The Liar Game

Prof. Mark Wildon

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret number?

Guessing Games

Ask a friend to thinks of a number between 1 and 15 . How many YES/NO questions do you need to ask to find out the secret num-

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 .

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes’, 'Yes', 'No', 'No'.

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

```
0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 ~ 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 ~ 1 1 1 0 1 0 1 1 ~
10101100 00100000 11101010 111010110010111000100000 00101110 11101011
00100000 10101000 00101011 1110010000100000001011100110100000101001
00101110 00100000 01101001 1010110100100000001011100110100000101011
0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 ~ 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 ~ 1 1 1 0 1 0 1 1 ~
11101010 11100100 11000000 1000111101101000001010110010111001101000
0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 ~ 1 0 1 0 1 1 0 0 ~ 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 ~
1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1
1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 ~ 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 ~
10101010 1010101000101011 10101100 11000000000011100110100000101011
00100000 1010110101101010 01101001 1110101010101011 1010110100100000
00101001 11101010 00101010 00100000 00101001 10101100 10101100 11101011
1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1
001011101010110000101001 1010101100101011 1110101100101111 10101101
0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 ~ 1 1 1 0 1 0 1 0 ~ 0 0 1 0 1 0 1 1 ~
0 1 1 0 0 0 1 0
```

William Shakespeare (approx 1600)

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

```
0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 ~ 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 ~ 1 1 1 0 1 0 1 1 ~
10101100 00100000 11101010 111010110010111000100000 00101110 11101011
0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 1
00101110 00100000 01101001 1010110100100000001011100110100000101011
0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 ~ 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 ~ 1 1 1 0 1 0 1 1 ~
11101010 11100100 11000000 1000111101101000001010110010111001101000
0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 ~ 1 0 1 0 1 1 0 0 ~ 0 0 1 0 0 0 0 0 ~ 0 1 1 0 1 0 0 1 ~
1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1
1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 ~ 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 ~
10101010 1010101000101011 10101100 110000000000111001101000 00101011
00100000 1010110101101010 01101001 11101010 10101011 1010110100100000
00101001 11101010 00101010 00100000 00101001 10101100 10101100 11101011
1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1
001011101010110000101001 1010101100101011 1110101100101111 10101101
0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 ~ 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 ~ 1 1 1 0 1 0 1 0 ~ 0 0 1 0 1 0 1 1 ~
01100010
```

William Shakespeare (approx 1600)
To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

```
0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 ~ 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 ~ 1 1 1 0 1 0 1 1 ~
10101100 00100000 11101010 11101011001011100010000000101110 11101011
0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 1
0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 ~
0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 ~ 1 1 1 0 1 0 1 1 ~
11101010 11100100 11000000 1000111101101000001010110010111001101000
0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 ~ 1 0 1 0 1 1 0 0 ~ 0 0 1 0 0 0 0 0 ~ 0 1 1 0 1 0 0 1 ~
1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1
1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 ~ 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 ~
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 ~ 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 ~ 0 0 1 0 1 0 1 1
00100000 1010110101101010 01101001 11101010 10101011 1010110100100000
00101001 11101010 00101010 00100000 00101001 10101100 10101100 11101011
1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1
001011101010110000101001 1010101100101011 1110101100101111 10101101
0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 ~ 0 0 1 0 1 0 1 1
01100010
```

William Shakespeare (approx 1600)
To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

[^0]Anonymous Microsoft Programmer (2010)

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes', 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

> | 00110000 | 01110111 | 01000110 | 10000000 | 00011000 | 00000001 | 01011101 | 00011110 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10101100 | 00000000 | 10101110 | 00001011 | 10101100 | 00101011 | 01101011 | 01101001 | | |
| 00001110 | 00101110 | 10101100 | 00101001 | 00101110 | 10001101 | 00100100 | 00100101 | | |
| 10101100 | 00101011 | 01101011 | 01101001 | 00001110 | 00001111 | 10001000 | 01001011 | | |
| 01100100 | 11001010 | 11001100 | 11001111 | 11001111 | 00001000 | 00000101 | 00010100 | | |
| 00001100 | 00110000 | 01000000 | 01011010 | 00110000 | 11000010 | 00110000 | 00110000 | | |
| 10000000 | 00011010 | 00111010 | 00110000 | 10000110 | 10111101 | 00011010 | 10101100 | | |
| 00000000 | 00001011 | 00101110 | 10101001 | 00101011 | 11101000 | 10101000 | 11001011 | | |
| 10001001 | 10100111 | 10101001 | 10101010 | 11001011 | 10100101 | 11001010 | 01001001 | | |
| 00001110 | 11001100 | 11001111 | 11001111 | 00001000 | 00010100 | 10000001 | 01011010 | | |
| 00110000 | 01000101 | 00010001 | 01111010 | 00110000 | 10100101 | 01011010 | 10101100 | | |
| 00000000 | 00001011 | 11101010 | 11101011 | 01101001 | 00101110 | 00101100 | 00101011 | | |
| 10101001 | 01101100 | 00001011 | 10101111 | 11101011 | 01101010 | 10101010 | 10101100 | | |
| 00101011 | 10101110 | 11001011 | 10101100 | 00101011 | 10101011 | 00101011 | 00101110 | | |
| 11101010 | 01001001 | 10001001 | 00100111 | 10100100 | 10101001 | 10101010 | 11001011 | | |
| 10100101 | 11001010 | 01001001 | 00001110 | 11001100 | 11001111 | 11001111 | 00001000 | | |
| 00010100 | | | | | | | | | |

Anonymous Microsoft Programmer (2010)

Part of the machine code for Microsoft Word 2011.

Binary and Computers

In a computer everything is stored as a lists of the bits (binary digits) 0 and 1 . The number 12 is stored as 1100 , corresponding to the sequence of answers 'Yes’, 'Yes', 'No', 'No'.

Books, music, videos, computer programs, bitcoins ..., all become bits.

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway (compressed)
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:

4 bits
10 bits

- Full text of Hamlet
- Pictures of Royal Holloway (compressed)
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:
- A number between 0 and 1000:

10 bits

- Full text of Hamlet
1.5 million bits
- Pictures of Royal Holloway (compressed)
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15: 4 bits
- A number between 0 and 1000:

10 bits

- Full text of Hamlet
1.5 million bits
- Pictures of Royal Holloway (compressed) 5 million bits each
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:

4 bits

- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway

10 bits
1.5 million bits

5 million bits each

- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:

4 bits

- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th

10 bits
1.5 million bits

5 million bits each
6 billion bits

- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1 .

- A number between 0 and 15:

4 bits

- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th

10 bits
1.5 million bits

5 million bits each
0.7 GB

- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:

4 bits

- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway
- Compact disc of Beethoven 9th
- Large Hadron Collider, per second

Why Coding Theory?

A bit gives a single piece of information: 'NO' or 'YES'; 'on' or 'off'; 0 or 1.

- A number between 0 and 15:

4 bits

- A number between 0 and 1000:
- Full text of Hamlet
- Pictures of Royal Holloway
1.5 million bits

5 million bits each

- Compact disc of Beethoven 9th
0.7 GB
- Large Hadron Collider, per second 300 GB

Errors in reading and writing are inevitable. We can only hope to correct them when they occur.

A Simple Error Correcting Code

Number	Encoded as	Number	Encoded as
0	000000000000	8	100010001000
1	000100010001	9	100110011001
2	001000100010	10	101010101010
3	001100110011	11	101110111011
4	010001000100	12	110011001100
5	010101010101	13	110111011101
6	011001100110	14	111011101110
7	011101110111	15	111111111111

A Simple Error Correcting Code

Number	Encoded as	Number	Encoded as
0	000000000000	8	100010001000
1	000100010001	9	100110011001
2	001000100010	10	101010101010
3	001100110011	11	101110111011
4	010001000100	12	110011001100
5	010101010101	13	110111011101
6	011001100110	14	111011101110
7	011101110111	15	111111111111

Question. Suppose you receive 00110010 0011. What number was most likely sent?

A Simple Error Correcting Code

Number	Encoded as	Number	Encoded as
0	000000000000	8	100010001000
1	000100010001	9	100110011001
2	001000100010	10	101010101010
3	001100110011	11	101110111011
4	010001000100	12	110011001100
5	010101010101	13	110111011101
6	011001100110	14	111011101110
7	011101110111	15	111111111111

Question. Suppose you receive 00110010 0011. What number was most likely sent?

Answer. Since 001100100011 differs from 001100110011 in just once place, it's most likely that the number is 3 .

Mariner 9 Image: Improvement Due to Error Correction

Mariner 9 Image: Improvement Due to Error Correction

The Mariner 9 Code: 32 of the 64 Mariner 9 codewords: Black Squares Show 0, White Squares Show 1

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?
Question 1. Are you going to tell the truth in the next three questions?

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?
Question 1. Are you going to tell the truth in the next three questions?

- If Yes: You told the truth!

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?
Question 1. Are you going to tell the truth in the next three questions?

- If Yes: You told the truth!
- If No: Either you're lying now, or you'll lie in the next three questions.

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?
Question 1. Are you going to tell the truth in the next three questions?

- If Yes: You told the truth!
- If No: Either you're lying now, or you'll lie in the next three questions.

How about a proof that no strategy can guarantee to use six questions or fewer?

The Liar Game: Dealing with Deliberate Errors

Ask a friend to think of a number between 0 and 15 . How many YES/NO questions do you need to ask, if your friend is permitted to lie at most once?

It is not compulsory to lie.
Any interesting strategies?
Question 1. Are you going to tell the truth in the next three questions?

- If Yes: You told the truth!
- If No: Either you're lying now, or you'll lie in the next three questions.

How about a proof that no strategy can guarantee to use six questions or fewer?

Coding theory gives a seven question strategy. Lies correspond to errors in transmission.

The Hamming Code

Richard Hamming discovered a one-error correcting binary code of length 7 with 16 codewords. He invented it because he was fed up with the paper tape reader on his early computer misreading his programs.

It gives an optimal solution to the Liar Game using 7 questions.

Remarkably, it is possible to specify all the questions in advance.

The Hamming Code

Find the binary codeword corresponding to your secret number.

0	0000000	8	1110000
1	1101001	9	0011001
2	0101010	10	1011010
3	1000011	11	0110011
4	1001100	12	0111100
5	0100101	13	1010101
6	1100110	14	0010110
7	0001111	15	1111111

The questions are:
'Is there a 1 in the first position (far left) of the codeword?',
'Is there a 1 in the second position of the codeword?',
and so on. If there is one lie, then the questioner will write down one wrong bit. But because the Hamming code can correct one error, the questioner can still work out what the number is.

Thank you! Any questions?

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.
At the party a black or white hat will be put on each person's head. You can see your friends' hats, but not your own.

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.
At the party a black or white hat will be put on each person's head. You can see your friends' hats, but not your own.

When the host shouts 'Go!', you may either say a colour or remain silent. Everyone who speaks must speak at the same time.

If everyone who speaks gets the colour of his or her hat correct, you all win some cake. If no-one speaks, or someone gets it wrong, there is no cake.

A Hat Game Related to Coding Theory

You and two friends are on your way to a party.
At the party a black or white hat will be put on each person's head. You can see your friends' hats, but not your own.

When the host shouts 'Go!', you may either say a colour or remain silent. Everyone who speaks must speak at the same time.

If everyone who speaks gets the colour of his or her hat correct, you all win some cake. If no-one speaks, or someone gets it wrong, there is no cake.
Question: What is a good strategy?

Thank you! Any questions?

Thank you! Any questions?

- Why is maths a good subject to study?
- What do maths lecturers do all day?
- How does maths at university differ from A-level maths?
- Are women just as good as men at maths? (Answer: Yes!)

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
$7(\mathrm{NO})+8(\mathrm{YES})=15$

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
- 'Is the number even?'
$7(\mathrm{NO})+8(\mathrm{YES})=15$
$8(\mathrm{NO})+7(\mathrm{YES})=15$

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
- 'Is the number even?'
- 'Is the number 12 ?

$$
\begin{array}{r}
7(\mathrm{NO})+8(\mathrm{YES})=15 \\
8(\mathrm{NO})+7(\mathrm{YES})=15 \\
14(\mathrm{NO})+1(\mathrm{YES})=15
\end{array}
$$

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
- 'Is the number even?'
- 'Is the number 12 ?
- 'Is the number prime?

$$
\begin{array}{r}
7(\mathrm{NO})+8(\mathrm{YES})=15 \\
8(\mathrm{NO})+7(\mathrm{YES})=15 \\
14(\mathrm{NO})+1(\mathrm{YES})=15 \\
9(\mathrm{NO})+6(\mathrm{YES})=15
\end{array}
$$

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
- 'Is the number even?'
- 'Is the number 12 ?

$$
\begin{array}{r}
7(\mathrm{NO})+8(\mathrm{YES})=15 \\
8(\mathrm{NO})+7(\mathrm{YES})=15 \\
14(\mathrm{NO})+1(\mathrm{YES})=15
\end{array}
$$

- 'Is the number prime?
- In the worst case there are at least 4 possible numbers after the second question.

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
- 'Is the number even?'
- 'Is the number 12 ?

$$
\begin{array}{r}
7(\mathrm{NO})+8(\mathrm{YES})=15 \\
8(\mathrm{NO})+7(\mathrm{YES})=15 \\
14(\mathrm{NO})+1(\mathrm{YES})=15
\end{array}
$$

- 'Is the number prime?
- In the worst case there are at least 4 possible numbers after the second question.
- In the worst case there are at least 2 possible numbers after the third question.

Four Questions are Necessary

The aim is to find a number between 1 and 15 .

- There are 15 possible numbers.
- In the worst case, there are least 8 possible numbers after the first question.
- 'Is the number 8 or more?'
- 'Is the number even?'
- 'Is the number 12 ?

$$
\begin{array}{r}
7(\mathrm{NO})+8(\mathrm{YES})=15 \\
8(\mathrm{NO})+7(\mathrm{YES})=15 \\
14(\mathrm{NO})+1(\mathrm{YES})=15
\end{array}
$$

- 'Is the number prime?
- In the worst case there are at least 4 possible numbers after the second question.
- In the worst case there are at least 2 possible numbers after the third question.
- So three questions are not enough.

[^0]: 0011000001110111010001101000000000011000000000010101110100011110 1010110000000000101011100000101110101100001010110110101101101001 0000111000101110101011000010100100101110100011010010010000100101 1010110000101011011010110110100100001110000011111000100001001011 0110010011001010110011001100111111001111000010000000010100010100 0000110000110000010000000101101000110000110000100011000000110000 1000000000011010001110100011000010000110101111010001101010101100 0000000000001011001011101010100100101011111010001010100011001011 1000100110100111101010011010101011001011101001011100101001001001 0000111011001100110011111100111100001000000101001000000101011010 0011000001000101000100010111101000110000101001010101101010101100 0000000000001011111010101110101101101001001011100010110000101011 1010100101101100000010111010111111101011011010101010101010101100 0010101110101110110010111010110000101011101010110010101100101110 1110101001001001100010010010011110100100101010011010101011001011 1010010111001010010010010000111011001100110011111100111100001000 00010100

