The Liar Game

Prof. Mark Wildon

Guessing Games

Ask a friend to thinks of a number between 1 and 15. How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15. How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15. How many YES/NO questions do you need to ask to find out the secret number?

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1.

In a computer everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. The number 12 is stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

```
00001110\ 11101011\ 00100000\ 10101000\ 00101011\ 01100010\ 00100000\ 11101011
10101100 00100000 11101010 11101011 00101110 00100000 00101110 11101011
00100000\ 10101000\ 00101011\ 11100100\ 00100000\ 00101110\ 01101000\ 00101001
00101110 \ 00100000 \ 01101001 \ 10101101 \ 00100000 \ 00101110 \ 01101000 \ 00101011
00100000\ 00101101\ 00101111\ 00101011\ 10101101\ 00101110\ 01101001\ 11101011
11101010 11100100 11000000 10001111 01101000 00101011 00101110 01101000
00101011\ 10101100\ 00100000\ 10100011\ 00101110\ 01101001\ 10101101\ 00100000
11101010 11101011 10101000 01101010 00101011 10101100 00100000 01101001
11101010\ 00100000\ 00101110\ 01101000\ 00101011\ 00100000\ 01101011\ 01101001
00100000\ 10101101\ 01101010\ 01101001\ 11101010\ 10101011\ 10101101\ 00100000
00101001\ 11101010\ 00101010\ 00100000\ 00101001\ 10101100\ 10101100\ 11101011
00100000\ 10101010\ 11101011\ 10101100\ 00101110\ 00101111\ 11101010\ 00101011
01100010
```

William Shakespeare (approx 1600)

In a computer everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. The number 12 is stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

```
00001110\ 11101011\ 00100000\ 10101000\ 00101011\ 01100010\ 00100000\ 11101011
10101100 00100000 11101010 11101011 00101110 00100000 00101110 11101011
00100000\ 10101000\ 00101011\ 11100100\ 00100000\ 00101110\ 01101000\ 00101001
00101110 \ 00100000 \ 01101001 \ 10101101 \ 00100000 \ 00101110 \ 01101000 \ 00101011
00100000 \ 00101101 \ 00101111 \ 00101011 \ 10101101 \ 00101110 \ 01101001 \ 11101011
11101010 11100100 11000000 10001111 01101000 00101011 00101110 01101000
00101011\ 10101100\ 00100000\ 10100011\ 00101110\ 01101001\ 10101101\ 00100000
11101010 11101011 10101000 01101010 00101011 10101100 00100000 01101001
11101010\ 00100000\ 00101110\ 01101000\ 00101011\ 00100000\ 01101011\ 01101001
00100000 \ 10101101 \ 01101010 \ 01101001 \ 11101010 \ 10101011 \ 10101101 \ 00100000
00101001\ 11101010\ 00101010\ 00100000\ 00101001\ 10101100\ 10101100\ 11101011
00100000\ 10101010\ 11101011\ 10101100\ 00101110\ 00101111\ 11101010\ 00101011
01100010
```

William Shakespeare (approx 1600)

To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune,

In a computer everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. The number 12 is stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

```
00001110\ 11101011\ 00100000\ 10101000\ 00101011\ 01100010\ 00100000\ 11101011
10101100 00100000 11101010 11101011 00101110 00100000 00101110 11101011
00100000 \ 10101000 \ 00101011 \ 11100100 \ 00100000 \ 00101110 \ 01101000 \ 00101001
00101110 00100000 01101001 10101101 00100000 00101110 01101000 00101011
00100000 \ 00101101 \ 00101111 \ 00101011 \ 10101101 \ 00101110 \ 01101001 \ 11101011
11101010 11100100 11000000 10001111 01101000 00101011 00101110 01101000
00101011 \ 10101100 \ 00100000 \ 10100011 \ 00101110 \ 01101001 \ 10101101 \ 00100000
11101010 \ 11101011 \ 10101000 \ 01101010 \ 00101011 \ 10101100 \ 00100000 \ 01101001
11101010 \ 00100000 \ 00101110 \ 01101000 \ 00101011 \ 00100000 \ 01101011 \ 01101001
00100000 10101101 01101010 01101001 11101010 10101011 10101101 00100000
00101001\ 11101010\ 00101010\ 00100000\ 00101001\ 10101100\ 10101100\ 11101011
00101110 10101100 00101001 10101011 00101011 11101011 00101111 10101101
00100000 \ 10101010 \ 11101011 \ 10101100 \ 00101110 \ 00101111 \ 11101010 \ 00101011
01100010
```

William Shakespeare (approx 1600)

To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune,

In a computer everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. The number 12 is stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins . . . , all become bits.

```
10101100\ 00000000\ 10101110\ 00001011\ 10101100\ 00101011\ 01101011\ 01101001
00001110\ 00101110\ 10101100\ 00101001\ 00101110\ 10001101\ 00100100\ 00100101
01100100\ 11001010\ 11001100\ 11001111\ 11001111\ 00001000\ 00000101\ 00010100
00001100 00110000 01000000 01011010 00110000 11000010 00110000 00110000
10000000 00011010 00111010 00110000 10000110 10111101 00011010 10101100
00000000 00001011 00101110 10101001 00101011 11101000 10101000 11001011
00110000\ 01000101\ 00010001\ 01111010\ 00110000\ 10100101\ 01011010\ 10101100
00000000\ 00001011\ 11101010\ 11101011\ 01101001\ 00101110\ 00101100\ 00101011
10101001 01101100 00001011 10101111 11101011 01101010 10101010 10101100
00101011 10101110 11001011 10101100 00101011 10101011 00101011 00101110
10100101 11001010 01001001 00001110 11001100 11001111 11001111 00001000
00010100
```

Anonymous Microsoft Programmer (2010)

In a computer everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. The number 12 is stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins . . . , all become bits.

```
10101100\ 00000000\ 10101110\ 00001011\ 10101100\ 00101011\ 01101011\ 01101001
01100100\ 11001010\ 11001100\ 11001111\ 11001111\ 00001000\ 00000101\ 00010100
00001100 00110000 01000000 01011010 00110000 11000010 00110000 00110000
10000000 00011010 00111010 00110000 10000110 10111101 00011010 10101100
00000000 00001011 00101110 10101001 00101011 11101000 10101000 11001011
00110000\ 01000101\ 00010001\ 01111010\ 00110000\ 10100101\ 01011010\ 10101100
00000000 00001011 11101010 11101011 01101001 00101110 00101100 00101011
10101001 01101100 00001011 10101111 11101011 01101010 10101010 10101100
00101011 10101110 11001011 10101100 00101011 10101011 00101011 00101110
10100101 11001010 01001001 00001110 11001100 11001111 11001111 00001000
00010100
```

Anonymous Microsoft Programmer (2010)

Part of the machine code for Microsoft Word 2011.

In a computer everything is stored as a lists of the **bits** (**bi**nary digi**ts**) 0 and 1. The number 12 is stored as 1100, corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

4 bits

- ▶ A number between 0 and 15:
- ▶ A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway (compressed)
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- ► A number between 0 and 15: 4 bits
- ► A number between 0 and 1000: 10 bits
- Full text of Hamlet
- Pictures of Royal Holloway (compressed)
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- ► A number between 0 and 15:
- ► A number between 0 and 1000: 10 bits

4 bits

- ► Full text of *Hamlet* 1.5 million bits
- Pictures of Royal Holloway (compressed)
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- ► A number between 0 and 15: 4 bits
- A number between 0 and 1000: 10 bits
- ► Full text of *Hamlet* 1.5 million bits
- Pictures of Royal Holloway (compressed) 5 million bits each
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:
- ► A number between 0 and 1000:
- ► Full text of *Hamlet*
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

4 bits

10 bits

1.5 million bits

5 million bits each

5 million bits each

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- ► A number between 0 and 15:
- ► A number between 0 and 1000:
- ► Full text of *Hamlet*
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

- 4 bits
- 10 bits
- 1.5 million bits
- 5 million bits each
 - 6 billion bits

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- ► A number between 0 and 15:
- ► A number between 0 and 1000:
- ► Full text of *Hamlet*
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

- 4 bits
- 10 bits
- 1.5 million bits
- 5 million bits each
 - 0.7 GB

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

Large Hadron Collider, per second

► A number between 0 and 15:	4 bits
► A number between 0 and 1000:	10 bits
► Full text of <i>Hamlet</i>	1.5 million bits
► Pictures of Royal Holloway	5 million bits each
Compact disc of Beethoven 9th	0.7 GB

300 GB

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

► A number between 0 and 15:	4 bits
► A number between 0 and 1000:	10 bits
► Full text of <i>Hamlet</i>	1.5 million bits
► Pictures of Royal Holloway	5 million bits each
► Compact disc of Beethoven 9th	0.7 GB

300 GB

Errors in reading and writing are inevitable. We can only hope to correct them when they occur.

Large Hadron Collider, per second

A Simple Error Correcting Code

Number	Encoded as	Number	Encoded as
0	0000 0000 0000	8	1000 1000 1000
1	0001 0001 0001	9	1001 1001 1001
2	0010 0010 0010	10	1010 1010 1010
3	0011 0011 0011	11	1011 1011 1011
4	0100 0100 0100	12	1100 1100 1100
5	0101 0101 0101	13	1101 1101 1101
6	0110 0110 0110	14	1110 1110 1110
7	0111 0111 0111	15	1111 1111 1111

A Simple Error Correcting Code

Number	Encoded as	Number	Encoded as
0	0000 0000 0000	8	1000 1000 1000
1	0001 0001 0001	9	1001 1001 1001
2	0010 0010 0010	10	1010 1010 1010
3	0011 0011 0011	11	1011 1011 1011
4	0100 0100 0100	12	1100 1100 1100
5	0101 0101 0101	13	1101 1101 1101
6	0110 0110 0110	14	1110 1110 1110
7	0111 0111 0111	15	1111 1111 1111

Question. Suppose you receive 0011 0010 0011. What number was most likely sent?

A Simple Error Correcting Code

Number	Encoded as	Number	Encoded as
0	0000 0000 0000	8	1000 1000 1000
1	0001 0001 0001	9	1001 1001 1001
2	0010 0010 0010	10	1010 1010 1010
3	0011 0011 0011	11	1011 1011 1011
4	0100 0100 0100	12	1100 1100 1100
5	0101 0101 0101	13	1101 1101 1101
6	0110 0110 0110	14	1110 1110 1110
7	0111 0111 0111	15	1111 1111 1111

Question. Suppose you receive 0011 0010 0011. What number was most likely sent?

Answer. Since 0011 0010 0011 differs from 0011 0011 0011 in just once place, it's most likely that the number is 3.

Mariner 9 Image: Improvement Due to Error Correction

Mariner 9 Image: Improvement Due to Error Correction

The Mariner 9 Code: 32 of the 64 Mariner 9 codewords: Black Squares Show 0, White Squares Show 1

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15. How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15. How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Any interesting strategies?

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15. How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Any interesting strategies?

Question 1. Are you going to tell the truth in the next three questions?

Ask a friend to think of a number between 0 and 15. How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Any interesting strategies?

Question 1. Are you going to tell the truth in the next three questions?

If Yes: You told the truth!

Ask a friend to think of a number between 0 and 15. How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Any interesting strategies?

Question 1. Are you going to tell the truth in the next three questions?

- ▶ If **Yes**: You told the truth!
- If No: Either you're lying now, or you'll lie in the next three questions.

Ask a friend to think of a number between 0 and 15. How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Any interesting strategies?

Question 1. Are you going to tell the truth in the next three questions?

- ▶ If **Yes**: You told the truth!
- If No: Either you're lying now, or you'll lie in the next three questions.

How about a proof that no strategy can guarantee to use six questions or fewer?

Ask a friend to think of a number between 0 and 15. How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

Any interesting strategies?

Question 1. Are you going to tell the truth in the next three questions?

- ▶ If **Yes**: You told the truth!
- ▶ If No: Either you're lying now, or you'll lie in the next three questions.

How about a proof that no strategy can guarantee to use six questions or fewer?

Coding theory gives a seven question strategy. Lies correspond to errors in transmission.

The Hamming Code

Richard Hamming discovered a one-error correcting binary code of length 7 with 16 codewords. He invented it because he was fed up with the paper tape reader on his early computer misreading his programs.

It gives an optimal solution to the Liar Game using 7 questions.

Remarkably, it is possible to specify all the questions in advance.

The Hamming Code

Find the binary codeword corresponding to your secret number.

0	0000000	8	1110000
1	1101001	9	0011001
2	0101010	10	1011010
3	1000011	11	0110011
4	1001100	12	0111100
5	0100101	13	1010101
6	1100110	14	0010110
7	0001111	15	1111111

The questions are:

'Is there a 1 in the first position (far left) of the codeword?',

'Is there a 1 in the second position of the codeword?',

and so on. If there is one lie, then the questioner will write down one wrong bit. But because the Hamming code can correct one error, the questioner can still work out what the number is.

Thank you! Any questions?

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.

At the party a black or white hat will be put on each person's head. You can see your friends' hats, but not your own.

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.

At the party a black or white hat will be put on each person's head. You can see your friends' hats, but not your own.

When the host shouts 'Go!', you may either say a colour or remain silent. Everyone who speaks must speak at the same time.

If everyone who speaks gets the colour of his or her hat correct, you all win some cake. If no-one speaks, or someone gets it wrong, there is no cake.

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.

At the party a black or white hat will be put on each person's head. You can see your friends' hats, but not your own.

When the host shouts 'Go!', you may either say a colour or remain silent. Everyone who speaks must speak at the same time.

If everyone who speaks gets the colour of his or her hat correct, you all win some cake. If no-one speaks, or someone gets it wrong, there is no cake.

Question: What is a good strategy?

Thank you! Any questions?

Thank you! Any questions?

- Why is maths a good subject to study?
- What do maths lecturers do all day?
- How does maths at university differ from A-level maths?
- Are women just as good as men at maths? (Answer: Yes!)

The aim is to find a number between 1 and 15.

► There are 15 possible numbers.

- ► There are 15 possible numbers.
- ▶ In the worst case, there are least 8 possible numbers after the first question.

- ► There are 15 possible numbers.
- ▶ In the worst case, there are least 8 possible numbers after the first question.
 - 'Is the number 8 or more?'

$$7 \text{ (NO)} + 8 \text{ (YES)} = 15$$

- ► There are 15 possible numbers.
- ▶ In the worst case, there are least 8 possible numbers after the first question.
 - ▶ 'Is the number 8 or more?'
 - ▶ 'Is the number even?'

$$7 \text{ (NO)} + 8 \text{ (YES)} = 15$$

$$8 \text{ (NO)} + 7 \text{ (YES)} = 15$$

- ► There are 15 possible numbers.
- ▶ In the worst case, there are least 8 possible numbers after the first question.
 - ▶ 'Is the number 8 or more?'
 - 'Is the number even?'
 - ▶ 'Is the number 12?

- 7 (NO) + 8 (YES) = 15
- 8 (NO) + 7 (YES) = 15
- 14 (NO) + 1 (YES) = 15

- ► There are 15 possible numbers.
- ▶ In the worst case, there are least 8 possible numbers after the first question.
 - 'Is the number 8 or more?'
 - 'Is the number even?'
 - ▶ 'Is the number 12?
 - 'Is the number prime?

- 7 (NO) + 8 (YES) = 15
- 8 (NO) + 7 (YES) = 15
- 14 (NO) + 1 (YES) = 15
 - 9 (NO) + 6 (YES) = 15

The aim is to find a number between 1 and 15.

- ► There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.

```
      'Is the number 8 or more?'
      7 \text{ (NO)} + 8 \text{ (YES)} = 15

      'Is the number even?'
      8 \text{ (NO)} + 7 \text{ (YES)} = 15

      'Is the number 12?
      14 \text{ (NO)} + 1 \text{ (YES)} = 15

      'Is the number prime?
      9 \text{ (NO)} + 6 \text{ (YES)} = 15
```

▶ In the worst case there are at least 4 possible numbers after the second question.

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.

```
      • 'Is the number 8 or more?'
      7 \text{ (NO)} + 8 \text{ (YES)} = 15

      • 'Is the number even?'
      8 \text{ (NO)} + 7 \text{ (YES)} = 15

      • 'Is the number 12?
      14 \text{ (NO)} + 1 \text{ (YES)} = 15

      • 'Is the number prime?
      9 \text{ (NO)} + 6 \text{ (YES)} = 15
```

- In the worst case there are at least 4 possible numbers after the second question.
- In the worst case there are at least 2 possible numbers after the third question.

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.

```
      • 'Is the number 8 or more?'
      7 \text{ (NO)} + 8 \text{ (YES)} = 15

      • 'Is the number even?'
      8 \text{ (NO)} + 7 \text{ (YES)} = 15

      • 'Is the number 12?
      14 \text{ (NO)} + 1 \text{ (YES)} = 15

      • 'Is the number prime?
      9 \text{ (NO)} + 6 \text{ (YES)} = 15
```

- ▶ In the worst case there are at least 4 possible numbers after the second question.
- ▶ In the worst case there are at least 2 possible numbers after the third question.
- So three questions are not enough.