101100\ 00000000\ 10101110\ 00001011\ 10101100\ 00101011\ 01101011\ 01101001$ 01100100 11001010 11001100 11001111 11001111 00001000 00000101 00010100 00001100 00110000 01000000 01011010 00110000 11000010 00110000 00110000 $10000000\ 00011010\ 00111010\ 00110000\ 10000110\ 10111101\ 00011010\ 10101100$ 00000000 00001011 00101110 10101001 00101011 11101000 10101000 11001011 00000000 00001011 11101010 11101011 01101001 00101110 00101100 00101011 10101001 01101100 00001011 10101111 11101011 01101010 10101010 10101100 00101011 10101110 11001011 10101100 00101011 10101011 00101011 00101110 10100101 11001010 01001001 00001110 11001100 11001111 11001111 00001000 00010100

Anonymous Microsoft Programmer (2010?)

Part of the machine code for Microsoft Word 2011.

In a modern computer, everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. For example, the number 12 could be stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., are all stored as bits.

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

4 bits

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- ► A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

441 bits

4 bits

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- ► A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

4 bits

441 bits

10000 bits 1.5 million bits

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- ► A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

4 bits

441 bits

10000 bits 1.5 million bits 5 million bits each

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- ► A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

441 bits

4 bits

10000 bits 1.5 million bits 5 million bits each

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- ► A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

441 bits

4 bits

10000 bits 1.5 million bits 5 million bits each 6 billion bits

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- ► A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

441 bits

4 bits

10000 bits 1.5 million bits 5 million bits each 0.7 GB

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- ► A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

10000 bits 1.5 million bits 5 million bits each 0.7 GB 50 GB

4 bits

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- ► A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

4 bits 441 bits

10000 bits 1.5 million bits 5 million bits each 0.7 GB

- 50 GB
- 300 GB

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off': 0 or 1.

- A number between 0 and 15:
- A small QR-code:

- Text on this slide
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Bluray disc of 3 hour film
- Large Hadron Collider, per second

Errors in reading and writing are inevitable. The 3G specification for mobile phones expects one bit in a thousand to be received wrongly.

10000 bits 1.5 million bits 5 million bits each 0.7 GB 50 GB 300 GB

4 bits

441 bits

Mariner 9

The Mariner 9 probe, launched in 1971, took the first images of Mars. The images were grey-scale, with 64 possible shades of grey for each pixel.

- ► The pictures were transmitted back to Earth by sending one pixel at a time. Since 64 = 2 × 2 × 2 × 2 × 2 × 2, each pixel needs 6 bits to send.
- The probability of each bit being flipped in the channel was about 5%.
- Encoding each pixel using 6 bits, about 26% of every image would be wrong.

Mariner 9

The Mariner 9 probe, launched in 1971, took the first images of Mars. The images were grey-scale, with 64 possible shades of grey for each pixel.

- ► The pictures were transmitted back to Earth by sending one pixel at a time. Since 64 = 2 × 2 × 2 × 2 × 2 × 2, each pixel needs 6 bits to send.
- The probability of each bit being flipped in the channel was about 5%.
- Encoding each pixel using 6 bits, about 26% of every image would be wrong.
- Instead each pixel was encoded using 32 bits, increasing the length of the transmitted message over five times.

Mariner 9 Image: Improvement Due to Error Correction

Mariner 9 Image: Improvement Due to Error Correction

The Mariner 9 Code: 32 of the 64 Mariner 9 codewords

0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 Λ 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1

The Mariner 9 Code: 32 of the 64 Mariner 9 codewords

Ask a friend to think of a number between 0 and 15. How many NO/YES questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Ask a friend to think of a number between 0 and 15. How many NO/YES questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Any interesting strategies?

Ask a friend to think of a number between 0 and 15. How many NO/YES questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Any interesting strategies? (For example, asking if someone has lied so far?)

Ask a friend to think of a number between 0 and 15. How many NO/YES questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Any interesting strategies? (For example, asking if someone has lied so far?)

Claim. No strategy can guarantee to use fewer than 7 questions.

Ask a friend to think of a number between 0 and 15. How many NO/YES questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Any interesting strategies? (For example, asking if someone has lied so far?)

Claim. No strategy can guarantee to use fewer than 7 questions.

Coding theory can be used to find a good strategy. Lies correspond to errors in transmission.

The Hamming Code

Richard Hamming discovered a one-error correcting binary code of length 7 with 16 codewords. He invented it because he was fed up with the paper tape reader on his early computer misreading his programs.

It gives an optimal solution to the Liar Game using 7 questions.

Remarkably, it is possible to specify all the questions in advance.

The Hamming Code

Find the binary codeword corresponding to your secret number.

0	0000000	8	1110000
1	1101001	9	00 11001
2	01 <mark>01010</mark>	10	10 <mark>11010</mark>
3	10 <mark>00011</mark>	11	0110011
4	10 <mark>01100</mark>	12	0111100
5	01 <mark>00101</mark>	13	10 <mark>10101</mark>
6	11 <mark>00110</mark>	14	0010110
7	00 <mark>01111</mark>	15	11111111

The questions are:

'Is there a 1 in the first position (far left) of the codeword?',

'Is there a 1 in the second position of the codeword?',

and so on. If there is one lie, then the questioner will write down one wrong bit. But because the Hamming code can correct one error, the questioner can still work out what the number is.

The Square Code

To encode a number between 0 and 15 in the square code

- Write it in binary as $b_1b_2b_3b_4$
- Make a square with these bits.
- Put in four check bits around the edges, computed using modulo 2 arithmetic:

$$0+0=0, \quad 1+0=1, \quad 0+1=1, \quad 1+1=0.$$

The Square Code

To encode a number between 0 and 15 in the square code

- Write it in binary as $b_1b_2b_3b_4$
- Make a square with these bits.
- Put in four check bits around the edges, computed using modulo 2 arithmetic:

$$0+0=0, \quad 1+0=1, \quad 0+1=1, \quad 1+1=0.$$

Imagine you receive this.

What number do you think was sent?

(A) 3 = 0011 (B) 5 = 0101 (C) 6 = 0110 (D) 7 = 0111

Double Square Code (16 bits) Versus No Coding (4 bits)

Double Square Code (16 bits) Versus No Coding (4 bits)

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.

At the party a black or blue hat will be put on each person's head. You can see your friends' hats, but not your own.

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.

At the party a black or blue hat will be put on each person's head. You can see your friends' hats, but not your own.

When the host shouts 'go!', you may either say a colour or remain silent. Everyone who speaks must speak at the same time.

If everyone who speaks gets the colour of his or her hat correct, you all win some cake. If no-one speaks, or someone gets it wrong, there is no cake.

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.

At the party a black or blue hat will be put on each person's head. You can see your friends' hats, but not your own.

When the host shouts 'go!', you may either say a colour or remain silent. Everyone who speaks must speak at the same time.

If everyone who speaks gets the colour of his or her hat correct, you all win some cake. If no-one speaks, or someone gets it wrong, there is no cake.

Question: What is a good strategy?

You and four friends are lined up. A black or blue hat is put on each person's head. You can see all the hats in front of you, but not your own, or those behind.

So the person at the back of the line can see four hats, the next person can see three, and so on.

You and four friends are lined up. A black or blue hat is put on each person's head. You can see all the hats in front of you, but not your own, or those behind.

So the person at the back of the line can see four hats, the next person can see three, and so on.

Starting at the back of the line, each person is asked to guess the colour of his or her hat.

You and four friends are lined up. A black or blue hat is put on each person's head. You can see all the hats in front of you, but not your own, or those behind.

So the person at the back of the line can see four hats, the next person can see three, and so on.

Starting at the back of the line, each person is asked to guess the colour of his or her hat.

Question: What is a good strategy?

Thank you! Any questions?

Thank you! Any questions?

- Why is maths a good subject to study?
- What do maths lecturers do all day?
- How does maths at university differ from A-level maths?
- Are women just as good as men at maths? (Answer: Yes!)